68K Blade Process Handling

Courtesy of TECT Power

Team 09

Michael Brantley², Ryan Ferm², Jason Newton¹, Nadia Siddiqui²

¹Department of Mechanical Engineering, Florida State University, Tallahassee, FL ²Department of Industrial Engineering, Florida State University, Tallahassee, FL

Overview

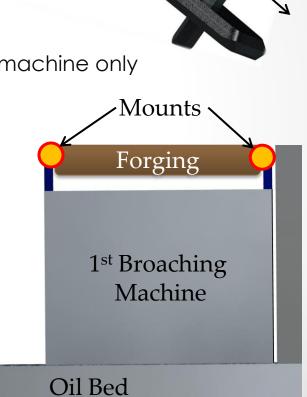
- Introduction to TECT
- Problem Overview
- Design Concepts
- Design Analysis
- New Process
- Summary
- Acknowledgements

Introduction to TECT Power

Company Overview

- Located in Thomasville, GA
- TECT Turbine Engine Component Technologies
- Contracted to manufacture components
 - Customers: GE, Pratt and Whitney, etc.

Sponsor: Ashok Patel


- Industrial Engineer
- Environmental Health & Safety Manager

Introduction to TECT Power

Our Focus

- o 68K Forging Process
 - 45lb per when received
 - Approximately 3 feet long
 - Can approximate as 11x11x 37 inch box
 - Concerned with process for first broaching machine only
- o 1st Broaching Machine
 - Placed on 8 inch oil bed
 - Holds blade in horizontal position

11"

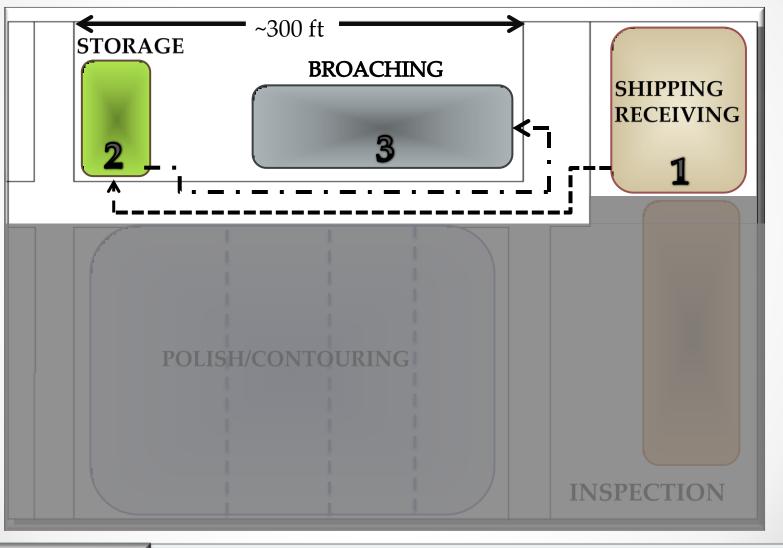
32

Introduction 1

11"

Problem Overview

Design

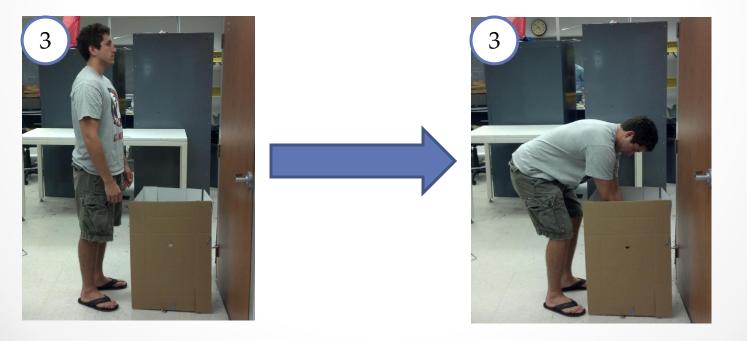

Analysis

8″

Conclusion •4

Introduction to TECT Power

• Plant Layout

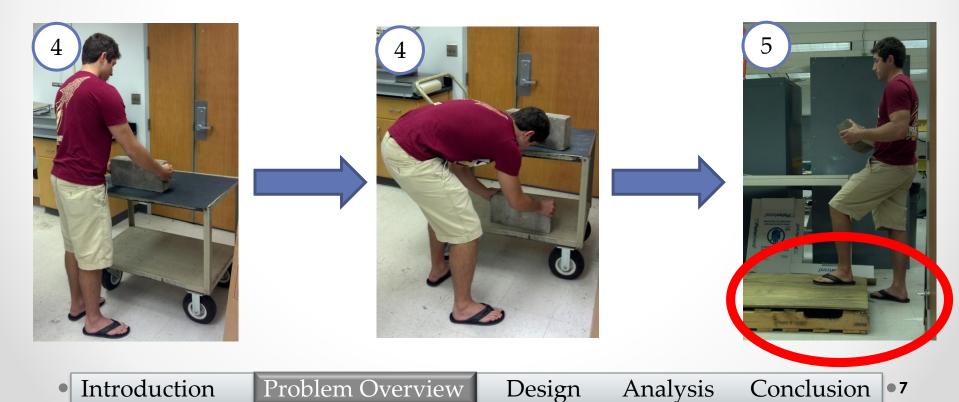

Introduction **Problem Overview**

Design

Analysis Conclusion

Current Process

- 1. Forgings received in unorganized container
 - Tangling occurs
- 2. Forgings placed in cluttered storage area
 - Stored at ground level
- 3. Forgings manually removed by lifting
 - Approximately 30 inch container wall
 - Must be untangled



Introduction Problem Overview Design Analysis Conclusion •6

Current Process

4. Forgings manually loaded onto cart for transport

- Certain carts require bending for forging placement
- 5. Forgings must be manually lifted from cart and placed onto milling machine
- Forging is held while stepping onto elevated oil bed
 6. The forging is then lifted out and returned to cart

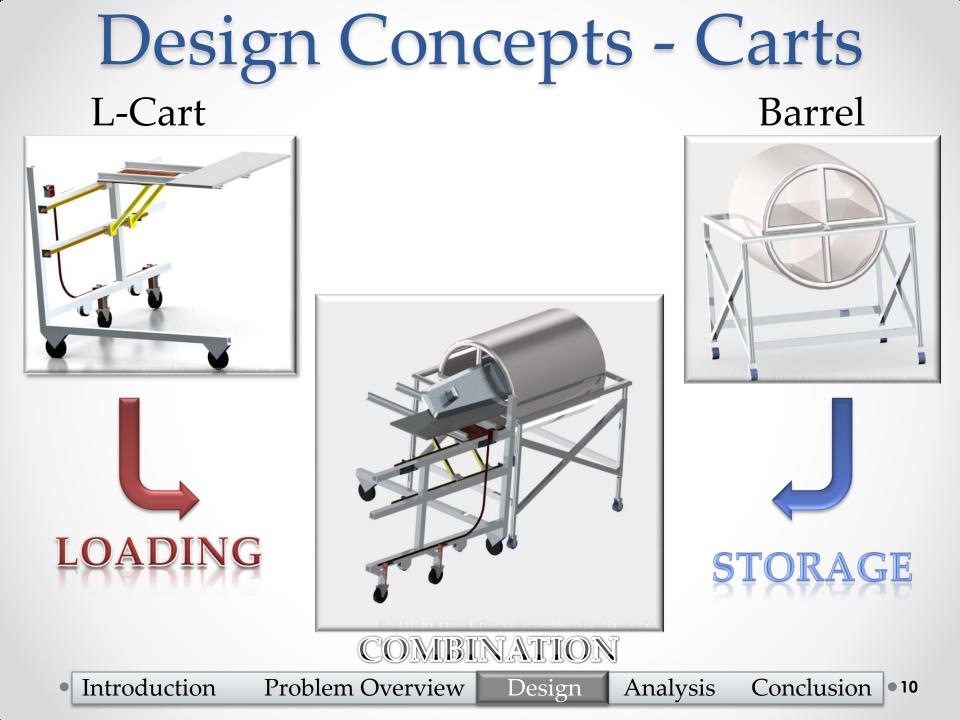
Problem Overview

Current Process Problems

- Too much manual lifting
- High risk of injury
- Physically demanding
 - Operator exclusive

Constraints

- \$2000 Budget
- No industrial crane placed at machine
- Allow for operator maneuverability in work space


Assessment and Methods

• New Design Must:

- Reduce injury risk for employees
- Eliminate Lifting from the process
- Not require intense physical capability to perform
- Hold a minimum of 4 forgings

• Methods:

- 1. Redesign shipping container to prevent tangling
- 2. Reorganize storage area to allow for easy access
- 3. Design a method for transporting blades
- 4. Design a method for loading and removing blades from broaching machine

Design Concepts - Variable Height Cart

Hydraulic Lift Cart

- Variable height mechanism
- o Make or Buy
 - Cheaper to purchase
 - Shorter manufacturing time
 - Warranty
- o 2000lb Capacity
- Height Range: 30 inches to 48 inches
- Cart Top Design
 - Mounts to top of lift Cart
 - Holds four forgings

• Trays

- Allow for protection of forging
- Easy to slide forgings from cart
- Raised section to hold blade for mounting
- Slot for pivot

Introduction

Problem Overview

Design

Pivot slot

Raised Section

Analysis

Courtesy of McMaster-Carr

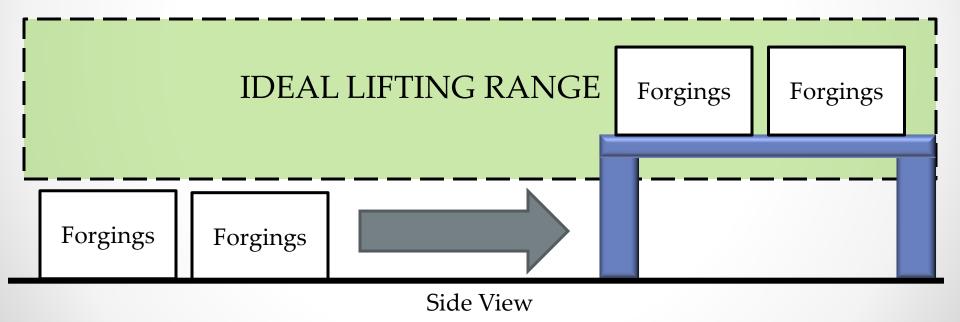
Conclusion

•11

Decision Matrix

Parameters Analyzed

	Size (ft²)	Cost (USD)	Force Req. (lbf)	Loading Time (min)	Forgings Held
Concepts					
Variable Height	8	~1700	25	~2	4
L-Cart	12.5	~1900	15	~1	1
Barrel Cart	8	~1200	45	~3	4

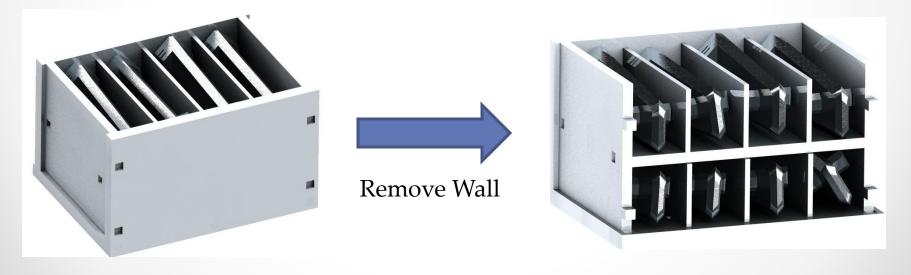

Decision Matrix

	Maneuverability	Cost	Safety	Productivity	Total (Max 50)
Weight	0.25	0.15	0.35	0.1	1
Concepts	-	-	-	-	-
Variable Height	7	4	9	7	35
L-Cart	4	3	8	8	25
Barrel Cart	7	7	3	5	30
• Introducti	on Problem Ov	verview	Design	Analysis	Conclusion •

Final Design – Storage Area

Storage Area

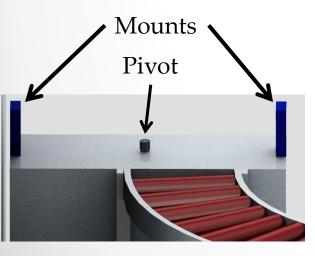
- Table to elevate containers to acceptable height
- Two containers held per table
- Helps to organize storage area

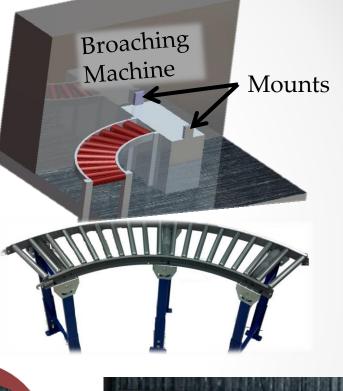


Introduction Problem Overview Design Analysis Conclusion •13

Final Design - Container

• Forging Container


- Forgings held horizontally
- Removable partitions allow easy removal
- Two rows for increased storage
- Total of 8 forgings
- Ideally injection molded


Introduction Problem Overview Design Analysis Conclusion

Final Design – Loading

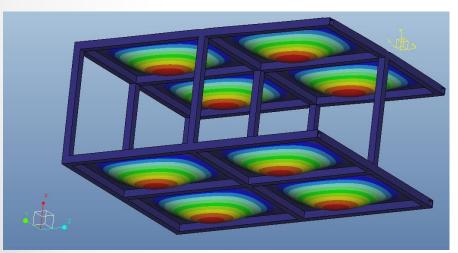
- Curved Conveyor
 - Allows forgings to slide from cart top to mounting location
 - Bolted to oil bed
- Pivot
 - Prevents sliding over opposite side of machine
 - Tray is built to connect to pivot

Introduction

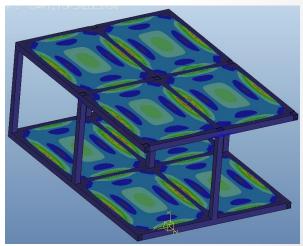
Problem Overview

Design

Analysis


Conclusion •15

Final Design



Stress Analysis

- Pro Engineer Mechanica
 - 150lb Distributed load over each cart level
 - Factor of safety of ~2
- Maximum Stress: 1.282 ksi
- Maximum Deflection 0.007325 inches

Introduction

Problem Overview

Design

Analysis

Conclusion •17

RULA

Rapid Upper Limb	RULA Score	Implication
Assessment	1-2	Posture is acceptable if it is not repeated for
Ranks process for safetyBased off of posture and		long periods of time
limb motion	3-4	Further investigation and changes may be
Current Process Results RULA Score = 7		required
KULA SCOLE - 7	5-6	Further investigation and changes are required soon
Improved Process Results RULA Score = 3	7	Further investigation and change immediately

Introduction Problem Overview Design Analysis Conclusion • 18

Force Analysis

W

Direction of Motion

Design

Analysis

→ μ_{fric}*W

• 19

Conclusion

 Experimentally Calculated Friction Coefficient

Problem Overview

- Between Tray and Cart Top
- $\mu_{fric} = 0.50$
- Force Calculation
 - Loading and Unloading Tray
 - F_{pull} = 25 lbf

 $F_{pull} \blacktriangleleft$

Introduction

Psychophysical Analysis

Liberty Mutual Tables

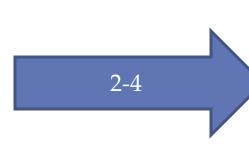
- Push/Pull forces found from tabular data
- Compare to experimentally calculated force

Courtesy of Liberty Mutual¹, Clker², & Flashpoint³

•20

Introduction Problem Overview Design Analysis Conclusion

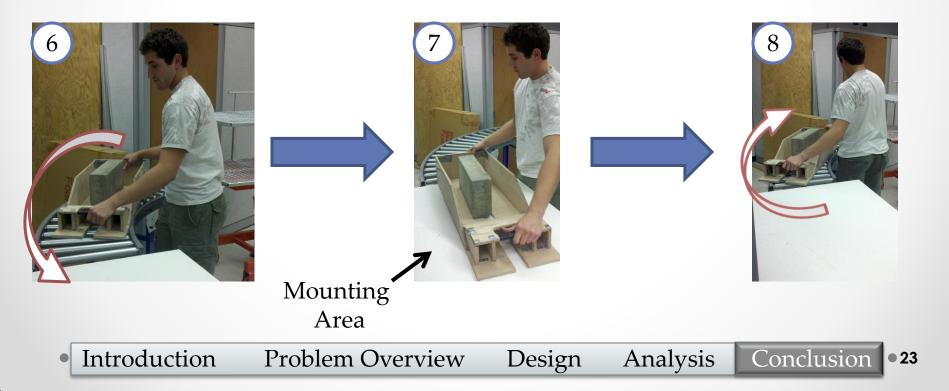
Project Cost


Product Description	QTY	Unit Price (\$)	Total (\$)
Raw Material	1	-	538.68
Hydraulic Cart	1	1437.19	1437.19
Curved Conveyor	1	160.53	160.53
Conveyor Stands	3	44.78	134.34
Subtotal			2270.74
Shipping			282
Total			2552.74

Introduction Problem Overview Design Analysis Conclusion •21

New Process

- 1. Cart aligned with front of container in storage area
- 2. Forging can be slid from container to tray
- 3. Repeat until cart is full
- 4. Travel from storage to broaching area
- 5. Place cart in front of conveyor

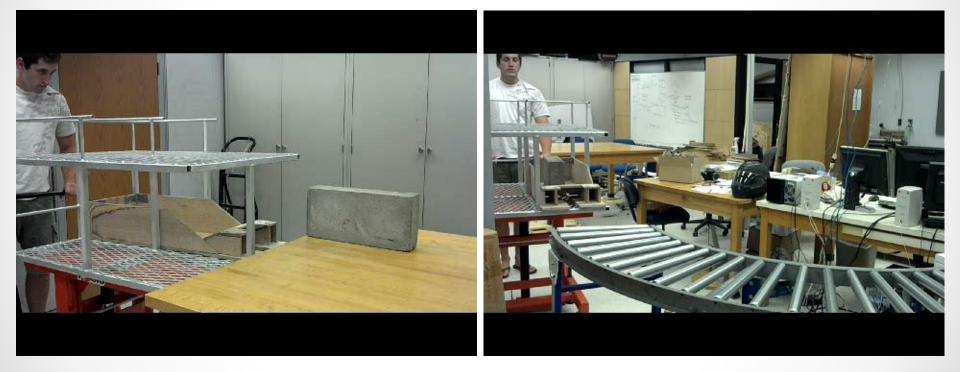


• 22

Introduction Problem Overview Design Analysis Conclusion

New Process Contin.

- 6. Slide tray along conveyor to mounting area
- 7. Mount blade and remove tray
- 8. Once milling complete, replace tray and remove forging
- 9. Place forging into cart and remove new forging



Prototype Demonstration

Loading Cart from Container

Loading Blade into Machine

•24

Introduction Problem Overview Design Analysis Conclusion

Future Work

• Implement Design at facility

- Utilize fundamental controls to maintain optimal process
- o Controls
 - Training
 - Maintenance
- Integrate modular sections
 - Allow for uninterrupted motion between all broaching machines
- Develop method for manipulating forgings for all broaching attachments
 - Use a single tray compatible with all machines

Summary

- Redesigned Process to Remove Lifting
 - Shipping and Receiving
 - Developed a container holding 8 forgings
 - All forgings removed horizontally
 - Storage Area
 - Reorganized area with elevated table
 - Allows forging retrieval in appropriate height range
 - o Transportation
 - Designed a mechanism useable with pre-fabricated cart
 - Holds four blades
 - Allows for variable height retrieval
 - Loading and Unloading
 - Implemented a rolling conveyor to slide blades into place
 - Tray design holds forging for mounting and prevents damage to product

Acknowledgements

Special Thanks:

Ashok Patel Dr. Chiang Shih Dr. Srinivis Kosaraju Dr. Matthieu Dalban-Canassy

References

Company	Location
TECT Power	http://www.tectcorp.com/scope/tect-power/
Liberty Mutual	www.libertymutual.com
McMaster-Carr	www.mcmaster.com

