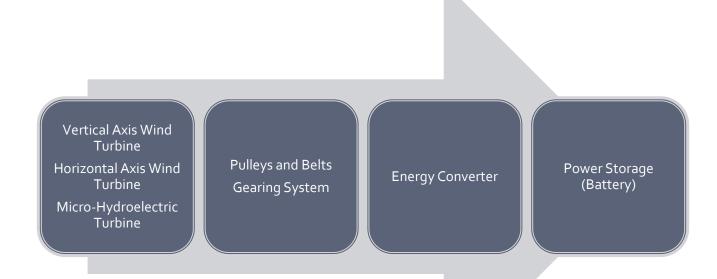
Power Generation through Recycled Materials

Team # 7: Carlos Novelli Jonathon Miller Sean Stege **Sponsor: Cummins**

Background Overview

Problem Statement:

 Design and construct a power generation device that implements the use of a renewable energy source and is composed entirely of recycled materials


Objectives:

- Must generate 100 W•h/day
- Must store 300 W•h
- Output must be 12 V DC
- Must sustain severe weather

Constraints:

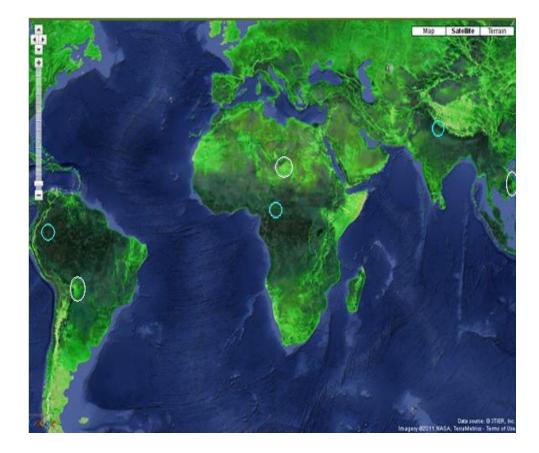
- Must choose three different geographic locations
 - 100 km away from the ocean, 500 km away from each other
- Final product must cost under \$50

Design Layout

Design Concept Box Layout

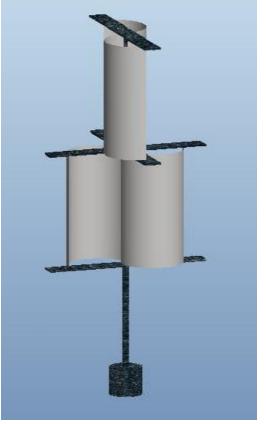
- Energy Capture → Speed Change → Energy Conversion → Battery Storage
- Simplicity with 4 component layout

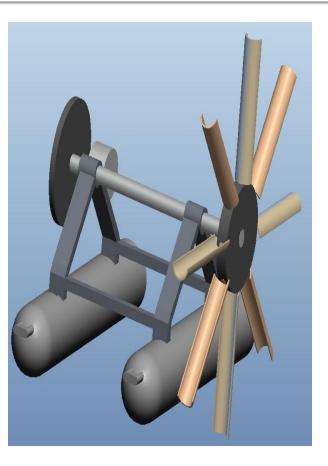
Geographical Locations


Wind Energy Locations

- Faya-Largeau, Chad
 - Average wind speed = 4.6 m/s ~ 10 m height
- Santa Cruz, Bolivia
 - Average Wind = 3.9 m/s ~ 10 m height
- Sen Monorom, Cambodia
 - Average Wind = 5.1 m/s ~ 10 m height

(An average of 4 m/s was used for calculations)


Water Energy Locations


- Atrato River, Colombia
 - Average Flow = $2.0 \cdot 10^6$ L/s
- Indus River, Pakistan
 - Average Flow = $6.5 \cdot 10^6$ L/s
- Benue River, Cameroon
 - Average Flow = 1.75 10⁵ L/s

Building the HAWT, VAWT, Micro-Hydro

HAWT-Horizontal Axis Wind Turbine

VAWT- Vertical Axis Wind Turbine

Micro-Hydro Electric

Wind Design Specifications

VAWT

- Drag based Savonius turbine
- Power coefficient
 - 0.24
- 2-Savonius blades
 - 90° offset
- Area of turbine (10W output)
 - Minimum area: 1.563 m²
 - Minimum cylinder diameter: 0.375 m
 - Minimum cylinder height: 2.5 m
- Bicycle dynamo assembly
- Supporting structure

HAWT

- Lift based turbine
- Power coefficient
 - 0.114
- 3 blade design
 - 120° offset
- Area of turbine (10W output)
 - Minimum area: 3.29 m²
 - Actual area: 4.6 m²
 - Diameter of blade: 2.14 m
- Bicycle dynamo assembly
- Supporting structure

Construction of Horizontal Axis Wind Turbine Design

COMPLETED TASKS

- Constructed turbine blades
- Assembled turbine
 - Working area = 4.59m²
- Disassembled bicycle
 - Collected and cleaned ball bearings

REMAINING TASKS

- Grease bearing assemblies
 - Chain, sprockets, hubs
- Reconstruct bicycle
 - Remove front of bicycle
- Attach turbine to pedal axis
 - Fabricate a 4-inch extension rod
- Construct PVC mount for assembly
 - Use existing seat mount
- Begin testing

Pictures of Horizontal Axis Wind Turbine Design

Construction of Vertical Axis Wind Turbine Design

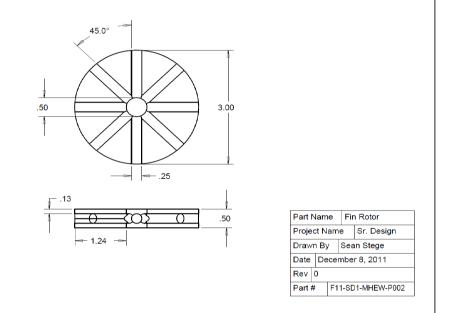
COMPLETED TASKS

- Axis for rotation
 - Computer chair seat swivel
- Turbine blade
 - 55-gallon drum
- Bicycle wheel assembly will be used for speed change system

REMAINING TASKS

- Assemble the rotating axis
- Construct turbine blades
 - Mount turbine structure
- Construct PVC supporting structure

Pictures of Vertical Axis Wind Turbine Design



Construction of Micro-Hydro Turbine

Paddle-Wheel

- Use indigenous bamboo to reduce cost and utilize locally abundant resources
- Lightweight and holds up well in water
- 8 fins so at least two are in contact with the water at all times

<u>Prototype Considerations</u>
Utilize 4" PVC in place of timber bamboo

Future Plans

- Finish construction of wind turbine assemblies
- Test each and meet required objectives
 - Compare competencies
- Incorporate a safety for severe weather
 - Flyball governor
 - Bicycle brake pad
- Biweekly teleconferences with Cummins representative Terry Shaw

Questions?