PROTOTYPE MACHINE FOR COATING STABILIZED LITHIUM METAL POWDER Interim Presentation

ME #16 / ECE #18 Sponsor: General Capacitor LLC (Harry Chen) <u>Advisor:</u> Dr. Shih, Dr. Frank, & Dr.Zheng <u>Instructors:</u> Dr. Gupta <u>Team Members:</u> Marcos Leon John Magner Vannesa Palomo Maria Sanchez John Shaw Benjamin Tinsley

Overview

- Background
- Motivation
- Objective
- Current Methods
- Constraints
- Current Design
- Progress to Date
- Challenges/Lesson Learned
- Future Plans
- Budget
- Updated Schedule
- Questions/Comments

Vannesa Palomo SLMP Coating Machine

Group 16 Slide 2 of 24

Background Information

- Sponsor
 - General Capacitor
 - •Dr.Zheng, founder and Chief Scientist of General Capacitors, is our main technical advisors
 - Product
 - Stabilized Lithium Metal Powder (SLMP)
 Developed by FMC Lithium Corporation
 Particle size: 30-60 Microns

Image 1: General Capacitors Logo

Image 2: SEM image of SLMP.

Marcos Leon SLMP Coating Machine

Group 16 Slide 3 of 24

Background Information

- Lithium-ion Batteries
 - Rechargeable batteries
 - When the battery is in use, Lithium ions move from a negative electrode, also known as anode, to a positive electrode, or a cathode.
 - When they recharge the Lithium ions accumulated in the cathode flow back to the anode.
 - Anodes typically contain lithium compounds, while cathodes contain carbon compounds.

Marcos Leon SLMP Coating Machine

Group 16 Slide 4 of 24

Motivation

- Experimentation conducted by FMC Lithium Corporation showed that the use of SLMP
 - Increases:
 - Battery capacity by 5% to 15%
 - Energy density by 2-4 times
 - Battery life
- SLMP can be applied onto pre-existing anodes
- Technology can used in batteries, cell phones and energy storage, such as super capacitors.

Group 16 Slide 5 of 24

Objective

- To create a prototype machine that can coat SLMP.
 - Goal
 - To produce a uniform layer of SLMP onto preexisting anodes
 - Minimum layer thickness of 150µm
 - Purpose
 - Our Approach
 - Dry dispersion method

Image 3: A photo of a hard Carbon Electrode.

Image 4: A photo of a hard carbon electrode applied with SLMP.

Vannesa Palomo SLMP Coating Machine

Group 16 Slide 6 of 24

Current Methods Available

- FMC Lithium
- Method: Slurry application in which SLMP is mixed into a slurry using a volatile solvent.
 - After application of the slurry, the solvent evaporates and leaves a well distributed coat of SLMP.

Image 5: Photo from FMC Lithium conducting Slurry Application.

- Tokyo Electron Limited
- Method: Form a thin lithium film on anode sheet by melting and spraying lithiumcontaining powder.
 - Using argon gas to melt.

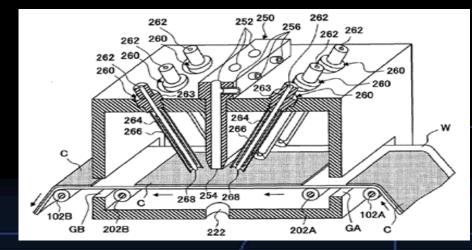


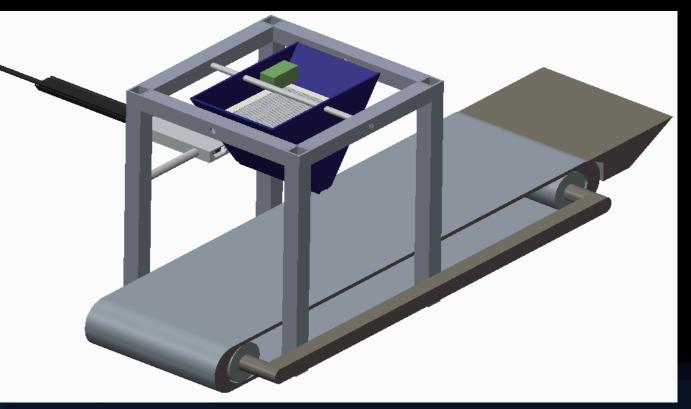
Image 6: Tokyo Electron Limited's Patented coating machine

Marcos SLMP Coating Machine

Group 16 Slide 7 of 24

Constraints

- The budget given by General Capacitors is \$2,000
- The lithium powder is to cover the total surface area of the flat battery's anode
 - The anode dimensions will vary from 5-12 cm (width) and 5-25 cm (length)
- Lithium coat must have a uniform layer of 150µm with 20% fluctuation in thickness
- One coating process under 10 minutes
- Working with the lithium powder must be done in a dry environment
 - AME dry room is 0.5% humidity


Marcos Leon SLMP Coating Machine

Group 16 Slide 8 of 24

Process / Component Breakdown

- Process is divided into 3 major parts
 - Powder dispersion
 - Powder coating
 - Powder pressing
- To understand each process will going into a detailed step by step procedure along with component breakdowns

Updated version of prototype

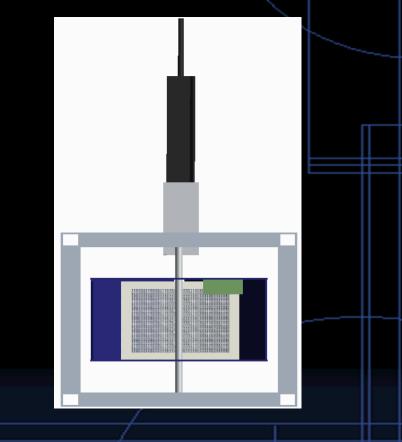
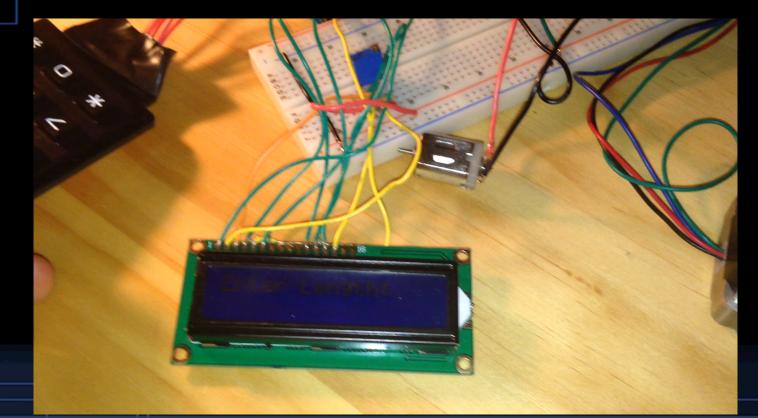



Image 7: Completed CAD Drawing of Prototype machine which includes all changes that occurred due to construction issues that arise.

Image 8: Top View of updated prototype.

Group 16 Slide 10 of 24 Marcos Leon SLMP Coating Machine

 To begin the coating process, the user will first be prompted to use the keypad and LCD display to communicate with the microcontroller.

- 16X2 character LCD used to communicate with the user
- 3X4 numeric keypad is used for the user to enter coating length

Table 1: Commands available for key pad.

Key Pressed	Result
*	Re-enter Length
#	Select Length
Value < 5	Invalid Length:
or > 25	Re-enter Length
Value > 5	Pagin Coating Process
and < 25	Begin Coating Process

Group 16 Slide 11 of 24

Process / Component Breakdown Microprocessor

- MCU Arduino Mega 2560 R3 Microcontroller
 - This MCU will be the "brains" of the operation by:
 - Controlling the various motors
 - Powering on and off components
 - Controlling LCD
 - Retrieving feedback from Keypad
 - Technical Specifications
 - Input Voltage: 7-12V
 - Digital I/O Pins: 54
 - PWM Digital I/O Pins: 15
 - Flash Memory: 256 Kb
 - Clock Speed: 16 MHz
 - Powered by 12 VDC power supply with 2.1mm connector

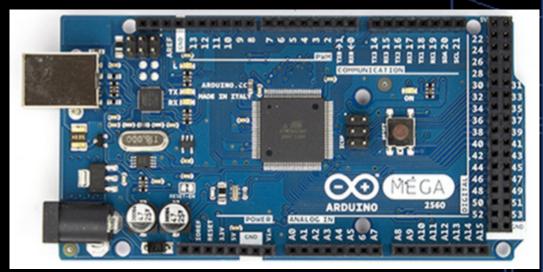


Image 9 : Arduino Mega 2560 R3

John Magner SLMP Coating Machine

Group 16 Slide 12 of 24

Process / Component Breakdown Power Supply

- 120 VAC to 12V/ 5A power supply (60W)
- Output connects to a 2.1 mm DC plug
 - Split into (2) 2.1 mm DC plugs
 - One powering Arduino
 - One powering motors

Table 2 : Tabulated Power Consumption stating nominal voltage, average current, average power and total power

Components	Nominal	Average	Average	Total	
Components	Voltage (V)	Current	Power (W)	Power (W)	
Arduino Mega	12 V	50 mA	0.6	0.6	
Stepper Motor	12 V	350 mA	4.2	4.2	
Vibration Actuators	12 V	100 mA	1.2	2.4	
Character Display	5 V	15 mA	0.075	0.075	
Keypad	2 V	10 mA	0.02	0.02	
			Total Power =	7.295 W	

Image 10: Photo of the 60 W Power Supply that will be used.

Image 11 : 2-Way 2.1mm DC Barrel Jack Splitter.

John Magner SLMP Coating Machine

Group 16 Slide 13 of 24

Process / Component Breakdown

- Once all settings have been inputted, the user will lift the plexiglass enclosure and begin to pour SLMP into the funnel opening.
- 3 different meshes will be distributed along the length of the funnel and by use of 2 DC vibration motors, the meshes will be oscillated to facilitate flow rate and to produce a uniform particle distribution

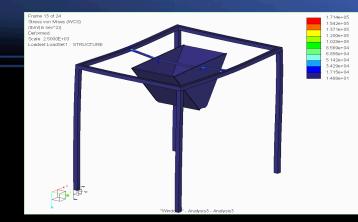


Image 12: Larger image showing how the structure would react with 2500 psi onto it .

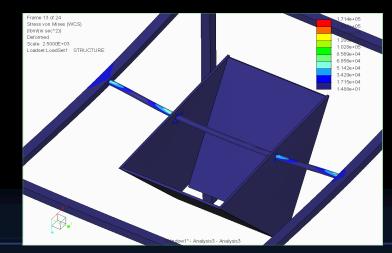


Image 13 : FEM Analysis of forces acting on structure. Showing the Stress in the rod holding the funnel

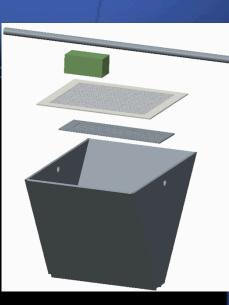
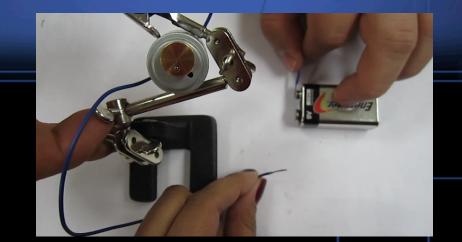
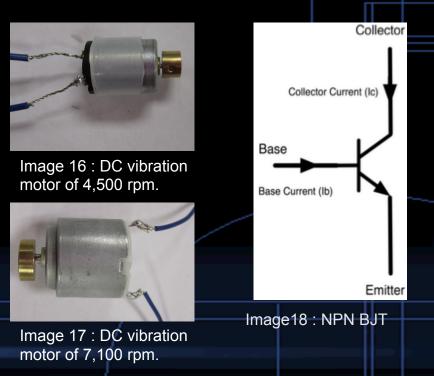


Image 14: Exploded CAD drawing of the funnel with the meshes and Actuators.

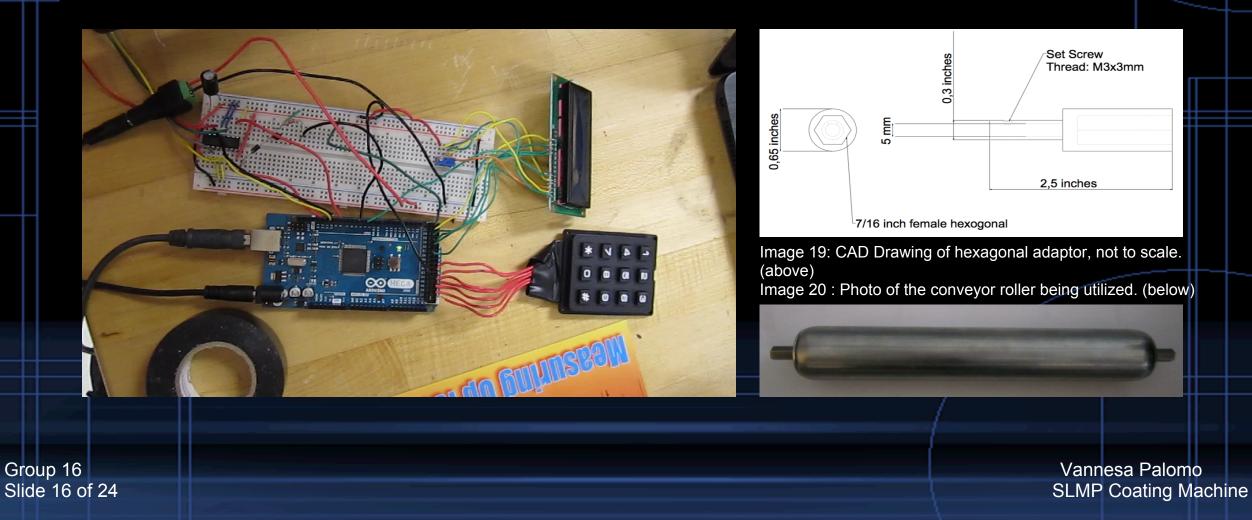

Image 15 : Photo of the wire cloth mesh that will be utilized.


Vannesa Palomo SLMP Coating Machine

Group 16 Slide 14 of 24

Process / Component Breakdown Actuators

- When the dispersion process begins actuators will be turned on to vibrate the meshes and allow for the SLMP to flow.
- There will be (3) actuators powered by the 12 VDC power supply used on separate meshes vibrating at different amplitude and frequencies.
- The Actuators will be controlled by the microprocessor and a BJT.
 - The 12V power supply is connected to the collector
 - The Arduino pin is connected to the base
 - \circ $\,$ The actuator is connected to the emitter $\,$
- A diode is also placed in parallel to the actuator for protection from back-currents.



John Magner SLMP Coating Machine

Group 16 Slide 15 of 24

Process / Component Breakdown

• Directly beneath the outlet of the funnel, an anode on a conveyor belt will be waiting to be coated.

Process / Component Breakdown Conveyor Motor

- A 12V stepper motor will be used to drive and control the conveyor belt.
 - A set number of steps will bring anode from start position to funnel and from funnel to end.
 - While the anode is under the funnel the conveyor belt will go back and forward 5 times each at the distance specified by the user.
- The amount of steps for a given distance can be calculated by comparing the steps to circumference
- The circumference of the rollers are 15.16 cm and the motor has 200 steps per rotation.
 - Circumference = pi*d
 - Revolutions = Circumference * Length
 - Steps = Revolutions * 200
- An H-bridge is used to give the stepper motor bi-directional capabilities.

Table 3: Length to step Conversions							
Length (cm)	Revolutions	Steps					
< 5	0	Re-enter					
5	0.33	66					
6	0.40	79					
7	0.46	92					
8	0.53	106					
9	0.59	119					
10	0.66	132					
11	0.73	145					
12	0.79	158					
13	0.86	171					
14	0.92	185					
15	0.99	198					
16	1.06	211					
17	1.12	224					
18	1.19	237					
19	1.25	251					
20	1.32	264					
21	1.39	277					
22	1.45	290					
23	1.52	303					
24	1.58	317					
25	1.65	330					
> 25	0	Re-enter					

John Magner SLMP Coating Machine

Group 16 Slide 17 of 24

Progress To Date

- Frame and Funnel Construction Complete
- Conveyor Belt Complications resolved
 - Hexagonal drive shaft
 - \circ $\,$ adaptor created for stepper motor and roller connection
 - slip of belt on rollers
- Testing with appropriate actuators commenced
 - Brushless Oscillators Replaced
 - Now using DC motor with offset weights
- Stepper Motor programming is complete
 - will be able to rotate the conveyor belt for anode coating.
- Keypad and LCD programming is complete
 - LCD will communicate messages to user
 - Keypad will accept user inputs

Vannesa Palomo SLMP Coating Machine

Group 16 Slide 18 of 24

Challenges / Lessons Learned

- Conveyor Belt Issues
 - Had to come up a contingency plan to convert one of them into a driver rollers
- Connection of Stepper Motor to Hexagonal Drive
 - Creating a 3D printed adaptor
- Rolling press is no longer functional
 - will be using a flat press

- Original Actuators did not produce sufficient vibration.
 - Changed type of actuator
- Construction timeline has been delayed due to shipment delays
 - Team must meet more consistently to account for approach deadline

Group 16 Slide 19 of 24

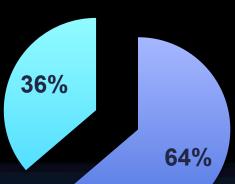
Vannesa Palomo SLMP Coating Machine

Future Plans

Installations

Group 16

Slide 20 of 24


- Conveyor belt and Frame Connections
- Meshes within the Metal funnel
- Plexiglass enclosure
- Construction of 3D parts
- Testing with Actuators
 - inside funnel
 - outside of funnel
- Begin testing with completed mechanism
- Begin testing in Dry Room

Marcos Leon SLMP Coating Machine

Budget

 Currently we have used \$1249.35 of our \$2000 budget.

Spent Avaliable

Component	Distributor/Source of Part	Total Price
Meshes	Grainger Industrial Supply	\$ 65.38
Frame & Funnel	Metal Fabrications and Sales of Tallahassee	\$ 527.62
Rollers	Grainger Industrial Supply	\$ 48.60
Conveyor Belt	Grainger Industrial Supply	\$ 52.00
Actuators	Precision Microdrives	\$ 63.75
Plexigalss	Amazon	\$ 7.99
Microprocessor	Arduino	\$ 44.99
Stepper Motor	Adafruit	\$ 14.00
DC Motor	Phigidt	\$ 43.50
LCD character display	Sparkfun	\$ 4.99
Keypad	Sparkfun	\$ 8.99
On/Off switch	Sparkfun	\$ 1.99
Power Supply	Adafruit	\$ 24.95
Hinges	Home Depot	\$ 3.39
Motor Shield	Amazon	\$ 34.95
Corner Bracers for Convyor Belt	Home Depot	\$ 5.94
Clamps	Home Depot	\$ 4.99
Acrylic Mirror	Home Depot	\$ 55.99
Misc. Electrical Components	Adafruit/ Radioshack	\$ 35.00
Misc. Hardware	Home Depot	\$ 200.34
	Total	1249.35

John Magner SLMP Coating Machine

Group 16 Slide 21 of 24

Updated Schedule

Table 5: Updated Gantt Chart of current schedule

_ <u>`</u>									l			
Task Name	Duration 👻	Start 🗸	Finish 🚽	Dec 28, '14 M T	Jan 18, '15 W T F	Feb 8, '15 S S	Mar 1, '15 M T V	Mar 22, '1 V T F	LS Apr12 S S			
Construction of wooden frame	4 days	Wed 1/21/15	Mon 1/26/15			-						
Testing of Meshes using Wooden frame	7 days	Tue 1/27/15	Wed 2/4/15		h in	٦						
Testing of Meshes with Brushless	7 days	Tue 1/27/15	Wed 2/4/15		h	٦						
actuators												
Order placement of need parts	1 day	Tue 1/27/15	Tue 1/27/15		H.							
Creation of Frame for Meshes	4 days	Fri 3/13/15	Wed 3/18/15									
Programming of Arduino	77 days	Thu 1/1/15	Fri 4/17/15									
▷ testing	77 days	Thu 1/1/15	Fri 4/17/15									
Pick up of Metal Frame (Funnel and Stand)	9 days	Mon 1/26/15	Thu 2/5/15								\square	
Check of frame against drawings	1 day?	Thu 2/5/15	Thu 2/5/15			8						
Construction of Conveyor belt	11 days	Wed 3/11/15	Wed 3/25/15									
Testing of conveyor belt with Program	3 days	Wed 3/18/15	Fri 3/20/15					•				
Assembly of Conveyor belt with Frame	2 days	Thu 3/19/15	Fri 3/20/15									
Test conveyor rotation for optimum	2 days	Fri 3/20/15	Sat 3/21/15									
powder dispersion												
 Installation 	6 days	Fri 3/20/15	Fri 3/27/15									
Meshes in the funnel	3 days	Fri 3/20/15	Tue 3/24/15									
Actuators on meshes	4 days	Fri 3/20/15	Wed 3/25/15									
Testing of Location Choice	4 days	Fri 3/20/15	Wed 3/25/15									
Plexiglass covering	1 day	Thu 3/26/15	Thu 3/26/15									
Placement of all electrical components/ Housing	4 days	Mon 3/23/15	Thu 3/26/15									
Final Check of Mechanism	1 day	Fri 3/27/15	Fri 3/27/15									
Final Round of Testing Initiated	11 days	Fri 3/27/15	Fri 4/10/15									
Dry Testing	11 days	Fri 3/27/15	Fri 4/10/15									
Presentation of Completed Prototype to Sponsor	5 days	Mon 4/13/15	Fri 4/17/15									
									V	annesa	Palomo	

Group 16 Slide 22 of 24

Vannesa Palomo SLMP Coating Machine

References

- FMC Corporation, O. "Introducing Stabilized Lithium Metal Powder." SLMP More Energy, More Stability, More Value. Only from FMC Lithium. (n.d.): n. pag. Introducing Stabilized Lithium Metal Powder. FMC Lithium, 2010. Web. 2014.
- Groover, M. (2010). CH 16 Powder Metallurgy. In Fundamentals of modern manufacturing: Materials, processes, and systems (5th ed., p. 1024). Upper Saddle River, N.J.: Prentice Hall.
- Zheng, J.P. "Nano-structured Materials for Energy Storage and Conversion." Anode Electrode. N.p., n.d. Web. 2014.
- ©2010 FMC Corporation. All Rights Reserved. FMC, the FMC logo, FMC Lithium, the FMC Lithium logo, Lectro, and SLMP are trademarks of FMC Corporation or its subsidiaries or affiliates in the U.S. and other countries

Questions/Comments

•We would like to open the floor to any questions or comments.

Group 16 Slide 24 of 24