Power Generation through Recycled Materials

Team # 7: Carlos Novelli Jonathon Miller Sean Stege **Sponsor: Cummins**

Background Overview

Problem Statement:

 Design and construct a power generation device that implements the use of a renewable energy source and is composed entirely of recycled materials

Objectives:

- Must generate 100 W•h/day
- Must store 300 W•h
- Output must be 12 V DC
- Must sustain severe weather

Constraints:

- Must choose three different geographic locations
 - 100 km away from the ocean, 500 km away from each other
- Final product must cost under \$50

Design Layout

Design Concept Box Layout

- Energy Capture → Speed Change → Energy Conversion → Battery Storage
- Simplicity with 4 component layout

Geographical Locations

Wind Energy Locations

- Faya-Largeau, Chad
 - Average wind speed = 4.6 m/s ~ 10 m height
- Santa Cruz, Bolivia
 - Average Wind = 3.9 m/s ~ 10 m height
- Sen Monorom, Cambodia
 - Average Wind = 5.1 m/s ~ 10 m height

(An average of 4 m/s was used for calculations)

Water Energy Locations

- Atrato River, Colombia
 - Average Flow = $2.0 \cdot 10^6$ L/s
- Indus River, Pakistan
 - Average Flow = $6.5 \cdot 10^6$ L/s
- Benue River, Cameroon
 - Average Flow = $1.75 \cdot 10^5$ L/s

Building the HAWT, VAWT, Micro-Hydro

HAWT-Horizontal Axis Wind Turbine

VAWT- Vertical Axis Wind Turbine

Micro-Hydro Electric

Wind Design Specifications

VAWT

- Drag based Savonius turbine
- Power coefficient
 - 0.24
- 2-Savonius blades
 - 90° offset
- Area of turbine (10W output)
 - Minimum area: 1.56 m²
 - Minimum cylinder diameter: 0.38 m
 - Minimum cylinder height: 2.5 m
- Bicycle dynamo assembly
- Supporting structure

HAWT

- Lift based turbine
- Power coefficient
 - 0.114
- 3 blade design
 - 120° offset
- Area of turbine (10W output)
 - Minimum area: 3.29 m²
 - Actual area: 3.58 m²
 - Diameter of blade: 2.14 m
- Bicycle dynamo assembly
- Supporting structure

Construction of Horizontal Axis Wind Turbine Design

COMPLETED TASKS

- Constructed turbine blades
- Assembled turbine
 - Working area = 3.58 m²
- Refurbished bicycle
 - Collected and cleaned ball bearings
 - Removed chain tensioner
- Constructed supporting structure
 - Model used by consumer slightly modified
- Tested rated power on dynamo
 - Obtained 6V and 3W on hand power

REMAINING TASKS

- Decrease resistance of gearing assembly
- Reconstruct turbine
 - Create lighter and slightly smaller blades
- Testing
 - Looking towards 2 or more dynamos, possibly alternator system

Testing of the Horizontal Axis Wind Turbine Design

PRELIMINARY TESTING

- Stationary mounted testing (Wind speed ~ 4.5 m/s)
 - Turbine blades were mounted at approximately 10 ft
 - Blades rotated when gearing assembly was unattached
 - Blades failed to rotate upon attachment of the system

Modifications

- Construction of lighter blades (thinner PVC)
- Loosening of bicycle chain to provide less resistance
- Angle adjustment of blades
- Height may be increased to account for higher wind speeds

FUTURE TESTING

- Dynamic automobile testing
 - System will be mounted and attached to vehicle
 - Battery will be attached and discharged
 - Vehicle will be driven on empty parking lot at 4 m/s and various speeds
 - Multi-meter will be used to measure voltage and current

Pictures of Horizontal Axis Wind Turbine Design

Construction of Vertical Axis Wind Turbine Design

PROBLEMS

Mangled half-cylinders

Recycle yard receives junk

2 - 55 gallon drums for Savonius VAWT design

- Adequate support structure unavailable for extreme weather
- Only able to procure 1 drum in good shape

POSSIBLE SOLUTIONS

- Employ plentiful preexisting fan assemblies
 - Excellent condition due to fan housing assembly
 - Lightweight, easy to support

Vertical Axis Wind Turbine

FUTURE PLANS

- Complete research, design of new turbine system by weekend
 - Turbines designed to push air, no previous research on reverse
- Procure more turbines from recycle yard
- Time-allowing, begin construction in March
 - Can be employed with existing gearing systems
 - Short build, begin testing
 - Focus on HAWT for wind powered

Pictures of Vertical Axis Wind Turbine Design

Construction of Micro-Hydro Turbine Paddle Wheel

Paddle-Wheel

- Use indigenous bamboo to reduce cost and utilize locally abundant resources
- Lightweight and holds up well in water

8 fins

 At least two are in contact with the water at all times

Prototype Considerations

 Utilize 4" PVC in place of Timber Bamboo

Pictures of Micro-Hydro Turbine Design

Construction of Micro-Hydro Turbine

COMPLETED TASKS

- Secured all raw materials
 - e.g. bicycles, alternator, PVC(4 in. and 8in.), plywood
- Paddle wheel
- Repaired Alternator
 - Cleaned, new bearings, and voltage regulator

REMAINING TASKS

- Complete machining of coupling shaft and paddle shaft
- Fabricate alternator bracket and belt
- Attach paddle wheel
- Permanently fix bicycles to PVC floats
- Seal PVC floats
- Test via boat pull or tidal shift

Future Plans

- Finish assemblies before end of February
- HAWT system modifications will be made and dynamic testing will be performed before the end of February
- Incorporate a safety for severe weather
 - Redirection of turbine
 - Tail-fin will provide the redirection through attached mechanism
 - Waterproof micro-hydro turbine assembly
 - Employ circuit breaker in case of short-circuit
- Biweekly teleconferences with Cummins representative Terry Shaw

Questions?