Computer Controlled Aiming and Tagging System

Fall Final Presentation

Parker Brunelle - Alan Delgado Broderick Epperson - Devin Swanson

Project Overview

- Background and Problem Statement
- Concepts
- Motors
- Controller & Components
- Power systems
- Firing system

Background

- Real time analysis to test the ability and accuracy of C-CATS program
- Old Way:
 - Run dynamic cable testing with cameras and data sensors
 - Hours of post processing to evaluate data
 - Must start all over if the data is bad

Problem Statement

Solution:

- System with ability to see the accuracy immediately
- Real time mark on target to collect data
- Immediate feedback for good run/bad run

Project Goal:

 Tagging system that can be statically tested for accuracy, repeatability, fire latency and safety

High Level Specifications

Specification	Value
Budget	\$2000
Maximum Range	25 m
Azimuth Range	360 deg
Elevation Range	90 deg
Angular Velocity	≥ 360 deg/s
Resolution	≤ 1 deg/s
Maximum Weight	50 lb.
Power Source	Honda EU1000i Generator
Motors	Servos
Tagging System	Paintballs

Mechanism

- Will incorporate a Double Gimbal assembly
- A gimbal is a pivoted support that allows the rotation of an object about a single axis.
- Double-Gimbal assembly will provide the mechanism

with two degrees of freedom

- Requires two motors

The Phalanx close in weapon system (CIWS) http://www.armybase.us/2009/05/raytheon-us-navy/

Concepts

Concept 1

Concept 1 Data

$$I_x = 101.80 \frac{lb}{in^2}$$

$$\tau_{x} = I_{x}\alpha_{\text{max}}$$

$$I_y = 90.23 \frac{lb}{in^2}$$

$$\tau_y = I_y \alpha_{\text{max}}$$

Concept 1 Properties:	
Housing	Aluminum 6061
Elevation Torque Needed	4.95 N*m
Azimuth Torque Needed	5.59 N*m
System Weight	49 lbs.

Concept 1

Pro

- All components enclosed in box
- Motors move gun directly

Con

- Wires and hoses can get tangled when operating and restrict movement
- System weight ~ 49 lbs

Concept 2 Revised

Concept 2 Revised Data

$$I_x = 1255.23 \frac{lb}{in^2}$$

$$\tau_{x} = I_{x}\alpha_{\text{max}}$$

$$I_y = 90.23 \frac{lb}{in^2}$$

$$\tau_y = I_y \alpha_{\text{max}}$$

Concept 2 Properties:	
Baseplate	Aluminum 6061
Gun Bracket	Aluminum 6061
Elevation Torque	4.95 N*m
Azimuth Torque	77.8 N*m
System Weight	21 lbs.

Concept 2 Revised

Pro

- All components rotate with gun
- Can mount brackets for future dynamic testing

Con

 Azimuth torque is extremely high ~ 77.8 Nm

Concept Decision Matrix

		Concepts			
		Concept 1 Concept 2			ept 2
Specifications	Weight	Rating	Score	Rating	Score
System Weight	30.0%	2	0.60	4	1.20
Elevation Torque	25.0%	4	1.00	4	1.00
Azimuth Torque	25.0%	4	1.00	1	0.25
Area for Components	20.0%	2	0.40	3	0.60
Total	100.0%		3.00		3.05

Optimization

- Both scored very close in decision matrix
- Both exhibit significant cons
- Best from concept 1:
 - Best setup for motor torque values
- Best from concept 2:
 - Most maneuverability
 - Maximum space for component mounts

Concept 3

Concept 3 Bottom Section

Concept 3 Data

$$I_x = 189.11 \frac{lb}{in^2}$$

$$\tau_x = I_x \alpha_{\text{max}}$$

$$I_y = 90.23 \frac{lb}{in^2}$$

$$\tau_y = I_y \alpha_{\text{max}}$$

Concept 3 Properties:	
Discs	Aluminum 6061
Elevation Torque	4.95 N*m
Azimuth Torque	10.21 N*m
System Weight	30 lbs.

Concept 3

Finite Element Analysis

- Pro/E Mechanica
- Max stresses at thrust bearings
- Max stress only about 9,000 psi

Factor of safety of 4.4

- Two different Dynamixel servo motors will be integrated into our system.
 - RX-64
 - Responsible for elevation position.
 - -EX-106+
 - Responsible for azimuth position.

Daisy chain link

 Both will be linked in series by a daisy chain bridge from the Arbotix controller to power and control.

- Dynamixel Rx-64
- Torque: 64 kg-cm (6.276Nm)
- Speed: 0.157sec/60º (382 º/s)
- 18 V
- Resolution 0.29 deg
- 300 deg operating angle

- Dynamixel EX-106+
- Torque: 106 kg-cm (10.395Nm)
- Speed: 0.143sec/60° (420°/s)
- 18 V
- Resolution 0.06 deg
- 251 deg operating angle

Controller & Components

Controller

- ArbotiX RoboController
 - ATMEGA644p microcontroller.
 - 16 MHz clock speed for accuracy.

the other to the XBEE wireless radio.

 BioloidController library (open source) available for use with the Arduino IDE for Dynamixel servo motors.

http://www.trossenrobotics.com/p/arbotix-robot-controller.aspx

Xbee Wireless Radio

- An Xbee 1 mW radio transmitter will be used to remotely communicate to our system.
- The user will be able to input commands from a distance of 100 meters.
- The XBee transmitter will be mounted on the USB module and connected to a laptop via USB cable and the receiver will be placed on the motor controller.

Power Systems

Power Supply

Power Generators

- Allows for testing to be done in an outside environment
- Customer prefers power generator
- Allow for multiple testing without any down time
- Uses existing inverter to allow for varying voltage output
- Operating time is 8+ hr

http://www.etpetersen.com/ope/honda.htm

Power Supply

- Standard wall plug
 - Powers board

http://www.trossenrobotics.com/p/power-supply-12vdc-2a.aspx

- AC to DC Variable Power
 - Powers motors

Firing Systems

Firing System Requirements

 Achieve dispersion of less than a degree

 Arc length radius calculated to be 8.59 in at 25 m range

Muzzle velocity
 between 375 – 400 psi

Tagging System

- Tippmann A-5
 - Rugged
 - Relatively Light
 ~ 3.11 lb
 - "E" Trigger
 - Cost Effective

http://www.compulsivepaintball.com/mmCOMPULSIVEPAINTBALL/Images/Tippmann %20A5%20V2%20With%20Selector%20Switch.jpg

Tagging System Components

Q loader Hooper

- Spring forces paintballs through feeding hose and into gun
- Hose can be adjusted to fit many design specifications
- The Q Loader can feed against gravity so it can be placed in a variety of positions

Hammerhead Freedom Fighter Barrel

- Longer barrels for better accuracy and consistency
- Cost effective
- It is the barrel used in the modeled design

http://hammerheadpaintball.com

Tagging System Components Cont

Nitrogen Pressure System

- Maintains stable pressure at different ambient temperatures
- Customer provides Nitrogen at testing facility

http://marketpaintball.info/4545-crossfire-high-pressure-tank-fs.html

Paintballs (Evil vs. Golf paintball)

- Golf paintballs are more feasible since the mark can be measured easily
- Evil are more cost effective and are commonly used in standard paintball guns
- Testing is needed to conclude which paintball is more accurate

http://www.rap4.com/rap4-golf-paintball-training-projectiles-a-258.html

Safety

3 Ways:

- 1) Remove mechanical trigger
 - No accidental pull
- 2) Have separate channel for firing command
 - •Does not allow for mixed signals when positioning the system
- 3) Simple on/off Switch
 - •Wired between controller and trigger
 - •No signal can be sent unless keyed switch is turned 'on'

Budget

Paint:			
G.O.L.F Paintballs (500)	\$24.95		
EVIL Paintballs (2000) \$70.00			
Gun & Upgrades:			
Tippmann A5 with E-Trigger	\$368.45		
Hammerhead Barrel	\$59.00		
Air Supply	\$129.95		
Coiled Air Hose	\$30.00		
Grip Rail	\$20.00		
Motors:			
Motors & Brackets Package	\$651.40		
Controller/Components:			
Controller & Bridge	\$139.94		
Wireless Receiver	\$21.95		
Wireless Remote	\$24.95		

Left Over	\$459.41
Assembly Materials	TBD
Extra Compnents	TBD

Budget Breakdown

• *Motor value excluding sponsor provided higher torque motor

Ordering

- Orders completed:
 - Motors
 - Controller
 - Controller Bridge
 - Wireless connector
 - Paintball Gun
- Pending Orders:
 - Safety Mechanism
 - Air Supply
 - Paint
 - Materials

Timeline

December

January

Weekly Customer Checks

Part Ordering

Component Testing

Building

Questions?

Appendix 1 Equations

•Minimum angular velocity $\omega = 360 \text{ deg/s}$

Tangential Velocity

$$V_{Tavg} = \omega r$$

Acceleration

• Maximum acceleration modeled as ball falling at tangential velocity with 2 inch travel of center mass

$$\mathbf{a}_{\text{Tmax}} = \frac{E_K}{m\Delta l} = \frac{\frac{1}{2}mv^2}{m\Delta l} = \frac{\frac{1}{2}v^2}{\Delta l}$$

Angular Acceleration

$$\alpha_{\max} = \frac{a_{T\max}}{r}$$

Required Torque

- Torque = Moment of Inertia *
 Angular Acceleration
- Moment of Inertia modeled in Pro/E.

$$\tau = I\alpha$$

Max Required Torque:

$$\tau_{\rm max} = I\alpha_{\rm max}$$

Appendix 2

```
VOLUME = 6.4179570e+01 INCh^3
SURFACE AREA = 2.5125709e+02 INCh^2
DENSITY = 4.8500000e-02 POUND / INCh^3
MASS = 3.1127092e+00 POUND

CENTER OF GRAVITY with respect to _COMPLETE_MARKER coordinate frame:
X Y Z 1.9949758e-03 -1.0658488e+00 6.7722735e+00 INCH

INERTIA at CENTER OF GRAVITY with respect to _COMPLETE_MARKER coordinate frame: (POUND * INCh^2)

INERTIA TENSOR:
Ixx Ixy Ixz 1.0180225e+02 -3.8512100e-03 -2.6614187e-02
Iyx Iyy Iyz -3.8512100e-03 9.0239872e+01 -9.0413392e+00
Izx Izy Izz -2.6614187e-02 -9.0413392e+00 1.2179945e+01
```

$$\omega := 360 \frac{\text{deg}}{\text{s}} \quad r := 19 \text{in} \quad v := \omega \cdot r \quad v = 3.032 \frac{\text{m}}{\text{s}} \qquad \lim_{x \to \infty} 1 := 2 \text{in} \quad I_y := 90.27 \text{lb·in}^2$$

$$I_x := 101.82 \text{lb·in}^2$$

$$a_{\text{Tmax}} := \frac{0.5 \cdot v^2}{1} \quad a_{\text{Tmax}} = 90.498 \frac{\text{m}}{\text{s}^2}$$

$$\alpha_{\text{max}} := \frac{\text{a}_{\text{Tmax}}}{r} \quad \alpha_{\text{max}} = 187.522 \cdot \frac{\text{rad}}{\text{s}^2}$$

$$\tau_y := I_y \cdot \alpha_{\text{max}} \qquad \tau_y = 4.954 \cdot \text{N·m}$$

$$\tau_x := I_x \cdot \alpha_{\text{max}} \qquad \overline{\tau_x = 5.588 \cdot \text{N·m}}$$

Appendix 3

```
VOLUME = 2.7981691e+02 INCH^3
SURFACE AREA = 1.7695312e+03 INCH^2
AVERAGE DENSITY = 7.6388289e-02 POUND / INCH^3

MASS = 2.1374735e+01 POUND

CENTER OF GRAVITY with respect to _ASSEMBLY2 coordinate frame:
X Y Z 1.2472702e+01 1.2085892e+01 -1.6546980e+00 INCH

INERTIA at CENTER OF GRAVITY with respect to _ASSEMBLY2 coordinate frame: (POUND * INCH^2)

INERTIA TENSOR:
Ixx Ixy Ixz 6.8998472e+02 -2.8619231e+01 5.0353468e+01
Iyx Iyy Iyz -2.8619231e+01 7.6841504e+02 7.9118966e+00
Izx Izy Izz 5.0353468e+01 7.9118966e+00

Izx Izy Izz 5.0353468e+01 7.9118966e+00
```

Appendix 4

```
VOLUME = 1.5772375e+02 INCH^3
SURFACE AREA = 7.0162309e+02 INCH^2
AVERAGE DENSITY = 6.2013963e-02 POUND / INCH^3
MASS = 9.7810748e+00 POUND

CENTER OF GRAVITY with respect to _ANIMATE coordinate frame:
X Y Z 6.8791061e-01 1.9365967e+00 5.0794214e+00 INCH

INERTIA at CENTER OF GRAVITY with respect to _ANIMATE coordinate frame: (POUND * INCH^2)

INERTIA TENSOR:
IXX IXY IXZ 3.1662820e+02 4.6119390e+01 3.4980887e+00
IYX IYY IYZ 4.6119390e+01 3.6016569e+02 -1.0525470e+00
IZX IZY IZZ 3.4980887e+00 -1.0525470e+00 [1.8911818e+02]
```