# Two-Step Hub Deployment Mechanism



Team 5: Noah Nichols Chris Rudolf Audrey Wright

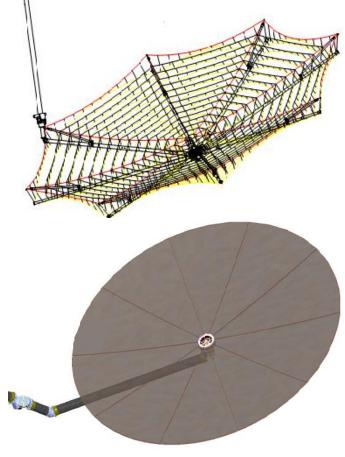
April 5, 2012



- Introduction
  - Needs Statement
  - Project Goals
- Concepts Overview
  - Concept Selection
- Final Design Breakdown
- Functional Diagram
- Engineering Economics
- Results and Discussion
- Conclusion



#### Introduction


• Two types of reflectors commonly used

-Mesh

-Solid

Ease of transportation

 –Size
 –Weight



**Pictures From Harris Corporation** 

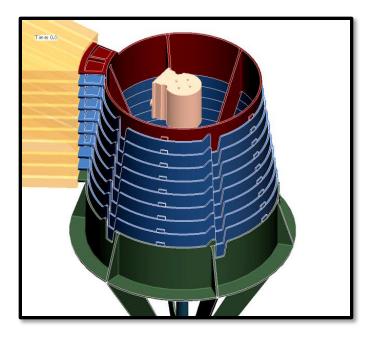


#### **Needs Statement**

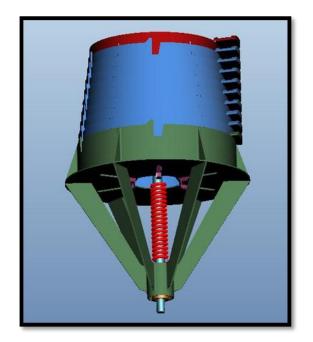
As technology becomes more complex, there is an increasing demand for solid reflectors that maintain high efficiency levels yet have the ability to be compacted and stowed in a small area.



#### **Project Goals**


- ✓ Design a hub mechanism to deploy six segmented solid reflector panels in a two-step motion
- ✓ Create a 3D CAD model to show dynamic simulation
- ✓ Work together with the Harris Panel Interlocking Team to create panel-to-hub interface

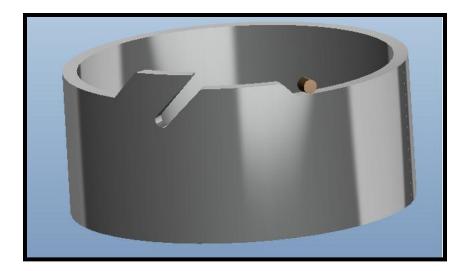
✓ Build a functioning scaled prototype



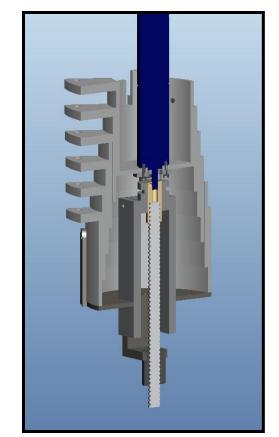



#### **Multiple Motors**




#### Spring Implementation





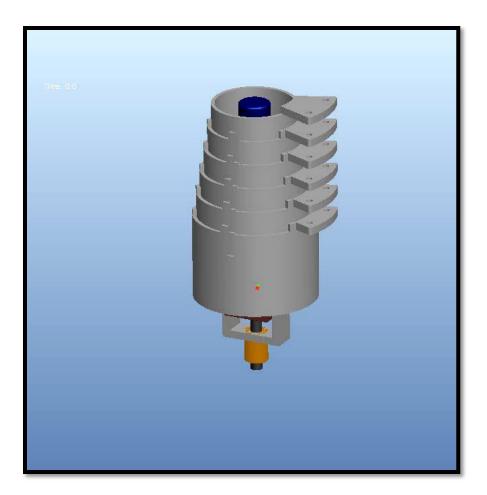



#### **Guide Slots**



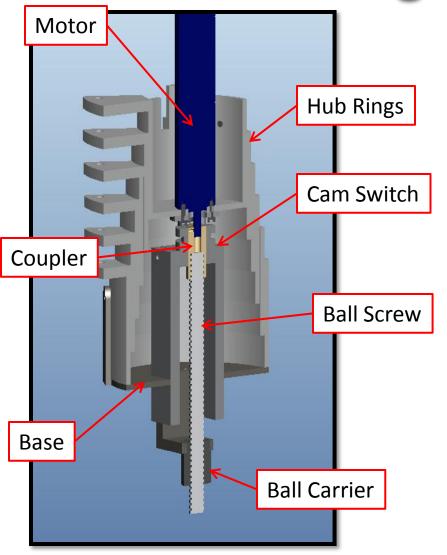
#### Synchronizer and Ball Screw






#### **Concept Selection Matrix**

| Decision Matrix      | ]      | Concepts                         |                |                       |                |             |                |                 |                |
|----------------------|--------|----------------------------------|----------------|-----------------------|----------------|-------------|----------------|-----------------|----------------|
|                      |        | Synchronized Two Step Deployment |                | Spring Implementation |                | Guide Slots |                | Multiple Motors |                |
| Specification        | Weight | Rating                           | Weighted Score | Rating                | Weighted Score | Rating      | Weighted Score | Rating          | Weighted Score |
| Reliability          | 0.40   | 4.00                             | 1.60           | 3.00                  | 1.20           | 4.00        | 1.60           | 3.75            | 1.50           |
| Durability           | 0.05   | 4.00                             | 0.20           | 2.00                  | 0.10           | 4.00        | 0.20           | 4.50            | 0.23           |
| Weight               | 0.10   | 3.00                             | 0.30           | 3.50                  | 0.35           | 4.00        | 0.40           | 2.00            | 0.20           |
| Efficiency           | 0.20   | 5.00                             | 1.00           | 4.00                  | 0.80           | 3.00        | 0.60           | 2.00            | 0.40           |
| Ease of Construction | 0.15   | 2.00                             | 0.30           | 3.00                  | 0.45           | 2.50        | 0.38           | 3.50            | 0.53           |
| Cost                 | 0.10   | 3.00                             | 0.30           | 3.50                  | 0.35           | 4.00        | 0.40           | 2.50            | 0.25           |
| Total                | 1.00   | ) <b>3.70</b>                    |                | 3.25                  |                | 3.58        |                | 3.10            |                |

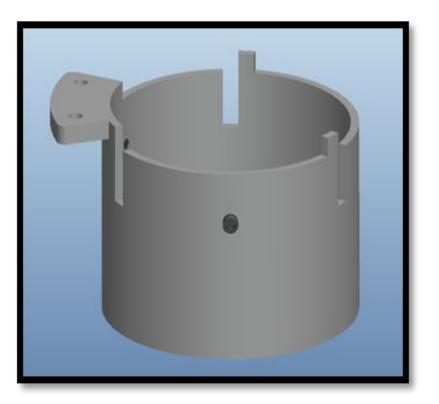



#### Final Design Two-Step Hub Mechanism





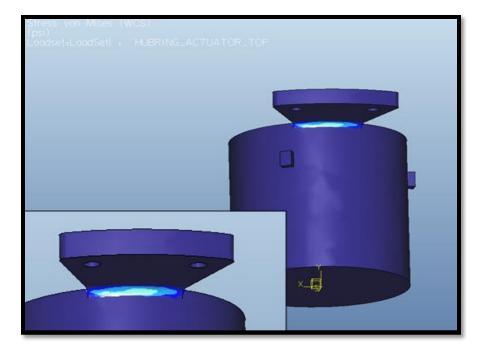
# **Final Design Description**




HARRIS

- Single motor accomplishes rotary and linear motion with ball screw
- Two major subsystems
  - Hub Rings
  - Drive Mechanism

# **Hub Rings**


- 6 concentric rings
- Each supports a single panel
- Pins and slots guide motion





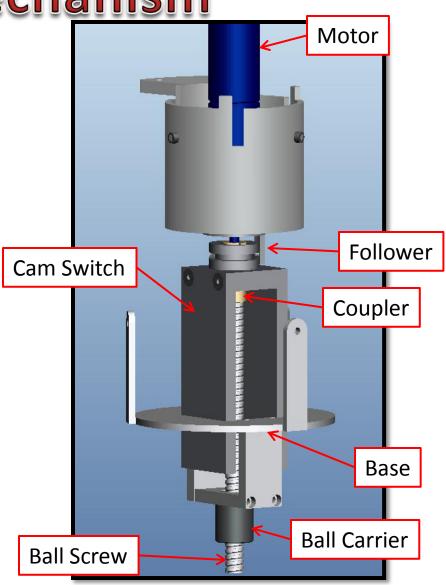
# **Hub Ring Design**

- Finite Element Analysis was used to determine appropriate material
- Von Mises stress:
   20,000psi
- AL 6061 was chosen for its strength and low weight and machinability



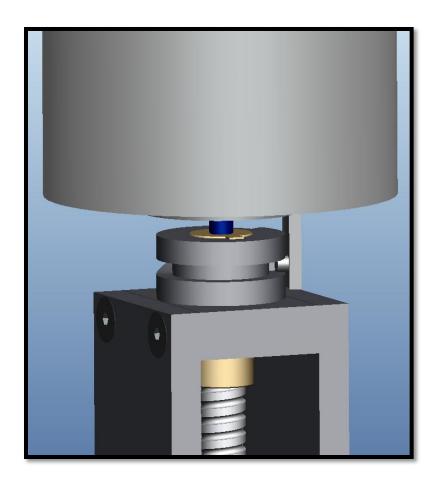


# Hub Ring Design cont.


- AL6061 meets strength requirement
- Friction and galling is a concern
- Solution was Hardcoat Anodizing with Teflon impregnation
- Exceptional surface hardness, wear resistance and lubricity



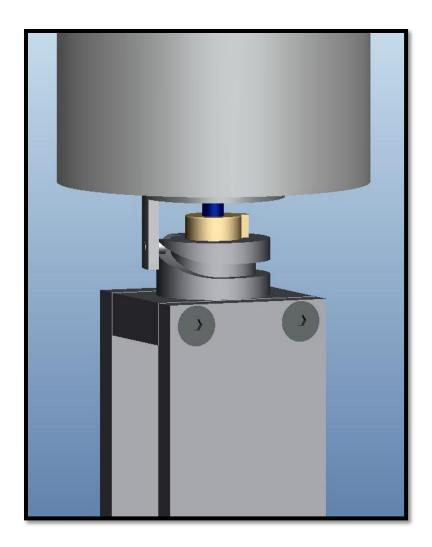



# **Drive Mechanism**

- Actuates the Hub
- Consists of the interior components
  - Motor
  - Coupler
  - Cam Switch
  - Switch Follower
  - Ball Screw
  - Ball Carrier



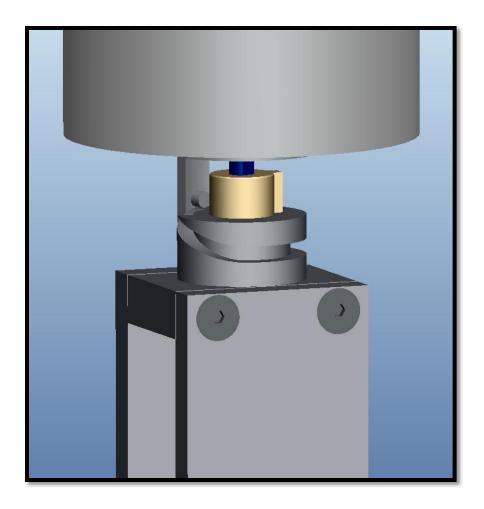



# **Mechanism Walkthrough**



- Coupler key engaged with Cam Switch
- Switch Follower in initial position
- Cam Switch locks motor shaft, coupler & ball screw
- Motor only rotates Hub Rings



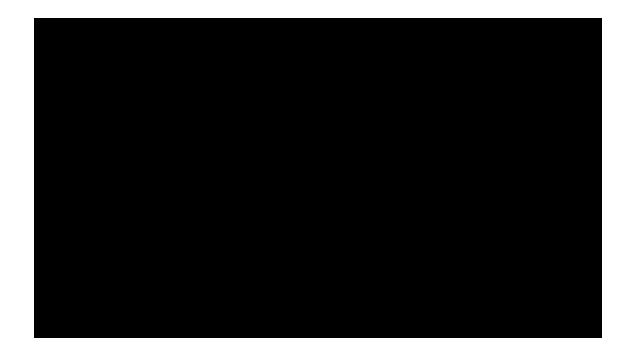

# Mechanism Walkthrough cont.



- Coupler key still engaged with Cam Switch
- Switch Follower begins to push Cam Switch down
- Motor shaft, coupler & ball screw still locked
- Hub Ring rotation nearing completion

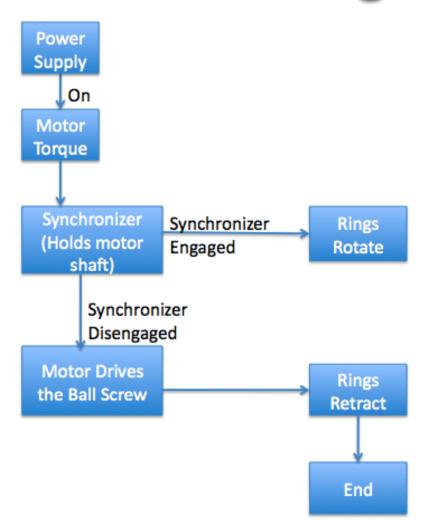


# Mechanism Walkthrough cont.




- Coupler key disengages
   Cam Switch
- Switch Follower pushes Cam Switch completely down
- Motor shaft, coupler & ball screw free to rotate
- Hub Ring rotation complete
- Motor turns Ball Screw




#### **Final Design**

#### Prototype Test Run



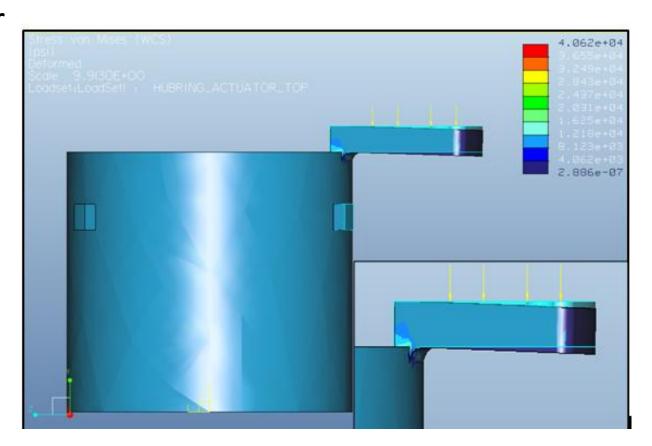


#### **Functional Diagram**





#### **Engineering Economics**

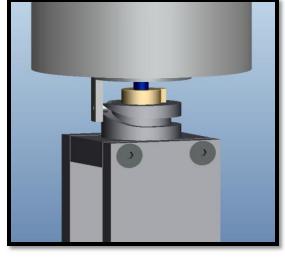

|                                       | <b>a</b>                                                                                              | <b>a</b>                |            | Place of                |
|---------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|------------|-------------------------|
|                                       | Quantity                                                                                              | Cost/Unit               | Total Cost | Purchase                |
| Aluminum 6061<br>(Hub Rings)          | 1 - [1 ft tube (4.5" diameter)]<br>1 - [1 ft tube (4.0" diameter)]<br>1 - [1 ft tube (3.5" diameter)] | 81.38<br>71.86<br>48.95 |            |                         |
|                                       | 1 - [1 ft tube (3.0" diameter)]                                                                       | 36.09                   |            | McMaster                |
| Aluminum 6061<br>(Connecting Tabs)    | 1 - [1/4" thick, 2" wide recatangular bar (3<br>ft)]                                                  | 17.23                   | 17.23      | McMaster                |
| Hard anodizing with<br>teflon coating | All aluminum                                                                                          | 374.50                  | 374.50     | A.M. Metal<br>Finishing |
| Motor                                 | 1 - MicroMo 2657 DC motor                                                                             | 742.90                  | 742.90     | MicroMo                 |
| Feedback Controller                   | 1 - Feedback Controller                                                                               | 491.00                  | 491.00     | MicroMo                 |
| Screws                                | 1 - [6-40 Black Oxide Alloy Steel 3/16", 100<br>pack]                                                 | 11.22                   | 11.22      | McMaster                |
| Ball Screw                            | 1 - [3/8" diameter, 1/8" travel dist./turn, 1<br>ft. long]                                            | 30.68                   | 30.68      | McMaster                |
| Ball Screw nut                        | 1 - [3/8" diameter, 1/8" travel dist./turn,<br>136 lb load cap.]                                      | 93.89                   | 93.89      | McMaster                |
| Aluminum 6061<br>(Synchronizer)       | 1 - [2" thick, 1 ft. long rectangular bar]                                                            | 32.95                   | 32.95      | McMaster                |
| Aluminum 6061<br>(Baseplate)          | 1 - [1/8" thick, 6"wide, 3 ft. long]                                                                  | 26.78                   | 26.78      | McMaster                |
| Steel Hand Taps                       | 3 - [General purpose high-speed hand taps,<br>6-40 thread]                                            | 4.74                    | 14.22      | McMaster                |
| Machining Cost (man<br>hours)         | 3 hours/ring with 6 rings<br>4 hours - synchronizer<br>12 hours - assembly                            | 34 hours                | 34 hours   | FSU machine<br>shop     |
| Total (\$)                            | ,                                                                                                     |                         | 2073.65    | F                       |

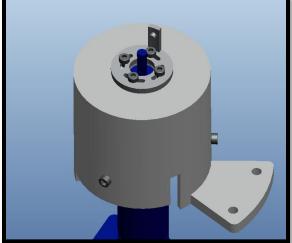


#### **Results and Discussion**

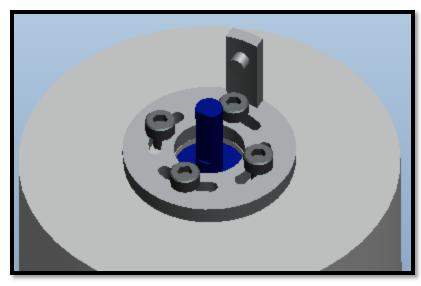
#### **Finite Element Analysis**

- Shows that for our loading there would be some deflection.
- Similar when panels were actually attached




# **Results and Discussion**


Testing the Synchronizer

 Testing for the point of release of the synchronizer





- Alignment of pin and keyway
- Trial and error





#### **Results and Discussion**

#### **Customer Needs**

- Ease of transport
- Autonomous Deployment

 Rotate and retract panels into position while keeping alignment

#### **Our Design**

- Panels are stowed
- Low speed, High torque
   Motor with 21 in. lbs of torque
- Synchronizer switch and ball screw



#### Conclusion

- Key Points/Main Achievements
  - Created 3D model to show dynamic and kinematic simulation
  - Produced hub mechanism prototype
  - Worked together with Interlocking Panel Team to create Panel-to-Hub interface
- Improvements to make the prototype better
  - Slots for the guide pins of the hub rings
  - Make hub rings out of a solid piece
- We have proven the viability of one day sending segmented solid reflectors into space.



#### **Special Thanks To:**

- Mr. Gustavo Toledo — Harris Corporation
- Dr. Chiang Shih
  - Faculty Advisor





