Power Generation through Recycled Materials

Team # 7: Carlos Novelli Jonathon Miller Sean Stege Sponsor: Cummins April 12, 2012

FAMU-FSU College of Engineering

Index

- Motivation
- Background Overview
- Design Layout
- Geographic Locations
- Preliminary Design Concepts
 - Decision Matrix
- Final Concept #1: Horizontal-Axis Wind Turbine
- Final Concept #2: Micro-Hydroelectric Turbine
- Engineering Economics
- Results and Discussions
- Conclusions

Motivation

Current Problem:

In many countries around the world there are people with scarce means of acquiring power.

Solution:

A low cost power generator would be a very valuable commodity for them and would greatly enhance their standard of living. The goal of this project was to take readily available parts from the trash of the "developed world" and create an electrical power generator that runs off renewable resources. The project needed be very cost-efficient and reliable for everyday use. It was important to promote clean energy sources, and exploit the value contained within recycled materials.

Background Overview

Problem Statement:

 Design and construct a power generation device that implements the use of a renewable energy source and is composed entirely of recycled materials

Objectives:

- Must generate 100 W•h/day
- Must store 300 W•h
- Output must be 12 V DC
- Must sustain severe weather

Constraints:

- Must choose three different geographic locations
 - 100 km away from the ocean, 500 km away from each other
- Final product must cost under US \$50.00

Design Layout

Functional Diagram

- Rotational Component (Energy Capture) → Gearing Assembly (Energy Transfer) → Energy Conversion → Battery Storage
- Simplicity with 4 main component layout

Geographic Locations

Wind Energy Locations

- Faya-Largeau, Chad
 - Average wind speed = 4.6 m/s ~ 10 m height
- Santa Cruz, Bolivia
 - Average Wind = 3.9 m/s ~ 10 m height
- Sen Monorom, Cambodia
 - Average Wind = 5.1 m/s ~ 10 m height

Water Energy Locations

- Atrato River, Colombia
 - Average Flow = $2.0 \cdot 10^6$ L/s
- Indus River, Pakistan
 - Average Flow = $6.5 \cdot 10^6$ L/s
- Benue River, Cameroon
 - Average Flow = 1.75 10⁵ L/s

Preliminary Wind Design Concepts

HAWT-HORIZONTAL AXIS WIND TURBINE

VAWT- VERTICAL AXIS WIND TURBINE

Preliminary Water Design Concepts

TESLA TURBINE

MICRO-HYDRO ELECTRIC

Decision Matrix

		Concepts							
		VAWT HAWT		Hydro-electric		Tesla			
	Importance		Weighted		Weighted		Weighted		Weighted
Specifications	Weight	Rating	Scores	Rating	Scores	Rating	Scores	Rating	Scores
Durability	15%	5	0.75	3	0.45	3	0.45	1	0.15
Ease of Assembly	20%	3	0.60	5	1.00	3	0.60	1	0.20
Cost	40%	5	2.00	5	2.0	1	0.40	3	1.20
Maintenance	20%	3	0.60	3	0.60	3	0.60	1	0.20
Innovative	5%	3	0.15	3	0.15	3	0.15	5	0.25
	Score	19	4.1	19	4.2	15	2.20	11	2.0
Durability	10%	5	0.50	3	0.30	3	0.30	1	0.10
Ease of Assembly	15%	3	0.45	5	0.45	3	0.45	1	0.15
Cost	30%	3	0.90	3	0.90	5	1.50	3	0.90
Maintenance	15%	3	0.45	3	0.45	3	0.45	1	0.15
Efficiency	30%	1	0.30	1	0.30	5	1.50	1	0.30
	Score	15	2.6	15	2.4	19	4.20	7	1.60

HAWT – Theoretical Design Parameters

ARE442 WIND TURBINE (NREL)

- Power coefficient of Turbine
 - 0.190
- Minimum Rotor Area (4.2 W every hour)
 - Area = 0.625 m²
 - Diameter = 0.912 m
- Design Specifications
 - 3-blade Design
 - 7.2 m rotor diameter
- Power Generated
 - Gearing/pulley efficiency ~ 96%
 - New alternator efficiency ~90%
 - ~ 525 W

HAWT THEORETICAL DESIGN

- Power Coefficient of Turbine (60% of ARE 442):
 - 0.114
- Minimum Rotor Area (4.2 W every hour)
 - Area = 1.39 m²
 - Diameter = 1.33 m
- Design Specifications
 - 3-blade design
 - 2.05 m rotor diameter
 - Area = 3.29 m²
- Power Generated
 - Gearing/pulley efficiency ~ 85%
 - Refurbished alternator efficiency ~ 80%
 - ~ 10 W

HAWT – Final Design and Construction

HAWT CAD MODEL

FINAL CONSTRUCTED HAWT

HAWT - Materials

Marpan Recycling

- Metals
 - Bicycles
 - Conduit Piping
 - AC Fans
 - Electric Exercise Bicycles
 - Washing Machines
 - Dynamos
 - Sheet Steel
 - 55 Gallon Drum
- Plastics
 - PVC Piping

Bicycle House

- Dynamos
- Bicycle Wheels
- Tires

HAWT – Energy Capture (Rotational Component)

Turbine Construction

- 8 in diameter PVC
- Diameter to length ratio
 - **1**:5
- 42 in length PVC

Turbine Hub

- Angle of attack adjustment on blades
- Connected via bicycle pedal axis
 - Machined steel rod

HAWT – Energy Transfer (Gearing Assembly)

- Eliminated Bicycle Chain and Sprocket
 - Startup torque issue
- Wheel Attached to Pedal Axis
 - Machined steel rod
- Wheel Diameters
 - Tire = 27 in.
 - Dynamo = 0.75 in.

HAWT – Energy Conversion

Dynamo

Spins on rubber tire

Reclaimed Bicycle Tensioner

- Spring loaded
- Keeps pressure on dynamo

Dynamo Outputs AC

 Full wave rectification required

HAWT – Energy Storage (Battery)

Voltage Multiplier Circuit

- Provides full-wave rectification
- Voltage doubler
- Two zener diodes (AC to DC conversion)
 - One additional diode to prevent battery discharge into dynamo
- Two capacitors
- Voltage Production
 - Must exceed 12.54V DC to charge automotive battery

HAWT – Severe Weather

Disengaging Wind Vane

- Manual high wind break-away system
- Turns turbine out of wind direction
- Extension spring and hinge combination

MHET – Theoretical Design Parameters

MHET POWER CAPABILITY

Power				
Coefficient				
Cp=0.35				
Velocity (mph)	Velocity (m/s)	Mechanical Power (watts)		
1	0.45	0.37		
2	0.89	2.86		
3	1.34	9.75		
4	1.79	23.24		
5	2.24	45.55		
6	2.68	78.01		

 $Mechanical Power = 0.5 * \rho * A * V^{3} * Cp$

MHET: THEORETICAL DESIGN

Paddle Wheel Dimensions

- 8 blade design
- Ensure two in contact with water at all times

Paddle Wheel Area

- Area = 0.0232m²
- Diameter = 1.33 m
- Power Generated
 - Gearing/pulley efficiency ~ 85%
 - Refurbished alternator efficiency ~ 80%
 - ~ 10 W
 - Flow velocity of 3 mph is adequate to produce 100 W•h/day

MHET – Final Design and Construction

MHET CAD MODEL

FINAL MHET CONSTRUCTION

Materials

Marpan Recycling

- Metals
 - Bicycles
 - Conduit Piping
 - Electric Exercise Bicycles
 - Dynamos
 - Heavy Metal Equipment
- Plastics
 - PVC Piping
- Wood
 - Particle Board
 - Plywood

Home Depot

- Expanding Foam
- Pick-n-Pull
 - Automotive Battery

MHET – Energy Capture (Rotational Component)

Paddle Wheel Blades

- 8 blades of 4" PVC
 - Substitute Timber Bamboo
- Particle Board
 - Water sealant paint
- Eight Pieces of All-thread
 - Tighten individually to insure adequate pressure to hold paddles in place

Home-made Bushing

 Metal pipe surrounded by expanding foam in 6" PVC segment

MHET – Energy Transfer (Gearing Assembly)

- Frame to Frame Energy Transfer
 - Machined steel shaft
- Center Sprocket to Rear Sprocket
 - 3:1 gearing ratio
- Wheel Diameter
 - Tire = 24 in.
 - Dynamo = 0.75 in.

MHET – Energy Conversion

Dynamo

- Spins on rubber tire
- Eliminated alternator

Dynamo Output in AC

- Rated for 12 V 6 W
- Mounts on Bicycle Frame

MHET – Energy Storage (Battery)

Voltage Multiplier Circuit

- Provides full-wave rectification
- Voltage doubler
- Two zener diodes (AC to DC conversion)
 - One additional diode to prevent battery discharge into dynamo
- Capacitors (limit voltage ripple)

Voltage Production

 Must exceed 12.54V DC to charge automotive battery

Standard Automotive Battery

Useful for balancing system

MHET – Flotation Capability

Pontoons

- 9 in OD
- Schedule 40 PVC
- Cut two 64 in lengths

Sealing End Caps

- Particle board insert
- Expanding foam
- Plywood cap
 - Kept secure with all-thread
- Gorilla Glue Sealing

MHET – Stability and Strength

Steel Conduit Supports

Across lengths

Bicycle Seats

 Attachment for frames to pontoons

Anchor

Engineering Economics

HAWT		MHET			
Part	Cost (US \$)	Part	Cost (US \$)		
Blades	0.27	Metal (Bicycle	12.75		
		Assemblies/Steel Rods/etc.)			
Hub	0.30	Wood	0.00		
Bicylce assembly (Wind	3.15	U straps	2.00		
Vane)					
Fasteners	3.50	PVC	1.50		
Mount	1.65	Foam	4.00		
Dynamo	15.00	Wires/diodes/capacitors	5.50		
Wires/diodes/capacitors	5.50	Fasteners	6.00		
Battery	19.97	Gorilla Glue	1.00		
		Dynamo	15.00		
		Battery	19.97		
Total	49.34	Total	67.72		

Results and Discussions (HAWT)

Dynamo Signal Output

- Bicycle wheel rotation at controlled RPM
 - Metronome
 - Two multi-meters (DC Voltage, DC Current)

Wind Speed Test

- Assembled HAWT in truck
 - Recorded turbine RPM at various wind speeds

Wind	Wind turbine	Dynamo	Power		
Speed	Rotational Speed	Rotational Speed	Output	Voltage	Current
(m/s)	(RPM)	(RPM)	(W)	(V)	(A)
2.20	36	1296	2.41	12.04	0.20
4.00	66	2376	5.35	17.30	0.31
5.00	78	2808	8.62	22.58	0.38
6.00	90	3240	9.23	22.63	0.41
8.00	123	4428	12.55	25.10	0.50

Results and Discussions (HAWT)

	Power	
Wind Speed	Generated	Time Required for
(m/s)	(W)	100 W•h (hours)
2.20	2.41	41.53
4.00	5.35	18.69
5.00	8.62	11.60
6.00	9.23	10.83
8.00	12.55	7.97

Voltage vs. Wind Turbine RPM

Current vs. Wind Turbine RPM

Wind Turbine RPM

Results and Discussions (MHET)

Power

- **Minimum Required Water** Speed
 - 24-hour constant output
 - 4.17 W required
 - 1.56 m/s
 - 3.48 mph
- **Turbine Efficiency**
 - 0.80

Power Generated vs. Dynamo RPM

Conclusions

HAWT

- Meets power requirements
 - Capable of generating more power than required
- Meets cost requirement
 - May be reduced through mass production and volume cost of materials
- Sustains severe weather
- Lightweight and robust

MHET

- Meets power requirements
- Uncertainty in cost
 - May be reduced through mass production and volume cost of materials
- Sustains severe weather
 - May require additional attachment to land
 - Additional ballast

Questions?