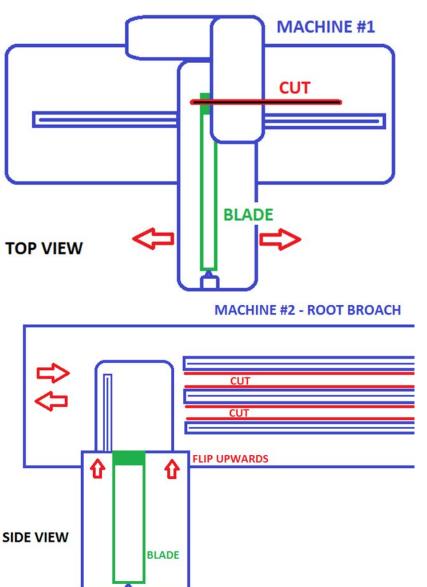
68K Turbine Blade Handling Spring Midterm

<u>Team 14</u> Patrick Filan Clint Kainec John Kemp

Sponsor TECT Power – Ashok Patel


> Advisors Dr. Patrick Hollis Dr. Kamal Amin

Project Scope

• The Blade

- 45 lb Titanium aluminide
- 3ft x 1ft x 0.125in
- Received as a raw forging
 - Only basic geometry
- Geometry
 - Root, tip, twist, midspan
- Goal
 - Must transport and orient for placement in mills
 - Differing angles and placement in machines

2

Obstacles

- Manual lifting of the 68K turbine blade
 - Risk of injury
 - Straining workers
 - Difficult for new workers
 - Needs to be eliminated
- The blade moves through several machines
 - Each machine unique
 - Obstructions
 - Placement
 - Orientation

Project Focus

Safety

- Ergonomics
- Part-friendly
- Modify current cart
- Orientation and 3D position of the blade
 - Machine-friendly
 - Loading and unloading
 - Time efficiency
 - Cost effectiveness

Design Changes

- Optimized shape of structure
 - Slender
 - Less material
- Use of multiple materials
- Minor changes to mechanisms and electronics
 - Not "reinventing the wheel"

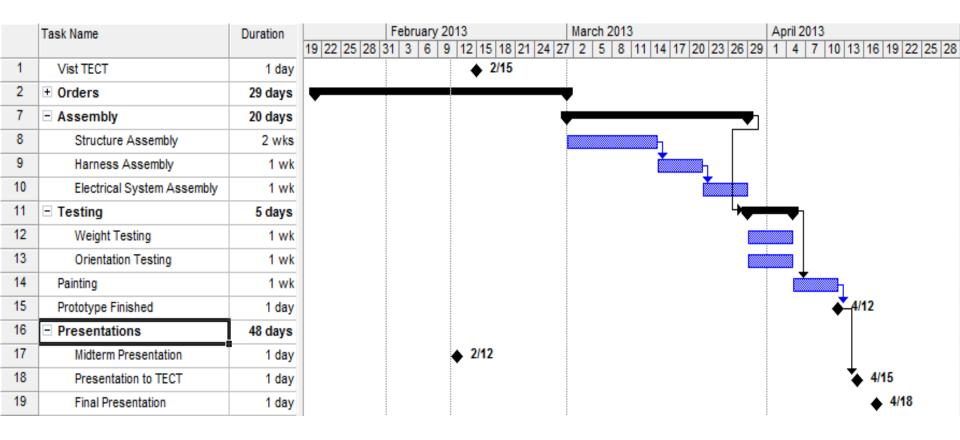
Final Designs

- Base
 - Hydraulic lift cart
 - Carries system and blades
- Structure
 - Crane Design
 - 2-line system
 - Electric motors
- Orientation Device
 - Nylon Harness
 - Optional hooking positions

Acquired Parts

- Machined Parts
 - Small structures
- Winches
 - And controllers
- Small Parts
 - Wheels
 - Pulleys

Expected Parts


- Ordered Parts
 - Batteries and chargers
 - 1 week arrival time
 - Large machined structure
 - 2 week arrival time

- Additional Components
 - Harness Materials
 - Canvas (Nylon)
 - Hooks
 - Paint
 - Purchasing off-shelf

Schedule



Summary

- All parts will be received before March

 Waiting on overall structure
- Assembly will begin immediately after parts arrive
 - Minor adjustments
- Testing will commence after assembly
 - Carrying capacity
 - Ability to orient blades properly

Questions?

References

- Amend, John. "Sandbagged robotics." 12 January 2011. *Through the Sand and Glass.* Image. October 2012.
- Ashby, M. F. Multi-objective optimization in material design and selection. Cambridge, UK, n.d. Image. 28 October 2012.
 http://www.sciencedirect.com/science/article/pii/S1359645499003043>.
- Newton, Jason, et al. "TECT." n.d. *Team 9.* October 2012. http://eng.fsu.edu/me/senior_design/2012/team9/>.
- "Spring 2006 Issue 01." n.d. *Robot Magazine.* Image. October 2012. http://www.botmag.com/issue2/images/bottom2.jpg.
- "The Parish of St. Cuthbert with St. Aidan." n.d. Image. 20 October 2012. http://www.stcuthbertwithstaidan.org.uk/images/IMG_0721.jpg.
- <http://www.sciencenewsforkids.org/2010/11/coffee-gives-robots-a-grip/>.
- <http://gizmodo.com/5419292/geeky-gifts-whose-proceeds-go-tocharity/gallery/1>.
- <http://www.enginehistory.org/GasTurbines/Blades/blades.shtml>.
- <http://www.pexsupply.com/Rheem-51-103823-01-1-HP-Variable-Speed-Motor-208-230V?gclid=CL2cu-u2zLMCFQq0nQod9XQAkw>.