O-Ring Testing and Characterization Midterm 1 Presentation

Team 1: Tawakalt Akintola Kenneth McCloud Erin Flagler Richard Edgerton Emilio Kenny

Sponsored by: Cummins, Inc. Advised by: Dr. Oates and Dr. Alvi

Team #1 Slide 1 of 15

Tawakalt Akintola Midterm 1 Presentation

OUTLINE

- Project Background
- Testing Method
- Challenges and Risks
- Summary

Team #1 Slide 2 of 15

Tawakalt Akintola Midterm 1 Presentation

PROJECT BACKGROUND

- Cummins current sealing ring selection process requires extensive FEA
- Elastomeric sealing rings
 - Used to seal mating engine components
 - Resistant to high temperature, pressure differences, and corrosive chemicals
- Not always circular cross sections
 - Certain cross sections perform better in particular applications
 - Reduction in material used reduces cost

Team #1 Slide 3 of 15

Tawakalt Akintola Midterm 1 Presentation

PROJECT GOALS

- Find a way to simplify the sealing ring selection process
 - Provide approximate starting point for selection
 - Reduce analysis iterations
 - Reduce time and effort needed for selection process

Figure 2: Seal Rings with Irregular Cross Section

Figure 3: Various Existing Seal Ring Cross Sections

Team #1 Slide 4 of 15

Kenneth McCloud Midterm 1 Presentation

OBJECTIVES

- Test Sealing Rings
 - Design test fixture
 - Test various cross sections
 - Measure sealing pressure corresponding to percent crush value
 - % crush is the differential between compressed and uncompressed height
- Analyze Test Data
 - Create a geometric shape factor that correlates with percent crush, and sealing pressure
 - Use new shape factor to form a 3-D contour plot
 - Create an interface that will allow users to access date from contour plot

Team #1 Slide 5 of 15

Figure 4: Generic Contour Plot

Kenneth McCloud Midterm 1 Presentation

PROJECT SCOPE

- Devised method will be applicable to numerous cross-sections of FKM sealing gaskets
 - FKM material
 - Classifies 80% of fluoroelastomeric material
 - Is very resistant to heat and chemicals compared to other elastomers
 - Common material used by Cummins, Inc. in critical applications
 - Cross sections determined by Cummins, Inc.
 - 23 total cross-sections
 - Cross sections ranging from 1 mm to 10 mm
 - Limited to applying 1 kN load by MTS machine

Team #1 Slide 6 of 15

Kenneth McCloud Midterm 1 Presentation

Testing Method

- Testing Parameters
 - Multiple increments of percent crush (10%, 15%,....40%)
- Testing Variables
 - Load
 - Sealing Pressure
 - Shape Factor

Team #1 Slide 7 of 15

Testing Method Continued

Side Picture of MTS Vice

Team #1 Slide 8 of 15

Test Fixture Design

- Designed to work with MTS machine
- Individual groove plates
 - There will be individual plates for each cross section
 - Change with depth and width
- Sample must be parallel to load surface
 - Sample vice mechanism on MTS machine should self-level

Figure 6: Test Fixture Prototype

Team #1 Slide 9 of 15

CHALLENGES AND RISKS

- Technical Challenges
 - Test fixture concept must be rigid and level
 - Working under fairly tight tolerances
- Test Procedure Consistency
 - Ensure reliable and easily reproducible data
 - Account for errors and pressure sensitive paper
- Data Analysis
 - Mapping multiple, non-linear stress-strain curves to one another
 - Amount of data to be collected and analyzed is very large

Team #1 Slide 10 of 15

PROJECT PLAN

Task Name	Ep Oct Nov	Dec
	2 5 8 11 14 17 20 23 26 29 2 5 8 11 14 17 20 23 26 29 1 4 7	10 13 16 19 22 25 28 1 4
Develop Team		
Define Project Needs		
Plan Project Design		
Acquire Testing Device		
Prototyping		
Test Material and Location Acquisition		
Research Alternate O-ring Suppliers		
Research Alternatives to Fijifilm		
Find Storage and Testing Lab		
Order Material		
Determine Finished Product Platform] F	
Research Applicable Software]	
Select Practical Program]	
Learn How to Utilize Software		
Troubleshooting Test		
Decide on Testing Procedure		
Run Sample Test		
Solve Encountered Problems		

Figure 6: Gantt Chart

Team #1 Slide 11 of 15

FUTURE WORK

- Order test fixture materials and FujiFilm pressure sensitive paper
- Machine test fixture concept
- Begin testing and data acquisition
- Research data analysis methods

Team #1 Slide 12 of 15

SUMMARY

- In order to accomplish our goal:
 - Design test fixture to be used with MTS machine
 - Record data such as load needed to compress sample and percent crush
 - Analyze test data to find correlation across numerous cross sections and sizes
 - Develop Shape Factor
- Challenges
 - Test and data consistency
 - Technical challenges
 - Data analysis

Team #1 Slide 13 of 15

QUESTIONS? COMMENTS?

Team #1 Slide 14 of 15

REFERENCES

- 1. Typical O-Ring Model. n.d. Webpage. 10 October 2014. http://fs23.formsite.com/parcoinc/images/O-ring_Cross_Section_V2.jpg>.
- *2. MTS Machine*. n.d. Webpage. 10 October 2014. http://www.testresources.net/200-series-electromechanical-test-machines/210m1125-standalone-test-machines/.
- *3. 3D Contour Plot.* n.d. Webpage. 10 October 2014. http://www.agocg.ac.uk/reports/graphics/34/appii97/chapte_7.htm.
- 4. Fujifilm Paper. n.d. Webpage. 10 October 2014. <http://sensorprod.ca/>.

Team #1 Slide 15 of 15

