68K Turbine Blade Handling Interim Design

Team 14

Patrick Filan Clint Kainec John Kemp

Advisors

Industry

Ashtok Patel

Industrial Engineer Environmental Health & Safety Manager at **TECT Power** CSP, CHMM

Faculty

Dr. Patrick Hollis

Associate Professor & Undergraduate Coordinator Department of Mechanical Engineering

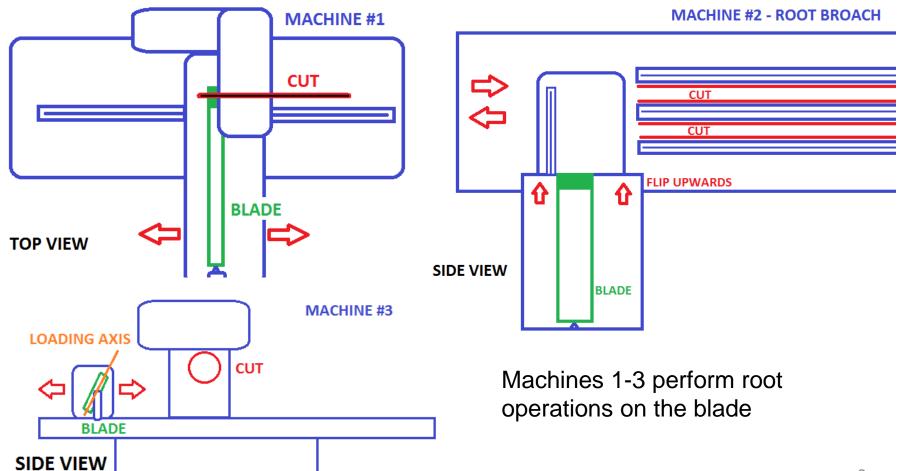
Dr. Kamal Amin

Professor Department of Mechanical Engineering

TECT Power: Thomasville, GA

- A turbine part manufacturing facility
- Currently process a variety of turbine blades
 - Machining, finishing, testing
- Operates both single-axis manual mills and multiaxis automated mills

The 68K Blade


- 45 lb
- 3ft x 1ft x 0.125in
- Titanium aluminide
- Received as a raw forging
 - Only basic geometry
- Geometry
 - Root
 - Tip
 - Twist
 - Midspan
- Used in 68K engines
 - Generate 68,000lbf thrust

The Problem

- Manual lifting of the 68K turbine blade
 - Risk of injury
 - Straining workers
 - Difficult for new workers
 - Needs to be eliminated
- The blade moves through several machines
 - Each machine unique
 - Obstructions
 - Placement
 - Orientation

Blade Orientations

Project Focus

Safety

- Ergonomics
- Part-friendly
- Modify current cart
- Orientation and 3D position of the blade
 - Machine-friendly
 - Loading and unloading
 - Time efficiency
 - Cost effectiveness

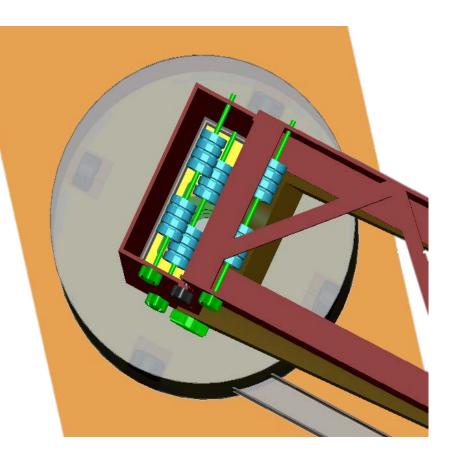
Existing Apparatus

Previous Team

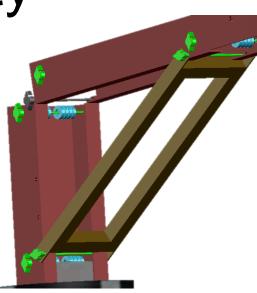
- Cart design
- Transport from storage to machine 1
- Orientated horizontally
- Many machines

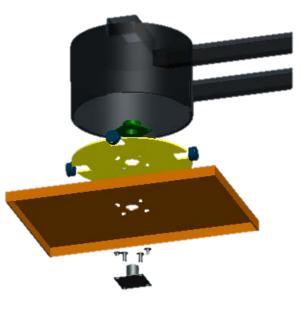
Modifications Necessary

- Removing shelves
 - Adding storage
- Attaching new apparatus
 - Crane
 - Grips
- Housing for apparatus parts
 - Electrical system If applicable
 - Battery If applicable

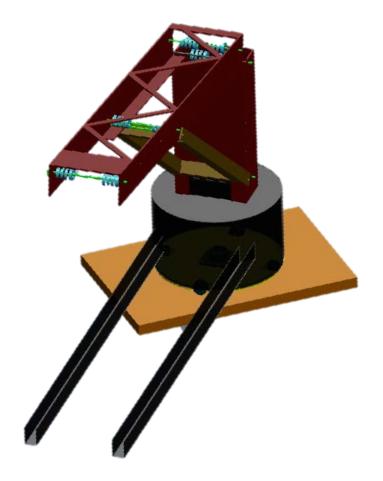

Crane System

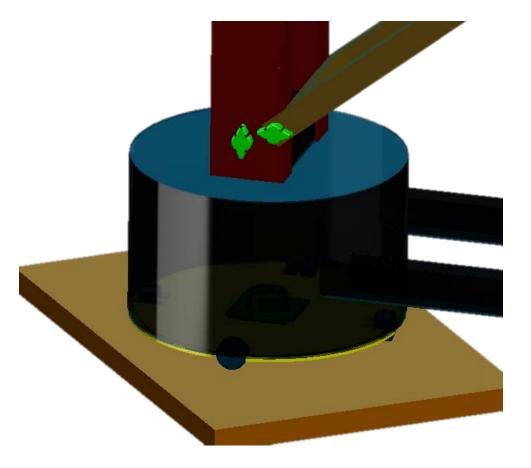
- Mechanical advantage
 Pulley system
- Crane Motion Ability
- Motor Control
- Support Arms


Crane System


- Pulley system
 - Machined pulley
 - 7/64th nylon rope
 - 1,200lbs tensile
- Removable shafts
 - Ease Access
- Bearings
 - High Pressure
 - Concealed
 - No maintenance

Mobility


- Cart Motion
 - Vertical motion
 - Planer motion
- Apparatus Motion
 - Rotation
 - Crane motion
- Blade Motion
 - Vertical motion


Support Arms

- Purpose
 - Aide in blade orientation
- Dimensions
 - 5 feet long
 - 15 in apart
- Material
 - Steel
 - Thin, light
 - Durable

Motor Control

- Two independent systems each equip with
 - 2 0.75hp motor
 - 2 12V batteries
 - 6 Pulleys
 - Spool
- Concealed within a housing

Design: Electrical

- Need motor driven system
 - Mechanical system too slow
- Need two 12V batteries
- Need controller
- Need power supply
 - Charge and scale voltage

- Motor specifications
 - 0.75hp
 - 12/24VDC
 - Variable speed settings
 - Requested by TECT

Design: Blade Harness

- Modeled after climbing harness
 - Fits geometry of the blade (midspan)
- Holds the blade
 - Clipping positions
 - Loops and carabineers
- Materials
 - Nylon webbing
 - Heavy thread
 - Leather wear strips

Safety

Hazards

- Large structure
 - Movement hazard
 - Difficult to maneuver in tight spaces
 - Heavy

Resolved issues

- Power supply
 - Battery-powered
 - Detachable cord
- Unattended movement
 - Movement locks
 - Feet on base of cart
 - Locking pins on moving parts
 - Tipping
 - Support struts

Questions?

References

- Amend, John. "Sandbagged robotics." 12 January 2011. *Through the Sand and Glass.* Image. October 2012.
- Ashby, M. F. Multi-objective optimization in material design and selection. Cambridge, UK, n.d. Image. 28 October 2012.
 http://www.sciencedirect.com/science/article/pii/S1359645499003043>.
- Newton, Jason, et al. "TECT." n.d. *Team 9.* October 2012. http://eng.fsu.edu/me/senior_design/2012/team9/>.
- "Spring 2006 Issue 01." n.d. *Robot Magazine.* Image. October 2012. http://www.botmag.com/issue2/images/bottom2.jpg.
- "The Parish of St. Cuthbert with St. Aidan." n.d. Image. 20 October 2012. http://www.stcuthbertwithstaidan.org.uk/images/IMG_0721.jpg>.
- <http://www.sciencenewsforkids.org/2010/11/coffee-gives-robots-a-grip/>.
- <http://gizmodo.com/5419292/geeky-gifts-whose-proceeds-go-tocharity/gallery/1>.
- <http://www.enginehistory.org/GasTurbines/Blades/blades.shtml>.
- <http://www.pexsupply.com/Rheem-51-103823-01-1-HP-Variable-Speed-Motor-208-230V?gclid=CL2cu-u2zLMCFQq0nQod9XQAkw>.