

High Speed Motor Test Rig Spring Presentation 1

Team 4: Francisco Barreto, Matthew Ketchum, Thyeasha Joseph, Durval Marques, Leonardo Branco.

Sponsor: Danfoss Liasain: William Sun Faculty Advisor: Dr. Patrick Hollis 1-21-16

Project Background

- Danfoss is looking to build a motor-generator rig to test the compressor motors.
- Compressor uses magnetic bearings.
- Motor-generator rig couples the drive-shaft of one motor to another motor shaft which acts as a generator (back driven).
- Danfoss TT-Series motors run between 20,000-40,000 rpm (depending on the model).
 - High amount of misalignment must be minimized.
 - High chance of misalignment calls for high precision for alignment process.

2 | Turbocor[®] | 8D Training - 2015

Problem Statement

- Danfoss desires a system to qualify their compressor motor performance specifications.
 - Power
 - Efficiency
 - Heat Management
- Needs to be able to qualify all TT-Series compressor motors
 - Torques and Angular Speeds vary between models
- System alignment process must also be qualified

Final Design

- Test rig components:
 - Rigid couplers
 - 20 mm diameter steel dowels
 - Flexible Bellows couplers
 - Torque transducer (Magtrol 308/311)
 - ¼ inch thick 2x2 inch steel tubing
 - Transducer stand to be welded to frame
 - Steel tubing to be fastened with ½ inch hex bolts
- Shims and set screws will be implemented for horizontal and vertical alignment
- TKSA 31 laser alignment tool will be used to qualify the alignment process

Figure 2: Final test rig design (compressors not shown)

Frank Barreto

Design Challenges

• Selecting components to withstand motor performances.

Compressor	Max Torque (Nm)	Max Speed (RPM)
TT300	22.8	37,762
TT350	38.0	30,598
TT400	37.2	25,091
TT700	73	17,000

- Danfoss will not supply funding for the torque transducer
 - Roughly \$8,000 for each transducer
- New "mock transducer" part will be designed in CAD as a back up
 - Could cause a potential issue with the alignment process
 - Necessary modifications to help alignment will be made

Key Design Component: Flexible Coupler

R&W BKC 150 Coupling:

- 150 Nm rated torque
- 80,000 RPM rating
- Safety Factory=2.11
 - 80,000RPM/37,762RPM

Figure 3. Compressor shaft (left) that will be coupled to flexible coupler (right).

Misalignment Tolerances:

• 0.2mm lateral, 1° angular, and 1mm axial

Key Design Component: Alignment System

Horizontal correction - Top view

- Step 1. Attach TKSA alignment tool
- Step 2. Vertical alignment with shims
- Step 3. Lateral Alignment with set screws

Figure 4 (left to right). Alignment tool set up, shim, alignment tool screen.

Frank Barreto

🔳 14:32 🛛 🗐

-0.12

0.24

Angular

misalignment

Parallel /offset

Alignment System: TKSA 31

- Measuring error less than 5%
- Accuracy of $10\mu m$
- Live values for vertical and horizontal machine position correction; Laser soft foot tool.
- Cost: \$3,595.00

Figure 5. Alignment tool set up.

Frank Barreto

Alignment System: Shims

- Shim material: 304 stainless steel
- Shims thicknesses: 10, 25, and 250 μm .
- Angle (θ) and elevation (y) induced by shim width (a):

$$\theta = \tan^{-1} \frac{a}{b}$$
 $y = c - \cos(\theta) \cdot c$

Matt Ketchum

- Ex. @ $a = 250 \ \mu m$, $\theta = 0.03^{\circ}$, $y = 0.027 \ \mu m$
- b, distance between front and rear compressor mounts. c, shaft height above mounting surface.

Figure 6A. Live guide for vertical adjustment

Figure 6B.Defining shim dimension (does not relate to equations)

9 | Turbocor® | 8D Training - 2015

Alignment System: Set Screws

- Manufactured in house.
- Bolts to be purchased locally. 2 $\frac{3}{4}$ x $\frac{1}{2}$
- Will require steel plate to be cut, welded, and tapped.

Horizontal correction – Top view

Figure 7. Lateral adjustment screw

Figure 8. Live lateral adjustment guide

Matt Ketchum

Key Design Component: Rigid Coupler

R2CC Rigid Coupler:

- Re-machinable: Will be balanced and bored by Danfoss
- Stainless Steel, ASTM A582
- Safety Factor: Unknown, must first be balance for maximum stability.
- OD: 1 ³/₄ in, Length: 2.625 in
- Couples to torque transducer and metal dowel from flexible coupler.

Figure 9. R2CC Rigid Coupler

FEA Analysis

Von Mises Stress

Maximum Displacement

Matt Ketchum

- Von Mises analysis shows a maximum stress of 6.9e04 Pa at the mounting hole locations.
 - A36 yield steel strength = 2.5e8 Pa.
- Maximum frame displacement of 1.034 e-07 meters.

Figure 10. FEA Analysis

Current Status

- Design was approved by Danfoss
 - Waiting for frame components to be purchased.
- During meeting on 1/15/16
 - Advised to use 80/20 Aluminum for safety shielding.
 - Polycarbonate instead of Plexiglass.
 - Torque transducer will likely not be purchased this spring.

© 80/20 Inc., All Rights Res

Matt Ketchum

Work Breakdown Structure, Spring Semester

Figure 12. Work Breakdown Structure spring semester.

Matt Ketchum

14 | Turbocor[®] | 8D Training - 2015

Gantt Chart

					Jan 1	7, '16		Ja	n 31, '	'16		Feb	14, '16		F	eb 28,	'16		Mar 1	13, '16		Ma	ar 27,	'16		Apr 1	10, '16
Task Name 👻	Duration 👻	Start 👻	Finish 👻	W	S	Т	М	F	Т	S	W	S	Т	М	F	Т	S	W	S	Т	М	F	Т	S	W	S	Т
 Order steel for frame 	11 days	Mon 1/18/16	Mon 2/1/16						1																		
Order fasteners	3 days	Mon 1/18/16	Wed 1/20/16																								
Order alignment equipment	11 days	Mon 1/18/16	Mon 2/1/16																								
Frame assembly	3 days	Thu 1/21/16	Mon 1/25/16		1																						
Temporary assembly evaluation	4 days	Mon 1/25/16	Thu 1/28/16																								
Additional part order (If needed)	6 days	Mon 1/25/16	Mon 2/1/16																								
Integrate alignment system	5 days	Mon 2/1/16	Fri 2/5/16					1																			
Qualify alignment process	9 days	Fri 2/5/16	Wed 2/17/16																								
Order flexible couplers and rigid coupler	19 days	Mon 2/1/16	Thu 2/25/16					1																			
Balance rigid coupler and extension shaft	21 days	Fri 2/12/16	Fri 3/11/16																								
Integrate couplers	26 days	Tue 2/16/16	Tue 3/22/16																								
Order trandsucers if alignment is successful	47 days	Wed 2/10/16	Thu 4/14/16																								

Matt Ketchum

Figure 12. Gantt Chart, Spring Semester.

Conclusion & Future Work

- Frame material, couplers, and alignment equipment order will be placed through Danfoss.
- Assembly and manufacturing will be done at Danfoss.

Matt Ketchum

- Dimensioning for safety shielding frame.
- Evaluate mock transducer alternatives.
 - 3 alternatives

16 | Turbocor[®] | 8D Training - 2015

References:

- 1. <u>http://www.magtrol.com/torque/torquemeter_transducers.html</u>
- 2. <u>http://catalog.climaxmetal.com/item/re-machinable-couplings/re-</u> machinable-couplings-r2cc-series/r2cc-075-075-s
- 3. <u>http://www.skf.com/us/products/maintenance-products/alignment-tools/shaft-alignment-tools/shaft-alignment-tool-tksa31/index.html</u>
- 4. <u>http://www.rw-america.com/products/bellows_couplings/bk/bkc/</u>

