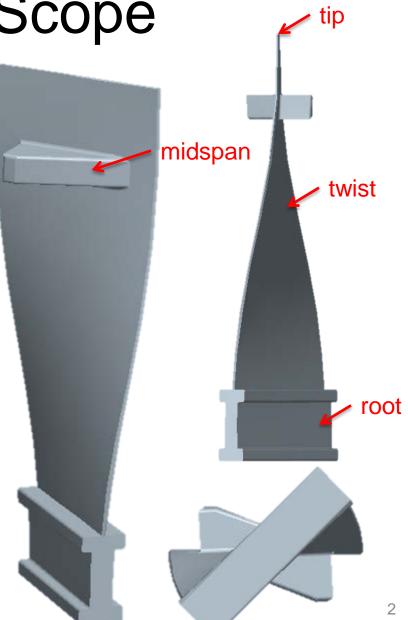
68K Turbine Blade Handling Final Spring Midterm Design

<u>Team 14</u> Patrick Filan Clint Kainec John Kemp

<u>Sponsor</u> TECT Power – Ashok Patel

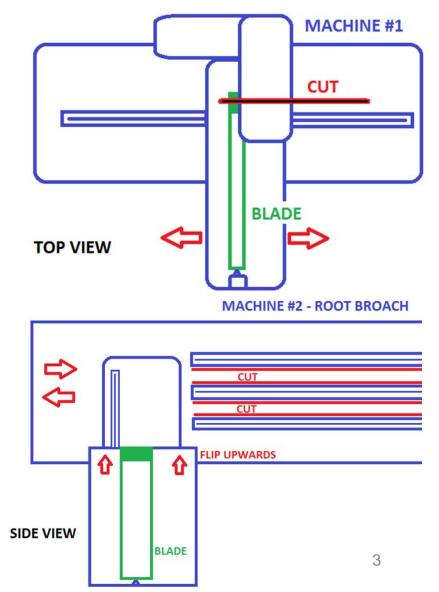
> Advisors Dr. Patrick Hollis Dr. Kamal Amin



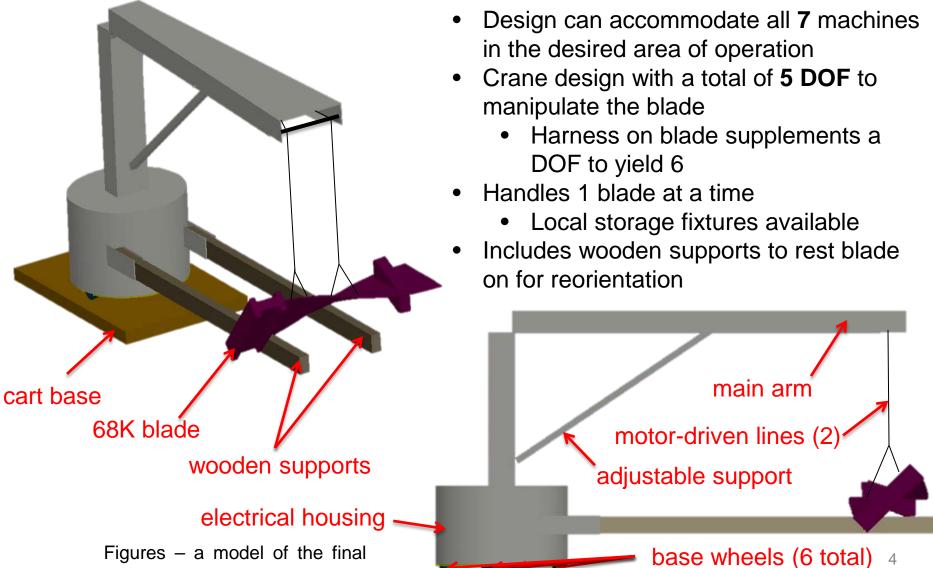
Project Scope

• The Blade

- 45lb Titanium-aluminide
- 3ft x 1ft x 0.125in
- Received as a raw forging
 - Only basic geometry
- Goal
 - Must transport and orient for placement in machines
 - Multiple mills are in the root machining area
 - Differing angles and placement in machines


Figures – a representative model of the 68K blade with geometry labeled in red

Problem


- Manual lifting of the 68K turbine blade
 - Risk of injury
 - Straining workers
 - Difficult for new workers
 - Needs to be eliminated
- The blade moves through several machines
 - Each machine unique
 - Obstructions
 - Placement
 - Orientation

Figures – diagrams of two machines in the machining area (end-mill and broach wall)

John Kemp

Design Solution

Clint Kainec design with labeled parts in red

How it Works

- Mounted on hydraulic lift cart
 - Can rotate about top
- Two motor-driven lines
 - Run down arm
 - Angle is variable
 - Independently driven
 - Wired controllers
 - Two connections on each
 - Attach to harness
- Blade can be held:
 - Horizontally
 - Vertically
 - At various angles

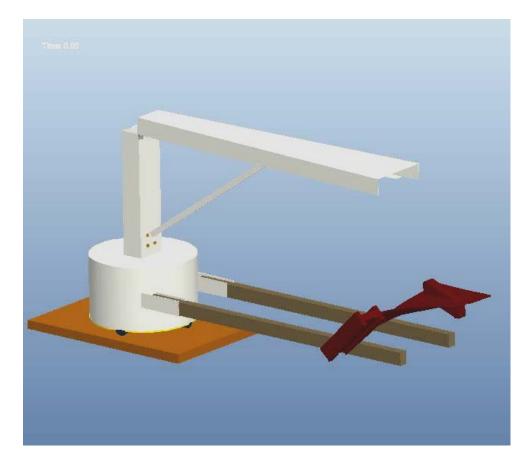
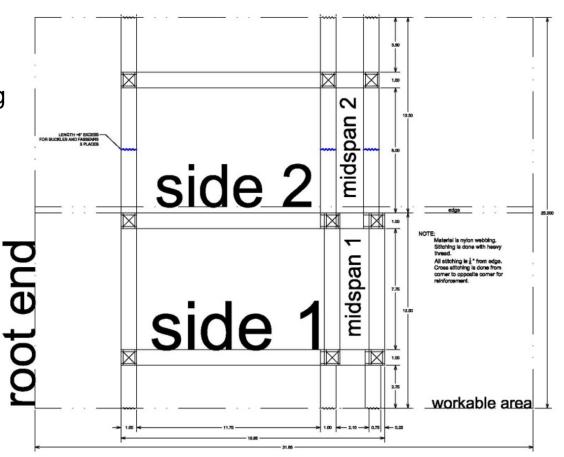


Figure – simulation video of the vertical lifting of the blade by the crane mechanism. (note: the motor-driven lines are nonexistent in the video) 5 The finished prototype will operate similarly.


Harness Design

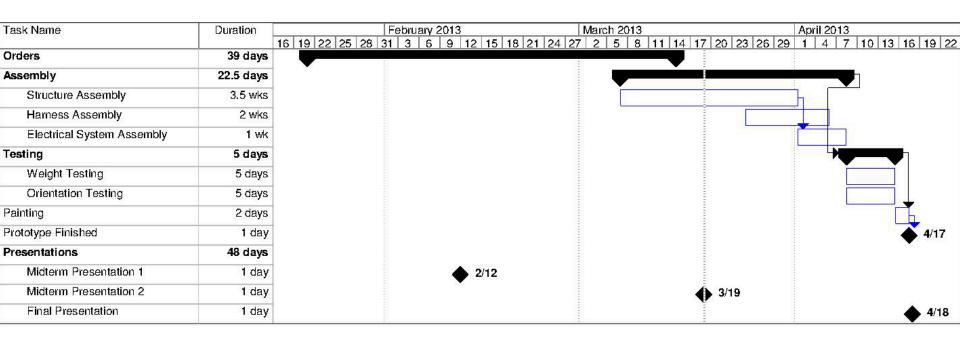
Purpose:

- Fits on the blade
 - Does not need to be removed during machining
- Adjust blade angle and orientation
 - Attaches around midspan and towards the root

Design:

- Nylon and leather
- Sewn with heavy thread
- Uses plastic buckles and fasteners

Figures – The sewing design of the harness (above) and a representative scale model of the harness with buckles (left).


Current Project Status

- All parts received
 - Major structures
 - Small parts
 - Hardware
- To do:
 - Drill mounting holes
 - Fix parts together
 - Aesthetic adjustments
 - Sanding welds
 - Painting
 - Sewing harness

Figure – The cart at its fully-lowered (left) and fully-raised (right) positions with the main canister housing set on top.

Current Schedule

- Final adjustments and assembly underway
 - Assembly expected to be completed early April
- Testing will commence after assembly
- Painting and finishing will start after testing
- Finished prototype will be presented at the final poster session and presentation

Current Expenses

• Foreseeable spending complete for required parts

- Under budget
 - Improvements and adjustments can be made after prototype completion
- Money saved by:
 - Using a friendly machine shop for the main structure
 - Using a friendly seamstress for the harness
 - Picking-up large parts instead of shipping

Alloted Budget	\$2,000.00
Machined Structure	\$675.00
Hardware	\$90.00
Harness	\$120.00
Winches	\$240.00
Batteries	\$110.00
Chargers	\$60.00
Pulleys	\$90.00
Wheels	\$60.00
Travel expenses	\$100.00
Remaining	\$455.00

Project Summary

- The project is on-budget and on-time
 - Expected to finish below the allotted budget
 - Remaining assembly will complete in early April
 - Prototype will be completed before final presentation and poster session (April 18th)
 - This functional prototype should be ready for use at TECT Power's Thomasville facility after presentation of it to MEAC for its intended purpose.

Questions, Comments?

References

• Newton, Jason, et al. "TECT." n.d. *Team 9.* October 2012. ">http://eng.fsu.edu/me/senior_design/2012/team9/>.

Special Thanks

- Jason Newton, Alumnus & Graduate Student at FSU
- Ashok Patel, Environmental Health & Safety Manager at TECT Power
- **Dr. Patrick Hollis**, Associate Professor at FSU
- Dr. Kamal Amin, Adjunct Professor at FSU
- Dave Morgan, Lead Foreman at Westgate Sheet Metal