

Team 11 Robo-Weeder

Interim Design Review Arriana Nwodu Steven Williamson Zhang Xiang Aquiles Ciron Steven Miller Christopher Murphy November 19th, 2015

Sponsor: Jeff Phipps Advisor: Dr. Gupta

Presentation Overview

- Background & Motivation
- Objectives & Constraints
- System Overview
 - a. Mechanical Features
 - b. Electrical Features
- Current Status
- Challenges
- Future Work
- Summary

Organic vs. Conventional Farming

Conventional:

Marginally higher Crop yield

- Synthetic pesticide/herbicide usage
- Harmful environmental effects
- **Microbiology decline**

Soil Erosion

Genetically modified organisms

Organic:

Improve fertility, reduce nitrate leaching & weed, pest and disease problems

Doesn't use synthetic pesticides

Higher antioxidant level in crops

Utilize crop rotation technique to improve soil health

Happy Earthworm = Nitrogen = \$\$\$

Ideal Conditions

Secretes Nitrogen as a waste product

Biological pistons that aerates soil as it borrows downward.

This movement is conducive to mineralization nutrients and their uptake of vegetation

Lives approximately 10-30 cm below surface

Figure 1: "Lumbricina" or Earthworm is organic farmers dream.

Team 11

Less Than Ideal? Labor Intensive Weed Control

Figure 2: Closeup of Mulching technique implemented at Orchard Pond.

<u>Weed:</u> any undesirable plant that grows on cultivated ground to the exclusion or injury of the desired crop.

- Tillage
- Mowing Cutting Weeds
- Flame/ Thermal Weeding
- Mulching

Team 11

Need Statement

Is organic farming more beneficial?

Scientific study is inconclusive

Sponsor, Jeff Phipps M.E. and owner of Orchard Pond wants to, *"commercialize a robotic system that will house several weeding implements to facilitate organic farming."*

Goal Statement:

"Develop a 'proof of concept' robotic machine that will enhance the production of organic crops."

2014-2015 Design

Motor Attachment: Chain-Sprocket System with 1:1 ratio. Autonomous Operation: Camera with visual recognition software that identifies plants

Shearing Implement: Single basket of removable spokes. Revolve opposite to direction of motion.

Figure 1: Previous Robo-Weeder Design

Wheels: Single steering wheels with rugged terrain traction.

Team 11

New Constraints

- Mobile
- 8" Auger provided
- Remotely Operated
- No till
- 1" soil interruption
- No wider than 12"

Figure 3: Organic Crops.

Project Scope

Design Modifications

Team 11

Previous Shearing Design Analysis

Figure 5: FEA Results.

Team 11

Shearing Feature

Shearing Feature

Mechanical Parameters:

- Vertically lifted via crankshaft
- Constraint Provided: 8" diameter auger
 - counter balancing effect with counter rotating augers to ensure stability
- Two 14 pound motors providing 110 in-lb to each auger
 - 1.2:1 Gear reducing Sprocket system

Steering Feature

Steering Feature

Figure 9: Steering Assembly.

Mechanical Parameters:

Each pivot point 30 degree turn radius

Independent/Parallel

Desired motor will be centered between wheels

Stability

Single linear actuator steering providing

High Traction wheels

Electrical System:

Figure 10: Electrical System Overview.

Design Needs

•1 Transmitter/ Receiver

•1 Microcontroller

•2 Linear actuators

•4 Motors

• 6 Motor Controller Channels

•12V Battery

Microcontroller 🛑 Motor Controller

Figure 11: Motor Controller Diagram

Team 11

Shearing Components

Steven Williamson, E.E.

Figure 12: Roboweeder Shearing Mechanism

Team 11

Shearing Feature

Electric Parameters:

•2 Motors

•~110 lb-in Torque (per Auger)

• 60-100 RPM (per Auger)

Figure 13: Shearing Mechanism

Steven Williamson, E.E

Steering/Drive Components

Figure 14: Roboweeder Steering Assembly

Steven Williamson, E.E

Steering/Drive Feature

Electric Parameters:

- 2 Drive Motors
- •2 Linear Actuators
- •~100 lb-in Torque (Drive Motor)
- ~25 ±5 RPM (Drive

Figure 15: Steering Assembly

Steven Williamson, E.E.

Motor)

Team 11

Prospective Motors

Drive Motor

Auger Motor

Motor	LEESON M1135285	LEESON M1125219			
Cost	\$312.77	\$229.99			
Speed	27 RPM	61 RPM			
Torque	134 lb-in	113 lb-in			
Amperage	14 A	10.4 A			

Turnigy 6X FHSS 2.4Ghz Transmitter and Receiver (\$30)

- Transmits through Radio Frequency
- 6 Channels
 - Augers
 - "Drive" Motors
 - Linear Actuators

Steven Williamson, E.E.

Microcontroller Arduino Mega 2560 (\$45)

- Processor: ATmega2560 @ 16 MHz
- 54 Digital I/O Pins
 - 14 PWM Pins
- 16 Analog Inputs
- 7V 12V Operating Voltage

Figure 17: Arduino Microcontroller

Total Budget: \$3000.00

Upcoming Costs

Team 11

Current Status

Task Name	6, '15 S	Aug 30,	'15	Sep 13, '15	Sep 27, '15	Oct 11, '15	Oct W	25, '15 T M	Nov 8,	'15 S	Nov 22, '15	Dec 6	, '15
Introduction													
Initial Project Introduction													
Background Research													
Web Page Design													
Conceptual Design													
Project Development													
Final Mechanical Concept													
Soil Analysis													
Electrical Concept Design													
Mechanical Concept Analysis													
Final Chassis Design													
Material Selection													
Steering Assembly Design													
Auger Housing Design													
Final Mechanical Design									C				
CAD Design													
Electrical Component Selection													
Prototyping													
Fabrication													

Current Project Tasks:

Electrical Concept Design Electrical Component Selection Steering Assembly Design Auger Housing Design Detailed CAD Design **Behind Schedule** Fabrication

Team 11

Future Work

- Electrical Components
 - Motor Controller based on final motor selection
 - Linear actuators pending on further force analysis
- Battery Type/Size
- FMEA

- Mechanical Components
 - Detailed CAD Design
- Fabrication
 - -Chassis
 - -Steering Assemblies

Challenges Ahead

Stability

Intended use of a lead acid battery may affect the center of gravity.

Connection of Materials

Connection between purchased and fabricated parts fit as intended.

Material Selection

Using the correct materials is important to keep the weight down, but to also maintain the strength of components.

Develop a 'proof of concept' robotic machine that will enhance the production of organic crops."

Robo-Weeder

Steering: Independent front and rear with parallel steering capability.

Shearing: Auger Style to minimize soil disruption.

Communication: Radio Controlled for ease of operation.

References

<u>http://www.todaysdietitian.com/newarchives/040715p40.shtml</u> (organic vs conventional farming)

http://www.orchardpondorganics.com/images/gallery/original/1301371300_f7d5753c3bf1.jpg

http://www.ocia.org/sites/default/files/_documents/EN-QS-M-003_0.pdf Organic standards

https://en.wikipedia.org/wiki/Earthworm earthworms

https://www.arduino.cc/en/Tutorial/PWM (PWM Table, Microcontroller)

http://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html thermal conductivity of gray cast iron

http://www.hobbyking.com/hobbyking/store/ 24969 Turnigy 6X FHSS 2 4ghz Transmitter and Reciever Mode 2 .html (Transmitter)

Questions?

Appendix to follow

Appendix

	Team 1	1: Robo-We	eeder							
2 8	Motor To	orque Calcu	lations	A.C.						
						α = 10 deg	gree	0.1745	33	
α	Pressure A	Ingle				μ = 0.3				
γ	Lead Angle	e				p _x = 7.25 i	nch	184.15	mm	
μ	Friction Co	oefficient				D _{ref} = 4.68	75 inch	119.06 mm		
z	Starts		4							
p _x	Axial Pitch	1	1.8125	46.04						
P		$\cos \alpha * \cos \alpha$	$\sigma s \gamma - \mu s$	inγ				-		
$F_{Axial} =$	^r Tangential	$\frac{*}{\cos \alpha * \sin \alpha}$	$n\gamma + \mu co$	osγ			F	D		
02	2 * T				\geq	— <i>T</i> =	$2 * \frac{\cos \alpha}{\cos \alpha}$	$\frac{\Gamma_{axial}D_{ref}}{\cos \alpha * \cos \gamma - \mu \sin \gamma}$		
F _{Tangent}	$a_{ial} = \frac{1}{D_{ref}}$						cosa	* SIII	μ cos γ	
$v = \frac{180}{1}$	$* \tan^{-1} \left(\frac{z}{z} \right)$						1			
π	(q)		26.214	degree	0.457521	. /	-	*		
						/	Neede	d Auger S	haft Torque	
$q = \frac{D_{re}}{m}$	<u>f</u>	8.124197			/	/		110	In-lb	
$m = \frac{p_x}{\pi}$		14.65499			/					
Total axial force needed to shear soil: F _{axial} = 50 lbs			/			Supp 1	lied Rate	d Torque: @ 12V		

Dimensions

Organic Terminology

A pest is any living organism which is invasive or prolific, detrimental, troublesome, noxious, destructive, a nuisance to either plants or animals, human or human concerns, livestock, human structures, wild ecosystems etc. It is a loosely defined term, often overlapping with the related terms vermin, weed, plant and animal parasites and pathogens. It is possible for an organism to be a pest in one setting but beneficial, domesticated or acceptable in another

Soil and Shear Force Calculations

