OFFSHORE WIND TURBINE

Team #12 Jason Davis Stephen Davis Kevin Foppe Margaret Gidula Mark Price Matthew Robertson Nicholas Smith

04/17/2014

Sponsor: Dr. Jung Advisors: Dr. Kumar Dr. Frank Instructors: Dr. Amin Dr. Shih

Jason Davis

OUTLINE

Abstract
Problem Definition
Design
Prototyping and Testing
Future Recommendations

Jason Davis

OUTLINE

Abstract Problem Definition Design Prototyping and Testing Future Recommendations

Jason Davis

ABSTRACT

Objectives

- Reduce the cost
 - Autonomous navigation
 - Twin tower design
 - Catamaran base
 - Dry-dock construction

Background

- Potential energy production
- Growing industry
- Costs of offshore v. landbased

OUTLINE

Abstract
Problem Definition
Design
Prototyping and Testing
Future Recommendations

PROBLEM DEFINITION

Existing Technologies are gradually moving due to better stronger winds offshore

Matthew Robertson

NEEDS ASSESSMENT

Determination of largest costs

- Foundations/anchoring
- Construction

Design Innovations

- Twin tower design
- Autonomy
- Swath base design

OUTLINE

Abstract
Problem Definition
Design
Prototyping and Testing
Future Recommendations

DESIGN CONCEPTS

- Structure
 - SWATH
 - Tower
 - Trusses
- Power Generation
 - Generators
 - Turbine Components
- Innovations
 - Autonomy
 - Two Turbines

DESIGN CONCEPTS: STRUCTURE

- Small-Waterplane-Area Hull (SWATH)
- L:W ratio = 2:1
- Displacement Mass: Foundation Mass 2:1
- Buoyancy = (Mass of Displaced Fluid Mass Structure)
- Displaced Fluid = 2.4 x10^6 kg.
- Foundation = 1.2 x 10^6 kg.
- Ballasted Hulls

Margaret Gidula

DESIGN CONCEPTS

- Pool Testing
 - Deflection Measurement
- Floating allows for more flexibility
- Ballast System considered but not necessary for scale down model

Margaret Gidula

DESIGN CONCEPTS: TOWER AND TRUSS

Lattice

Tubular Column

Frame Structure

Margaret Gidula DESIGN CONCEPTS: PONTOON RELIABILITY

- Pontoon failure would be catastrophic
- Safety factor of 1.2; therefore 20% extra buoyancy
- Ballast pumps able to evacuate water

DESIGN SELECTION: GENERATOR

- Power Output 100 Kw
- Start up speed 3 m/s
- Max wind speed 25 m/s
- Rated rotational speed 50 rpm
- Optimal wind speed 12 m/s
- Survival speed 40 m/s
- Weight 2400 Kg

Rotor Size and Maximum Power Output		
Rotor Diameter (meters)	Power Output (kW)	
10	25	
17	100	
27	225	
33	300	
40	500	
44	600	
48	750	
54	1000	
64	1500	
72	2000	
80	2500	
Sources: Danish Wind Industry Association, American Wind Energy Association		

Nick Smith

DESIGN CONCEPTS: TURBINE BLADE DETAILS

Three-Blade Configuration

Property	Value
Max rotational speed	19 rpm
Blade composition	Epoxy glass fiber + carbon fiber
Length per blade	9 m
Mass per blade	1,200 kg

Blade Forces

Force	Design
214 N	Per one blade
642	Per three
Ν	blades

Stephen Davis

AUTONOMY PACKAGE

Four main stages: Full Scale

GPS

- Power Stage
- Controller
- Filter Stage
- Prototype
- Timing Delays

Simulate actually Turbine maneuvers

GPS

- Communication hub on land will send signal to the wind turbine giving it route to take
- Hardware onboard will interpret the signal and give the controller instructions

POWER STAGE

- Semiconductor switch arrays
- 6 different switches grouped into 3 pairs.
- Each bridge will be connected to a phase of the 3-phase AC motor.
- During operation the connection to the motor is closed using relays

CONTROLLER

- Controller turns the IGBT switches on and off.
 - can turn the on and off up to 32,000/sec
- Main components of controller: Digital Signal Processor(DSP) and Safety processor(SP)
- DSP- Controls torque and charge behavior
- SP- monitors acceleration and the motor currents consistency.

DESIGN CONCEPTS: AUTONOMY

Biggest contributor to industry
Using Arduino to control motors
Using timing delays to simulate real world application of GPS

OUTLINE

Abstract
Problem Definition
Design
Prototyping and Testing
Future Recommendations

PROTOTYPE DESIGN CRITERIA

Autonomy-Static Location

- Arduino Technology
- Serviceability and Rotation Limit
 - Maximum Displacement of 5°
 - Ballast System
- Efficiency of Electricity Generated
 - Comparison Onshore vs. Offshore

Kevin Foppe

Kevin Foppe

PROTOTYPE

Parameter	Dimension (inches)
Height of Tower	8 in.
Width of Deck	1 8 in.
Length of Deck	24 in.
Truss Height	8 in.
Pontoon Diameter	3 in.
Length of Propellers	3 in.
Diameter of Motor Cones	2 in.

Kevin Foppe

MODELING

Ballasts

Pitch Sensor

Kevin Foppe

TESTING

TESTING

Deflection Testing

- About X axis
 - Waves
- About Y axis
 - Wind
 - Waves
- 2" waves on prototype
 - = 17' waves on full scale

Mark Price

Mark Price

TESTING

4 DEGREES OF ROTATION

Results:

- Angle of Rotation = 4°
- Serviceability
 Limit = 3-5°

Mark Price

CONCLUSION

- Design Functional Offshore Wind Turbine
 - Innovate Existing Industry
 - Autonomy
- Construct Prototype
 - Demonstration of Power Generation
 - Testing

OUTLINE

Abstract
Problem Definition
Design
Prototyping and Testing
Future Recommendations

FUTURE RECOMMENDATIONS

Specific Concerns for the Prototype

- Stability
- GPS v. Timing Delays
- Anchoring
- Adjust proportions

THANK YOU

