REEF Subsonic Wind Tunnel Articulating Robotic Arm

Sponsor: Michael Sytsma Advisor: Dr. Rajan Kumar Instructors:

Dr. Nikhil Gupta

Dr. Scott Helzer

Dr. Chiang Shih

Team #12

Slide 1 of 22

Team 12

Andrew Baldwin

Justin Broomall

Caitlan Scheanwald

Jacob Kraft

What is a Wind Tunnel?

- Research tool to recreate flight conditions
- Cost effective controlled environment
- Models scalable through the use of dimensionless properties

NASA Wind Tunnel, 2 Strut Specimen Mount

Andrew Baldwin

REEF Subsonic WT Articulating Arm

Team #12

Slide 2 of 22

Open and Closed Test Sections

Open Test Section

Closed Test Section

Andrew Baldwin

REEF Subsonic WT Articulating Arm

Team #12

Slide 3 of 22

Test Specimens in Wind Tunnels

Example of a sting mounted model

Testing the aerodynamic properties of a truck

Andrew Baldwin

REEF Subsonic WT Articulating Arm

Team #12

Slide 4 of 22

Specimen Mount Designs

- Researched strut and sting mounts for design considerations
- Sting design chosen
 - Less intrusive
 - Less effect on upstream flow
 - Can maintain location easily

Andrew Baldwin

REEF Subsonic WT Articulating Arm

Team #12

Slide 5 of 22

Problem Statement

- To produce a cost effective articulating robot arm for use in an open section subsonic wind tunnel for the REEF facility
 - The current arm and mount are being removed, therefore a new system is needed in order for testing to continue
 - Need a cost effective solution with limited resources and budget
 - Quotes from companies that will design/build systems exceed \$100,000
 - Working with a budget of \$2,000

Andrew Baldwin

Slide 6 of 22

Team #12

Design Constraints

- ► Model must remain centered during manipulation
 - Center of rotation for pitch and yaw to be fixed
- Minimally flow intrusive mounting system
 - Maximum blockage (<10%)
- ► Range of Motion: ±30° angle of attack and ±20° yaw
 - Resolution of ± 0.1°
- ► 42" x42" tunnel jet inlet
 - Center of the inlet is 82" off ground

Justin Broomall

Slide 7 of 22

Team #12

Open Section Wind Tunnel with Arc

Team #12

Slide 8 of 22

Justin Broomall

Design Concept - Structural Design

- ► Circular arc to adjust pitch while maintaining model in center
 - Arc will be actuated at the base with a stepper motor
- ► Turn table under model center to adjust yaw
- Designed to have least impact on flow
- ► Rhomboidal arc cross-section for aerodynamic flow
- Circular cross-section for sting mount
- ► Factor of safety > 3

Justin Broomall

Slide 9 of 22

Team #12

Design Concept - How it Functions

- Arc mounted at base
 - Utilize bearings
- Underside of arc will have teeth for actuation
 - Gear train
- Stepper motors for
 - Actuation of arc (pitch)
 - Turn table (yaw)
- Frontend will be designed with LabView
 - Input desired pitch and yaw

Team #12

Slide 11 of 22

Assumptions for Load and Moment Calculations

- Maximum flow blockage by the system of 10%
- Maximum lift coefficient of 2
- ► Max coefficient of drag
 - 0.1 for rhomboidal cross-section
 - 1 for specimen
- ► Multiplier of 1.5 to account for unsteady loads
 - Prior to factor of safety

Jacob Kraft

Slide 12 of 22

Team #12

Analysis - Forces and Moments

- $F_x = F_{D-specimen} + F_{D-arc}$
 - $F_{D-specimen} = q_{\infty}A_{max} * C_{D-specimen max}$
 - $F_{D-arc} = q_{\infty} A_{arc in flow} * C_{D-arc shape}$
 - $q_{\infty} = \frac{1}{2} * \rho_{air} V_{max}^2$
- $\blacktriangleright \quad F_y = F_L$
 - $F_L = q_{\infty} A_{max} * C_{L-max}$
- $MaxMoment_{sting} = F_y * l_{sting}$
- $MaxMoment_{arc} = F_x * r_{arc}$

Team #12

Slide 13 of 22

Analysis - Arc and Sting Cross-sections

$$A_{rhomboid} = a^2 * \sin(2\theta) = .281 in^2$$

$$A_{circle} = \pi r_{sting}^2 = 0.785 in^2$$

r_{sting}= 0.5 in

$$I_{yy \ rhomboid} = \frac{1}{3}a^4\sin(\theta)\cos(\theta)^3 = 0.025in^4$$

Slide 14 of 22

$$I_{circle} = \frac{1}{4}\pi r_{sting}^4 = 0.049in^4$$

Jacob Kraft

Analysis - Principle Stress and Factor of Safety

$$\sigma_{bend\ arc} = \frac{(M_{arc_max}*y_{max})}{I_{yy_rhomboid}} \qquad \sigma_{bend\ sting} = \frac{(M_{sting_max}*y_{max})}{I_{circle}}$$

$$\tau_{xy_arc} = \frac{4*F_y}{3*A_{arc}} \qquad \tau_{xy_sting} = \frac{3*F_y}{2*A_{sting}}$$

$$\theta_{1,2} = \frac{\theta_{bend}}{2} \mp \sqrt{\left(\frac{\theta_{bend}}{2}\right)^2 + \tau_{xy}^2}$$

$$n = \frac{\theta_{max_allowable}}{\theta_{1,2}}$$

Team #12

Slide 15 of 22

REEF Subsonic WT Articulating Arm

Jacob Kraft

Analysis - Results

- Material selection
 - 6061 Aluminum
- Arc radius and sting rod length
 - 4ft = 48in
- ► Factors of safety (N) based on chosen dimensions and materials
 - $N_{sting} = 3.5$
 - $N_{arc} = 9$
- ► Bearing reaction force (Fy)
 - 67N at base of arc

Team #12

Slide 16 of 22

Jacob Kraft

Analysis - Motor Selection

- Compound gear train
- Motor and gear train must supply torque greater than the moment for actuation
- Must supply a minimum 11.5 N*m of holding torque
- Specifications of motor will depend on budget and desired actuation speed

Team #12

Slide 17 of 22

Challenges

- Design system of actuation for arc
- ► Machining of arc
 - Gear teeth along length of arc
 - Arc mounting
- Possible instability
- Staying within allotted budget

Example Gear Mesh for Arc Actuation

Caitlan Scheanwald

REEF Subsonic WT Articulating Arm

Team #12

Slide 18 of 22

Schedule

•	T 1 N		× 0 1 1	Sep 28, '14	Oct 1	Oct 12, '14		Oct 26, '14		Nov 9,		.4	Nov	23, '14	Dec	7, '14
U	Task Name 🗸	Duration +	% Complete 👻	S T M	F T	S	w is	S T	м	F	T	S N	/ S	TM	FT	S
\checkmark	Intial Design Formation	10 days	100%		┓											
	4 Preliminary Design	26 days	63%		Ť											
<	Coordinate Visit to REEF	7 days	100%													
<	Visit Facility and Meet with Sponsor	1 day	100%			ň										
<	Make Adjustments to Design Based on Facility Visit	7 days	100%													
<	Determine Actual Structure Dimensions	4 days	100%													
	Determine Primary Material	4 days	95%													
	Approximate Weight of Structure	4 days	75%													
<	Meet with Advisor	1 day	100%						•							
	Calculations	3 days	60%													
	Design Circuitry	3 days	0%								¢ I					
	3D Model Preliminary Design	3 days	0%								6					
	Discussion of Preliminary Drawings with Sponsor	4 days	0%							۹	Ξh.					
	Receive Design Feedback	1 day	0%								Ň					
▲ Final Design		16 days	0%								ľ				■]	
	Make Adjustments to Design Based on Discussion with Sponsor	6 days	0%										1 1			
	Run Final Calculations and 3D Model Testing	7 days	0%										ľ	.		
	Submission and Sponsor Approval of Final Drawings	4 days	0%											Ť	հ	
	Final Design Drawings Complete	1 day	0%												й –	
	Purchase of Materials and Parts	6 days	0%												ř—	-i

Team #12

Slide 19 of 22

Caitlan Scheanwald

Future Work

- Dimensioned drawings with appropriate tolerances for completed design
- Check specifications of sponsor donated components against needs
- ► Appropriate stepper motor (responsible for pitch) selection
- ► Design the circuitry of electrical components
- ► Programming of user interface
- Purchase orders for all parts and materials to construct design

Caitlan Scheanwald

Slide 20 of 22

Team #12

Questions

Would you like to follow our project? Check out our website! <u>http://eng.fsu.edu/me/senior_design/2015/team12/</u>

Team #12

Slide 21 of 22

References

- Wind Tunnel Image: <u>http://www.nasa.gov/audience/forstudents/k-4/stories/what-are-wind-tunnels-k4.html#.VGFFcfnF-So</u>
- Closed Section image: <u>http://www.european-coatings.com/Raw-materials-technologies/Production-and-testing/New-wind-tunnel-allows-anti-icing-tests-under-realistic-conditions</u>
- Open section image: <u>http://www.rtri.or.jp/rd/maibara-wt/English/ID3.HTML</u>
- Pitch gif: <u>http://www.grc.nasa.gov/WWW/k-</u> <u>12/airplane/Animation/airpar/Images/aptch.gif\</u>
- Yaw gif: <u>http://www.grc.nasa.gov/WWW/k-</u> <u>12/airplane/Animation/airpar/Images/ayaw.gif</u>
- Jet in tunnel: <u>http://www.nasa.gov/content/unitary-plan-wind-tunnel-11-by-11-foot-transonic-test-section/#.VGEAF2PYHTo</u>
- http://www.ramforum.com/f41/roof_spoiler-46649/index3.html

Team #12

Slide 22 of 22