

VTT Rotor: Back EMF Test Fixture Midterm Presentation I

Team #4: *Tim Romano Russell Hamerski Thomas Razabdouski* Andre Steimer Andrew Panek

Advisor: Dr. Louis Cattafesta Sponsor: Danfoss Turbocor – Brandon Pritchard Instructors: Dr. Chiang Shih, Dr. Scott Helzer, Dr. Nikhil Gupta

Date: 10/16/2014

Slide 1 of 15

ENGINEERING TOMORROW

Presentation Outline

- Background
- Design Challenges
- Initial Prototype
- Risks and Risk Mitigation
- Fall Schedule
- Conclusion and Future Work

Team #4: VTT Rotor Back EMF Test Fixture Slide 2 of 15

Tim Romano Midterm Presentation I

Stator

Drive

(Drill)

Background

- Need test fixture to qualify rotors Bearing
- Will measure back electromotive force (EMF)
- Test fixture for smaller rotors already developed
- Several constraints on design

Team #4: VTT Rotor Back EMF Test Fixture Slide 3 of 15 Thomas Razabdouski Midterm Presentation I

30 cm

65[°]cm

- Must overcome magnetic force during insertion
- Rotor must be centered within stator to specified tolerance (0.5 mm)
- Rotor must be spun at a minimum of 1000 RPM
- Spatial Constraints:

Team #4: VTT Rotor Back EMF Test Fixture Slide 4 of 15 Thomas Razabdouski Midterm Presentation I

Project Goal

- Fully designed, manufactured and tested back EMF test fixture
- Submission package to Turbocor:
 - 3D Prototype
 - Bill of Materials
 - Drawing Package
- Conform to all constraints outlined by Turbocor
- Efficient use of resources and time

Team #4: VTT Rotor Back EMF Test Fixture Slide 5 of 15

Motor Selection

- Calculations indicate:
 - 9 ft-lb Torque
 - 0.7 HP required
- Key Considerations:
 - AC preferred
 - 1000 RPM minimum capability
 - Shank Diameter
- Marathon Electric AC Motor
 - 2 HP
 - 3600 RPM

Shank

Team #4: VTT Rotor Back EMF Test Fixture Slide 6 of 15

Design Configuration

- Rotor to be lowered by a crane, then there are three options for next step:
 - Rotor can then be moved into stator
 - Stator can be moved over rotor
 - Both can be moved
- Moving both = most ergonomically efficient
- Live center connection can either hinge or slide along track

Team #4: VTT Rotor Back EMF Test Fixture Slide 7 of 15

Tim Romano Midterm Presentation I

Rotor Centering

- Rotor must be axially aligned within stator
 Tolerance: 0.5 mm
- Old design used bearings, durability issues
- Live center to be utilized

Ball Bearings

Team #4: VTT Rotor Back EMF Test Fixture Slide 8 of 15

Tim Romano Midterm Presentation I

Overcoming Magnetic Force

Danfoss

- 60-80 pound magnetic force exerted when rotor is inserted into stator
- Three options considered:
 - 1) Ball Screw
 - 2) Rack and Pinion
 - 3) Pneumatic Actuator

TOMORROW

Team #4: VTT Rotor Back EMF Test Fixture Slide 9 of 15

Tim Romano Midterm Presentation I

©TURBOCOR°

Design Selection Matrix

ENGINEERING TOMORROW

Design (1-10)	Safety (30%)	Accuracy (25%)	Ease of Use (20%)	Durability (15%)	Cost (10%)	Total
Ball Screw	9	8	7	6	6	7.6
Pneumatic Device	3	5	2	6	3	3.75
Rack and Pinion	7	3	5	4	5	4.95

Ball Screw most viable option

Durable, safe, low cost, cannot be back-driven

Team #4: VTT Rotor Back EMF Test Fixture Slide 10 of 15

Initial Prototype

Team #4: VTT Rotor Back EMF Test Fixture Slide 11 of 15

Risks and Mitigation

- Scheduling Setbacks
 - Delay in ordering parts, manufacturing
 - Mitigation: Set deadlines ahead of class schedule
- Design Risks
 - Vibration at motor to rotor connection
 - Mitigation: Nylon/rubber boot, vibration analysis
 - Misalignment of rotor within stator
 - Mitigation: Live center, FMEA
 - Other design risks (failure of shank, live center)

Team #4: VTT Rotor Back EMF Test Fixture Slide 12 of 15

Fall Schedule

	%			Aug 31,	'14	S	ep 14,	'14		Sep 28,	'14	(Dct 12	, '14		Oct	26, '14	1	N	lov 9,	'14		Nov	23, '14	ļ	De	c 7, '1	.4
Task Name 👻	Com 🗸	Duration 🗸	27	31 4	8	12	16	20	24	28 2	6	10	14	18	22	26	30	3	7	11	15	19	23	27	1	5	9	13
Preliminary Design Stage	100%	25 days	•																									
Initial Design Conception	100%	8 days																										
Design Development	100%	7 days			Ĭ	, 	1																					
Redesign	100%	10 days																										
Advanced Design Analysis	30%	22 days								ř								η										
Final Design Development	70%	7 days								-		-	h															
Final Design Analysis	25%	7 days											-		h													
Final Design Decided	0%	8 days													Ĭ.													
Final Design Stage	0%	16 days															Í	Ť			_							
Complete Assembly	0%	14 days															I				-							
Subassembly 1 (Support Table)	0%	14 days															I					I						
Tolerances	0%	4 days																	հ									
Table Legs	0%	5 days																	*	h								
Table Top	0%	3 days																		ì								
Subassembly 2 (Test Fixture)	0%	14 days															I					I I						
Tolerances	0%	2 days																Ш.										
Live Center Support	0%	2 days																	հ									
Stator Housing	0%	2 days																	*	h								
Motor Assembly	0%	2 days																		ЪĻ								
Track System	0%	2 days																			ηİ							
Test Fixture Base Plate	0%	2 days																			Ъh							
Power Screw	0%	2 days																										
Parts Ordering	0%	15 days																			4						-	
Bill Of Materials	0%	5 days																						h				
Turbocor Approval	0%	5 days																						•	Ъ			
Ordering	0%	5 days																										

Team #4: VTT Rotor Back EMF Test Fixture Slide 13 of 15 Thomas Razabdouski Midterm Presentation I

©TURBOCOR°

Conclusion & Future Work

- Initial design has been decided upon
- Individual components (linear guide, motor connection, ball screw) need to be selected
- Dimensions and tolerances to be determined
- Final Design Review at Turbocor:
 - November 20th
- Spring Semester: Manufacturing and Testing

Team #4: VTT Rotor Back EMF Test Fixture Slide 14 of 15 Thomas Razabdouski Midterm Presentation I

Questions or Comments?

ENGINEERING TOMORROW

- For more information, see our website:
 - VTT Rotor: Back

ENGINEERING TOMORROW

Team #4: VTT Rotor Back EMF Test Fixture Slide 15 of 15 Thomas Razabdouski Midterm Presentation I

