68K Blade Process Handling

Final Presentation

Michael Brantley², Ryan Ferm², Nadia Siddiqui², Jason Newton¹, Reginald Scott¹

¹Department of Mechanical Engineering, Florida State University, Tallahassee, FL ²Department of Industrial Engineering, Florida State University, Tallahassee, FL

Overview Design Analysis

Materials Selection C

Conclusion

Overview

Introduction

 TECT Power

 Problem

 Assessment

 Design
 Analysis

Results
Optimization
OSHA standards
Lifting
Conclusion

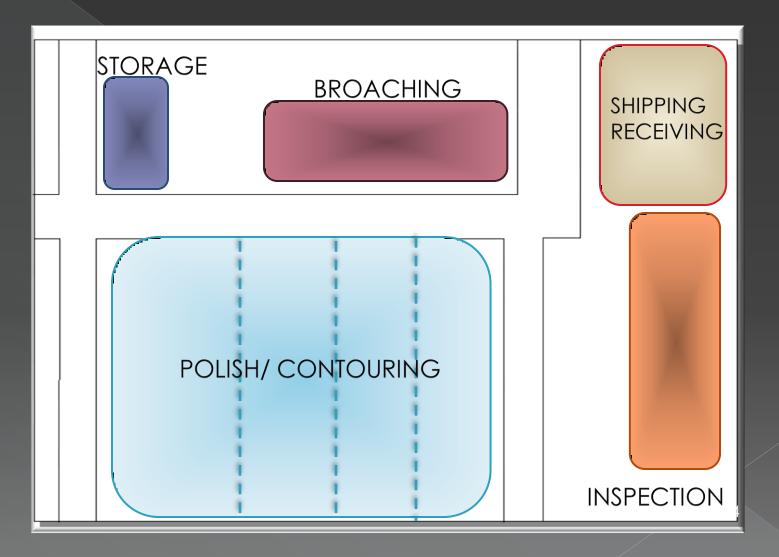
Background

• TECT Power

- > Thomasville, Georgia
- > Sponsor: Ashok Patel
 - > IE Environmental Health & Safety Manager, CSP,CHMM

Solid fan blades Hollow fan blades

Compressor blades


- Turbine blades
- Steam turbine blades

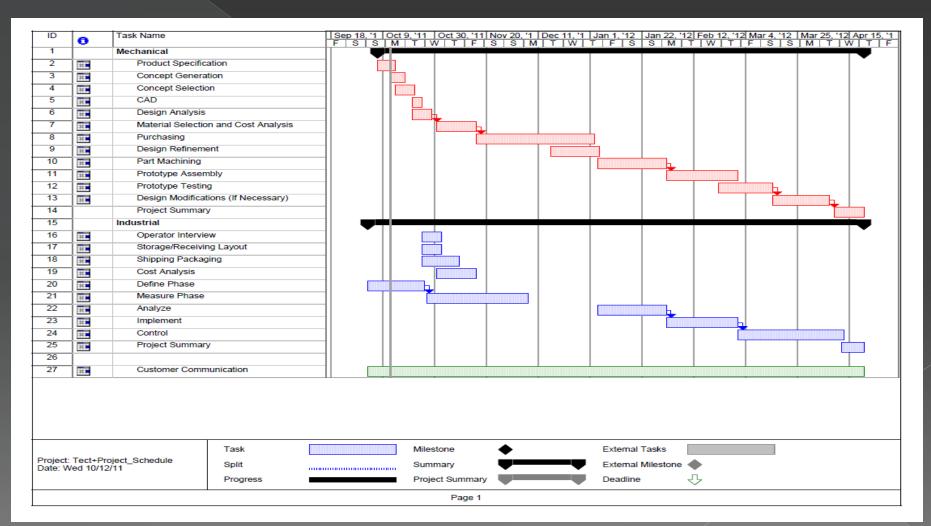
Courtesy of TECT Power

68k turbine blades

- > 2000 68k per year, 7-8 per day
- > Weigh 45 lbs

Plant Layout

Problem Statement


Blade Handling Methods

- > Frequent lifting
- Machine loaded by hand
- Exclusive to specific population
- Storage Container Design
 - Stationed at ground level
 - > Disorganized

1st Milling Fixture

- > 8 inch oil bed
- > Horizontal mount
- Safety
 - Injury performance rate: 4.3 recordable injuries per 100 employees annually at Thomasville site

Project Schedule

Needs Assessment

- Customer requests lifting be removed from process
 - > Reduce potential for injury
- Mechanism to perform lift/carrying tasks
 - Replace lifting and carrying performed by operator
- Constraints
 - > No stationary industrial lifts/cranes
 - > Budget: \$4,000

Voice of the Customer

Redesign the receiving container
Redesign storage area layout
Design and fabricate a blade handling mechanism

- > Easy maneuverability
- > Stability

Product Specification

The Mechanical Design Must:

- > Carry a minimum of 45lb
- Be able to extend the blade between 2-5 feet
- The device cannot exceed allowable path dimensions

The Process Redesign Must:

- Maintain or improve efficiency
- Not be operator exclusive
- > Reduce time spent between machining

Concept Generation

Concept Generation

- > Barrel design
- Conveyor system
- > Cart-in-Cart
- > L-Cart
- > Vehicle mounted lift
- Storage Area
 - > Variously oriented containers
 - > Elevated roller table

Decision matrix - Factors

Mechanism	Cost	Width	RULA
Barrel	\$ 1200	44	3
L-Cart	\$ 1860	60	3
Conveyor	\$ 11000	N/A	7
Vehicle	\$ 13899	45	3
Cart in Cart		44	7
Carrin Carr			

11

Decision Matrix

Factors	Weight	Cart-in Cart	Conveyor	Vehicle	Barrel	L-Cart
RULA	0.45	2.5	7.8	9.6	8.9	8.2
Cost	0.25	8.6	1.6	2	7.76	7
Maneuverability	0.15	8.6	9	1	7.8	6.4
Durability/Maintenance	0.15	7.8	4	8	8.2	7.9
TOTAL (max 10)	1	5.74	5.86	6.17	8.34	7.58

Overview

Design

Analysis Materials Selection

Conclusion

Concept Selection

Most feasible

- > L-Cart
- > Barrel
- Elevated storage table
- Compatibility
 - Storage table, container & Barrel
 - > Barrel & L-Cart

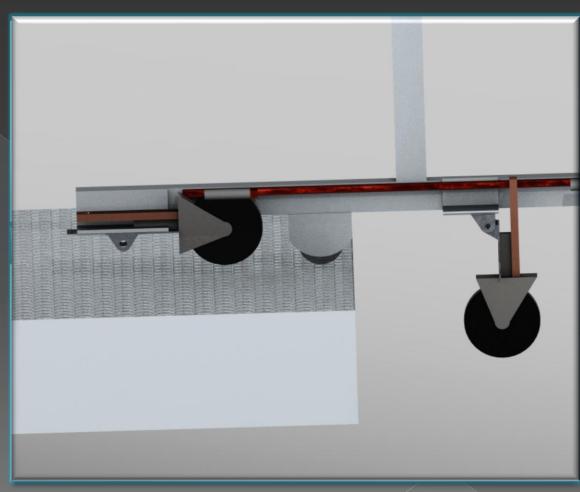
Rejected designs

- > Cart-in-Cart
 - Did not meet ergonomic requirements
 - Conveyor
 - Exceeds budget
- Vehicle mounted lift
 - Exceeds budget
 - Adversely effect mobility

Design - L-Cart

Overview Design Analysis Materials Selection Design - L-Cart Slide

Dual AxisControl


- Three sets of sealed linear bearings
- Lower set
 supports
 platform
- > Upper Set
 Holds blade

Conclusion

Overview Design Analysis Materials Selection Conclusion Design – L-Cart Folding Wheels

 Hinged wheels
 Cable release mechanism
 Fixed Casters
 Support when on an oil bed

Design – Barrel Cart

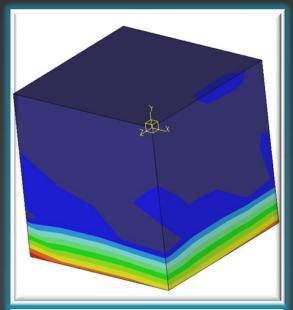
Design – Barrel Containment

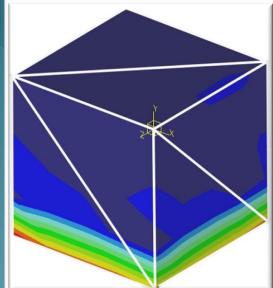
Rotating Container Multiple **Blades Stored** • Used for transport Spring Loaded Locking Pin

Design – Barrel Loading

Overview Design Analysis Materials Selection Conclusion Design – Cart Connections

 Designed For Easy Loading
 Locks Prevent Platform Motion
 Brakes on Cart Wheels Prevent Separation




ha/ENGINEER Wildfire - Advanced Rendering Extendio

Overview Design Analysis Materials Selection Conclusion Analysis – FEA Methodologies

Pro E Mechanica

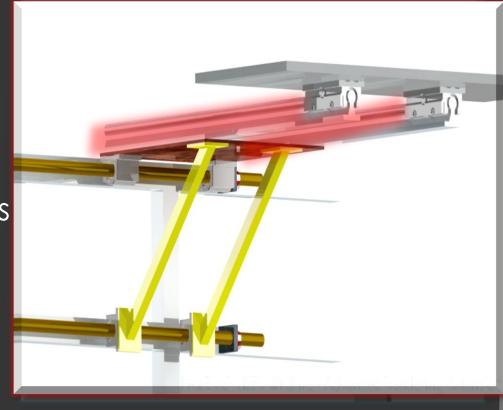
- Separates the parts into a mesh of elements
- > Geometric Elements
- > Higher order
 polynomial equations
 (P Element) to solve
- Adaptive Passes to converge within error

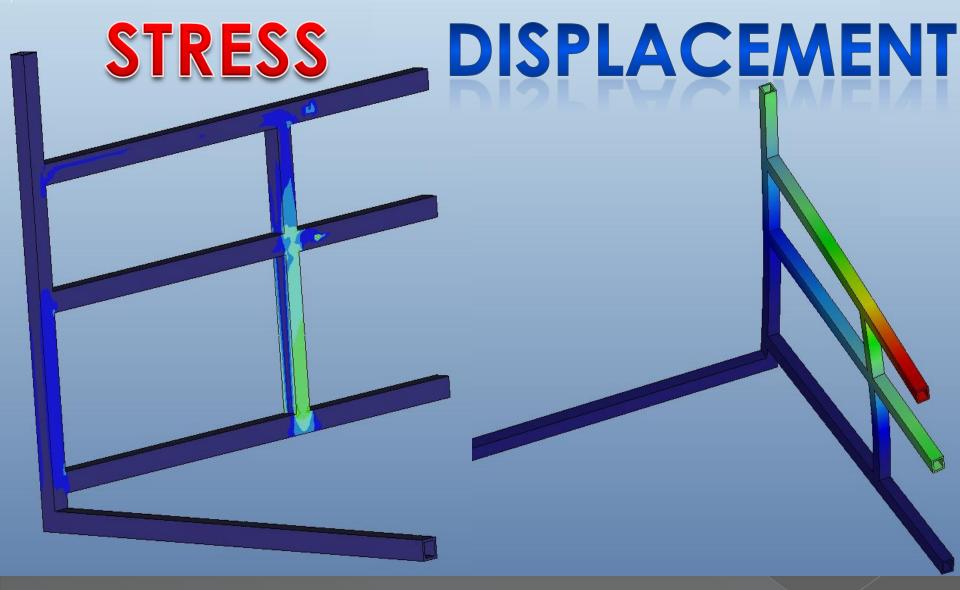
Analysis – L-Cart

Assumptions

- > Load Used: 150lbf
- Location: Worst case scenario
 - Maximum moment generation
- Wheels can be left out of analysis based on dynamic load specifications

Analysis Overview Design


Materials Selection


Conclusion

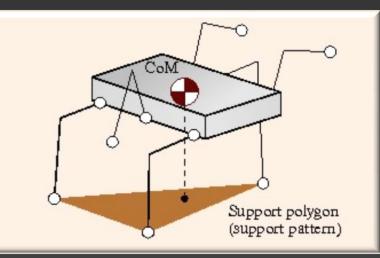
Analysis – L-Cart

Primary Analysis Locations

- **Base Frame**
 - Load applied at rod mounts
- > Steel Bearing Rods
 - Point contact
- Lower Platform Supports
 - Distributed load
- Lateral Bearing Guide
 - Load applied at end

25

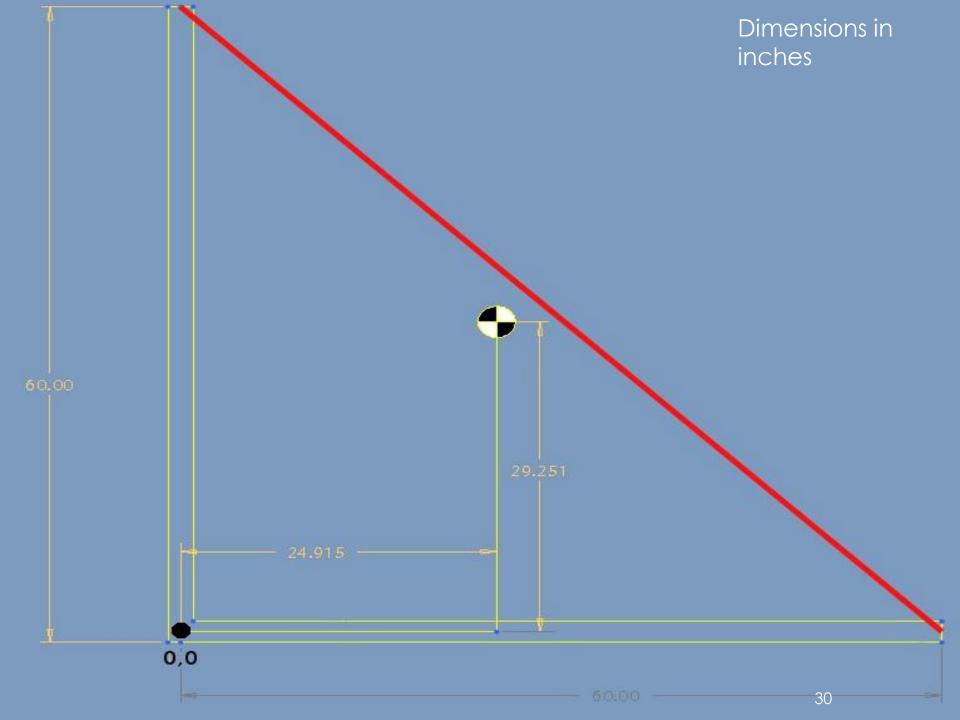
D>



Stability Analysis Methodology

- Polygon of Support
 - Contact points create stable region
 - Center of mass must remain within the region

Stable



Overview Design Analysis Materials Selection Conclusion Stability Analysis – L-Cart

Load placed in farthest point
Originally Unstable
Determined an additional 7 inches could be added to each leg

 Addition 12 inches added to both legs

Overview

Design 💋

Analysis

Materials Selection

Conclusion

Analysis - Barrel

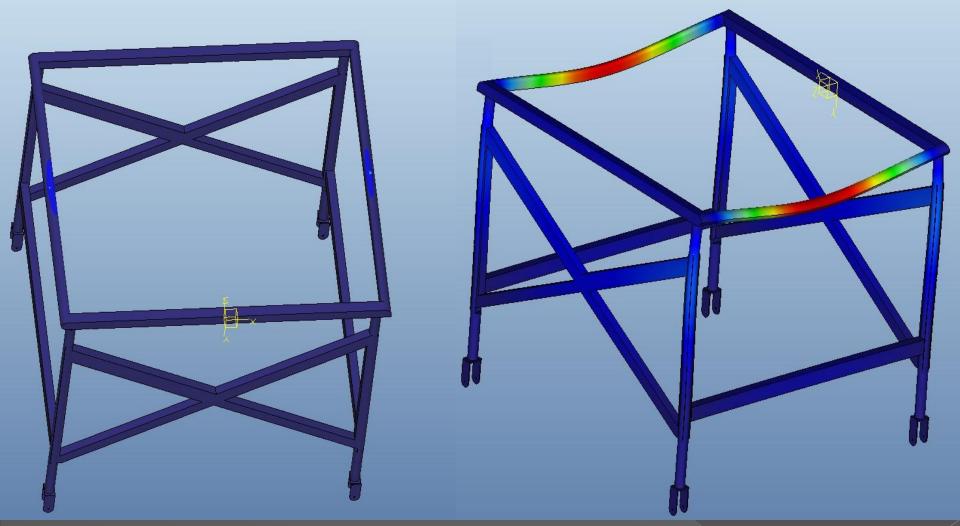
Assumptions

- Total Load being rotated: 500lbf
- Wheels can be left out of analysis based off of dynamic load specifications

Overview Design

Analysis

Materials Selection

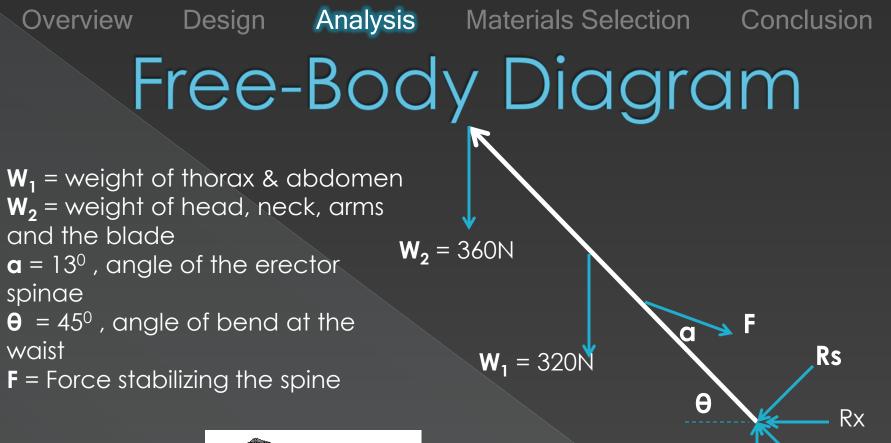

Conclusion

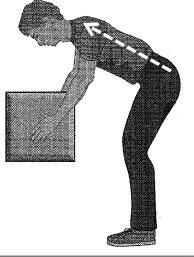
Analysis - Barrel

Analysis Location

- > Overall Frame
 - Full load placed at bearing locations
- > Bearing Rod
 - Full load centered on rod
 - Full load distributed over rod
- > Barrel Surfaces
 - 100lbf loaded on areas supporting blades






Arena

Focus on cart loading time
Cannot affect machining times
Accurate baseline
Results mimic real-world situation

> Based off time studies

Rs = 66.08 N **Ra** = 2849.77 N

*Note: The axial reaction forces (**Ra**) show the strain placed on the lower back. **Ra** = 2849.77 N

Ra

Ry

Overview Design Analysis Materials Selection Conclusion NIOSH – Composite Lifting Index

- Current method
 - > Results: 5.927
 - > Extremely high, must be corrected
- Theoretical model
 - > Expected results: 3.432
 - Nearly decrease by a factor of 2

Overview Design Analysis Materials Selection Conclusion

Material Class Comparison

Material	Strength σ _f (MPa)	Density ρ (Mg/m³).	Cost C _m (\$/kg)
Al Alloys	30 – 500	2.5 – 2.9	1.5 – 1.7
Low Carbon Steels	400 - 1100	7.8 – 7.9	0.81 – 0.89
Zinc Alloys	80 – 450	4.95 – 7	1.2 – 1.3
High Carbon Steel	400 - 1155	7.8 – 7.9	0.72 -0.80

Material Comparison

Materials	Steel(Multi- Purpose 4140)	Aluminum 6061 T6
Tensile Yield strength	417.1 MPa	276 MPa
Modulus of Elasticity	190-210 GPa	70-80 GPa
Pros	very high strength	light weight, cheap
Cons	heavy & expensive	medium strength & weldability

Overview Design Analysis Materials Selection Conclusion

Aluminum Class Comparison

Materials	Aluminum 6061 T6*	Aluminum 6061 O	
Ultimate Tensile	42,000 psi (300	18,000 psi (125	
Strength (UTS)	MPa)	MPa)	
Yield Strength	35,000 psi (241	8,000 psi (55	
(σ _y)	MPa)	MPa)	
Notes:	*Welding induced strength loss *Loss of strength of around 50 - 80%		

Overview Design Analysis Materials Selection Conclusion Cost Comparison – Raw Material

Materials	Steel (Multi-Purpose 4041)	Aluminum 6061	Combination
Total Material Cost	\$ 3276.86	\$ 1420.91	\$ 1860

Same material models

 Combination gives best material properties within financial constraints Overview Design Analysis Materials Selection Conclusion Material Selection – Raw Materials

L - CARI			
Component	Material		
Frame	6061 Aluminum		
Bearing Rod Mounts	4140 Steel		
Bearing Rods	4130 Steel		
Angled Supports	6061 Aluminum		
Support Platform	6061 Aluminum		
Linear Bearing Guide	6061 Aluminum		
Blade Platform	6061 Aluminum		

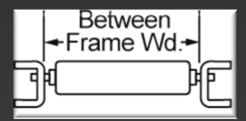
Barrel	CART		
Component	Material		
Cart Frame	6061 Aluminum		
Pivot Rod	1566 Steel		
Barrel Sheeting	6061 Aluminum		
Barrel Frame	6061 Aluminum		

Materials Selection

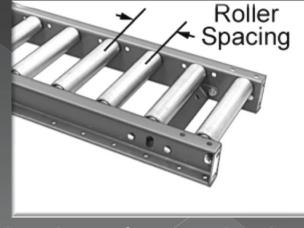
Conclusion

Parts Ordering Mcmaster-Carr Short Lead time

Part	Part Number	Price	Quantity	Cost
Al square tube	6546K271	89.54	6	537.4
Steel Tube	89955K89	52.11	2	104.22
Bearings(closed)	9338T4	72.53	4	290.12
Bearing(open)	9338T17	89.93	2	179.86
Stock Steel	6554K311	213.85	1	28.25
Linear Guide	59585K85	28.25	2	427.70
Lower Platform Al	89015K33	107.34	1	107.34
Angled support	6546K11	25.04	1	25.04
Flat platform	89015K32	58.60	1	58.60
Bearings	6359K37	50.57	2	101.14
TOTAL COST:				1859.51


Materials Selection

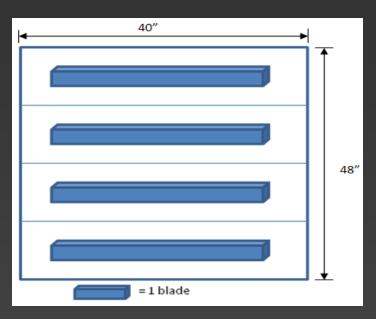
Conclusion


Optimization

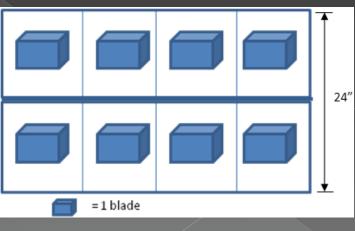
Elevated table
Weight capacity
Limited storage space
Decision

- > 49 inch frame width to allow for guard rail
- > 23 33 inch height to place blades ideally

Courtesy of McMaster-Carr


Overview Design Analysis

Materials Selection


Conclusion

Optimization

Horizontal Orientation
Loading height level with Barrel design
8 blades held per container

Top View

46

Side View

Overview Design Analysis Materials Selection Conclusion

Environmental Health & Safety

Little to no environmental effects
OSHA Standards
29CFR 1910.176a

Mechanical equipment
29CFR 1910.176b
\$torage

Overview Design Analysis Materials Selection
<u>Summary: Design</u>

Barrel Cart

 Transporting of blades

L-Cart

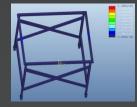
> Loading of blades

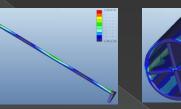
Conclusion

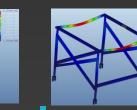
48

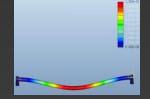
Overview Design Analysis Materials Selection Summary: L-Cart Results

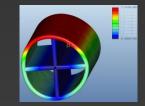
Conclusion


- Stress
 - > Frame
 - Max Stress= 3 ksi
 - > Steel Rods
 - Max Stress= 17.2 ksi
 - > Lower Platform
 - Max Stress = 2 ksi
 - > Linear Guides
 - Max Stress = 0.978 ksi


- Displacement
 - > Frame
 - Deflection= 4.00*10-4 in
 - Steel Rods
 - Deflection= $9.50*10^{-2}$ in
 - > Lower Platform
 - Deflection= 2.75*10⁻² in
 - > Linear Guides
 - Max Stress = $2.14*10^{-2}$ in


Overview Design Analysis Materials Selection


Conclusion


Summary: Barrel Results

Stress

- > Frame
 - Max Stress = 4.58 ksi
- > Rod
 - Max Stress = 19.27 ksi
- > Barrel Surface
 - Max Stress = 1.4*10⁻² ksi

Stress

- > Frame
 - Deflection= 3.12*10⁻² in
- > Rod
 - Deflection= 0.150 in
- > Barrel Surface
 - Deflection= $7.5*10^{-5}$ in

Overview Design Analysis Materials Selection Conclusion Summary – Material Decisions

- Majority of frame built from 6061
 Aluminum
- High Stress areas built with 1566/4140 steel
- Components will be purchased from Mcmaster-Carr

Overview Design Analysis Materials Selection

Conclusion

Summary: Analysis

IE Analysis

- > Arena
- > NIOSH
- > Ergonomics
 - Free Body Diagram
 - Work Design

Cost Analysis

 Maximum material properties within financial constraints Overview Design Analysis Materials Selection

Conclusion

Next Phase

 Double Check Bill of Materials
 Place Part Orders Construct Prototype
 Modification*
 Implementation

Courtesy of TECT Power

*Steps taken only if necessary

Special Thanks

TECT POWERAshok Patel

Professors

> Dr. Rob Hovsapien
> Dr. Srinivas Kosaraju
> Dr. Okenwa Okoli

Advisors

- > Dr. Chiang Shih
- Garrett Sullivan

Sources

- Statics Book: Hibbeler, R. C. Statics and Mechanics of Materials. Boston: Prentice Hall, 2011. Print.
- Ashby, M. F. Materials Selection in Mechanical Design. Third ed. Amsterdam: Butterworth-Heinemann, 2005. Print.
- Ergonomics book: Konz, Stephan, and Johnson Steven. Work Design: Occupational Ergonomics. 7th ed. Holcomb Hathaway. Print.
- www.mcmaster.com

QUESTIONS?

HEAD

1887

FIELD

HAND

HEART

