Sealing Ring Testing and Characterization Midterm 1

Team 1:
Tawakalt Akintola
Richard Edgerton
Erin Flagler
Emilio Kenny
Kenneth McCloud

Sponsored by: Cummins, Inc. **Advised by:** Dr. Oates and Dr. Alvi

Outline

- Motivation and Objectives
- Achievements
- Scheduling
- Future Work
- Summary

Introduction

- Sponsor: Cummins, Inc.:
 - Fuel and power generation systems
 - Fortune 500 company
 - Founded in 1919
- Sealing elements
 - Mating engine components
 - Resistant to harsh conditions
 - Various size and shapes
 - Wide variety of applications

Fig 1: Cummins Engine

Motivation

- Current sealing ring selection process:
 - Finite Element Analysis
 - Time Consuming
 - Costly
- We aim to reduce time and effort needed to analyze and design sealing rings using FEA iterations given a specific application

Fig 2: Typical O-rings of various diameter

Objectives

Test rings in static face-seal compression

 Find relationships between sealing ring properties

- Physical geometry
- Sealing pressure
- Percent crush
- Use relationships to create user interface
 - For example, Figure 3 to the right

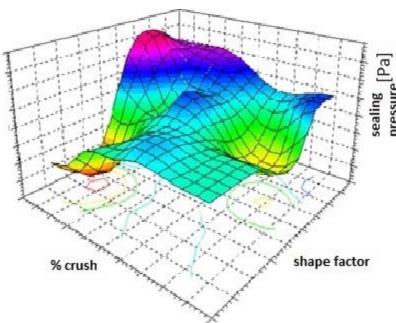
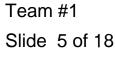



Fig 3: End Product Example

Slide 5

- Make sure you clarify, that it is a picture to show what a contour plot is, and that it is not based on any data or trend that we have seen studentpro, 2/15/2015
- Or just have another picture studentpro, 2/15/2015

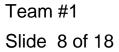
Requirements

- Test sealing rings of selected cross sections
- Compare test data to find property relations
- Construct end product for simplicity

Completed Work

- Acquired raw materials and equipment
- Designed and redesigned test fixture
- Constructed groove plates
- Performed data analysis on theoretical information

Researched user interface options



Current Work

- Adjusting fixture for compatibility with new MTS
- Altering procedure
- Preparing for testing

Scheduling - Gantt Chart

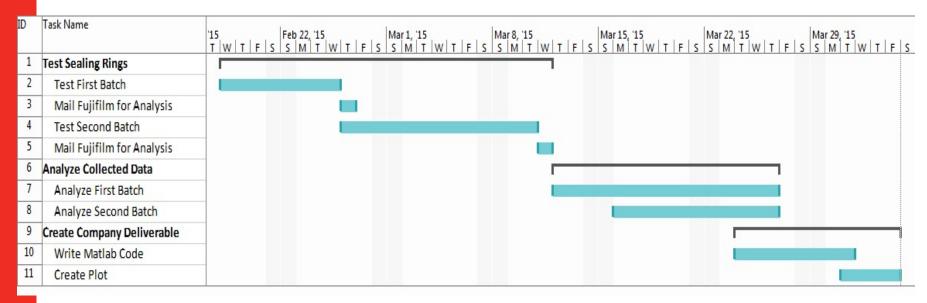


Figure 4: Gantt Chart

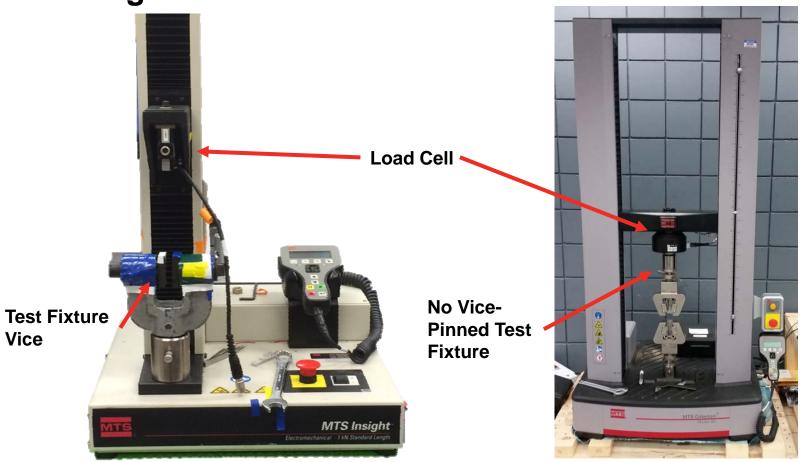
Future Work

- Run tests and analyze data
- Define correlation between cross sections
 - Relate percent crush, shape factor, and sealing pressure
- Develop 3-D contour plot
 - Used to find starting point for FEA
- User Interface options
 - MatLab Program
 - Excel spreadsheet
 - User manual

Team #1 Slide 10 of 18

Project Setbacks

- MTS machine at AME no longer available
- New MTS machine requires different test fixture
- Test procedure alterations
- Limited access to new MTS machine



MTS: Old vs. New

Team #1 Slide 12 of 18

Kenneth McCloud Midterm 1 Mention the differences (load cell, no vice, uses a pin)

studentpro, 2/15/2015

MTS: Old vs. New Old MTS

New MTS

Fig 6a: Old Test Fixture Vice

Fig 6b: Pin-Locking Mechanism

Fig 6c: Round Receiver

Mention the differences (load cell, no vice, uses a pin)

studentpro, 2/15/2015

Test Fixture: Old vs. New **Load Cell Attachment Pinned** into place **Load Piece** Film **Groove Plate Pinned** Base • Clamped into into vice place Fig 7a: Old Test Fixture Fig 7b: New Test Fixture

Team #1 Slide 14 of 18

Ongoing Challenges

- Organization
 - Handling pressure sensitive film
 - Each sample tested multiple times
- Data Analysis
 - Testing Delays
 - Relate multiple data curves
- Final product
 - Limited Programming knowledge

Summary

Currently:

- Test fixture undergoing alterations
- Creating Excel Macro(s) for data
- Testing will begin late February/early March

Challenges:

- Data Organization
- Test Consistency
- Data Analysis
- Interface Development

QUESTIONS? COMMENTS?

Team #1 Slide 17 of 18

REFERENCES

- 1. http://www.cummins.com/about-us/overview
- 2. http://www.nimaxseals.com/dbpics/images/article20100412_KOrings_75.jpg
- 3. MTS Machine. n.d. Webpage. 10 October 2014. http://www.testresources.net/200-series-electromechanical-test-machines/210m1125-standalone-test-machines/.
- *4. 3D Contour Plot.* n.d. Webpage. 10 October 2014. http://www.agocg.ac.uk/reports/graphics/34/appii97/chapte_7.htm.
- 5. Fujifilm Paper. n.d. Webpage. 10 October 2014. http://sensorprod.ca/>.

