CISCOR AUTONOMOUS GROUND VEHICLE

February 12, 2012

Donald Allex Tye Buckley Richard Komives Cesar Mize

ACKNOWLEDGMENT

Project Sponsor

Center for Intelligent Systems, Control, and Robotics (CISCOR)

Project Advisors

Dr. Oscar ChuyDr. Emmanuel Collins

PRESENTATION OVERVIEW

- Brief project overview
- Locomotion manipulation update
 - Current Progress
 - Modification (if applicable)
 - Pending work
- Sensor mounting update
- Overall project status

PROJECT NEED

Currently there is no off road vehicle platform for autonomous research and design in CISCOR's inventory

PROJECT GOAL

Modify an existing all terrain vehicle (ATV) to be capable of full autonomous movement by designing, researching and manufacturing components to allow unmanned locomotion control

PROJECT VEHICLE NAME

G. O. L. I. A. T. H.

Gas Operated Land Intelligent All Terrain VeHicle

LOCOMOTION OVERVIEW

Four main locomotion mechanisms on GOLIATH

1) Steering

2) Braking

3) Gear Selection

4) Throttle

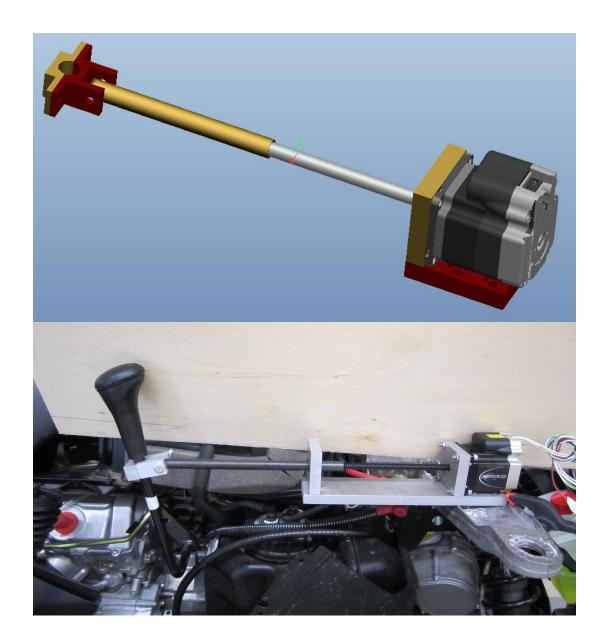
GEAR SELECT OVERVIEW

System Objective

System will provide the ability to select all 5 gears

Park, Reverse, Neutral, Low, High

Shift Arm


GEAR SELECT UPDATE

Current Progress:

- Actuator has been delivered and mounted
- Actuator has met and exceeded project parameter's test conditions
- Mount has been manufactured

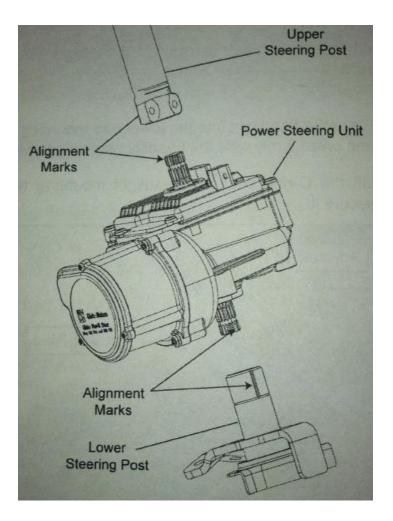
Revisions made:

 Added new support block to reduce shaft deflection

GEAR SELECT UPDATE CONT.

- Permanently mount actuator
- Modify plastic covering

FINAL STEERING OVERVIEW


System Objectives

- System will be able to operate with full turning range
- System will be able to withstand feedback from terrain
- System will provide sufficient output power for turning at any speeds and on any terrain

STEERING UPDATE

- Complete design change
- Previous design was a programmable power steering unit
- Primary reasons for design change:
 - Price of unit exceeded budget
 - Lead time far exceeded allowable time frame

STEERING UPDATE CONT.

- New design will utilize a chain drive system
- Sprockets attach to both the output shaft of motor and steering column
- Powered by a Maxon 150W DC motor
- Utilizes industrial grade chain, sprockets, mounting and collar material

STEERING UPDATE CONT.

Current Progress:

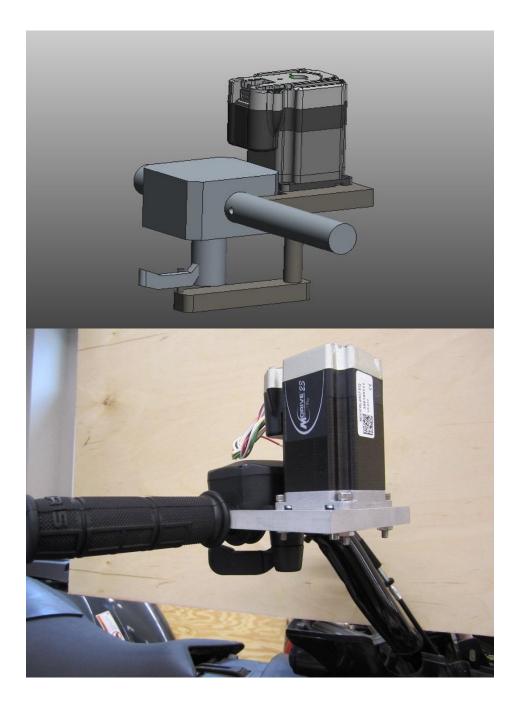
- Chain and sprockets have been delivered
- Main mount material ordered
- Collar for sprocket attachment is currently being manufactured
- Maxon motor is ready for installation

- Machine main mount upon delivery of raw material
- Mount design to GOLIATH
- Conduct performance trials

FINAL THROTTLE OVERVIEW

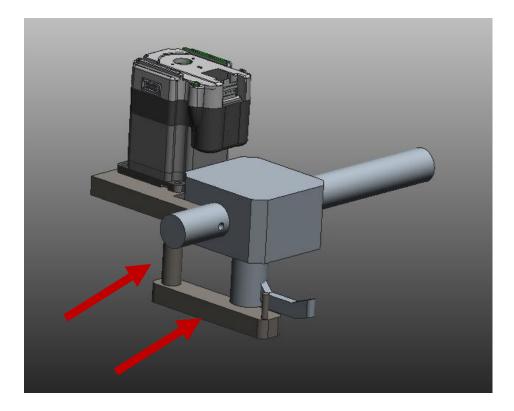
System Objectives

- System will be precise and responsive
- System will utilize full throttle travel range


THROTTLE UPDATE

Current Progress:

- Actuator has been delivered and mounted
- Actuator has met and exceeded project parameter's test conditions
- Mount has been manufactured


Revisions made:

None

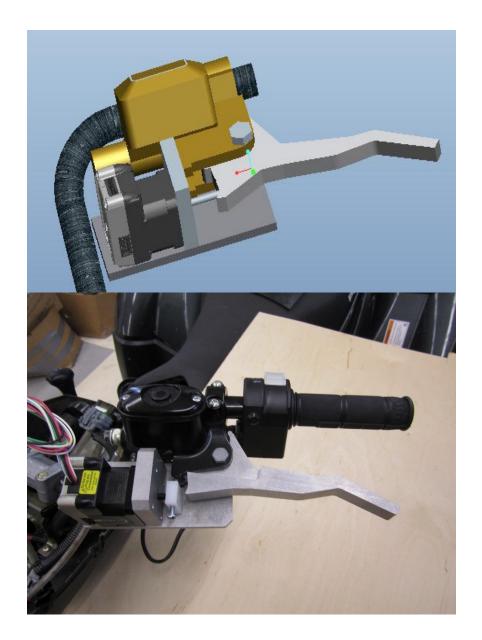
THROTTLE CONTINUED

- Mount shaft extender
- Mount throttle actuator
- Manufacture motor enclosure

BRAKING DESIGN OVERVIEW

System Objectives

- System will have the same response time for braking as a human would
- System will be able to hold a braking position
- System will be able to utilize full braking range


BRAKE UPDATE

Current Progress:

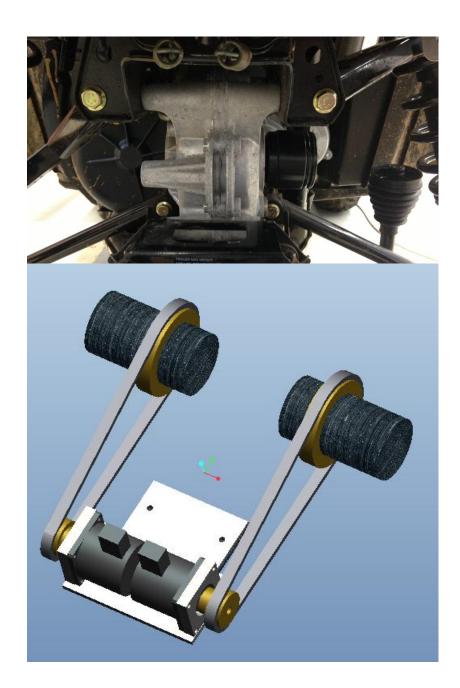
- Actuator has been delivered and mounted
- Actuator has met and exceeded project parameter's test conditions
- Mount has been manufactured

Revisions made:

Added plastic push block for added contact surface area and load transmission

BRAKE UPDATE CONT.

- Remanufacture push block
- Permanently mount actuator
- Manufacture protective housing
- Install pressure transducer



SENSOR MOUNTING UPDATE

Current progress:

- Encoders have been purchased
- Encoder mounting design finalized
- Supplement material has been ordered
 - Pulleys
 - Timing Belts

- Machine base mount plate
- Mount encoders

CURRENT PROJECT STATUS

- Major locomotion components have been delivered and tested
- 3 out of 4 locomotion motor mounts are machined
- Encoders and supplement parts have been ordered
- Project is proceeding as scheduled

Overall Pending Project Work:

- Wire actuator to on-board batteries
- Design computer mounts
- Test encoders upon installation

QUESTIONS?

ADDITIONAL SLIDES

ENCODER

Encoder Products Company: Model 725 - I

Specifications

- Industrial Housing
 - Flex Mount Coupler
- IP67 Seal
- Resolution: 30,000 Cycles/Revolution
 120,000 Counts/Revolution
 Speed: Up to 3,000 RPM

TESTING OF ACTUATORS

