Needs Analysis and Requirements Spec Team FFSUB

Tuesday 27 September, 2011

Introduction

Antony Jepson

The Team - ECE

Antony Jepson

- Lead PM
- Computer Engineering

Ryan Kopinsky

- Lead Secretary
- Electrical Engineering

Hang Zhang

- Treasurer
- Computer Engineering

The Team - ME

Eric Sloan

• **PM**

Mechanical Engineering

Kashief Moody

- Secretary
- Mechanical Engineering

Tra Hunter

- Lead Treasurer
- Mechanical Engineering

Background

July 2012, SSC Pacific TRANSDEC, San Diego, CA

Goals

- Learning and outreach
- Education in system design

Point System

- Most points = WIN
- Points based on
 - Documentation
 - Design verification
 - Performance

Customer Needs Analysis

Eric Sloan

Customer Needs Analysis

- Statement of the Problem
 - Design and Construction
 - Autonomous Underwater Vehicle (AUV)

- Documentation
 - Journal Paper
 - Video

Required Capabilities

AUV

- Operate autonomously
- Complete the six required underwater tasks
- Submerge and remain submerged during mission (unless specified by a particular task)
- Waterproof electronics
- Kill Switch
- Slung on harness during transportation (safety purposes)

Required Capabilities

Journal Paper

- Describe each aspect of our design
- Provide reasoning for design choices

Video

Introduce design team and approach to the event

Desired Capabilities

> AUV

- Lightweight
- Fast/Efficient

- Journal Paper
 - Clear and concise
 - Include images of Pro/Engineer model of device and components/subsystems
 - Include images from simulations and testing environment

Desired Capabilities

Video

- Clear and concise
- Convey strong team cohesiveness
- Convey enthusiasm about both the design and competition

Operational Description

- Sense surrounding environment
 - Colors, shapes, and sounds
- Sense the dynamics of the vehicle
 - Position, velocity, acceleration, and orientation
- Interpret sensory information via a central control unit
- Design a control system to
 - Propel the vehicle in the proper direction
 - Stabilize the vehicle during the mission
 - Achieve the desired depth of the vehicle
 - Complete the six required tasks

Obstacle Course

Ryan Kopinsky

Obstacle Course

Path Tracking

- PVC Line Segments
- Guide through Obstacle Course
- ▶ Relative angle between segments $\leq 90^{\circ}$

Gate

Navigate through Gate

Navigate through Gate

Buoys

Hit Specified Buoys

Box Crossing

Pass through Box

Drop-in-bin

Drop Markers in Specified Bins

Fire Torpedoes

Fire Torpedoes through Cut-outs

Locate and Recover

Surface, Recover, Transport and Drop-off

Eng. Requirements / Wants

Hang Zhang, Kashief Moody

Functional Requirements

- Mobility
 - Thrusters
- Hardware Interfaces
 - ARM and/or x86 processor
- Software Interfaces
 - Process multiple data streams simultaneously

Functional Requirements

- Obstacle recognition and path tracking capabilities
 - Based on cameras and image processing
- Sensing
 - Velocity
 - Orientation
 - Acceleration
 - Depth
- Depth processing
 - Input: Data from sensors
 - Output: Proper mechanical function

IMU

Functional Requirements

Timing

- 15 minutes to complete all tasks
- Reasonable speed required
- Kill switch
 - Clearly marked
 - Disconnect the batteries
- Buoyancy
 - ▶ \geq 0.5% of its mass
- Marker and torpedo
 - 1.5" x 1.5" x 6" (3.81 cm x 3.81 cm x 15.24 cm)
 - < 1.5lbs (0.68 kg) in air</p>

Torpedo

Non-Functional Requirements

- Typically some form of constraint or restriction that must be considered when designing the solution
- Differs from functional requirements by defining how a system is supposed to be, rather than what it is supposed to do

Non-Functional Requirements

- Vehicle must be battery powered
- All batteries must be sealed
- Batteries may not be charged inside of sealed vessels
- Open circuit voltage of any battery (or battery system) should not exceed 60 VDC
- All propellers must have a shroud with a minimum 2" spacing
- No materials may be released by the vehicle into the waters of the arena
- Vehicle must complete the competition in 20 minutes

Team-implemented limitations placed on the development of the system

Constraints

- The device should not have any sharp corners / edges
- The production and travel expenses cannot exceed the donated funding amount

Engineering Wants

Data Logger

- Custom Control Dashboard
 - Remote Control Capabilities
- Cooling Management
- Aesthetics

Test Plan

Tra Hunter

Waterproof Test

- Electronics Enclosure
- Test Plan

Unit Testing

- Grabbing Arm
- Launching Mechanism
- Object Release
- Thrusters
- Buoyancy Control
- Codes/Subsystems

Competition Tasks

Design Verification

- Performance Testing
- Reliability Testing
- Compliance Testing

Conclusion

Antony Jepson