

68K Blade Process Handling Team 9

Michael Brantley², Ryan Ferm², Nadia Siddiqui², Jason Newton¹, Reginald Scott¹

¹Department of Mechanical Engineering, Florida State University, Tallahassee, FL ²Department of Industrial Engineering, Florida State University, Tallahassee, FL

Outline

- Background
- Problem statement
 - Tools
- Concept generation
 - Mechanism
 - Container
 - Storage
- Conclusion

Background Problem Statement

Concept Generation

Conclusion

Background

- TECT Power
 - Thomasville, Georgia
 - Boeing, Pratt & Whitney, GE
- 68k blades
 - 2000 68k/ Year, 7-8 per day
 - Weighs 45lbs

BLADES

Solid fan blades
 Hollow fan blades

Compressor blades

- Turbine blades
 Steam turbine blades
- 3

Problem Statement Concept Generation

Conclusion

Plant Layout

Conclusion

Broaching Machine

 Raised Oil Bed • 8 inches high

Conclusion

Problem Statement

- Blades arrive unorganized
 - 5-12 blades per container
 - Nested
- Operators manually lift blades from receiving container
 - Lift a minimum of 30 in.
 - From cart onto milling fixture

Background

Objectives

- Eliminate manual lifting
- Redesign the receiving methods
 - Redesign storage area (optional)
- Design and fabricate a blade handling mechanism
 - Easy maneuverability
 - Stability
- Constraints

Background

Concept Generation

Conclusion

RULA Worksheet

RULA Employee Assessment Worksheet

Complete this worksheet following the step-by-step procedure below. Keep a copy in the employee's personnel folder for future reference.

Mechanism Concept 1: Cart-in-Cart

- •L_o is maximum height of inner cart
- •H is the outer cart height
- •Variable Height for Loading/Unloading
- •Extendable to reach
- milling fixture
- •Vertically Rotating Holder

Mechanism 1: Cart-in-Cart

- Pros
 - Highly maneuverable
 - Three axis control

- Cons
 - Only holds one blade
 - Uni-axial elevation
 - Design complexity

Mechanism 2: Conveyor

- •Conveyor system suspended above broaching and storage
- Loaded in storage
- •Off loaded at each machine
- Continuous rotation of parts

Mechanism 2: Conveyor

- Extended for loading
- Retracted for relocation
- Extended for milling

Mechanism 2: Conveyor

• Pros

- Does not hinder factory traffic
- Could have holders for vertical and horizontal mounting

- Cons
 - Expensive
 - High Maintenance
 - Requires constant loading
 - Increased time loading/unloading
 - Increased risk due to elevated blades
 - Failure prevents further blade processing

Mechanism 3: Vehicle Lift

- •Rear mounted lift on small vehicle
- •Approximately 360° of rotation
- Holds entire blade container

Mechanism 3: Vehicle Lift

- Pros
 - Easy to Implement
 - Holds large number of blades
 - Could hold horizontally or vertically
 - Could be used for other needs

- Cons
 - Cost
 - Very low maneuverability
 - Could hinder access to other machines

Mechanism 4: Revolving Barrel

- Extendable insert to reach milling fixture
- Pros
 - Rotational blade elevation
 - Holds multiple blades
- Cons
 - Weight of payload may decrease maneuverability

- Individual compartments
- Horizontal orientation
- Blades slide out onto the mechanism

FRONT VIEW

- Vertical orientation
- Blade will be picked up from top and pulled out
- Individual compartments

- Diagonal orientation
- Open structure
- Less restriction from the sides
- Blades can be accessed in multiple ways

- Horizontal orientation
- Removed from side or from top

SIDE VIEW

= 1 blade TOP VIEW

Single Layer

Storage area

- New layout proposed for better organization
- Mechanism requires more accessibility than current layout allows
- Elevated table with rollers

Selection Matrix

Factors	Weight	Cart-in Cart	Conveyor	Vehicle	Barrel
Minimize Lifting	0.45	7.6	7.8	9.6	8.9
Ease of implementation	0.1	7.7	4.6	5	8.3
Cost	0.05	8.6	1.6	3.2	7.76
Maneuverability	0.15	8.6	9	0.95	7.8
Efficiency	0.1	7.3	4.4	4.1	9.4
Durability/Maintenance	0.15	7.8	4	8	8.2
TOTAL (max 60)	1	47.6	31.4	30.85	50.36

Background

Conclusion

- Reduce risk of injury
- HOQ, RULA to interpret VOC
- Proposed concept ideas
 - Mechanism
 - Containers

Future Work

- Analyze the designs further
- Select the most feasible design
- Measure phase
 - Time study
 - Recommended Weight Limit
 - FBD for force measurements

Sources

- http://www.gtipower.com/turbine_package_parts.aspx
- http://www.chinahydraulicjacks.com/autorepairtools19 9861-1000lbcapacitypickuptruckcrane.htm
- http://www.lincolnservice.com/Modules/Webstore/Im ages/17/Ez-Go%20Industrial%20Utility%20Vehicle%20881.jpg
- http://www.tectcorp.com/scope/tect-power/
- http://www.tectpower.com/companyoverview/locations-and-contact/
- http://www.titanconveyors.com/assets/images/Assemb ly-1.jpg

Questions?

