Hydrogen from Microalgae

Senior Design Group 9 Sponsored by FAMU-FSU College of Engineering

<u>Advisors</u> Juan Ordonez Jose Vargas

<u>Professors</u> Dr. Nikhil Gupta Dr. Scott Helzer Dr. Chiang Shih <u>Team Members</u> Nicole Alvarez Jonathan Elfi Ariel Johnson Angeline Lenz James Richardson Richard Sandoval

Background

- Collaboration with Universidade Federal do Paraná (UFPR)
- Continuation of 2012 and 2013 Senior Design Projects
- ✤ 2012 Project:
 - Optimize algae extraction from a photobioreactor (PBR)
 - * Algae and CO_2 concentrations
 - * Mass flow
- ✤ 2013 Project:
 - Design a continuous PBR
 - Addition and Extraction Units

Group 9

James Richardson

Microalgae for Biofuel

- Rapid growth rates
- High oil content
- Raw materials required are abundant
- Grow in adverse conditions
- Efficient energy converters

James Richardson

Hydrogen from Microalgae

Group 9

Slide 3 of 15

- Maintain a hydrogen (H₂) producing photobioreactor system
- Design and calibrate an electronic H₂ mass measuring sensor
- Produce enough biofuel to be tested
- Create drawings of the bioreactor and sensor designs
- Submit invention disclosure (USA) and patent (Brazil)

Group 9

James Richardson

Slide 4 of 15

Potential Challenges

- Appropriate bioreactor design
- Sustainment of cultivation and productivity of algae
- Reduction of cell damage to microalgae
- Product and fabrication costs
- Maintenance
- Scaling for industrial capabilities

Group 9

James Richardson

Hydrogen from Microalgae

Slide 5 of 15

Methodology

Slide 6 of 15

Methodology

Algae Species

- Scenedesmus sp.
- Chlamydomonas reinhardtii (strain CC-125)
 - Mutant Strain (CC-4170)
 - Increased H₂ Production

Growth Mediums

- Copper enriched and Sulfur deprived
 - * Both have similar effects on algae
 - Block creation of enzymes
 - No photosynthesis without enzymes
 - Anaerobic environment promotes H₂ production
- Cu best at producing H₂ continuously

Richard Sandoval

Hydrogen from Microalgae

Group 9

Slide 7 of 15

Tests Performed - UFPR

- Failed to determine H₂
 presence for Scenedesmus
 strain
 - Initial experiment utilized balloon for gas collection
- The imported chlamydomonas reinhardtii strain produced H₂
- The sensor was able to identify H₂ production

Group 9

Richard Sandoval

Hydrogen from Microalgae

Slide 8 of 15

Photobioreactor Design

- Use previous senior design prototype with small modifications
- ✤ 2013 size: 8'x4' → 2014 size: 4'x3'
 - Allows for artificial light and a reduce in volume of algae needed
- Addition/Extraction will not be used for our purpose
- CO_2 Sensor might be used
- Air/CO₂ Input done with commercial air pump
- ✤ 18 ft. of clear 1.5 PVC pipe

Group 9

Slide 9 of 15

Nicole Alvarez

H₂ Purifier

- Oxygen and CO₂ must be removed to achieve a higher level of hydrogen gas purity
- Constructing membranes is too costly and time insensitive
 - Purifier works by same principle, but is drastically cheaper
- Purifier Specs:
 - ✤ Max flow rate 5 L/min
 - Operating pressure of 5 psi to 125 psi
 - ✤ Fitting size of 0.25 in
- Installed vertically to ensure efficient removal of contaminants
- ✤ High efficiency and low resistance to gas flow

Nicole Alvarez

Hydrogen from Microalgae

Group 9

Slide 10 of 15

Hydrogen Sensor

- Main components include:
 - ✤ MQ 8 Hydrogen Gas Sensor
 - Anduino Uno Board
- Advantages:
 - Inexpensive
 - * Simple design
 - High Sensitivity
- Disadvantages:
 - * No direct readout of concentration
 - Calibration Required
 - Time Intensive

Group 9

Slide 11 of 15

Nicole Alvarez

Gantt Chart

Task Name	Duration	Start	Finish	31, '14 Sep 14, '14 Sep 28, '14 Oct 12, '14 Oct 26, '14 Nov 9, '14 N
nitial Planning	22 days	Thu 9/4/14	Fri 10/3/14	
Development of Project Goals	5 days	Thu 9/4/14	Wed 9/10/14	
Development of Project Responsibilities	3 days	Wed 9/10/14	Sun 9/14/14	
Assignment t of Project Responsibilities	3 days	Sun 9/14/14	Wed 9/17/14	
Sponsor Meeting	g 1 day	Wed 9/17/14	Wed 9/17/14	
Development of Project Methodology	4 days	Tue 9/30/14	Fri 10/3/14	
Microalgae Growth	62 days	Thu 9/18/14	Fri 12/12/14	
Algae Growth Research	20 days	Thu 9/18/14	Wed 10/15/14	
Evaluation of Equipment Needed	6 days	Wed 10/8/14	Wed 10/15/14	
Evaluation of Equipment Available	1 day	Wed 10/15/14	Wed 10/15/14	
Cost Analysis	3 days	Wed 10/15/14	Fri 10/17/14	
Work Order for Supplies	1 day	Fri 10/17/14	Fri 10/17/14	
Microalgae Set U	2 days	Fri 10/17/14	Mon 10/20/14	a
Growth Maintenance	40 days	Mon 10/20/14	Fri 12/12/14	
n 9				Nicole Alva

Group 9

Hydrogen from Microalgae

Slide 12 of 15

Gantt Chart cont.

Slide 13 of 15

- Scenedesmus Sp. and Chlamydomonas Reinhardtii, and possibly a mutant variation for higher H₂ output
 - Chlamydomonas Reinhardtii has already produced H_2 in the lab (UFPR)
- Modification of last year's photobioreactor design will be used
- Sensor is assembled and is currently being programmed, calibrated, and tested
- Challenges include:
 - Sustaining algae
 - Programming H₂ sensor
 - Large scale implementation

Group 9

Slide 14 of 15

Nicole Alvarez

Group 9

Slide 15 of 15

Nicole Alvarez