68K Blade Process Handling Interim Design

Michael Brantley², Ryan Ferm², Nadia Siddiqui², Jason Newton¹, Reginald Scott¹

¹Department of Mechanical Engineering, Florida State University, Tallahassee, FL ²Department of Industrial Engineering, Florida State University, Tallahassee, FL

Outline

- Problem Overview
- Preliminary Design
- Analysis
- Conclusion

Background

- 68k turbine blades
 - Weigh 45 lbs
 - Total Recordable Injuries: 4.3 per 100 employees
 - Scrap due to dropping: < 0.5%</p>
- Customer requirements
 - Redesign the receiving container
 - Redesign storage area layout
 - Design and fabricate a blade handling mechanism
 - Easy maneuverability
 - Stability

Conclusion

Problem Statement

- Current Methods
 - Manual lifting onto rudimentary carts
 - Storage containers
 - Ground level
 - Unorganized
 - Machine loaded by hand
- Constraints
 - No industrial lifts/cranes
 - Budget: \$4,000

Concept Design

- Concept Generation
 - Barrel design
 - Cart-in-Cart
 - New design
 - L-Cart
- Storage Container Design
 - Multiple orientation containers
 - On elevated table

Design Decisions

- Roller Table in Storage
 - Decreases need for height variation
 - Increased blade accessibility
- Cart-in-Cart
 - Removed due to ergonomic feasibility
- Barrel design for blade storage
- New cart design for machine loading
 - L-Cart

Conclusion

Initial Design: Barrel

Conclusion

Initial Design: L-Cart

Conclusion

Initial Design: L-Cart

- Support Beams
 - Hollow cross section
- Linear Motion Guide
 - Fixed height for milling bed
 - Sealed from contaminants
 - Dual axis control

Conclusion

Initial Design: L-Cart

- Spring Loaded
 Wheels
 - Raise above oil bed
 - Adds support when loading
 - Locking mechanism when moving

Industrial Analysis

- Previously calculated
 - RULA for current method
 - Time Study
 - Baseline observation
 - ARENA simulation
 - Free Body Diagram
 - Shear force = 66.08 N; Axial force = 2849.77 N
 - NIOSH lifting equation

Industrial Analysis

- Future Calculations
 - Time study with new design
 - RULA with new design
 - Facility layout
 - STORAGE
 - BRAOCHING AREA
 - Cost Analysis

Time Study Worksheet

Snap Back

Continuous

Operation Description

-																						
Part Num	ber	Operation	Nun	nber		Drawin	g Numl	ber		Machir	ne Nam	е		Machin	e Num	ber			Qua	lity Ol	K?	10
Operator I	Name	Months on	I Job)		Depart	ment			Tool N	umber			Feed	ls and	Spee	eds		Setu	ip Pro	per?	ſ
Part Desc	ription:					Materia	al Speci	ificatior	ns:						nine C	ycie i	ime	Note	≳S: IUnit			1
Element #	Element Descr	ription		4				Rea	ading				10	1000	Avg. Time	% R	Normal	Frequency	Normal	Range		Highes
			R	- 1	2		4	5	0		•	9	10	<u> </u>					Time			
			F																			
			R						-									\sim				<u> </u>
			E																			
			R											17				/ /				<u> </u>
			Е																			
			R											1								
			Е																			
			R																			
			Е																			
			R																			
			E																			
			R									ļ	ļ									
			E				ļ			_		ļ		$\langle \rangle$			ļ					<u> </u>
			R																			
Foreign	lomonto:		E				Not	000							#0	vcles	T					
Foreign	lements.						NOU	85.						1.1		27	Allowa	Normai Min ance + ()9	6 _		
														.3		15 27	Standa	ard Minutes		_		
Engineer	:						1							.5		42 61	Hours	Per Unit		-		
	I D						-							.7	1	83 08	Units	Per Hour		-		
Approved	а ву:													.9 1.0	1	38 69	On E	Back:	1) Wor 2) Pro	к Stat duct S	ion Lai ketch	ygut

Industrial Analysis: Element Run Times

Element #	Element Description					
		_	1	2	3	4
1	Unload from 1 st	R	.11	.9	4.32	12.69
	machine	E	.11	.26	.10	.09
2	Put aside on	R	.28	1.14	.46	.82
	cart	E	.17	.24	.14	.11
3	Get another	R	.36	.36	.74	-93
	blade from cart	Е	.08	.22	.28	.07
4	Load onto	R	.64	.73	5.16	13.0
	machine	Е	.28	-37	.42	-39

Industrial Analysis: Arena

- Bottleneck at broaching machine
- •Change handling time
 - Load/unload
 - Travel

Industrial Analysis: Free-Body Diagram

W₁ = weight of thorax & abdomen taken from the midline of the body W₂ = weight of neck, arms, and the weight of the blade $\alpha = 13^{\circ}$, angle of the back muscles $\theta = 45^{\circ}$, angle of bend at the waist **F** = Force of the back muscles stabilizing the spine

*Note: The axial reaction forces (Ra) show the strain placed on the lower back. **Ra** = 2849.77 N

Industrial Analysis: NIOSH Lifting Eq.

Measure and Record Task Variables

Object Wt (lbs)		Н	and Loo	ation (ir	n.)	Vertical Distance	Asymmetry	Angle (deg.)	Frequency Ratio	Duration	Coupling
object		Or	igin	Desti	nation	(in.)	Origin	Destination	lifts/min	hrs	Coupling
L (avg.)	L(max.)	н	V	н	V	D	Α	Α	F		С
45	45	20	26	14	53	27	30	30	1	8	0.9

Determine the multipliers and compute the RWL's

RWL = LC x HM x VM x DM x AM x FM x CM

Origin
 RWL
 =
 51

$$x$$
 0.5
 x
 0.97
 x
 0.89
 x
 0.90
 x
 0.91
 x
 0.91
 x
 0.93
 x
 0.90
 x
 0.93
 x
 0.90
 x
 0.91
 x
 0.93
 x
 0.90
 x
 0.91
 x
 0.93
 x
 0.90
 x
 0.93
 x
 0.93
 x
 0.93
 x
 0.90
 x
 0.93
 x
 0.93

Compute the Lifting Index

Origin	Lifting Index	=	Object Wt. (lbs) RWL	=	45 lbs 13.38 lbs	=	3.36
Destination	Lifting Index	=	Object Wt. (lbs) RWL	=	45 lbs 16.31 lbs	=	2.76

Mechanical Analysis: L-Cart

- Analysis Method: Pro Engineer Mechanica
 Design Criteria:
 - Factor of Safety of 3
 - Concentrated Point & Distributed Loads
 - "Worst Case" Load Placement
- Assumptions:
 - Max load of 50lbf per blade
 - No Deflection occurs at Slide
 - Loads are static

F=150lbf

Mechanical Analysis: L-Cart Stability

- Support Polygon
- Geometry defines polygon through ground contact points
- Unstable when center of mass leaves polygon

Mechanical Analysis: L-Cart Stability

- Analysis Method: Polygon of Support
- Design Criteria:
 - Balanced through all possible blade locations
- Assumptions
 - Instability region only at outer locations

Courtesy of Springer Images

Conclusion

Mechanical Analysis: Barrel

- Design Criteria:
 - Factor of safety of 3
- Assumptions:
 - Frictionless bearings
 - Weight of two blades act at barrel outer diameter
 - When moving mass is centered

Mechanical Analysis: Force on Barrel

- Force analysis
 - Force required initiate movement
 - F= 298lbf
 - Force required to maintain motion
 - F=7lbf
 - Force required for barrel Rotation
 - F=100lbf

Mechanical Analysis: Electric Drive

- Electric drive estimate
 - Speed: 10rpm
 - Torque: 275 ft•lbf
 - Power: 1.05 W
- Power source estimates
 - Voltage: 12V
 - Minimum Amp Hours : 2.1

Calculated Value	Equation
Power	$P = T\omega$
Amp Hours	$AH = \frac{T\omega}{V}t$

Mechanical Analysis: Structural

- Primary Calculations:
 - Stress Concentrations
 - Displacement
 - L-Cart
 - Bending Stress: 805 PSI
 - Linear Deflection: 0.25 in

Calculated Value	Equation
Bending Stress	$\sigma_{bend} = \frac{Mz}{I}$
Normal Compressive Stress	$\sigma_{NC} = \frac{F}{A_{cross}}$
Torsional Stress	$\tau = \frac{Tc}{J}$
Shear Stress on Bolts	$\tau_{bolt} = \frac{4F}{\pi d^2}$
Linear Deflection	$\delta_{max} = \frac{FL^3}{3EI}$
Angular Deflection	$\theta = \frac{TL}{GJ}$

Summary: Design

- Barrel Design
 - Storing blades during broaching
- L-Cart Design
 - Placing blades into broaching machine
- Container Design
 - Horizontally held blades

Summary: Industrial Analysis

Metrics

- Rapid Upper Limb Assessment
- Force diagrams
- Time study
- Facility Layout
 - Storage sector
 - Broaching

Summary: Mechanical Analysis

- Force Analysis
 - Required forces for general handling
- Electric Drive
 - If necessary, an electric drive will be added
- Structural Analysis
 - Pro Engineer Mechanica
 - Barrel and L-Cart

Summary: Mechanical Analysis

- Finalize Design
- Complete Analysis
- Material Selection
- Vendor Selection
- Parts ordering

Sources

- http://catiadoc.free.fr/online/cfyughbr_C2/cfyughbrdspatt.htm
- http://www.springerimages.com/Images/Engineering/1-10.1007_978-3-540-30301-5_17-22
- http://www.zero-max.com/linear-motion-control-c-24-l-en.html
- http://www.roymech.co.uk/Useful_Tables/Sections/RHS_cf.html
- http://www.roymech.co.uk/Useful_Tables/Screws/Bolted_Joint.html
- http://www.advancepipeliner.com/Resources/Others/Beams/Beam_ Deflection_Formulae.pdf
- http://www.steeltubeinstitute.org/pdf/brochures/dimension_brochures/dimen
- http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm #Rolling

