Power Generation through Recycled Materials

By: Carlos Novelli Jonathon Miller Sean Stege

Index

- Background Overview
- Concept Design #1
- Concept Design #2
- Concept Design #3
- Concept Design #4
- Decision Matrix
- Future Plans/Conclusions

Background Overview

• Problem Statement:

• Design and construct a power generation device that implements the use of a renewable energy source and is composed entirely of recycled materials

Constraints:

- Must choose three different geographic locations.
 - \times 100 km away from the ocean, 500 km away from each other
- Must generate 300 W*h at a rate of 12V direct current
- Final product must cost under \$50

Design Concept #1: Vertical-Axis Wind Turbine (VAWT)

- Renewable energy source:
 Wind energy
- Energy conversion:
 - Wind rotates vertical turbine blades
 - Wind energy is converted to rotational mechanical energy
 - Alternator converts mechanical energy into electrical energy

Power storage:

o 12V DC output battery will be used for energy storage

Design Concept #1: Vertical Axis Wind Turbine (VAWT)

Advantages

- Omni-directional
- Low wind speeds
- Low elevation
- No active controls
- Widely available recycled materials can be used for parts

- Larger drag
- Less efficient than a horizontal axis wind turbine

Design Concept #1: Vertical Axis Wind Turbine (VAWT)

Drag reduction

- Control wind flow direction by implementing an external surface
- o 55 gallon drum

Increase in height

- Roof mounting on house/building
- Decrease boundary layer effect - higher wind speeds

Design Concept #2: Horizontal Axis Wind Turbine (HAWT)

- Renewable energy source:
 Wind energy
- Energy conversion:
 - Wind rotates radial blades standard wind turbine
 - Wind energy is converted to rotational mechanical energy
 - Alternator converts mechanical energy into electrical energy

• Power storage:

• 12V DC output battery will be used for energy storage

Design Concept #2: Horizontal Axis Wind Turbine (HAWT)

Advantages

- Higher efficiency than vertical axis wind turbine
- o Blades are perpendicular to flow
- Higher effectiveness at a small scale

- Directional
- More torque generated on supporting structure
- High disruption of wind flow field
- Consideration when using multiple wind turbines

Design Concept #2: Horizontal Axis Wind Turbine (HAWT)

Directional consideration

• Fixed by either stabilizing fin or an active control

Increase in height

- Same issue with boundary layer
- Increase in turbine height will increase wind speed

Design Concept #3: Hydro-Power Wheel

- Renewable energy source:
 - Water power
- Energy conversion:
 - Elevated water contains potential energy
 - Falling water contains kinetic energy
 - Water rotates wheel conversion from linear to rotational energy
 - Wheel rotates alternator conversion form mechanical energy to electrical energy
- Power storage:
 - o 12V DC output battery will be used for energy storage

Design Concept #3: Hydro-Electric Generator

-Advantages

- Greater output capacity when compared to wind energy
- Capable of sustained output
- All components are readily available in most scrapyards

- Requires a certain amount of falling or moving water to run the system
- Additional measures required to insure electrical components remain dry

Design Concept #3: Hydro-Electric Generator

• Fin Geometry and Quantity

- Cupped or Flat
- Optimal number of fins depends on flow rate of water and geometry

• Consider incorporating automotive turbo preceding the turbine

• Couple shafts of turbine with turbo to maximize energy extracted from flow

Design Concept #4: Tesla Turbine

- Renewable energy source:
 - Water power
- Energy conversion:
 - Elevated water contains potential energy
 - Falling water contains kinetic energy
 - Water rotates turbine conversion from linear to rotational kinetic energy
 - Turbine rotates alternator conversion form mechanical energy to electrical energy
- Power storage:
 - o 12V DC output battery will be used for energy storage

Design Concept #4: Tesla Turbine

Advantages

- Readily available materials
- Water creates adequate friction between CDs
- Parts can be easily replaced
- Can be implemented in conjunction with wheel in place of pulleys or gears
 - Increase rpm of system to alternator specification

- CD material strength may not be sufficient
 - Require reduction in rotational speed
- Additional parts added make design much more complex

Decision Matrix

19

	Concepts								
		VAWT		НАЖТ		Hydro-electric		Tesla	
	Importance		Weighted		Weighted		Weighted		Weighted
Specifications	Weight	Rating	Scores	Rating	Scores	Rating	Scores	Rating	Scores
Durability	15%	3	0.45	4	0.6	3	0.45	1	0.15
Efficiency	20%	3	0.6	4	0.8	4	0.8	3	0.6
Ease of									
Assembly	15%	4	0.6	4	0.6	2	0.3	4	0.6
Low Cost	30%	4	1.2	3	0.9	2	0.6	4	1.2
Low									
Maintenance	15%	4	0.6	4	0.6	4	0.6	2	0.3
Innovative	5%	2	0.1	2	0.1	4	0.2	5	0.25
	Score	20	3.55	21	3.6	19	2.95	19	3.1

Future Plans

20

- Teleconference with Cummins
 - Starting October 26 and repeating every two weeks
- Material exploration
 - o Junkyard visitation
 - Background research on parts
 - Alter design based on availability
- Concept Selection
- Contruction, Testing and Iteration
- Finalize project

References

- http://www.kaper.us/basics/BASICS_040502_hunt _windflow.html
- http://www.victordanilochkin.org/research/turbine/ papers/HAWT%20versus.pdf

