

NAVAL ENGINEERING EDUCATION CENTER

15th Annual AUVSI RoboSub Competition – *The Ides of TRANSDEC*

Tra Hunter, Antony Jepson, Ryan Kopinsky, Kashief Moody, Eric Sloan, Hang Zhang

Tuesday April 3rd, 2012

Team Members

Antony Jepson ECE Project Manager

Ryan Kopinsky Secretary

Hang Zhang Treasurer

Eric Sloan ME Project Manager

Kashief Moody Secretary

Tra Hunter Treasurer

ME

ECE

Presentation Overview

- Introduction
- Functional System Diagram
- Concept Descriptions
- Final AUV Design + Test Results
 - Complete System
 - Mechanical Subsystems
 - Electrical System
 - Guidance System
- Engineering Economics Budget/Expenditures
- Concluding Remarks + Questions

SSC Pacific TRANSDEC Anechoic Saltwater Pool

Mission Tasks

Course Layout – Practice/Competition

6

Functional Diagram

Concept Descriptions

- Hull/Frame
 - Solid Enclosure
 - Hydrodynamic/Biomimetic Shape (e.g. Sting Ray)
 - Open External Frame + Internal Enclosure
- Propulsion
 - Pneumatics
 - Thrusters
 - Quantity
 - Locations
- Camera Enclosures
 - Cylindrical + Optically Transparent
 - Spherical + Optically Transparent
 - Box (i.e. Flat-Faced) + Optically Transparent
 - Locations

Concept Descriptions

- Torpedo Launchers
 - Self-Propelled
 - Spring Actuated
 - Pneumatically Actuated
 - Regulated Compressed Air Tank
 - Solenoid Valves
 - Gas Lines + Adapters

Grasp/Release Mechanism –

- Grab vs. Scoop
- Number of Claws/Jaws
- Pneumatically Actuated
 - Regulated Compressed Air Tank
 - Solenoid Valves
 - Gas Lines + Adapters

Final AUV Design

Side View

Top View

Front View

Photograph of Assembled AUV

Tests

Test Description	Outcome	
Vehicle Weight	Pass (87.7 lbs)	
Vehicle Density	Pass (0.0360 lb/in ³)	
Vehicle Balance	Pass	
Vehicle Dimensions	Pass (37" L x 27" W x 27" H)	
Watertight Hull	Pass	

Interior Hull Layout (Revised)

Camera Enclosures (Revised)

Tests

Test Description	Outcome
Watertight Camera Enclosures	Pass
Computer Vision – Gate Detection	Pass
Computer Vision – Path Detection	Pass
Computer Vision – Buoy Detection	N/A
Computer Vision – Drop-In Bin Detection	N/A
Computer Vision – Torpedo PVC Cut-Out Detection	N/A

Compressed Air Tank and Regulators

Compressed Air Distribution System Diagram

Tests

Test Description	Outcome
Proper Regulated Output Pressure	Pass (~100 psi)
Watertight Gas Lines (No Air Leakage)	Pass
Solenoid Valve Actuation/Integration	Pass
One-Way Check Valve Purging System	Pass

Torpedo Launcher Design

Tests

Test Description	Outcome
Torpedo Density	Pass (0.037 lb/in ³)
Torpedo Balance	Pass
Torpedo Hydrodynamics	Pass
Torpedo Dimensions	Pass (0.95" L × 0.95" W × 5.00" H)
Torpedo Launch – Air	Pass
Torpedo Launch – Water	Fail (Modification In Progress)

Grasp/Release Mechanism Design

Tests

Test Description	Outcome
Simulation (Pro/E Mechanism + Adams)	Pass
Grasp/Release Test – Air	Pass
Grasp/Release Test – Water	Pass

Marker Dropper Design

Tests

Test Description	Outcome
Servo Motor Actuation/Control (Using Dragon Board)	Pass
Marker Dropper Test – Air (Using Dragon Board)	Pass
Marker Dropper Test – Water	N/A

Electrical System

Voltage Regulator Boards

Cur2
Cur2
Lu

Cur2
Cur2
Lu

Cur2
Cur2
Cur2

resign

LM22677 For Zotac PC and Pressure Transducer (Input: 32V – Output: 19V)

LM22676 For Arduino Uno Boards and Hydrophone Interface PCB (Input: 19V – Output: 9V)

Electronics Platform

Mission Control

Mission Control

Guidance System – IMCL Submersible Pressure Transducer

Key Features:

- Sealed Gauge
- 0 10 mWG Range
- 0 5 V Output
- Marine Bronze Housing
- PUR Cable
- Ceramic Piezoelectric Sensor

Function:

Accurately Measure Depth of the AUV Underwater

Guidance System – Inertial Measurement Unit (IMU)

Key Features:

- 3-Axis Gyro
- 3-Axis Accelerometer
- Compact I.2" x I.4" Footprint
- Micro-USB Input
- Built-In System Clock/Timer

Function:

• Accurately Measure Orientation, Acceleration, and Relative Position of AUV Underwater

Guidance System – Inertial Measurement Unit (IMU)

Code Sample

SpatialData {

double acceleration[3]; double angularRate[3]; double magneticField[3]; Timestamp time;

Kalman Filter

};

Guidance System – Hydrophone Array

Key Features:

- Omnidirectional Sensitivity
- Compact Size (1.13" x 1.13" x 1.2")
- High Impedance Cable Sheathing

SQ26-01 Towed Array Hydrophone

Function:

• Accurately Measure Orientation, Acceleration, and Relative Position of AUV Underwater

Guidance System – Computer Vision

Logitech C615

Zotac Zbox ID41 Plus

Auto-Light Auto-Focus Intel Atom D525 1.8GHz Dual-Core CPU, 2GB RAM, 250GB HDD, 512MB NVIDIA ION2 GPU

Features

- Modules can be reused
- Optimized for performance/ efficiency

Modules

- Find FPS
- Save Images
- Color Filter
- Find Task
 - Find Gate
 - Find Path
 - Find Buoy
- Send To Mission Control

42

😣 🗐 💿 kopinsky@kopinsky-Parallels-Virtual-Platform: ~/robosub/cv
84 0 718575831
77 0 718575873
60 0 718575923
48 0 718575974
32 0 718576013
-5 -2 718576050
-33 -8 718576090
-36 -12 718576128
-1/ 0 /185/0284
1 -10 718576365
31 1 718576410
47 - 39 718576479
66 -68 718576518
-1 25 718576580
0 16 718576634
-1 18 718576691
8 10 718576745
0 28 718576804
0 4 718576857

Tests

Test Description	Outcome	Notes
Color Filter	Pass	N/A
Find FPS	Pass	7-8 FPS Per Web Camera
Send to Mission Control	Pass	Center Coordinates + Timestamp Sent to Mission Control
Save Image Frames	Pass	N/A
Find Gate	Pass	Center + Corner Coordinates, FPS, Height, Width, Angle Displayed

Budget – Project Expenditures

	Item Description	Price
Fall Expenditures	80/20 Framing + Fasteners	\$359.88
	Cast Acrylic Hull + Torpedo Cannons	\$340.19
	SeaBotix BTD150 Thrusters	\$1005.18
	SEACON Underwater Micro Wet- Mate Connectors	\$1191.14
	Raw Materials (Aluminum/Acrylic)	\$974.52
Spring Expenditures	Miscellaneous	\$883.44
	Compressed Air Distribution System	\$443.56
	SQ26-01 Hydrophones (2)	\$410.75
	SEACON Underwater Micro Wet- Mate Connectors	\$183.33
	IMCL Submersible Pressure Transducer	\$401.87
	Zotac PC	\$293.98
	Microcontrollers, Interface Circuits, Motor Drivers	\$578.52
	C615 Logitech Web Cameras	\$108.49
	Miscellaneous	\$733.06
Summary	Build Total	\$7,907.9I

Budget – Competition Expenditures/Summary

Competition Expenditures	Item Description	Price
	Travel/Shipping/Lodging Expenditures	\$6,700.00
	Competition Fee	\$500.00
Summary	Project Total	\$15,107.91
	Current Budget	\$11,433.00
	Remaining Balance	-\$3,674.91

Conclusion

Completed Objectives

- Vehicle Mechanically Complete
 - Watertight
 - Proper Weight, Density, and Balance
 - Integrated Peripheral Subsystems
- Computer Vision
 - Gate Detection
 - Path Detection
 - C615 Logitech Web Cameras Installed Inside Enclosures

Current Setbacks

- Electrical System Wiring Scheme and Accident Shortage Issues
 - Arduino Uno Board Failures
 - L298 Dual H-Bridge Motor Driver Failures
 - Switching Voltage Regulator Board Failures

Conclusion

Remaining Goals

- Fix/Replace Malfunctioning Circuitry
- Obtain Proper Functionality of the Thrusters and Marker Dropper
- Integrate Inertial Measurement Unit (IMU) and Sealed Gauge Pressure Transducer
- Establish PID Controllers to Maintain Vehicle Stability
- Progress/Refine Computer Vision and Mission Control to Enable the Successful AUV Completion of the Gate-Passing, Buoy-Striking, and Torpedo Launching (i.e. "Kill Caesar") Tasks