Prototype Machine for Coating Stabilized Lithium Metal Powder

Team #16 ME/ #18 ECE

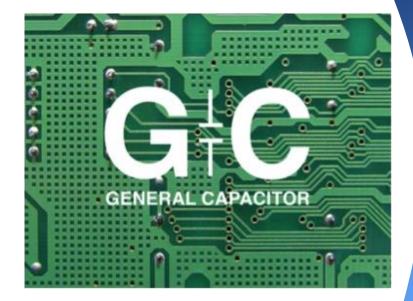
Sponsor: Advisor: Instructor: Team Members: Marcos Leon Vannesa Palomo Maria Sanchez

General Capacitors LLC (Harry Chen) Dr. Shih, Dr. Zheng, & Dr. Frank Dr.Gupta & Dr. Helzer

> John Magner John Shaw Benjamin Tinsley

Overview of Project

- Goal and Motivation
- Background
- Final Design Chosen
- Breakdown of Components
- Procurement
- Testing to Date
- Future Work
- Budget
- Schedule
- Initial Testing



Benjamin Tinsley SLMP Coating Machine

Group 16 Slide 2 of 24

Goal and Motivation

- Sponsor General Capacitor
- Experimental material Stabilized Lithium Metal Powder (SLMP)
- Motivation to use SLMP Increased capacity and energy density of batteries as well as supercapacitors
- Current methods of application are complex and expensive

Image 1: General Capacitor Logo

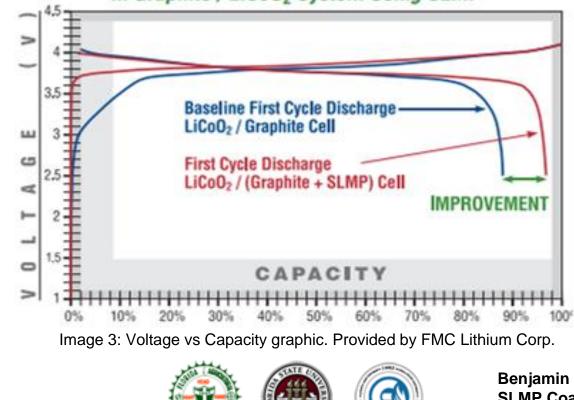
Benjamin Tinsley SLMP Coating Machine

Group 16 Slide 3 of 24

Background

- Stabilized Lithium Metal Powder or (SLMP)
 - Particle size: 30-60 Microns
- We expect our machine to coat a battery electrode with a uniform layer of SLMP increasing the batteries capacity by 5 to 15%

Image 2: Completed SLMP coated battery.

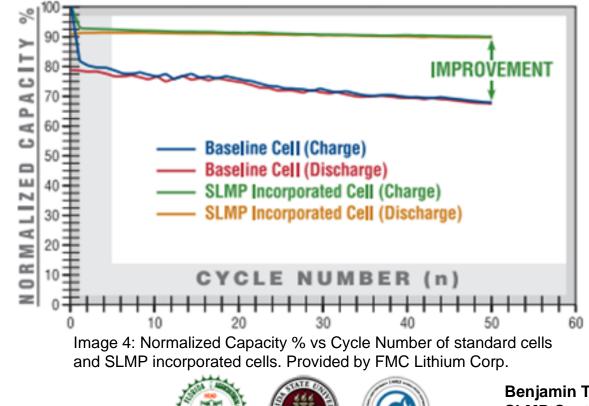


Benjamin Tinsley SLMP Coating Machine

Group 16 Slide 4 of 24

SLMP Benefits

First Cycle Efficiency Improvement in Graphite / LiCoO₂ System Using SLMP



Benjamin Tinsley SLMP Coating Machine

Group 16 Slide 5 of 24

SLMP Benefits

Noticeably Longer Life in Graphite / LiMn₂O₄

Benjamin Tinsley SLMP Coating Machine

Group 16 Slide 6 of 24

Mechanical Components

Final Design

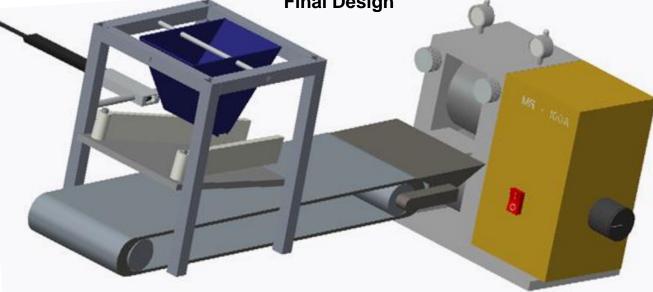
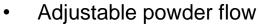



Image 5: CAD of final design.

- Dry method design
- Semi-automatic operation

Group 16 Slide 7 of 24

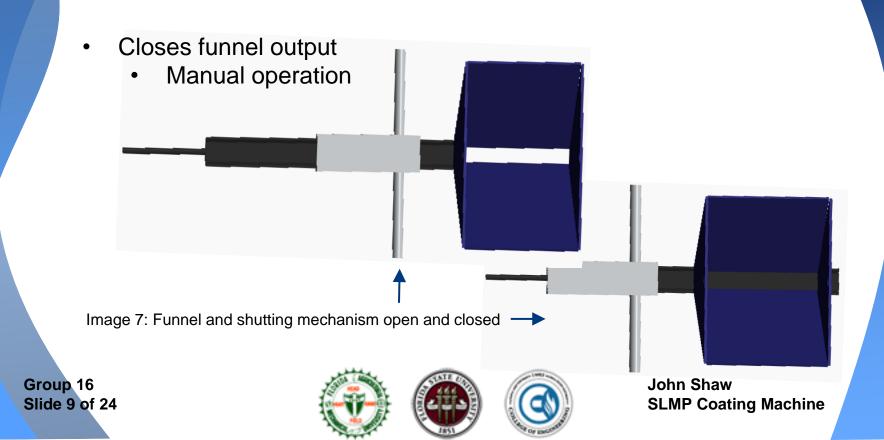
Satisfies safety requirements

John Shaw **SLMP Coating Machine**

Mechanical Components

- Conveyor Belt
 - Function: To move anode through coating position into Rolling press
 - Procurement: In- house Construction
 - Rollers, belts, motors
- Electric Precision 4" width Rolling Press with Dual Micrometer
 - Function: To break and activate the carbonlithate coating on the SLMP coat
 - This rolling press will provide a minimum of 22.24 MPa of pressure
 - Supplied by our sponsor and liaison, Dr.Zheng
 - Manufactured by MTI Corporation

Image 6: The rolling press. Image take from MTI Corporation.



John Shaw SLMP Coating Machine

Group 16 Slide 8 of 24

Mechanical Components Continued

Funnel Closing Mechanism

Mechanical Components Continued Adjustable Ramp

- Satisfies the minimum and maximum width of the anode
 - Uses tightening screws to allow movement

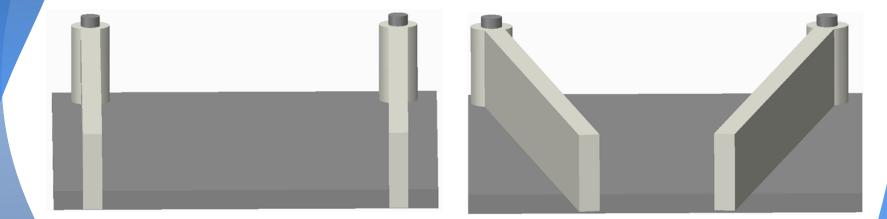


Image 8: New ramp and width adjustment flaps

Group 16 Slide 10 of 24

John Shaw SLMP Coating Machine

Mechanical Components Meshes

- Function: Will be used to sieve through SLMP to avoid particle agglomeration and to ensure a constant flow rate of SLMP being dropped onto anode
 - Supplier Grainger Industrial Supply

Wire mesh	Wire Diameter	Width Opening	% Open Area	Material
150 X 150	0.06604 mm	0.10414 mm	37.90%	304 Stainless Steel
200 X 200	0.05334 mm	0.07366 mm	33.60%	304 Stainless Steel
250 X 250	0.04064 mm	0.06096 mm	36.00%	304 Stainless Steel

Table 1: Meshes

Benjamin Tinsley SLMP Coating Machine

Group 16 Slide 11 of 24

Mechanical Components

- Vibrating Actuators
 - Function: to induce mesh vibrations, promoting consistent flows
 - Supplier: Precision Microdrives

Image 9.Vibration actuator Product number: 310-117

Group 16 Slide 12 of 24

Product Number	Product Name	Quantity	Voltage	Amplitude
310-004	Pico Vibe 10mm vibration motor	1	1.5 V	0.5 G
310-117	Pico Vibe 10mm vibration motor	2	3 V	1.9 G
310-118	Pico Vibe 10mm vibration motor	1	3 V	1.1 G
	Table 2. Actuat	ors		

Table 2: Actuators

Benjamin Tinsley SLMP Coating Machine

Electrical Components

- MCU Arduino Uno R3 Microcontroller
 - This MCU will be the "brains" of the operation by:
 - Controlling the various motors
 - Allows for a on/off switch control the machine
 - Technical Specifications
 - Input Voltage: 7-12V
 - Digital I/O Pins:14
 - PWM Digital I/O Pins: 6
 - Flash Memory: 32 Kb
 - Clock Speed: 16 MHz
 - Capable of being powered by a USB connection from an AC to 12V DC converter.
- Adafruit Motor Shield
 - stackable allowing for 2 additional stepper motors to be controlled
 - 3A peak current capacity

Group 16 Slide 13 of 24

Image 10: Arduino Uno R3 Front View

Electrical Components

- (1) 12V Stepper motor with Encoder for conveyor belt.
- 16X2 Character Display to communicate with user
- On/Off Switch
- 12 key Keypad
- A 350W (Corsair RM350) power supply will be needed to supply power.

Components	Nominal Voltage (V)	Average Current	Average Power (W)	Total Power (W)
Arduino Uno R3 - MCU	12 V	50 (mA)	0.6	0.6
Conveyor DC Motor	12 V	1.1 (A)	13.2	13.2
Vibration Actuators (4)	2 V	69 (mA)	0.138	0.552
Character Display	5 V	15 (mA)	0.075	0.075
Keypad	2 V	10 (mA)	0.02	0.02
Encoder	5.5 V	27 (mA)	0.149	0.149
			Total Power	14.596 (W)

Table 3: Power Consumption

Group 16 Slide 14 of 24

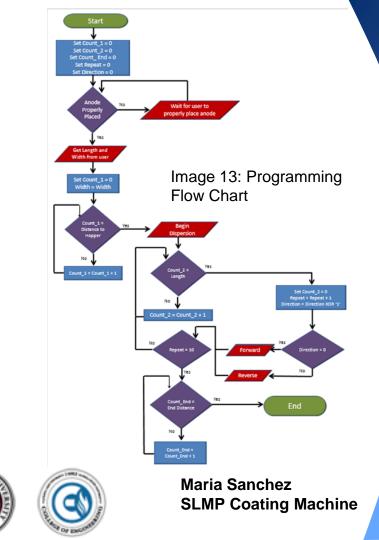

Image 11: 16X2 Character Display

Image 12: Arduino Motor Shield

Programming Flow Chart

- Programming Language:
 - Arduino coding
- Estimated Time for completion of Program
 - Goal : Late-February
- Additional Debugging and modifications that may arise to be completed beginning of March

Group 16 Slide 15 of 24

Block Diagram

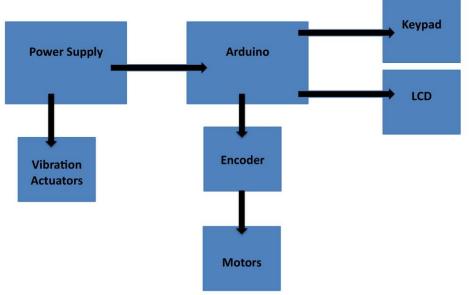
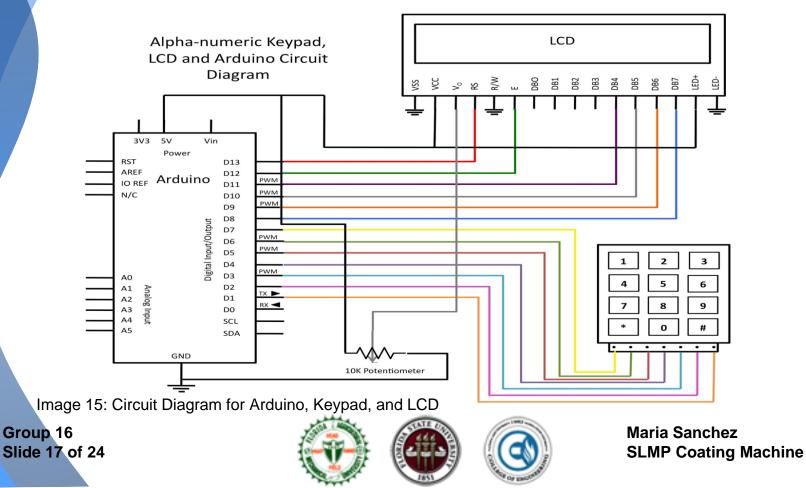



Image 14: Block diagram of Electrical Components

Group 16 Slide 16 of 24

Circuit Diagram

Testing - to date

- Conduct experiments with different mediums:
 - Sugar
 - Flour
 - Carbon Black Microparticles
- Completed:
 - Manual sifting of meshes with flour
 - Results: Inconclusive due to flour grain size and open diameter of mesh.
 - Actuator vibrations
 - Results: Higher voltage actuators might be needed
- Machine Testing:
 - Begin testing with actuators and funnel to determine flow rate and dispersion area

Group 16 Slide 18 of 24

Image 16: Photo of Dr.Zheng's Lab Dry Room

Future Work

Before Midterm Presentation 2 on 3/17/15

- The construction of prototype completed by **2/27/15**
- First testing session will be completed beginning **2/28/15**: estimated completion **3/13/15**
 - Positioning of meshes tested (inside and outside funnel)
 - Positioning of actuators tested (on meshes vs. inside funnel)
 - Analysis of flow rates of different meshes (actual flow rates)
 - Angle of ramp tested

John Shaw SLMP Coating Machine

Group 16 Slide 19 of 24

Budget Table

Group 16 Slide 20 of 24 SLMP Coating Machine					
		-1001-	Total	\$949.02	
Acrylic Mirror	Home Depot	1	\$55.99	\$55.99	Awaiting Shipment
Clamps	Home Depot	4	\$4.97	\$19.88	Awaiting Shipment
Corner Braces for conveyor belt	Home Depot	2	\$2.97	\$5.94	Awaiting Shipment
Metal Shaft	Home Depot	1	\$4.97	\$4.97	Awaiting Shipment
Metal sheets-Plain Steel	Home Depot	1	\$6.97	\$6.97	Awaiting Shipment
Metal Sheet- Aluminum	Home Depot	3	\$5.72	\$17.16	Awaiting Shipment
Motor Shield	Amazon	1	\$34.95	\$34.95	In-Transit
Hinges	Home Depot	2	\$1.70	\$3.39	Arrived
Power Supply	Cosair	1	\$39.99		Awaiting Shipment
on/off switch	Sparkfun	1	\$1.99	\$1.99	Arrived
keypad	Sparkfun	1	\$8.99	\$8.99	Arrived
character display	Sparkfun	1	\$4.99	\$4.99	Arrived
DC gear motor w/encoder	Phigidt	1	\$43.50	\$43.50	Ordered
Stepper motor	Sparkfun	2	\$32.99	\$65.98	In-Transit
Microprocessor	Arduino	1	\$29.95	\$29.95	Arrived
Plexiglass	Amazon	1	\$7.99		Arrived
Actuators	Precision Microdrives	4	\$15.95	\$63.79	Arrived
Conveyor Belt Bed	Grainger Industrial Supply	8	\$6.50	\$52.00	In-Transit
Rollers	Grainger Industrial Supply	2	\$24.30	\$48.60	In-Transit
Frame & Funnel	Metal Fabrication and Sales of Tallahassee	1	\$366.62		Fabrication Phase
Meshes	Grainger Industrial Supply	3	\$21.79	\$65.38	Arrived
Component	Distributor/Source of Part	Quantity	Price per Unit	Total Price	Status of component

Budget

- Total Budget
 - \$2,000 USD
- Current Funds Spent on Procurement:
 - \$ 949.02 USD
- 47.45% of budget has been used

John Shaw SLMP Coating Machine

Group 16 Slide 21 of 24

Schedule

▲ Procurement	20.63 days	Wed 1/21/15	Wed 2/18/15
Place orders on all parts	12.5 days?	Tue 1/27/15	Fri 2/13/15
Purchase of all standard parts	17 days?	Wed 1/21/15	Fri 2/13/15
Submit paperwork for reimbursement	1 day?	Tue 2/17/15	Wed 2/18/15
Construction	9.63 days	Wed 2/18/15	Tue 3/3/15
Initiation of Construction	2 days?	Wed 2/18/15	Fri 2/20/15
Completion of Mechanism	7 days?	Wed 2/18/15	Fri 2/27/15
▲ Initiate Testing	10.63 days	Fri 2/27/15	Fri 3/13/15
Using Alternative mediums	10 days?	Fri 2/27/15	Fri 3/13/15
Analysis of round 1 of testing	10 days?	Fri 2/27/15	Fri 3/13/15
Revision mechanism	2 days?	Wed 3/11/15	Fri 3/13/15
4 Testing Round 2	8.63 days	Mon 3/16/15	Wed 3/25/15
Analysis of round 2	7 days?	Mon 3/16/15	Wed 3/25/15
Revisions based on round 2 of testing	2 days?	Mon 3/23/15	Wed 3/25/15
Final Stage of testing	10.63 days	Thu 3/26/15	Thu 4/9/15
Final check of system	10 days	Thu 3/26/15	Wed 4/8/15
Test Using SLMP	8.5 days?	Tue 3/3/15	Fri 3/13/15
Complete any revisions required	10 days	Tue 3/3/15	Mon 3/16/15
Midterm Presentation 1	2.5 days?	Tue 2/17/15	Thu 2/19/15
Team Evaluation 2	1 day?	Fri 2/20/15	Fri 2/20/15
Midterm Presentation 2	2.5 days?	Tue 3/17/15	Thu 3/19/15
Team evalution 3	1.5 days?	Thu 3/19/15	Fri 3/20/15
Operational Manual, Design Report for Manufacturing/ Relability and Economics	11.5 days?	Thu 3/19/15	Fri 4/3/15
Walk through Presentation	15.5 days?	Thu 3/19/15	Thu 4/9/15
Final Report	5.5 days?	Fri 4/3/15	Fri 4/10/15
Final Webpage	5.5 days?	Fri 4/3/15	Fri 4/10/15
Final Presentation	5.5 days?	Fri 4/10/15	Fri 4/17/15
Team Evaluations 4	1 day?	Thu 1/1/15	Thu 1/1/15
One			

Group 16 Slide 22 of 24

Challenges Faced/Lessons Learned

- Flowing communication between sponsor and team
 - due to design changes suggested by sponsor
 - leading to further delays in final designs completion
 - leading to a delays in manufacturing
- Due to SLMP recent development concept is original
- Ordering of materials has proven challenge
 - due to communication difficulties orders were backlogged
 - due to not following up with companies ordered had to be canceled and re-order
- Initial testing was deemed Inconclusive
 - Flour particle size much larger than opening diameter of meshes
 - Attempted to switch medium to confectioners sugar
 - Grains were able to flow through but the actuator frequency was deem too low
 - Higher Frequency Actuators ordered

Group 16 Slide 23 of 24

References

• FMC Corporation, O. "Introducing Stabilized Lithium Metal Powder." *SLMP* — *More Energy, More Stability, More Value. Only from FMC Lithium.* (n.d.): n. pag. *Introducing Stabilized Lithium Metal Powder.* FMC Lithium, 2010. Web. 2014.

• Groover, M. (2010). CH 16 Powder Metallurgy. In Fundamentals of modern manufacturing: Materials, processes, and systems (5th ed., p. 1024). Upper Saddle River, N.J.: Prentice Hall.

• Zheng, J.P. "Nano-structured Materials for Energy Storage and Conversion." *Anode Electrode*. N.p., n.d. Web. 2014.

©2010 FMC Corporation. All Rights Reserved. FMC, the FMC logo, FMC Lithium, the FMC Lithium logo, Lectro, and SLMP are trademarks of FMC Corporation or its subsidiaries or affiliates in the U.S. and other countries

Group 16 Slide 24 of 25

Benjamin Tinsley SLMP Coating Machine

Questions/Comments

• We would like to open the floor to any questions or comments.

Benjamin Tinsley SLMP Coating Machine

Group 16 Slide 25 of 25