

Fall Design Presentation

FCAAP: AIAA Design Build Fly

Instructor Dr. Kamal Amin Project Advisors Dr. Farrukh Alvi Dr. Chiang Shih

<u>Sponsor</u> FCAAP

TEAM 16: Terry Thomas – Will Watts – Lee Becker – Jordan Benezra [12/06/12]

Presentation Outline

- Competition Overview
- Subsystem Basics
- Design Concepts
- Current Design
- Conclusion (problems, future work)

Competition Overview

- Held in Tucson, Arizona in April, 2013
- Score based upon Three flight missions, aircraft parameters, and written report.
- Mission 1: Max completed laps in given time
- Mission 2: Max internal stores for 3 laps
- Mission 3: Random missile configuration 3 laps, minimum time
- RAC: Minimize X and Y dimensions of the aircraft, Minimize weight
- Written Report: 60-Page maximum, Due 2/25/13

Primary Design Objectives

- Complete All Missions
 - Primary Objective is to satisfy all requirements to compete.
- Minimize Cost and Weight
 - In order to have a successful design, the smallest possible unit must be used.
- Minimize Risk
 - In order to minimize waste of time and money, we must consider reasonably safe, proven options when evaluating designs and techniques.

Conceptual Design

Primary Focus

- Minimize Size
- Minimize Weight
- Maximize Stability

Wing Selection

Figure of Merit	Weighting Factor	Monoplane	Biplane	Canard	Delta Wing	Flying Wing
Weight	0.20	4	1	3	4	1
Drag	0.20	4	2	2	1	3
Lift	0.30	3	5	4	3	4
Stability	0.15	4	5	3	3	5
Complexity	0.15	5	4	2	3	1
Total	1.00	3.85	3.45	2.95	2.80	2.90

6

Propeller Selection

Figure of Merit	Weighting Factor	Tractor	Pusher	Pusher-Puller	Ducted Fan
Weight/Balance	0.40	5	4	5	2
Efficiency	0.40	4	4	3	3
Complexity	0.20	5	4	2	3
Total	1.00	4.60	4.00	3.60	2.60

Tractor Configuration

Pusher Configuration

Pusher-Puller Configuration

Ducted Fan Configuration

Fuselage Selection

Figure of Merit	Weighting Factor	Double Boom	Single Boom	Blended Body
Weight	0.40	1	3	4
Drag	0.20	2	4	5
Durability	0.10	3	4	5
Storage Capacity	0.30	5	4	1
Total	1.00	2.6	3.6	3.4

Tail Selection

Figure of Merit	Weighting Factor	Conventional	V-Tail	Twin Tail	T-Tail
Weight	0.15	2	Δ	2	2
vveignt	0.15	5	4	5	3
Drag	0.20	4	5	3	3
Ctobility.	0.25	F	h	2	2
Stability	0.35	5	2	3	3
Maneuverability	0.20	5	2	4	4
Manufacturability	0.10	4	2	3	3
Total	1.00	4.40	2.90	3.20	3.20

9

Landing Gear Selection

Figure of Merit	Weighting Factor	Tricycle	Single Wheel	Tail Dragger	Bicycle
Weight	0.30	3	4	3	2
Drag	0.10	4	4	3	3
Durability	0.15	5	2	4	4
Stability	0.10	5	1	3	3
Manufacturability	0.15	3	4	3	2
Efficiency	0.20	3	4	2	1
Total	1.00	3.60	3.40	3.20	3.20

Internal Stores

The focus here is to

- Complete mission two
- Minimize RAC (Rated Aircraft Cost)
 - Reduce required material to house stores
 - Reduce volume of stores

Internal Store Configuration #1

- Overall Outer Dimension : 15in x 8in
- Holds 4 Mini Max rockets (minimum)
- Design would need modification in order to conform to updated rules (top mount)
- Considerable size/weight savings over configurations with additional stores

- System suspended from a top-mounted "cradle"
- Cradle mounted to bay of aircraft
- Rockets attached by circular metal clips
- Total space required:

4.57 inches high X 7.24 inches wide X 15.57 inches long

Internal Store Configuration #3

- Overall Outer Dimension : 9.5in x 15.5in x 5.5in
- Holds 4 Mini Max rockets (minimum)

• Design would need a machined part that would attach top the fuselage and be able to strap store to the mount.

Materials Selection

Primary Focus

- Minimize Material Weight
 - Allow for minimal empty weight to complete short take-off
- Maximize Material Strength
 - Landing and wing-tip tests must be successful

Materials Selection

- The best materials that are available consist of ceramics and composite materials.
- Minimize cost and maximize efficiency to meet product specification goals.
- Due to brittleness of ceramics, a natural material like balsa wood is the next best option to use

Materials Optimization

What do we know?

- The yield strength of carbon fiber is greater in tension than in compression.
- Wood is stronger when it is loaded longitudinal direction.

Wing and Tail Design

Primary Objectives

- Based upon wing materials, wing weight must be minimized
- Given 7-lb maximum take-off weight, lift must be optimized
- Provide stability and control to the aircraft

Eppler 422 Profile

Max C ₁	1.8159
Stall Angle (deg)	15
$Max C_l/C_d$	60.0429
C_1 at Max C_1/C_d	1.2609
Angle at Max C_1/C_d (deg)	5.5

Tail Selection

NACA 0008 airfoil profile

Vertical Span	10.25 inches	
Vertical Chord	7.9 inches	
Horizontal Span	23.75 inches	
Horizontal Chord	7.9 inches	
Moment Arm	31.1 inches	

Propulsion System

• Based upon estimated aircraft weight and lift provided, take-off thrust must be optimized.

• Based upon lift provided and estimated weight, the amount of static thrust required to take off within the prescribed area is 11 N of force.

• This section discusses how that is optimized

Propulsion System Selection

Research Combinations of

- Motors
- Propellers
- Controllers
- Batteries

Combine Theoretically

Propulsion System Selection

Based upon prior research

- Purchase (2) motor candidates
- Purchase several propellers
- Purchase (1-2) motor controllers
- Purchase (1-2) batteries

- Bring best candidates to laboratory
- Test ALL combinations of candidates
- Analyze results
- Experimentally determine best combinations available

Controls System

Primary Focus

- Be capable of successfully controlling the motor
- Be capable of successfully controlling the control surfaces
- Be capable of operating within the same frequency range in order to communicate effectively

Aircraft Specifications

•Wing Span: 78 inches

•Vertical Tail Span: 10.25 inches

•Horizontal Tail Span: 23.75 inches

•Overall Length:~ 75 inches (Depending on nose cone)

•Max Empty Weight: 3.5 pounds

Steps taken to reduce possible environmental impact

- Use NiMH batteries for recyclability
- Use bio-degradable balsa wood where possible

Safety Considerations

Steps taken to increase safety

- Fail safe mode required
- Batteries will be shrink wrapped
- Safety arming system

Budget and Schedule

Maximum allowed budget is \$1,500

• Nothing spent to date

Project Design Report due date is February 25, 2013

• Prototype completion scheduled for February 1st

Other Design Concerns

- Fuselage Design
- Landing Gear
- Wing attachment method
- External Store Attachment Method
- Finalized Propulsion System

