
OFFSHORE WIND TURBINE

03/20/2014

Team #12

Jason Davis
Nicholas Smith
Kevin Foppe
Mark Price
Margaret Gidula
Matthew Price
Stephen Davis

Sponsor: Dr. Jung

Advisors: Dr. Kumar

Dr. Frank

Instructors: Dr. Amin

Dr. Shih

OUTLINE

- Scope
- Fall Semester Highlights
- Recent Progress
- Future Work Plans

SCOPE

Objectives

- Reduce the cost
 - Autonomous navigation
 - Twin tower design
 - Catamaran base
 - Dry-dock construction

Background

- Potential energy production
- Growing industry
- Costs of offshore v. land-based

FALL SEMESTER HIGHLIGHTS

- Determination of largest costs
 - Foundations/anchoring
 - Construction

- Design Innovations
 - Twin tower design
 - Autonomy
 - Swath base design

RECENT PROGRESS

- Development of experimental program for serviceability of structure
- Testing of structure for serviceability
- Procurement almost complete
- Assembly begun

PROGRESS ON ASSEMBLY

Kevin Foppe

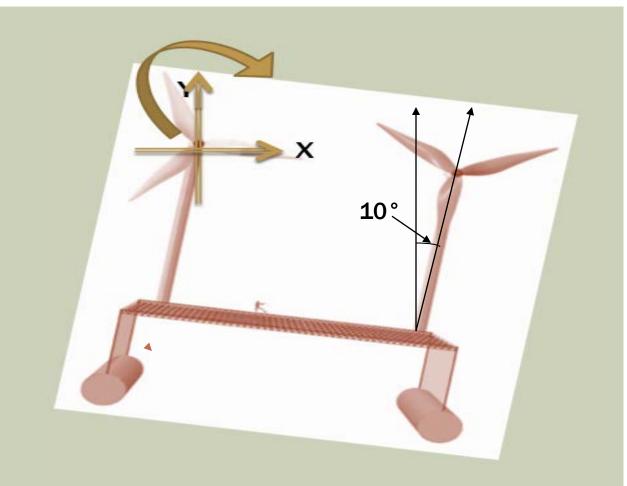
POTENTIAL/CURRENT CHALLENGES

- Levels of difficulty
 - Basic (propulsion, generation, stationary)
 - Advanced (sensors, gps, sonar, etc.)
- Scaling Comparison
- Anchoring System
- Electronic Insulation/Sealants
- Buoyancy
 - Very Rigid Body ~ 22 lbs.

Kevin Foppe

RELEVANT DATA AND ANALYSIS

- 3 Main Design Criteria:
- 1. Autonomy-Static Location
 - Arduino Technology
- 2. Serviceability and Rotation Limit
 - Maximum Displacement of 10 deg.
- 3. Efficiency of Electricity Generated
 - Comparison Onshore vs. Offshore


1. AUTONOMY: BASIC PRINCIPLES AND COMPONENTS

- Biggest contributor to industry
- Using Arduino to control motors
 - Underwater vs. Power Generation
- Using timing delays to simulate real world application of GPS

Kevin Foppe

2. SERVICEABILITY AND ROTATION LIMIT

- Wave Pool Testing Facility
 - Strain Gauges
 - Deflection Meters
- Floating allows for more flexibility
- Ballast System considered but not necessary for scale down model

3. POWER EFFICIENCY

- Basic objective is to make power (LED)
- Comparison of Land vs Sea
 - Objective: Close as possible

Section 3 MARK PRICE

PROCUREMENT

- Recent Purchases
- Future Purchases

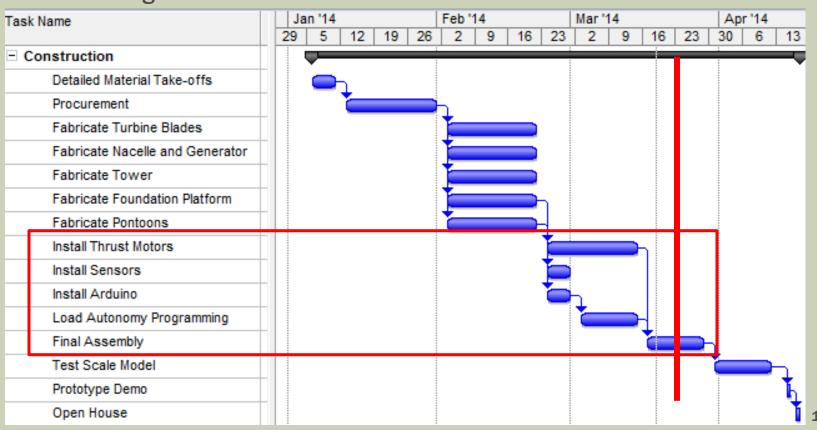
Section 3 Mark Price


FUTURE WORK PLANS

- Assembly & Programming (Demonstration)
- Testing & Modeling
- Final Procurement

Section 3 Mark Price

FUTURE WORK PLANS


- Overall on schedule
- Programming is almost complete
- Expected Construction completion

Section 3 Mark Price

FUTURE WORK PLANS

- Schedule & Gantt Chart
 - On schedule
 - 95% Budget Allocated

THANK YOU

