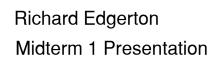
O-Ring Testing and Characterization Midterm 1 Presentation

Team 1: Richard Edgerton Emilio Kenny Tawakalt Akintola Kenneth McCloud Erin Flagler

Sponsored by: Cummins, Inc. Advised by: Dr. Oates and Dr. Alvi

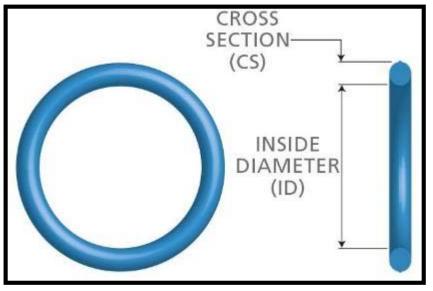
Team #1 Slide 1 of 13



OUTLINE

- Project Background
- Project Needs and Goals
- Objectives
- Project Scope
- Plan for Prototyping
- Potential Challenges and Risks
- Project Plan
- Future Work
- Summary
- Questions
- References

Team #1 Slide 2 of 13



PROJECT BACKGROUND

- Elastomeric gaskets are used to create seals between mating engine parts that may contain a range fluids.
- Must be designed to withstand high temperatures, corrosive chemicals, high pressures, and overall harsh conditions
- Elastomeric gaskets are not always circular in cross section.
 - Certain cross sections perform better in particular applications
 - Reduction in gasket material used reduces cost
- But, designing for irregular cross sections is costly and time consuming
 - Multiple iterations using FEA

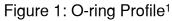
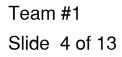


Figure 2: Varying O-ring Cross Sections

Team #1 Slide 3 of 13

PROJECT NEEDS AND GOALS



Needs Statement:

- The current design process for elastomeric gaskets requires numerous iterations of finite element analysis, which is lengthy and therefore costly.
- Goals:
 - Devise a method that will utilize design parameters
 - Relatively accurate starting point for design
 - Reduce the number of iterations needed
 - Reduce time and effort needed for design process

Figure 3: Irregular Gasket Cross-Section

OBJECTIVES

- Design a test fixture for the uniaxial compression material testing system (MTS)
 - Various cross sections and sizes
 - Measure load corresponding to percent crush value
 - Measure sealing pressure using Fujifilm Prescale
- Manipulate test data to find a correlation
 - Define shape factors from correlation for each cross section
- Create 3-D contour plot from test data
 - Given shape factor and percent crush, estimate sealing pressure

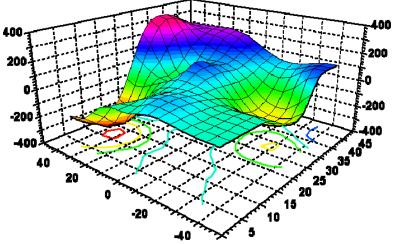


Figure 4: Example of Contour Plot

Team #1 Slide 5 of 13

PROJECT SCOPE

- The new method will be applicable to numerous cross sections and sizes.
 - Material confined to FKM
 - 80% fluoroelastomers, resistant to heat and chemicals
 - Most commonly used by Cummins in critical applications
 - Cross sections to be determined by Cummins
 - Cross sections ranging from 1-10 mm
 - Limited to applying 1 kN load

Figure 5: MTS Testing Machine²

Team #1 Slide 6 of 13

PLAN FOR PROTOTYPING

- Awaiting cross section specifics
- Test fixture requirements
 - Designed to work with MTS machine
 - Grooves
 - Depth and width to be selected according to Cummins design standard
 - Design dictated by number of cross sections and sizes Cummins assigns
 - o Adjustable or rigid grooves
 - o Must be centered under load
 - Sample must be parallel to load surface
 - \circ Locking mechanism
 - $\circ\,$ Self leveling using spherical joints

Team #1 Slide 7 of 13

- 3-D contour plot requirements
- Axis
 - Percent crush defined by application
 - Shape factor defined by cross section
 - Sealing pressure estimate
- Sealing pressure estimate to be checked against measured value.

POTENTIAL CHALLENGES AND RISKS

- Material
 - Material shipping delays
 - Material shortage
- Budget
 - Testing material costs exceed the \$2000 budget
- Testing Preparation
 - Test fixture parameters undefined
 - Testing fixture not fabricated in time
 - Testing fixture produces inaccurate data
- Final Product
 - Data Analysis leads to nonexistent correlation

Team #1 Slide 8 of 13

PROJECT PLAN

Task Name	P 2 5 8 11 14 17 20 23 26 29 2 5 8 11 14 17 20 23 26 29 1 4 7 10 13 16 19 22
Develop Team	2 5 8 11 14 1/ 20 23 26 29 2 5 8 11 14 1/ 20 23 26 29 1 4 / 10 13 16 19 22
Define Project Needs	
Plan Project Design	
Acquire Testing Device	
Test Material and Location Acquisition	
Research Alternate O-ring Suppliers	
Research Alternatives to Fijifilm	
Find Storage and Testing Lab	
Order Material	
Prototyping	
Brainstorm Designs	
Prototype Analysis	
Selection of Design	
Determine Finished Product Platform	
Troubleshooting Test	

Figure 6: Condensed Gantt Chart

Team #1 Slide 9 of 13

FUTURE WORK

- Research groove designs
- Design and prototype testing fixture
- Order materials
- Research data manipulation methods
- Run Practice experiment

Team #1 Slide 10 of 13

SUMMARY

- Our project goal is to reduce time and effort needed to design elastomeric sealing components of irregular cross section by developing a method for estimating sealing pressure.
- In order to accomplish this:
 - Design test fixture to be used with MTS machine
 - Record data such as load needed to compress sample and sealing pressure.
 - > Analyze test data to find correlation across numerous cross sections and sizes
- Challenges
 - Material accessibility
 - Over budget costs
 - Testing setbacks
- Next Steps
 - Designing a test fixture
 - Researching data manipulation methods

Team #1 Slide 11 of 13

QUESTIONS? COMMENTS?

Team #1 Slide 12 of 13

REFERENCES

- 1. Typical O-Ring Model. n.d. Webpage. 10 October 2014. http://fs23.formsite.com/parcoinc/images/O-ring_Cross_Section_V2.jpg>.
- *2. MTS Machine*. n.d. Webpage. 10 October 2014. <http://www.testresources.net/200-series-electromechanical-test-machines/210m1125-standalone-test-machines/>.
- *3. 3D Contour Plot.* n.d. Webpage. 10 October 2014. http://www.agocg.ac.uk/reports/graphics/34/appii97/chapte_7.htm.
- 4. Fujifilm Paper. n.d. Webpage. 10 October 2014. <http://sensorprod.ca/>.

Team #1 Slide 13 of 13

