Sealing Ring Testing and Characterization Interim Design Review

<u>Team 1:</u>

Tawakalt Akintola Richard Edgerton Erin Flagler Emilio Kenny Kenneth McCloud

Sponsored by: Cummins, Inc. Advised by: Dr. Oates and Dr. Alvi

Kenneth McCloud Interim Design Review

Team #1 Slide 1 of 18

Outline

- Motivation
- Objectives
- Project Status Update
- Procedure/Test Fixture
- Data Analysis
- Setbacks and Challenges

Team #1 Slide 2 of 18

Introduction

- Sealing elements
 - Mating engine components
 - Resistant to harsh conditions
 - Various size and shapes
 - Wide variety of applications
- Various Cross-Sections
 - Circular sealing rings (O-rings)
 - Rectangular sealing rings
 - Irregular cross-sections
 - Shown on the right in Figure 1

Figure 1: Irregular Cross-Sections

Motivation

- Current sealing ring selection process:
 - Extensive Finite Element Analysis
 - Time Consuming
 - Costly
- We aim to reduce time and effort by providing an approximate starting point sealing ring selection

Team #1 Slide 4 of 18

Objectives

- Test sealing rings in static face-seal compression
 - Measuring load, displacement, and sealing pressure
- Determine a relationship between the following variables allowing for the creation of a 3-D contour
 - Cross section geometry
 - Sealing pressure
 - Percent crush
- Create a user interface to access data
 - the user will enter 2 known parameters and the interface will provide a suitable value for the unknown variable

Figure 2: End Product Example

Team #1 Slide 5 of 18

Completed Milestones

- Research of ASTM and Cummins standards for test methods and groove design
- Designed grooves for each seal
- Developed test procedure
- Test fixture designed and built
- Tests completed

Future Work

- Complete data analysis
 - Define correlation between cross section geometry and other variables
 - 3-D Contour plot
- Develop user interface and user manual

Procurement & Gantt Chart

Table 1: Procurement

ltem	Cost (\$)	Remaining (\$)
Fixture Material	130.71	
Fujifilm	427.99	
Shipping	35.17	
Total	593.87	1406.13

Figure 3: Gantt Chart

ID	Task Name	e D	M	ar 8,	'15	 L e		Mar 15	15 T	×		-	/lar 2	2, 15	w +		.	Mar 29,	'15 T	ele	Apr 5	5, '15
1	Analyze Collected Data	F .	2 2	IM	11	F	3	S IM	111	W 1	F	2			<u>vv 1</u>	<u> F </u>	3	5 M		<u>r 3</u>	1211	MII
2	Compute MTS Force Readings						1															
3	Analyze Fujifilm Pressure Readings						L.						1									
4	Create Company Deliverable													-		-	-	-	_			
5	Write Excel Code																		1			
6	Create Plot																					

Team #1 Slide 8 of 18

Richard Edgerton Interim Design Review

Test Fixture

- Design Considerations
 - Rigidity
 - Groove plate interchangeability
 - Simplicity
 - Ease of use with existing equipment
- Material: Aluminum 6061
 - Surface hardness
 - Machinability
 - Low cost

Figure 4: Mounted Test Fixture

Team #1 Slide 9 of 18

Richard Edgerton Interim Design Review

Test Procedure

- Mount sample and place film
- Input displacement corresponding to percent crush
 - %5, %10...%40
- Reset crosshead and exchange film
- Data Collection
 - Load measured by load cell and organized in Excel
 - Sealing pressure measured with Fujifilm Prescale

Figure 5: MTS machine

Team #1 Slide 10 of 18

Richard Edgerton Interim Design Review

Testing Results: Force

- Compression creates an opposing force on the contact surfaces.
- Found Trends:
 - The larger the contact width, the larger the force exerted
 - Rectangular cross sections can produce the highest forces.
 - The larger the change in contact width, the larger the change in force

Figure 6: O-ring in compression

Emilio Kenny Interim Design Review

Team #1 Slide 11 of 18

Testing Results: Force contd.

C58 Load v. Crosshead Displacement

Figure 7: Sample plot of Force versus Crosshead displacement

Team #1 Slide 12 of 18

Testing Results: Force contd.

Figure 8: Sample plot showing accuracy of MTS Force Readings

Team #1 Slide 13 of 18

Testing Results: Force contd.

Figure 9: Sample plot showing retrieval of force points

Team #1 Slide 14 of 18

Testing Results: Pressure

- Leaks occur when fluid pressure exceeds contact pressure
- Retrieved maximum continuous pressure of each seal
- Found Trends:
 - Varying pressure profiles

Team #1 Slide 15 of 18

Summary

- Goal: We aim to reduce time and effort by providing an approximate starting point sealing ring selection
- Completed Work:
 - Ran tests
 - Analyzed Data
- Next Steps:
 - Finding Correlation between sealing pressure, force and percent crush
 - Creating User Interface

Team #1 Slide 16 of 18

QUESTIONS? COMMENTS?

Emilio Kenny Interim Design Review

Team #1 Slide 17 of 18

REFERENCES

- 1. http://www.cummins.com/about-us/overview
- 2. http://www.nimaxseals.com/dbpics/images/article20100412_KOrings_75.jpg
- *3. MTS Machine*. n.d. Webpage. 10 October 2014. <http://www.testresources.net/200-series-electromechanical-test-machines/210m1125-standalone-test-machines/>.
- *4. 3D Contour Plot.* n.d. Webpage. 10 October 2014. http://www.agocg.ac.uk/reports/graphics/34/appii97/chapte_7.htm.
- 5. Fujifilm Paper. n.d. Webpage. 10 October 2014. <http://sensorprod.ca/>.

