PHASE CHANGE MATERIAL TRANSIENT HEATSINK FOR POWER SEMICONDUCTOR

Midterm Presentation 2

Team 9:

Daniel Canuto Kegan Dellinger Joseph Rivera

Faculty Advisor: Dr. Kunihiko Taira Sponsor: Unison Industries Industry Contact: Kevin Walker

OVERVIEW

- Background
 - Motivation
 - Goal
- Final Design Concept
- Analysis in Comsol
- Prototyping & Testing

MOTIVATION

- New solutions for electronics cooling
- Power Semiconductors
 - Found in jet engine's ignition units and power regulators
- Customer's need
 - A highly-reliable, lowweight heat dissipation solution for power semiconductors

Heat absorbed by 1kg of water

Joseph Rivera

PROJECT GOALS

- Create a heatsink containing a Phase Change Material (PCM)
 - Store thermal energy and reject it through natural convection
- PCM
 - Melting temperature within operating range (115-125°C)
 - Able to act as thermal capacitor
- Integration

FINAL DESIGN CONCEPT

Component	Material
Base	molybdenum
Heat Sink	aluminum
PCM (inside heat sink)	solder
Housing (each wall)	aluminum

Joseph Rivera

COMSOL MODEL

Molybdenum Base Aluminum Heat Sink PCM

Aluminum Housing

COMSOL MODEL

Thermal Insulation

Heat Absorption

Heat Flux 2W External Natural Convection

<u>COMSOL RESULTS</u>

COMSOL RESULTS

COMSOL RESULTS

- Hi-Flow 300P (Berquist): Will melt and flow into contact surface imperfections to reduce contact resistance
 - Continuous operating temperature: 150°C
 - Thermal conductivity:

Semiconductor

- Heatsink:
 - 52In-48Sn solder (IndiumCorp):
 - Working to obtain free sample size
 - Copper/aluminum tape
 (3M):
 - Thickness similar to desired wall thickness
 - Easy to shape
 - Easy to assemble
 - Working with sponsor to develop ultimate manufacturing plan
- Aluminum plate:
 - Unison will provide plates of specified thickness

Ambient temperature (110 °C)

ontrol Equipment Enclosure

Heatsink

- Heatsink:
 - 52In-48Sn solder (IndiumCorp):
 - Working to obtain free sample size
 - Copper/aluminum tape
 (3M):
 - Thickness similar to desired wall thickness
 - Easy to shape
 - Easy to assemble
 - Working with sponsor to develop ultimate manufacturing plan
- Aluminum plate:
 - Unison will provide plates of specified thickness

Daniel Canuto

- Test setup will be enclosed in a laboratory oven
 - Type K thermocouples will be used for temperature monitoring
 - Thermal contact tape (3M) for mounting
- UX120 (HOBO) will be used for data logging
 - Four thermocouple inputs

Daniel Canuto

SUMMARY

- Objective is to create a low-weight, high-reliability thermal management solution for high ambient temperatures
- Accomplishments:
 - Three-dimensional heat transfer model
 - Experimental design
- Future work:
 - Refine COMSOL model
 - Develop final manufacturing plan
 - Procure/assemble/run test setup

QUESTIONS?