DESIGN OF A QUIETER HAIR DRYER

FEBRUARY 18, 2016

TEAM 6 SHAWN ECKERT KIET HO MARK JOHNSON PETER VAN BRUSSEL

SPONSOR DR. DEVINE

ADVISOR DR. CATTAFESTA

Presentation Overview

Shawn Eckert

Project Scope Performance Analysis □ Noise Source Contributions Design Modification Plans Entrepreneurial Progress Gantt Chart

Current Problem

Hair dryers can be very loud

- Causes unwanted noise in areas meant to be peaceful
 - Pet Grooming
 - Salons
 - Household Bathrooms
 - Brands that aren't loud are very expensive; up to \$250+

Project Scope

Shawn Eckert

Our project scope is to make repeatable and measureable noise reduction improvements to a centrifugal type hand-held hair dryer through enhancements in design aspects, while maintaining performance within 10% of the maximum.

Hair Dryer Components

Noise-Flow Tradeoff

Peter Van Brussel

6

- Making alterations to suppress noise results in decreased flow
 - Examples include: lower fan speed and baffles on intake
- Determine tradeoffs that reduce noise while maintaining flow
- Measure base flow rate and noise before modifications
- Correlate flow and noise analysis

Performance Testing Setup

- 7 Peter Van Brussel
- \Box Performance based on rate of heat output \dot{Q}
 - Mass flow rate
 - Temperature change
- $\Box \quad \dot{Q} = \dot{m} * C_p * \Delta T$
- Pitot-Tube to determine velocity profile of jet
- Infrared Thermometer to measure temperature of different locations from nozzle

Temperature measurements w/ infrared thermometer

Velocity measurement setup w/ Pitot-tube

Performance Testing Analysis

8 Peter Van Brussel

 Integrate velocity profile to determine volumetric flow rate

$$\square Q = \int_0^r v(r) \ 2 \ \pi \ r \ dr$$

- Assumed negligible density and temperature changes in profile
 - $\bullet \ \dot{m} = Q * \rho$

$$\bullet \ \rho = 1.225 \ \frac{kg}{m^3}$$

Velocity Profile at Nozzle for Centrix Dryer

\square Determining ΔT

- Record surface temperature before and after heat application
- Calculate rate of heat transfer

$$\Box \dot{Q} = \dot{m} * C_p * \Delta T$$

Hair Dryer Performance Comparison

9 Peter Van Brussel

	Centrix Q-Zone		Whisper Light	
	High	Low	High	Low
Power Rating	1500 W		1400 W	
Temperature 6 in. from nozzle	55° C 131° F	41º C 106 º F	65° C 150° F	50° C 122 ° F
Volume Flow Rate	$0.0284 \frac{m^3}{s}$ $60 cfm$	$0.0201 \frac{m^3}{s}$ $39 cfm$	$0.0226 \frac{m^3}{s}$ 50 cfm	$0.0142 \frac{m^3}{s}$ $30 cfm$
Motor RPM	514	360	730	520
Heating Rate (\dot{Q})	1190 W	495 W	1227W	508 W

Table comparing performance characteristics of two dryers

*cfm = cubic foot per minute

Microphone Testing Schematic

10 Peter Van Brussel

- Measurements take around the device at locations above, level and below
- All measurements taken 10 inches away from nozzle center or top of the intake

Microphone testing setup in anechoic chamber

Noise Analysis Overview

11 Peter Van Brussel

- Goal is to determine noise sources then determine the greatest contributor
- Human hearing is most sensitive between 1-2 kHz
- A-weighted filter models human hearing
- Design aims are to push noise to lower frequencies to take advantage of Afilter

Frequency spectrum at side of intake for low speed showing behavior of A-weighting filter

- Examine noise contribution of various design aspects
 - Heating Element
 - Intake Covers
 - Fan Speed

Noise Source Contributions

12 Peter Van Brussel

Heating element removed from flow path

Intake baffle removed from flow path

- Heating element noise is minimal
- Baffles are necessary and must be used efficiently
- Fan speed is largest contributor

Fan speed is largest noise contributor

13 Peter Van Brussel

- A 40% increase in fan speed results in a SPL increase of 6-8 dBA
- By far the greatest reduction observed in measurements
- Must effectively balance flow and performance

 Conclusion: Maximum benefit will come from improvements to the fan system and blades

How to modify the fan

Peter Van Brussel

14

Whisper Light chosen for modifications

Simple fan attachment mount

Louder of the two hair dryers

Modifications

- Reduce the number of blades
 - To decrease BPF
- Increase blade size and surface area
 - To maintain volume flow
- Add serrations to blades trailing edge
 - Break up packet of air leaving blades

Showing how the fan attaches to the motor

Fan design

15 Peter Van Brussel

Current fan features					
# of blades	36				
Blade height	0.935 in.				
Outer Diameter	3.05 in.				

Current fan is a "bucket" type design

- □ 3D printed replica of current fan
 - 1st iteration came out rough but was not designed for 3D printing
- Plan is to 3D print modified designs
 - Looking into more sophisticated methods
- Ensure new fans fit the mount and in the housing
- Use centrifugal fans design references and tools to ensure efficient designs

Entrepreneurial Progress

- Global Market
- Potential Customer Survey
- Business Model Canvas
- Engineering Shark Tank

Global Hair Products Market

17 Shawn Eckert

The hair care market is only going to grow

- Shampoos, Conditioners, Relaxers, Gels, Hair Straighteners,...
- Most importantly <u>Hairdryers!</u>

Great time to introduce a product to the market

Hair Styles of Today

- Mostly women have been consumers
 - We expect them to purchase hairdryers
- Men are now becoming consumers
 - To Complete the look a hairdryer is needed
- Pet groomers are also consumers
 - Pets with long and short hair
 - Animals are sensitive to loud sounds

Understanding Customers

Noise Dry Time Tangles Weight Speeds

Below \$50 \$50 - \$100 Above \$100

Marketing...A Great Product Sells Itself

- To be a viable seller in a market full of competitors
 - It needs to have proven results
 - A wow factor that isn't just for show
 - Must set itself apart from the rest
- We aren't Anheuser Busch
 - Can't afford to spend millions on commercials
 - Not popular enough to do promotions

Business Model Canvas

Snawn Eckert				
The Business Model	Canvas	Team or Company Name: Hushdryer	Date: 02/16/15	Primary Canvas Alternative Canvas
Key Partners Funders • FAMU & FSU College of Engineering Senior Design • Dr. Devine (Sponsor) Advisors • Dr. Cattafesta • Acoustics & Permission Access • Dr. Gupta & Shih (Coordinators) • Mechanical & Electrical Testing • Aero-Propulsion Mechatronics & Energy Building Vendors • High Performance Material Institute • 3D Printing on Gaines st.	Key Activities • R&D to improve on current hairdryers • Good sales team • Upfront in Retail Stores • Online Shipping & Delivery Accessibility Key Resources 3D Printing Shop - Tallahassee, El Helpful Staff • FAMU-FSU COE High quality hair dryer parts (outsourced)	Value Proposition Product - High performing yet quiet hairdryer - 3D printed blades for high durability - Reliable DC motor for longevity - Three colors, purple, blue, green	 Customer Relationships Purchasing By self (Online based, Pre-caution prior to FAQs) By engagement (Retail Stores, One- on-One Assistance with FAQs) Channels Retail Stores (In- Person) Online Stores (Amazon) Online Website 	Customer Segments Individual - Independent Customers Professional - Hair Salons - Pet Grooming - Painters

Financial Status

Engineering Shark Tank

23 Shawn Eckert

- A Business Pitch Competition for Technology Innovations
 - □ 1st \$1,250
 - □ 2nd \$750
 - People's Choice \$500
- □ A panel of 7 Judges
 - Faculty of FAMU-FSU COE
 - Alumni
 - Entrepreneurs
 - Takes place on Thursday, April 14, 2016

1st Annual College of Engineering Technology Business Pitch Competition

Thursday, April 14, 2016 | 3:00pm-4:30pm, Engineering Room B-221

Future plans/Gantt Chart

Questions? Thank you