PHASE CHANGE MATERIAL TRANSIENT HEATSINK FOR POWER SEMICONDUCTOR

Midterm Presentation II

Team 9:

Daniel Canuto Kegan Dellinger Joseph Rivera

Faculty Advisor: Dr. Kunihiko Taira Sponsor: Unison Industries Industry Contact: Kevin Walker

MOTIVATION

- New solutions for electronics cooling
- Power Semiconductors
 - Found in jet engine's ignition units and power regulators
- Customer's need
 - Highly reliable, low-weight heat dissipation solution for these power semiconductors

OBJECTIVES & PROGRESS

- Identify ideal PCM for heatsink
 - Given operating temperature range 115-125°C
- Numerical model to test heatsink performance
 - Design parameters
 - Prototype geometry
- An experimental rig for validation of the model
 - Design for manufacturing

52In-48Sn

Joseph Rivera

PROCUREMENT

Material/Equipment	Vendor	Amount	Unit Cost (USD)	Total Cost (USD)
MP9100 resistor	Digi-Key	1 pc.	10.90	10.90
52In-48Sn solder	IndiumCorp	3 ft	265.00	795.00
Aluminum tape	eBay	1 spool	40.00	40.00
Hi-Flow 300P*	Orion	1 pc.	48.00	48.00
NI 9211*	National Instruments	1 pc.	351.00	351.00
cDAQ 9174*	National Instruments	1 pc.	762.00	762.00
LabView Full	National Instruments	1 license	2699.00	2699.00
DC power supply*	Digi-Key	1 pc.	489.00	489.00
Lab oven*	Mellen	1 pc.	2499.99	2499.99
Type K thermocouple*	Omega	4 pcs.	30.00	120.00
Aluminum bar*	Various	26 cu. in.	5.00	5.00
Thermal contact tape*	eBay	1 spool	4.50	4.50
Machining*	N/A	2 hours	20.00	40.00
Remaining Budget (including starred items):				-5864.39
Remaining Budget (excluding starred items):				1154.10

Starred items obtained at no cost

- Allocated budget was \$2,000
 - Majority of cost would be incurred in purchasing testing equipment: One-time capital investments
 - Still well under-budget (excluding starred items) and do not anticipate any other major purchases

Joseph Rivera

FINAL DESIGN RECAP

The heatsink comprises of two parts:

1 - The PCM

Special In-Sn solder will serve as the PCM. At 118°C it melts, using latent heat to absorb and store thermal energy.

2 – The Enclosure

An aluminum enclosure keeps the PCM from escaping when melted.

TEST SETUP

X – Location of thermocouple

Kegan Dellinger

TEST SETUP

- 1 Bolt from heatsink assembly
- 2 Aluminum tape
- 3 Insulation
- 4 Wall
- 5 Wire leads

X – Location of thermocouple

ISSUES/RESOLUTIONS Resolution

• Thermocouple calibration

Issues

- Thermal Interface Material
- Oven Temperature
- Oven Time

- Calibrated using type E
- Created a bracket
- Trial and error
- Preheat ahead of time

Kegan Dellinger

DATA ANALYSIS

Experiment shows that prototype exceeds performance specifications:

A: Resistor set to 1 W, oven turned off **B**: Resistor accidentally set to 4 W **C**: Resistor set to 2 W **D**: Phase change occurring E: Resistor set back to 1 W F: Oven turned back on

Danny Canuto

FUTURE PLANS

- Run more tests
 - Set resistor voltage correctly
 - Insert thermocouple into heatsink
- Improve COMSOL model
 - Change boundary/initial conditions
- Develop draft of manufacturing plan

QUESTIONS?