Power Generation through Recycled Materials

Team # 7: Carlos Novelli Jonathon Miller Sean Stege **Sponsor: Cummins**

Index

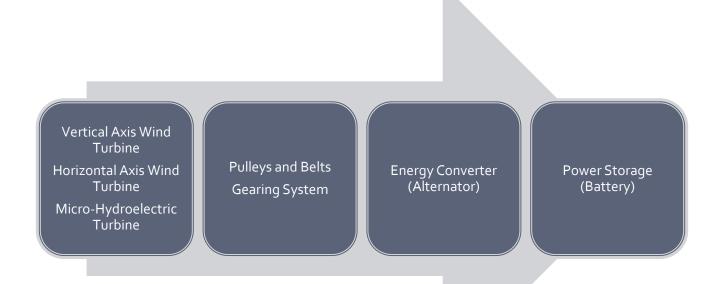
Background Overview

- Problem Statement
- Objectives/Constraints
- Design Layout
- Geographical Locations
 - Wind
 - Water
- Concept Designs
 - Vertical Axis Wind Turbine
 - Horizontal Axis Wind Turbine
 - Water-Power Wheel
- Additional Concept
 - Tesla Turbine
- Cost Analysis
- Decision Matrix
- Conclusion/Future Plans
- References & Questions

Background Overview

Problem Statement:

 Design and construct a power generation device that implements the use of a renewable energy source and is composed entirely of recycled materials


Objectives:

- Must generate 100 W•h/day
- Must store 300 W•h
- Output must be 12 V DC

Constraints:

- Must choose three different geographic locations
 - 100 km away from the ocean, 500 km away from each other
- Final product must cost under \$50

Design Layout

Design Concept Box Layout

- Energy Capture → Speed Change → Energy Conversion → Battery Storage
- Simplicity with 4 component layout

Geographical Locations

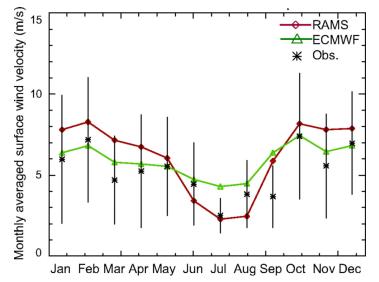
Wind Energy Locations

- Faya-Largeau, Chad
 - Average wind speed = 4.6 m/s
 ~ 10 m height
- Santa Cruz, Bolivia
 - Average Wind = 3.9 m/s ~ 10 m height
- Sen Monorom, Cambodia
 - Average Wind = 4.3 m/s ~ 10 m height

Water Energy Locations

- Atrato River, Colombia
 - Average Flow = $2.0 \cdot 10^6 \text{ L/s}$
- Indus River, Pakistan
 - Average Flow = 6.5 10⁶ L/s
- Benue River, Cameroon
 - Average Flow = 1.75 10⁵ L/s

Boundary Layer Effects


Average wind speed at 10m

Lat 17.917 Lon 19.117	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AnnualAverage
10-year Average (m/s)	5.56	5.44	5.15	4.68	4.12	4.04	4.16	3.99	3.88	4.87	5	5.14	4.66

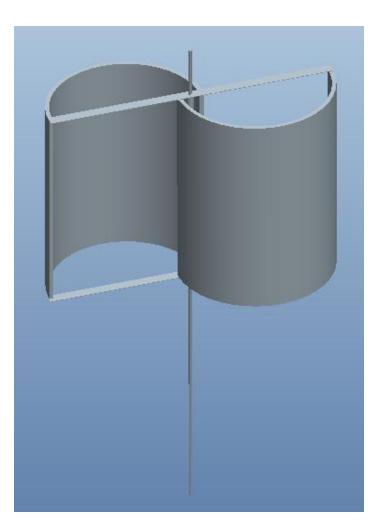
Average wind speed at 50m

Lat 17.917 Lon 19.117	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AnnualAverage
10-year Average (m/s)	7.04	6.88	6.52	5.93	5.21	5.11	5.26	5.05	4.91	6.17	6.3	6.51	5.9

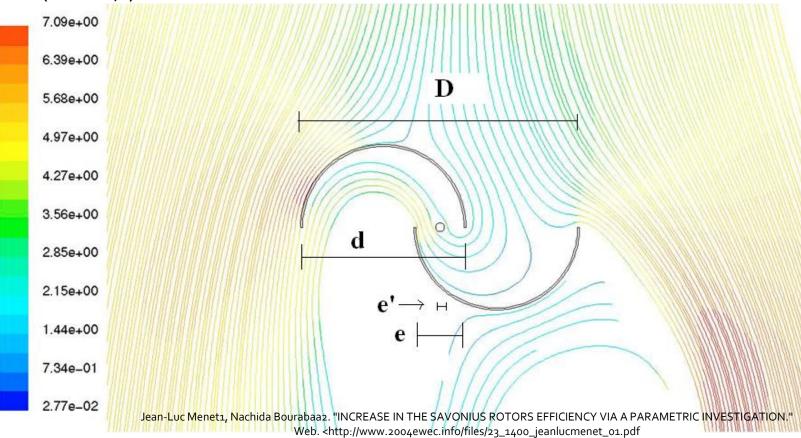
Annual approximate wind speed at 5 m = 4.0 m/s

"Dust as a Tipping Element: The Bodélé Depression, Chad." *Proceedings of the National Academy of Sciences*. Web. 17 Nov. 2011. http://www.pnas.org/content/106/49/20564.full.

Design Specifications

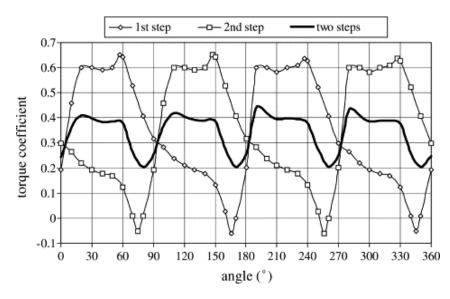

- Savonius design
- Drag based system

Available Wind Energy

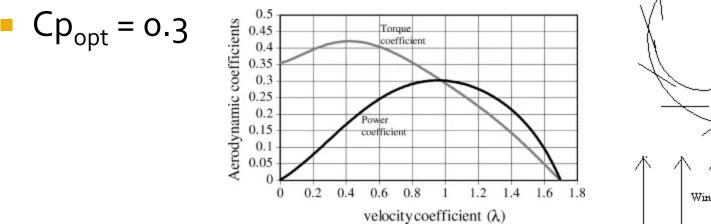

 Average annual wind speed is ~4m/s (Faya-Largeau, Chad)

Calculation Analysis

- Power coefficient of turbine
- Minimum area of turbine
- Power generation



- Example Velocity Flow Field Ideal Savonius Design
 - (e-e')/d=0.242 and ReD=1.56x105, i.e. U=5m/s
 (unit : m/s)


Savonius Optimization

- Two blades & offset of e
- Wind vane apparatus to block and channel wind
- Optimized alternator/gearing
- Second turbine set at 90°
 - Provides self-starting
- e_{opt}=d/6

Jean-Luc Menet1, Nachida Bourabaa2. "INCREASE IN THE SAVONIUS ROTORS EFFICIENCY VIA A PARAMETRIC INVESTIGATION." Web. http://www.2004ewec.info/files/23_1400_jeanlucmenet_01.pdf>.

- With wind channeled, ratio of turbine tip speed to undisturbed wind speed, (λ) is approximately 1
 - Blocks wind incoming to convex portion
 - Channels wind into concave portion
 - Omnidirectional

Jean-Luc Menet1, Nachida Bourabaa2. "INCREASE IN THE SAVONIUS ROTORS EFFICIENCY VIA A PARAMETRIC INVESTIGATION." Web. http://www.2004ewec.info/files/23_1400_jeanlucmenet_01.pdf>.

IDEAL SAVONIUS SYSTEM

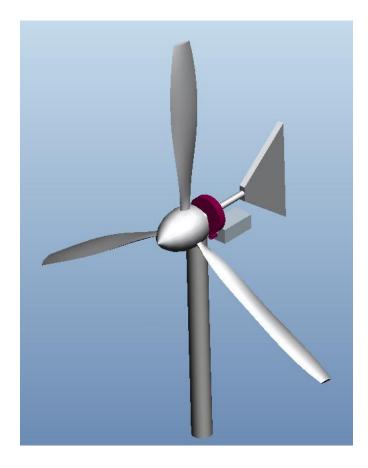
- Power coefficient of Turbine
 - 0.3
- Area Specifications
 - e_{opt} = d/6
 - $\alpha_{opt} = H/D = 4$
 - $e'_{opt} = e_{opt} 0.242d$
- Power Generated
 - Gearing/pulley efficiency ~ 96%
 - Alternator efficiency ~90%

VAWT DESIGN CONCEPT#1

- Power Coefficient of Turbine (90% of ideal design):
 - 0.27
- Minimum Rotor Area (4.2 W)
 - Area = 0.579 m² = 2[d-(d/6)]H
- Design Specifications
 - 2- rotor design
 - 90° offset
 - Area = 1.39 m²
- Power Generated
 - Gearing/pulley efficiency ~ 85%
 - Refurbished alternator efficiency ~ 80%
 - ~ 10 W

 $P_{actual} = \left(\frac{\rho HDV^{3}}{2}\right) (turbine\ efficiency) (belt\ efficiency) (alternator\ efficiency)$

Design Specifications


- Three-blade turbine design
- Airfoil shape in blades will be approximated

Available Wind Energy

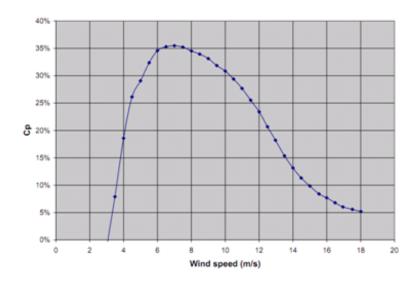
 Average annual wind speed is ~4m/s (Faya-Largeau, Chad)

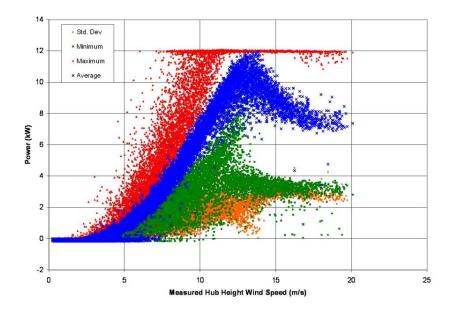
Calculation Analysis

- Power coefficient of turbine
- Minimum area of rotor required
- Power generation
- Gearing/pulley ratio

ARE442 WIND TURBINE (NREL)

- Power coefficient of Turbine
 - 0.190
- Minimum Rotor Area (4.2 W every hour)
 - Area = 0.625 m²
 - Diameter = 0.912 m
- Design Specifications
 - 3-blade Design
 - 7.2 m rotor diameter
- Power Generated
 - Gearing/pulley efficiency ~ 96%
 - New alternator efficiency ~90%
 - ~ 525 W


$$P_{gen} = \frac{1}{2} \rho U_1^{3} A C_p(\eta_{Belt} \eta_{Alternator})$$


HAWT DESIGN CONCEPT #2

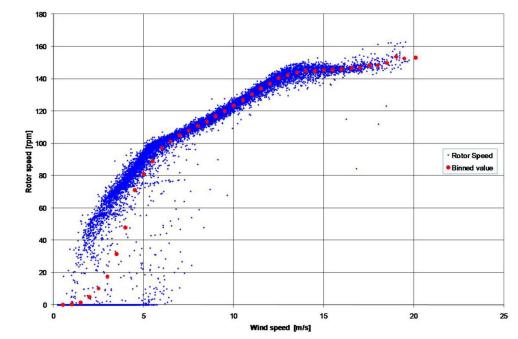
- Power Coefficient of Turbine (60% of ARE 442):
 - 0.114
- Minimum Rotor Area (4.2 W)
 - Area = 1.39 m²
 - Diameter = 1.33 m
- Design Specifications
 - 3-blade design
 - 2.05 m rotor diameter
 - Area = 3.29 m²
- Power Generated
 - Gearing/pulley efficiency ~ 85%
 - Refurbished alternator efficiency ~ 80%
 - ~ 10 W

ARE442 WIND TURBINE (NREL) – POWER COEFFICIENT VS. WIND SPEED

ARE442 WIND TURBINE (NREL) – POWER GENERATED VS. WIND SPEED

Gearing/Pulley System

- Angular rotor velocity (ARE442)
 - 48 rpm
- Alternator angular velocity


Rotor speed

[rpm]

130

134

- ~700 rpm
- 15:1 Gear ratio

١	Wind speed	[m/s]	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
1	Rotor speed	[rpm]	0	0	1	5	10	17	31	48	71	81	89	97	101	105	108	111	114	117	120	123
																	-	•				
1	Wind sneed	[m/s]	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.1

145

145

145

146

147

147

150

Van Dam, Jeroen. "Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine." National Renewable Energy Laboratory, Feb. 2010. Web. 17 Nov. 2011.

145

140

137

142

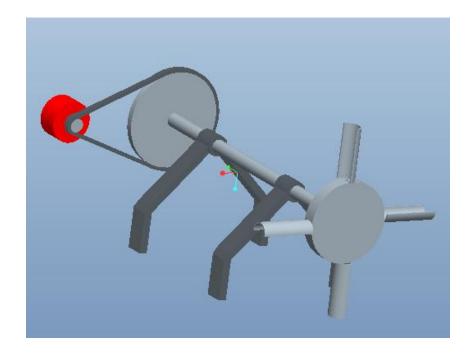
144

<http://www.nrel.gov/wind/smallwind/pdfs/are_power_performance_test_report.pdf>.

153

Design Concept #3: Micro-Hydroelectric Generator

Design Specifications:

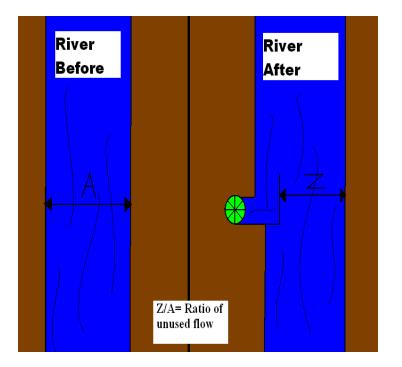

- Paddle- Wheel Design
- Flexible Setup
 - Undershot
 - Breastshot
 - Overshot

Available Water Energy:

- Atrato River, Columbia
- Indus River, India
- Benue River, Cameroon

Calculation Analysis

- Head calculation (potential energy)
- Flow rate
- Power generation


Design Concept #3: Micro-Hydroelectric Generator

Flow Diversion

 The amount of flow that will be diverted, will depend on head built into the system

	Turbine M	lechanica	al Power	Output	(Watts)	
Flow Rate		Net Head	(meters)			
Liters/s	1	2	3	5	7	10
1	6.867	13.734	20.601	34.335	48.069	68.67
2	13.734	27.468	41.202	68.67	96.138	137.34
5	34.335	68.67	103.005	171.675	240.345	343.35
8	54.936	109.872	164.808	274.68	384.552	549.36
11	75.537	151.074	226.611	377.685	528.759	755.37
14	96.138	192.276	288.414	480.69	672.966	961.38
18	123.606	247.212	370.818	618.03	865.242	1236.06

 $P_{gen} = H_{Head} * \dot{V} * Gravity * \eta_{system}$

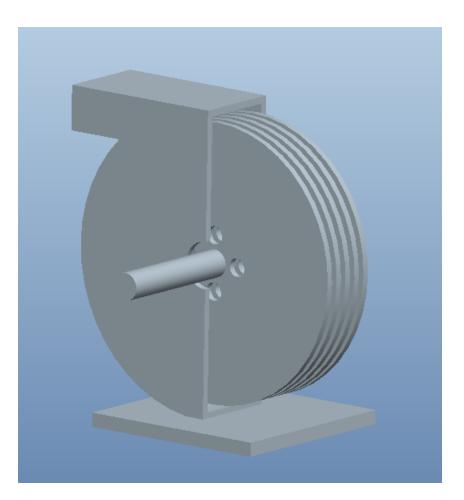
Design Concept #3: Micro-Hydroelectric Generator

Paddle-Wheel Optimization

- Approximate turbine shape
- High number of PVC blades
- Turbo-charger turbine and gear pump concepts eliminated
 - High cost and high flow requirements
 - Turbo/gear pump ~ \$70-\$100

Onsite Work Requirements

- Infrastructure must be implemented to divert flow
- Basic water channeling via PVC piping will be required



Additional Concept: Tesla Turbine

Complexity

- Necessary scale will make design impractical
- Requires precise installation
- High maintenance required
- Water flow can consistently damage discs
- Large Size
- Water Filtration System

Alternator

- Efficiency ranges from 90-95%
 - Used alternator approximated as 80% efficient
- Wide variety and easily obtainable/replaceable
- Design rpm much lower, gearing required
 - Minimum rpm = 700
 - Maximum rpm = 6,000
- Research alternative DC motors or stepper motors
 - Do not include voltage regulator

Cost Analysis

Part	Turbine	Supporting Stucture	Alternator	Pulley System	Bearings	Battery	Battery Cables	Total
VAWT	~\$.90	~\$4.90	\$18.89	~\$0.30	~\$0.30	\$19.79	\$3.59	\$48.67
Hydro	~\$1.00	~\$6.00	\$18.89	~\$0.30	~\$0.30	\$19.79	\$3.59	\$49.87
HAWT	~\$1.00	~\$2.00	\$18.89	~\$0.30	~\$0.30	\$19.79	\$3.59	\$45.87
Tesla	~\$1.00	~~~	\$18.89	~\$0.30	~\$0.30	\$19.79	\$3.59	~~~

Decision Matrix

				С	oncepts				
			VAWT		HAWT	Hyd	ro-electric		Tesla
	Importance		Weighted		Weighted		Weighted		Weighted
Specifications	Weight	Rating	Scores	Rating	Scores	Rating	Scores	Rating	Scores
Durability	15%	5	0.75	3	0.45	3	0.45	1	0.15
Ease of Assembly	20%	3	0.60	5	1.00	3	0.60	1	0.20
Cost	40%	5	2.00	3	1.20	1	0.40	3	1.20
Maintenance	20%	3	0.60	3	0.60	3	0.60	1	0.20
Innovative	5%	3	0.15	3	0.15	3	0.15	5	0.25
	Score	19	4.1	17	3.40	15	2.20	11	2.0
Durability	10%	5	0.50	3	0.30	3	0.30	1	0.10
Ease of Assembly	15%	3	0.45	5	0.45	3	0.45	1	0.15
Cost	30%	3	0.90	3	0.90	5	1.50	3	0.90
Maintenance	15%	3	0.45	3	0.45	3	0.45	1	0.15
Efficiency	30%	1	0.30	1	0.30	5	1.50	1	0.30
	Score	15	2.6	15	2.4	19	4.20	7	1.60

Future Plans

Teleconference with Cummins

- Bi-weekly teleconferences with the Cummins rep. Terry Shaw
- Further Material Research and Collection
 - Return to junkyards and recycle facilities
 - Alternative choices for energy conversion and power storage
- Finalize Concept Selection
- Construct, Test, and Refine Prototype

References

- In Scopus. "ScienceDirect Renewable Energy : A Double-step Savonius Rotor for Local Production of Electricity: a Design Study." *ScienceDirect - Home*. Web. 16 Nov. 2011.
 http://www.sciencedirect.com/science/article/pii/S0960148104000916
- Jean-Luc Menet1, Nachida Bourabaa2. "INCREASE IN THE SAVONIUS ROTORS EFFICIENCY VIA A PARAMETRIC INVESTIGATION." Web.
 http://www.2004ewec.info/files/23_1400_jeanlucmenet_01.pdf>.
- "Dust as a Tipping Element: The Bodélé Depression, Chad." Proceedings of the National Academy of Sciences. Web. 17 Nov. 2011. http://www.pnas.org/content/106/49/20564.full.
- "Meteorology (Wind) Pivot Data Faya-Largeau, Republic of Chad." Метеоданные для Чада. Web. 17 Nov. 2011. http://chad-meteo.ru/en/faya-larzho/pivot/wind.
- Van Dam, Jeroen. "Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine." National Renewable Energy Laboratory, Feb. 2010. Web. 17 Nov. 2011.

http://www.nrel.gov/wind/smallwind/pdfs/are_power_performance_test_report.pdf

- Ross, Tom. "NCDC: Global Measured Extremes of Temperature and Precipitation." NCDC: * National Climatic Data Center (NCDC) *. Web. 15 Nov. 2011.
 http://www.ncdc.noaa.gov/oa/climate/globalextremes.html.
- "Design of an Overshot Waterwheel." French River Land Company's Home Page! Web. 15 Nov. 2011. <u>http://www.frenchriverland.com/design_of_an_overshot_waterwheel.htm</u>.

Questions?