PHASE CHANGE MATERIAL TRANSIENT HEATSINK FOR POWER SEMICONDUCTOR

Midterm Presentation I

Team 9:

Daniel Canuto Kegan Dellinger Joseph Rivera

Faculty Advisor: Dr. Kunihiko Taira Sponsor: Unison Industries Industry Contact: Kevin Walker

MOTIVATION

- New solutions for electronics cooling
- Power Semiconductors
 - Found in jet engine's ignition units and power regulators
 - Thermal management is critical
- Customer's need
 - A highly-reliable, low- weight heat dissipation solution for power semiconductors in jet engine systems

Joseph Rivera

BACKGROUND

Joseph Rivera

OBJECTIVES

- Identify ideal PCM for heatsink
 - Given operating temperature range 115-125°C
- Numerical model to test heatsink performance
 - Design parameters
 - Prototype geometry
- An experimental rig for validation of the model
 - Final design selection/design for manufacturing

PROCUREMENT

Material/Equipment	Vendor	Amount	Unit Cost (USD)	Total Cost (USD)
MP9100 resistor	Digi-Key	1 pc.	10.90	10.90
52In-48Sn solder	IndiumCorp	3 ft	265.00	795.00
Aluminum tape	eBay	1 spool	40.00	40.00
Hi-Flow 300P*	Orion	1 pc.	48.00	48.00
NI 9211*	National Instruments	1 pc.	351.00	351.00
cDAQ 9174*	National Instruments	1 pc.	762.00	762.00
LabView Full	National Instruments	1 license	2699.00	2699.00
DC power supply*	Digi-Key	1 pc.	489.00	489.00
Lab oven*	Mellen	1 pc.	2499.99	2499.99
Type K thermocouple*	Omega	4 pcs.	30.00	120.00
Aluminum bar*	Various	26 cu. in.	5.00	5.00
Thermal contact tape*	eBay	1 spool	4.50	4.50
Machining*	N/A	2 hours	20.00	40.00
Remaining Budget (including starred items):				-5864.39
Remaining Budget (excluding starred items):				1154.10

Starred items obtained at no cost

- Allocated budget was \$2,000
 - Majority of cost would be incurred in purchasing testing equipment: One-time capital investments
 - Still well under-budget (excluding starred items) and do not anticipate any other major purchases

Joseph Rivera

PROTOTYPE TESTING

PROTOTYPE TESTING

Thermocouple mount locations

Daniel Canuto

PROTOTYPE TESTING

Exit port for leads

Daniel Canuto

Kegan Dellinger

emp and yolt, yi Block Diagr

CALIBRATION

Ice Water

Kegan Dellinger

CALIBRATION

- To = -4.3651
- T1 = -4.2870
- T2 = -3.6437
- T3 = -3.2951

Kegan Dellinger

11

PERSONAL PROTECTION EQUIPMENT (PPE)

Safety Glasses

Long Sleeves

Thermally Insulated Gloves

Kegan Dellinger

FUTURE PLANS

- Finish prototyping
 - Setting up test rig, troubleshooting, executing validation
- Refine model if necessary
- Determine manufacturing method

ACKNOWLEDGEMENTS

- Bob Walsh NHMFL
- Dustin McRae NHMFL
- Scott Hill NHMFL
- Jun Lu NHMFL
- Charlie Carbiener STRIDE Lab

QUESTIONS?