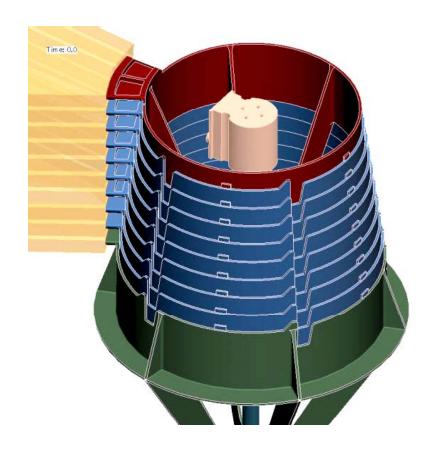

TWO-STEP HUB DEPLOYMENT MECHANISM

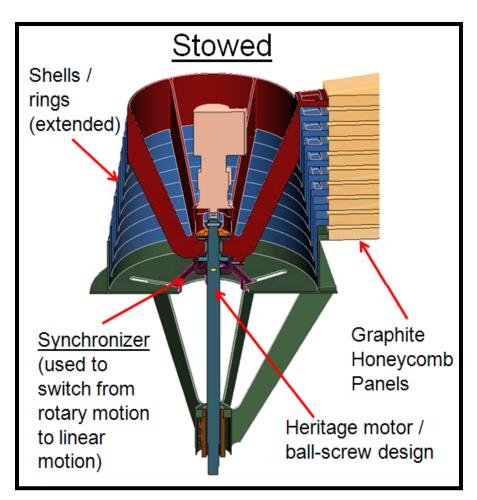
Team 5: Noah Nichols Chris Rudolf Audrey Wright


PROBLEM STATEMENT

- Design a hub mechanism to deploy a segmented solid reflector
- Create a CAD model to show the dynamic simulation and a scaled prototype

CONCEPT REQUIREMENTS

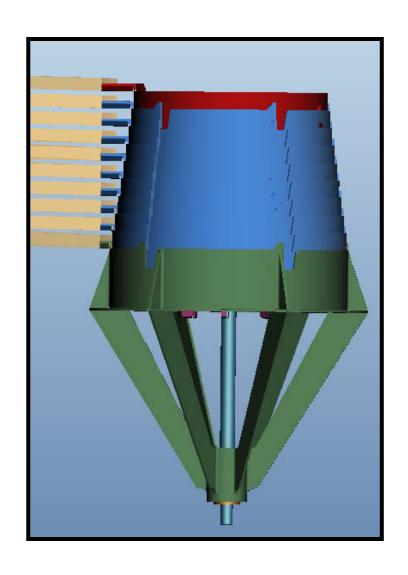
- Must rotate panels into position and retract them into the same surface plane while maintaining desired spacing between panels during deployment
- Two ways to retract panels into position
 - + Two separate motions
 - + Step down motion



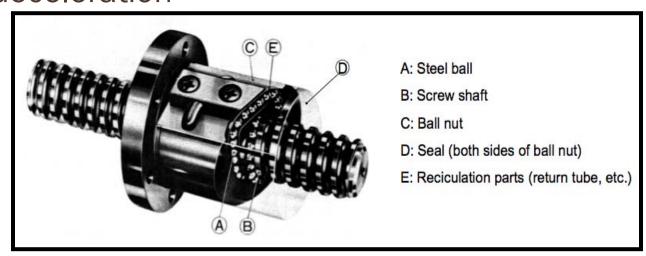
DECISION MATRIX

Analysis will allow further refining of ratings and weights

Decision Matrix		Concepts					
	-	Synchronized Two Step Deployment		Spring Implementation		Guide Slots	
Specification	Weight	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Reliability	0.4	4	1.6	3	1.2	4	1.6
Durability	0.05	4	0.2	2	0.1	4	0.2
Weight	0.1	3	0.3	3.5	0.35	4	0.4
Efficiency	0.2	5	1	4	0.8	3	0.6
Ease of Construction	0.15	2	0.3	3	0.45	2.5	0.375
Cost	0.1	3	0.3	3.5	0.35	4	0.4
Total	1	3.7		3.25		3.575	


SYNCHRONIZED TWO STEP DEPLOYMENT

- X Kinematic Analysis to determine forces
 - + Panel weight
 - + Ball screw torque
 - + Motor selection
- Finite element analysis to determine stresses
- Material Selection


KINEMATIC ANALYSIS

- What to expect from analysis
 - + Simulation of ideal/desired motion
 - + Determine if ring to panel sizing ratio is correct
- Rotational torque analysis for ball screw
- Motor sizing
- × Ring sizing
- × Panel weight

BALL SCREW ANALYSIS

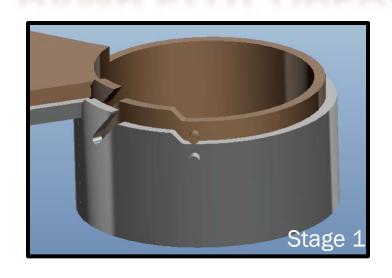
- Calculations will be conducted to find the torque and loads in order to select the correct ball screw
 - + Permissible Axial Load and Rotational Speed
 - + Torque due to load
 - Rotational Torque due to acceleration and deceleration

BALL SCREW CALCULATIONS

× Permissible Axial Load: $P_1 := \frac{\eta_1 \cdot \pi^2 \cdot E \cdot I}{l_a^2} \cdot 0.5$ $P_2 := \sigma \cdot \frac{\pi}{4} \cdot d_1^2$

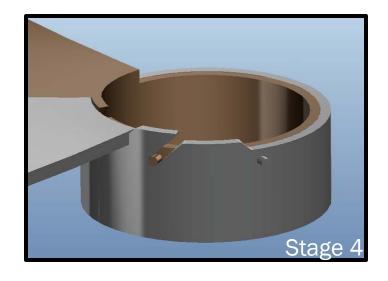
× Permissible Rotational Speed: $N_1 := \frac{60 \cdot \lambda_1^2}{2\pi \cdot l_b^2} \cdot \sqrt{\frac{E \cdot 10^3 \cdot I}{\gamma \cdot A}} \cdot 0.8$

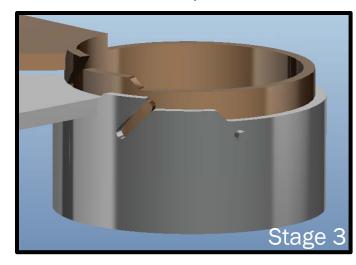
- **×** Rotational Torque:
 - + Uniform Motion: $T_t := T_1 + T_2 + T_4$
 - + During Acceleration: TK:= Tt + T3
 - + During Deceleration: Tg:= Tt T3

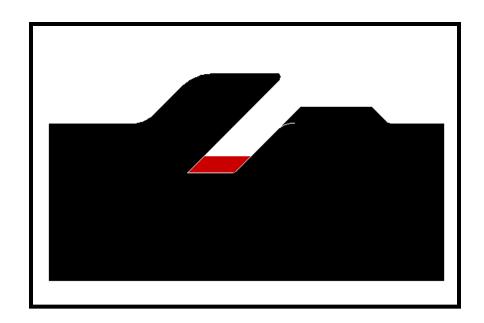

RAMP SLOT CONCEPT

Example of single ring with barrel slider

- X Kinematic analysis to determine forces
 - + Panel weight
 - + Motor selection
- Finite element analysis to determine stresses
- Cam/follower analysis
- * Material selection


RAMP SLOT OPERATION





KINEMATIC ANALYSIS

- What to expect from analysis
 - + Simulation of ideal/desired motion
 - + Determine if ring to panel sizing ratio is correct
- Motor sizing
- × Ring sizing
- **×** Panel weight

CAM/FOLLOWER ANALYSIS

- Determine the best cam profile to ensure precise panel alignment.
- Determine appropriate follower/slider



FINITE ELEMENT ANALYSIS

- Stress/Strain analysis
 - + Determine if panels will introduce unwanted stresses in ring
 - + Initial results suggest that material strength is not a concern

- **×** Assumptions
 - + Material is 4130 Steel
 - + Left & Right boundaries are fixed
 - + Uniform Distributed Load Applied to triangular tab
 - + Simulates a binding or maximum loading situation

FINITE ELEMENT ANALYSIS

MATERIAL SELECTION

- Take all analysis into consideration when selecting a material
- **×** Possible materials
 - + Aluminum (2024 or 6061)
 - + Stainless steel (302 or 304)
 - + Steel (4130)
- We will conduct further analysis of the system to select a final material

Questions or Comments?