

Sealing Ring Testing and Characterization

Problem Statement

"The current sealing ring design process requires numerous iterations of finite element analysis, which is lengthy and costly."

Objectives

- Define a shape factor that correlates the geometry of a sealing ring with the sealing pressure at a given crush value.
- Decrease the time and cost to analyze sealing-rings by creating an interactive interface that can output several sealing-ring options for a given mechanical application.

Project Scope

- 23 individual cross sections.
- · FKM, elastomeric material
- Material Hardness: Shore A 80-90
- Percent Crush: 0-40%

Constraints

- Budget: \$2000
- 1 kN Max Load

Technical Challenges

- Each sealing ring requires its own specific groove dimensions for testing, which means a groove must be machined to match each sealing ring.
- An accurate end product requires accurate data collection, and a lot of it. Large amounts of time will be spent conducting high number of tests amassing enormous amounts of data.

Testing

- Goal
 - Apply a uniform load to seals that will compress them from 0 to 40 percent crush at 5 percent increments
 - Record data that will give insight to how the seal deforms under the load
- Requirements
 - Uniform applied load along seal
 - Rigid test fixture
 - Seals tested in grooves designed for them
 - Seals tested at lengths at least 10*diameter
- MTS Universal Testing Machine
 - Uniaxial compression
 - Displacement input
 - Interchangeable load cells 1 N 1 kN
 - Adjustable vice to receive test fixture
- Data Outputs
- Load needed to achieve percent crush
- Sealing pressure given by pressure sensitive film

Data Analysis

Using the experimental data collected during testing, one can observe how the area in contact with the gland varies over different applied loads. From this, a correlation can be derived and a geometric shape factor can be made.

Theoretical Data for Rectangular Cross Sections

Test Fixture

- Chosen for simplicity
- · Works with pre-existing test equipment
- Material: Aluminum 6061-t6511
- Machinability
- Surface Hardness
- Inexpensive

Test Fixture Assembly

Work Done

- Research:
 - Sealing ring cross sections
 - Standards for seal design and pre-existing test procedures
 - Data analysis methods
- · Designed the test fixture
- Developed testing procedure
- Ordered materials

Future Work

- Machine test fixture
- · Refine test procedure Collect and analyze
- data
- Define shape factors Produce user
- interface

MTS Machine