# Team 2 – Biaxial Tensile Tester

Team Members: Ben Hainsey Eric Hebner Nicole Walsh

Sponsor: Cummins, Inc. (Terry Shaw) Graduate Consultant: Parker Harwood Faculty Advisor: Dr. Williams Oates



# Questions to be Addressed

>Why is a compression test difficult for gasket material?

>What exactly does a biaxial test provide?

≻Is pulling along more axes always better?



### Elastomers

➤Have ability to achieve large deformations and elastically spring back into original shape.

➤The moduli of elasticity is quite small AND varies with strain since stress-strain curve is no longer linear

➤As a tensile load is applied the crosslinked molecular chains will uncoil in the stress direction<sup>2</sup>.



Stress-Strain Curve of MP-15 gasket material. Data provided by Parker Harwood.



**Gasket Material ≻**Rubber ➢ Paper ►N-8092 ►TS-9003 ►MP-15





# Material Testing

>In order to model materials, accurate predictions of properties are needed

#### ➤ Uniaxial tension

- Easy to obtain with standard tensile test
- Pure shear
- Done with planar tension test
- Uniaxial Compression
- Inaccurate due to the friction between the load plates and the specimen
- $\blacktriangleright$  Causes a mixed state of compression, shear, and tensile strain<sup>1</sup>



# Why Biaxial Tension?

 $\triangleright$ A biaxial tensile strain is equivalent to a uniaxial compressive strain<sup>1</sup>.

#### ≻Mohr's Circle

- Becomes a point circle
- No shear forces are present<sup>2</sup>

#### ≻Poisson's Ratio nearly 0.5

Means a process of constant volume

$$\triangleright \gamma = -\frac{\epsilon_z}{\epsilon_x}$$

# Equal Biaxial Tension

- ➢For incompressible
- materials this creates a state
- of strain equivalent to pure
- compression.
- ➢ Free of the frictional effects



# Specimen Geometry

➤While researching found relatable specimen geometry

≻Assumptions:

- Modeled with natural rubber's material properties
- Assumed a symmetric load applied radially
- Neglected the effects of the clamping from the grips during testing
- Need a uniform strain distribution throughout sample



(Top) FEA analysis of tensile specimen at Axel Physical Testing Services <sup>3</sup>



#### Specimen Geometry Cont.









#### Specimen Geometry Cont.









# Final Specimen Geometry



The strain profile in the ZZ plane after load is applied



applied radially

# **Specimen Production**

➤A punch must be constructed so each specimen is identical for testing





VIEW A-A SCALE 1



### **Budgetary Concerns**

#### Stand Alone Systems

- ≻Load Cells \$100+ ea.
- Minimum \$800
- ≻Hydraulic Actuators \$110ea.
- Minimum \$880 + \$600 pump
- ► Electric Actuators \$150ea.
- Minimum \$1200
  Both over budget already.

#### MTS Integrated Systems

- ► Load Cell already present.
- > \$0
- ➤Actuator already present
- > \$0



# Budget Breakdown

| Item                                      | Source                     | Price    | Shipping       |   |
|-------------------------------------------|----------------------------|----------|----------------|---|
| Alimex Cast Al Plate (0.75"x46"x43")      | Midwest Steel and Aluminum | \$471.85 |                |   |
| 6061 T6 Al Plate (0.75"x30"x36")          | Midwest Steel and Aluminum | \$239.84 | 347.99         |   |
| 6061 Al Square Bar (2"x2"x36")            | Midwest Steel and Aluminum | \$55.70  |                |   |
| 2 Hardened Steel Rods<br>(12mmx2000mm)    | Thomson Linear Motion      | \$134.78 |                |   |
| 16 Linear Bearings (12mm)                 | eBay                       | \$20.22  |                |   |
| steel bolt, nut, washers (1/4"x3<br>1/2") | Amazon                     | \$29.64  |                |   |
| Stainless Steel Pulley                    | McMasterCarr               | \$56.72  |                |   |
| Galvanized Steel Eyebolt                  | McMasterCarr               | \$36.32  |                |   |
| Steel Ball Bearings                       | McMasterCarr               | \$113.44 |                |   |
| End-Fitting for Wire                      | McMasterCarr               | \$261.66 |                |   |
| Aluminum Stop Compression Sleeve          | McMasterCarr               | \$7.97   |                |   |
|                                           | Total:                     | 1428.14  | <b>34</b> 7.99 |   |
|                                           |                            |          | Eric Hebne     | r |

### Universal Base Plate Design



SCALE 1:2

# Model of Baseplate with Pulleys



≻Has 8 pulleys for ends of each axis

➢Utilizes steel cable to attach to gripping mechanism and pull specimen

➢Pulleys are support by two plates on either side with a shaft passing through and attaching to plates by ball bearings to allow rotation



# Analysis of the Cable

> Assumed maximum force applied overall is 4000 lbf, which would make it 81.633 lbf on each strand in the cable, and the diameter of the cable is 0.125 in

➤ Yield stress of 316 stainless steel cable is 515 MPa, it will be plenty strong to support loads required

| Desired Value        | Equation                            | Result                |
|----------------------|-------------------------------------|-----------------------|
| Cross-Sectional Area | $A_c = \frac{\pi * d^2}{4}$         | 0.012 in <sup>2</sup> |
| Force in Each Strand | $F_{strand} = rac{F}{49  strands}$ | 81.633 lbf            |
| Maximum Stress       | $\sigma_{max} = \frac{F}{A_c}$      | 45.864 MPa            |
|                      |                                     |                       |

Ben Hainsey

# Analysis of Pulley

> Pulley chosen for initial analysis is made of steel with a work load limit of 685 lbf



#### Plans for the Rest of This Semester and Next

- ➤Talk to PE at the Magnet Lab to alter drawings to a more reasonable task for machining
- ➤Get all materials machined and ready for assembly
- ► Assembly of prototype
- ➤Testing materials and comparing to nominal data
- ➤Calibrating machine and making any alterations necessary
- > Developing instruction manual for use with detailed procedures and warnings



### References

- 1. <u>http://www.axelproducts.com/downloads/CompressionOrBiax.pdf</u>
- 2. Callister, W.D. (2007). *Material Science and Engineering, An Introduction;* 7<sup>th</sup> ED. York, PA: John Wiley & Sons, Inc.
- 3. Day, J. and Miller, K. (July 2000), Equibiaxial Stretching of Elastomeric Sheets, An Analytical Verification of Experimental Technique. *Equibiaxial Stretching, Rev 2. 1-8.*