Team 2- Biaxial Tensile Tester

<u>Team Members</u>: Ben Hainsey Eric Hebner Nicole Walsh

<u>Sponsor</u>: Cummins, Inc. (Terry Shaw) <u>Graduate Consultant</u>: Parker Harwood <u>Faculty Advisor</u>: Dr. William Oates <u>Professional Aid</u>: Scott Bole, Robert Stanton,

Bob Walsh (NHMFL)

Agenda

- Background / Project Scope
- Specimen Geometry
- Material Testing
- Device Modifications
- Assembly
- Cable Testing
- Budget and Procurement
- Future Plans

Nicole Walsh

Nomenclature

- Carriers
- Grips
- Specimen Design
- Baseplate
- Linear Rods
- Bushings
- Wire End Fittings

Material Characterization

- In order to model materials, accurate predictions of properties are needed
 - Uniaxial tension
 - Standard tensile test
 - Pure shear

Nicole Walsh

- Planar tension test
- Uniaxial Compression
 - Inaccurate due to the friction
 - Causes a mixed state of compression, shear, and tensile strain¹

1. Callister, W.D. (2007). *Material Science and Engineering, An Introduction;* 7th ED. York, PA: John Wiley & Sons, Inc.

Why Equal Biaxial Tension?

- Biaxial tensile strain is equivalent to uniaxial compressive strain¹
- Poisson's Ratio nearly 0.5
 - Means a process of constant volume
- Free of external frictional effects²

Nicole Walsh

Ideal Equal Biaxial Stress State¹

1. Callister, W.D. (2007). *Material Science and Engineering, An Introduction;* 7th ED. York, PA: John Wiley & Sons, Inc.

Final Specimen Geometry

The strain profile in the ZZ plane after load is applied

The resulting Von Mises Stresses as force was applied radially

Manufacturing Specimen Geometry

- Gasket and rubber material cut with laser CNC
- Rule Die
 - Total cost ~\$200

Material Testing

- Dogbone Samples
 - Red Rubber
 - Gasket Materials
 - Width Ratio of 1.27

- Dumbell Samples
 - Black Rubber

Ben Hainsey

• Width Ratio of 2.2

Material Testing (Cont.)

Material Testing (Cont.)

Material Testing (Cont.)

Model

Device Modifications

- Cut down diameter of all plates by 5 inches
 - Reduces weight by ~50 lb
- Carriers were modified for cable attachment

Assembly

Prototype Components

Prototype

Cable Testing

- Tested actual cables to be used
- Performance of the passing cables was excellent
 - Max. Stretch: 2.45mm over entire length of cable

Strain Measurement

- Dino-lite microscope used to take pictures
- Distance measurements done by snapshots
- Stretch ratio then calculated

Eric Hebner

Strain Measurement (Cont.)

Eric Hebner

Uniaxial Validation

Carrier Calibration

Biaxial Testing

Budget

Suppliers	ltem Type	Cost
McMaster-Carr	Hardware	\$733.80
Midwest Steel	Stock Materials	\$598.00
Ebay/Folger	Linear Bearings	\$28.56
West Marine	Dyneema Rope	\$17.74
Grainger	Wire Rope, Pulleys	\$56.93
	Total:	\$1,435.03

Budget (Cont.)

Item Cost	Cost
Original Design	\$1,435.03
Load Cells	~ \$6,400.00
Guide Pins	~ \$200.00
Ball Bearings	~ \$960.00
Labor	~ \$37,800.00
Total:	~ \$45,795.03

Eric Hebner

Future Plans

- Guide pin
- Rule die

- New gripping method
- Fixed rod in carrier
- New wire rope
- Better strain measurement
- Better bushings
- Load cells on each direction

Conclusions

- Designed and manufactured specimen geometry
- Built working model
- Performed cable testing
- Gathered uniaxial tensile data for given gasket material
- Fabricated prototype
- Calibrated prototype

Ben Hainsey

Biaxial tensile test performed

Questions? Comments? Suggestions?