68K Turbine Blade Handling Interim Design

Team 14

Patrick Filan Clint Kainec John Kemp

Outline

Background Information

- Problem
- Designs
 - Overview
 - Analysis

Advisors

Industry

<u>Ashtok Patel</u>

Industrial Engineer Environmental Health & Safety Manager at **TECT Power** CSP, CHMM

Faculty

Dr. Patrick Hollis

Associate Professor & Undergraduate Coordinator Department of Mechanical Engineering

<u>Dr. Kamal Amin</u>

Professor Department of Mechanical Engineering

TECT Power: Thomasville, GA

- A turbine part manufacturing facility
- Currently process a variety of turbine blades
 - Machining, finishing, testing
- Operates both single-axis manual mills and multi-axis automated mills

The 68K Blade

- 45 lb
- 3ft x 1ft
- Titanium aluminide
- Received as a raw forging
 - Only basic geometry
- Geometry
 - Root
 - Tip
 - Twist
 - Midspan

The Problem

- Manual lifting of the 68K turbine blade
 - Risk of injury
 - Straining workers
 - Difficult for new workers
 - Needs to be eliminated
- The blade moves through several machines
 - Each machine unique
 - Obstructions
 - Placement
 - Orientation

Blade Orientations

Project Focus

- Safety
 - Ergonomics
 - Part-friendly
- Modify current cart
- Orientation and 3D position of the blade
 - Machine-friendly
 - Loading and unloading
 - Time efficiency
 - Cost effectiveness

Existing Apparatus

Previous Team

- Cart design
- Transport from storage to machine 1
- Orientated horizontally
- Many machines

Modifications Necessary

- Cart stability struts
- Removing shelves
 - Adding storage
- Attaching new apparatus
 - Crane
 - Grips
- Housing for apparatus parts
 - Electrical system If applicable
 - Battery If applicable

Design: Pulley System Crane

- Mechanical advantage
- Pulley system
- Arm-coupler angle
- Rotation about the vertical axis via base-gear
- Individual control of each grip with crank

Design Analysis: Crane

- Factor of safety: 3
 - Standard safety for static objects
- Pulleys needed:
 - Manual (10lbf applied): 13
 - Motorized (0.5-1hp): 2-4
- Conflicting Criteria
 - Needs to be quick (requires low M.A.)
 - Applied force by user less than 10lbf (requires high M.A.)

$$\sigma_{f} = FS * \sigma_{a}$$

$$M.A. = \frac{F_{o}}{F_{i}}$$

$$M.A. = \frac{v_{i}}{v_{o}}$$

$$M.A. = n \text{ (ideally)}$$

$$n_{pulley} = n - 1$$

Design Conclusion: Crane

- Need motor driven system
 - Reduces mechanical system requirements
 - Increases speed of system
 - Solves both problems
 - Speed
 - Strength
 - Alleviates all manual stress (carpal tunnel)

- Motor requirements
 - 0.5-1hp
 - Variable speed
 - Requested

Design: Support Strut

- Must support moment of the arm and external forces
- Must not:
 - Fail
 - Buckle
 - Deflect

Analysis: Support Strut

$$m_{buck} > \frac{144[C_{cx}w_c - (w_p + w_w)z_x]L^2}{t^3n^2\pi^2} \left(\frac{\rho}{E}\right)$$

$$m_{bend} > \frac{12[C_{cx}w_c - (w_p + w_w)z_x]}{C_2t^2\Delta\theta} \left(\frac{\rho}{E}\right)$$

$$m_{fail} > \frac{6[C_{cx}w_c - (w_p + w_w)z_x]L}{t} \left(\frac{\rho}{\sigma^*}\right)$$
• Two material indices – 1 trade off surface
$$m_{bend} > 12 \left[\frac{\rho}{C_{cx}w_c} - (w_p + w_w)z_x]L}{t} \left(\frac{\rho}{\sigma^*}\right)$$

Cost analysis: Support Strut

- Best materials
 - CFRP
 - Aluminum alloys
 - Poly styrene
 - Grey cast irons
- Conclusion: Grey cast iron
 - Cheap
 - Shape can be adjusted
 - May increase durability
 - Lower weight

Nominalized cost comparison

Material	C _{buck} (\$)	C _{bend} (\$)	C _{fail} (\$)	C _T (\$)
CFRP	1.12	36.08	.01	36.08
Al Alloys	0.11	3.50	0.001	3.50
Polystyrene	1.05	33.85	0.03	33.85
Grey Cast Irons	0.05	1.59	.001	1.59

Design: Dynamic Gripping System

- Uses vacuum-packed sand
 - Forms a solid impression
- Pros
 - Soft
 - Durable
 - Can grip edges
- Cons
 - Experimental
 - Weight rating may vary
 - Electronics
 - Expensive

Subsitutional Design: Suction Grips

- Rated up to 100lbs for under \$100
- Pros
 - Inexpensive
 - Easily accessible
- Cons
 - Surface geometry
 - Oil Slip
 - Can only attach to flat plane

References

- Amend, John. "Sandbagged robotics." 12 January 2011. *Through the Sand and Glass*. Image. October 2012.
- Ashby, M. F. *Multi-objective optimization in material design and selection*. Cambridge, UK, n.d. Image. 28 October 2012. http://www.sciencedirect.com/science/article/pii/S1359645499003043>.
- Newton, Jason, et al. "TECT." n.d. *Team 9*. October 2012. http://eng.fsu.edu/me/senior_design/2012/team9/>.
- "Spring 2006 Issue 01." n.d. *Robot Magazine*. Image. October 2012. http://www.botmag.com/issue2/images/bottom2.jpg.
- "The Parish of St. Cuthbert with St. Aidan." n.d. Image. 20 October 2012. http://www.stcuthbertwithstaidan.org.uk/images/IMG_0721.jpg>.
- <http://www.sciencenewsforkids.org/2010/11/coffee-gives-robots-a-grip/>.
- <http://gizmodo.com/5419292/geeky-gifts-whose-proceeds-go-tocharity/gallery/1>.
- <http://www.enginehistory.org/GasTurbines/Blades/blades.shtml>.
- <http://www.pexsupply.com/Rheem-51-103823-01-1-HP-Variable-Speed-Motor-208-230V?gclid=CL2cu-u2zLMCFQqonQod9XQAkw>.

Questions?

