

Bi-directional Offset Lifting Bar Danfoss Turbocor

Instructor - Dr. Gupta Advisor - Dr. Hollis

Team 5

Yoel Bugin Gabriel Omoniyi Luke Leelum Devin Stubbs Coert Maraist

Outline

Existing gantry Hoist

Existing gantry and hoist system in the Chiller 3 Testing Room


- Project Description
- Fall Recap
- Fabrication + Assembly
- Load Testing Results
- Challenges
- Future Work
- Summary

Project Description

- A better lifting system must be designed and implemented in order to conveniently install the compressor for testing
- Lifting bar to include:
 - Auto-leveling
 - Adjustable lifting positions
 - 1 Ton load capacity
 - Less than 500lb operating weight
 - OSHA Compliant

VTT Compressor with Team 5 Lift Bar

ENGINEERING

TOMORROW

Fall Recap: Final Design

Gantry & Trolley

- Assembly of Gantry and Trolley 90% complete
- Following OSHA Standards

 Individual components load tested at 1.25 load rating

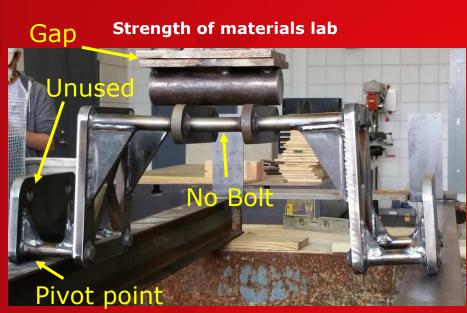
Coert Maraist 6

Lifting bar – bottom view

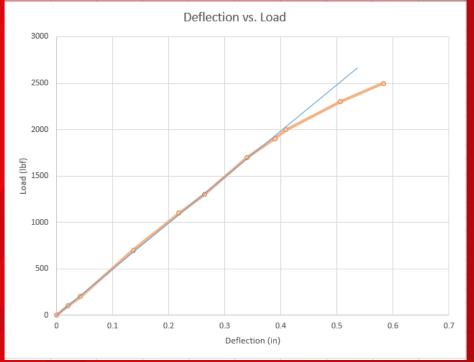
Lifting Bar

٠

ENGINEERING TOMORROW


TEAM 5 - BI-DIRECTIONAL OFFSET LIFTING BAR LOAD TESTING

Coert Maraist 7

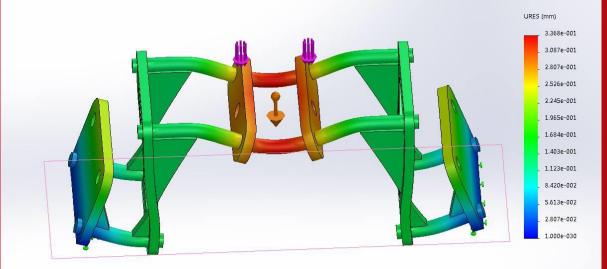

ENGINEERING TOMORROW

Load Testing Results

Trolley + Gantry under 2500 lb. load

Load vs. Deflection

Challenges



ENGINEERING

TOMORROW

- Deflection
- FEA Assumptions
- Adjust FEA to match results
- Simulating real world conditions
- Materials Lab Supervisor

Model name: feaassem Study name: Static 1(-Default-) Plot type: Static displacement Displacement1 Deformation scale: 162.647

Educational Version. For Instructional Use Only

2500 lb. FEA – original trolley design (Exaggerated Deflection Scale)

Team 5 – Bi-directional Offset Lifting Bar

10

• Welds provide full semi-rigid contact and full penetration

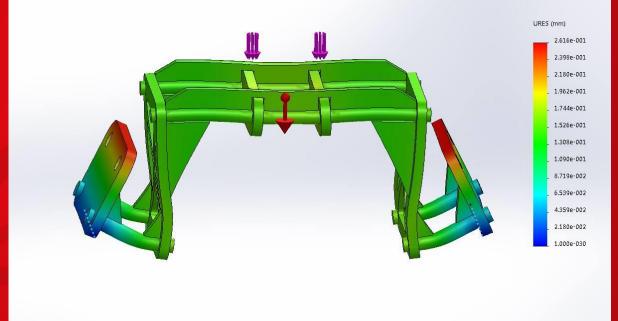
Solidworks FEA works on a highly-simplified linearly-based model

- Assumptions
- Homogeneity

•

- Material Properties
- Torsion & Translational limitations in Solidworks FEA

Trolley V2



ENGINEERING

TOMORROW

- Additional support material
- Increased height of support bolt location
- ~ 22% decrease in deflection

Model name: feaassem Study name: Static 1(-Default-) Plot type: Static displacement Displacement1 Deformation scale: 210.427

Educational Version. For Instructional Use Only

2500 lb. FEA- new trolley design (Exaggerated Deflection Scale)

Future Work

- Complete final assembly
- Assembled gantry & trolley load test
- Lifting bar load test
- OSHA paint and warning labels
- Turbocor approval
- Onsite implementation

MTS load tester

Gantt Chart

Task Name 🔶	% Compl -	January 1	February 1	March 1	April 1
Planning	100%				
Concept Creation	100%				
Design Proposal	100%				
Procurement and Initial Fabrication	100%				
Inventory Parts and Complete Procurement	100%				
Submit Machinist Approved Drawings	100%	Line			
Fabrication of Components by Team 5	100%				
Fabrication of Components by Turbocor	100%	I			
Assembly of Components	45%				
Gantry Assembly	90%				
Trolley System Assembly	100%				
Lifting Bar Assembly	90%				
Paint and Safety Warnings	5%	-	-		
▲ Testing	17%				
Load Simulation	50%				
Obtain Approval From Turbocor Engineers	0%				•
Implementation in Chiller 3	0%				
Perform VTT Compressor Lift	0%				■ Į

Team 5 – Bi-directional Offset Lifting Bar

Summary

- Milestones Met
 - All parts delivered and inventoried
 - Drawings and FEA submitted and approved
 - Machining and fabrication complete
 - Preliminary load testing complete
- Future Work
 - Assembled gantry and lifting bar load test
 - Turbocor authorization on load testing
 - User manual for each component
 - Onsite implementation at Turbocor

Questions?

More information available online at:

http://eng.fsu.edu/me/senior_design/2015/team05