SUAS Project Student Unmanned Aerial System

Senior Design Team# 14

Antwon Blackmon Walker Carr Alek Hoffman Ryan Jantzen Eric Prast Brian Roney

Sponsored by FCAAP

April 12 2012

Presentation Overview

- Introduction
- Concepts Description and Selection
- Final Design
- Engineering Economics
- Project Results
- Conclusion

Introduction

Primary Objectives:

- Systems Engineering approach for the design and manufacture of an Unmanned Aerial System (UAS)
- UAS able to complete specified mission.
- UAS design compliant with the 2012 AUVSI Student UAS Competition requirements.

Mission Profile

- 1. Warm-up & Take-off
- 2. Climb
- 3. Waypoint Navigation
- 4. Autonomous Area Search
- 5. Waypoint Navigation
- 6. Descent
- 7. Landing

(Constant Target Recognition)

Concepts Description

Aircraft Configurations

Propulsion Systems

Power Supply Systems

Materials

Autopilot Systems

Camera Systems

Concepts Selection

Aircraft Configuration: Conventional

Propulsion System: Brushless DC Electric

Power Supply System: LiPo Batteries BEC Materials: Fiberglass Foam Carbon Fiber Balsa Wood

Autopilot System: ArduPilot Mega

Camera System: Sony Block Camera Lawmate Video **Final Design**

- SUAS Aircraft
- Propulsion System
- Avionics System
- Imagery System
- Power Supply System

Final Design

SUAS Aircraft

- Propulsion System
- Avionics System
- Imagery System
- Power Supply System

Airfoil Analysis – SD7037

3D Aerodynamic Analysis

3D Aerodynamic Analysis

3D Aerodynamic Analysis

Aerodynamic Analysis

Plane Name		
Wing Span	=	108.000 in
XYProj. Span	=	108.000 in
Root Chord	=	11.250 in
M.A.C.	=	11.250 in
X_CG	=	4.500 in
Wing Area	=	1215.000 in²
XYProj. Area	=	1215.000 in ²
Plane Mass	=	17.00 lb
Wing Load	-	0.014 lb/in ²

	v	=	55.0 mph
P	lpha	=	3.0000°
Side	slip	=	0.0000°
	Bank	1	0.0000°
Control	pos.	-	0.0000
	CL	=	0.5305
	CD	=	0.0096
Effici	ency	-	0.9750

Overall Aircraft Layout

Overall Aircraft Layout

Weight	16.00 lbs.	H. Tail Span	32.00 in.		
Length	63.25 in.	V. Tail Span	12.00 in.		
Aspect Ratio	9.60	9.60 Aileron Area			
Wing Span	108.00 in.	Rudder Area	22.50 sq. in.		
Wing Chord	11.25 in.	Elevator Area	80.00 sq. in.		
Wing Area	1215.00 sq. in.	Static Margin	10 %		
H. Tail Chord	10.00 in.	Motor Power	900 Watts		
V. Tail Chord	7.50 in.	Flight Time	>40 minutes		

Fuselage Structure

Wing and Spar Structure

- The spar core is a $\frac{1}{2}$ " width balsa rod of 48" length.
- The top caps of two layers of carbon fiber weave are attached with CA to the top and bottom of the core.
- The entire section is then wrapped in a 3k weave carbon fiber sleeve.

Final Design

- SUAS Aircraft
- Propulsion System
- Avionics System
- Imagery System
- Power Supply System

Propulsion System

- Eflite Power 60 Brushless DC
- Castle Creations HV ESC

Propulsion System

Final Design

- SUAS Aircraft
- Propulsion System
- Avionics System
- Imagery System
- Power Supply System

Avionics System Overview

Autopilot System Design

- Ardupilot Mega & ground station software
- Xbee 900MHz Telemetry
- MediaTek MT3329 GPS
- MPXV7002DP Airspeed Sensor
- Personal laptop
- Futaba FPS148 Servos

Autopilot to Control Surface Interface

 The autopilot uses PWM signals to interface with the control surfaces of the plane.

Final Design

- SUAS Aircraft
- Propulsion System
- Avionics System
- Imagery System
- Power Supply System

Imagery System Overview

Arduino Based Camera Control and 2-Axis Gimbal

Video System Integration and Testing

- Arduino Mega 2560
- Sony Block Camera
- Pan / Tilt Servo System
- 1.2 GHz Wireless TX and RX
- RC Camera Controller

Test Description	Pass / Fail
±90° Panoramic Rotation	Pass
-90° Tilt Rotation	Pass
Arduino and RC Communication	Pass
Block Camera to Arduino Communication	Pass
Wireless Camera and Servo Control	Pass
Long Distance Wireless Video	Pass
EMI Signal Interference	Pass*
Integration with 2-axis Gimbal	N/A

Camera Gimbal

Final Design

- SUAS Aircraft
- Propulsion System
- Avionics System
- Imagery System
- Power Supply System

Power Supply System

- Big Battery Pack:
 2 8-cell 29.6 V Lipo Batteries (7.7 Ah Capacity)
- Small Battery Pack: 1 3-cell 11.1 V (1.3 Ah Capacity)
- CC Pro BEC (29.6V \rightarrow 5V)

Engineering Economics

Item	Vendor	units	Price (\$)	Total Price (\$)
Video Transmitter	ReadyMadeRC	1	89.9	89.9
Video Reciever	ReadyMadeRC	1	99.49	99.49
CCD Test Camera	ReadyMadeRC	1	69.99	69.99
Sony Block Camera	GoElectric	1	566.95	566.95
Block Camera Interface board	GoElectric	1	89.95	89.95
3oz 4hs Fiberglass Cloth (yd)	US Composites	10	6.5	65
Perforated Release Film	US Composites	12	5.6	67.2
Breather Absorber Cloth	US Composites	12	4	48
5.7oz Plain Weave Carbon Fiber	US Composites	7	33.5	234.5
Sealant Tape	US Composites	3	6.95	20.85
PVA #1 Mold Release (1 G)	US Composites	1	16.75	16.75
Nylon Bagging Film	US Composites	6	4.7	28.2
Epoxy Resin and Hardener kit	US Composites	1	72	72
Misc Materials	Varied	1	500	500
3oz 4HS Satin Weave E Glass	US Composites	10	6.65	66.5
Autopilot Telemetry	3D Robotics	1	142	142
Autopilot Board (Full)	3D Robotics	1	300	300
1300mAh 11.1V 3 Cell Lipo Battery	Thunderpower	1	39.99	39.99
Castle Link USB	Hobbytown USA	1	25	25
3850mAh 29.6V 8 Cell LiPo Battery	Thunderpower	2	216.95	433.9
60A Brushless ESC	Thunderpower	1	149.95	149.95
Li Poly Charger & Power Supply	Thunderpower	1	79.95	79.95
Wire and Battery Plugs	Hobbytown USA	1	10	10
Electronics			Total =	2097.07
Materials			Total =	1119
Grand Total			Total =	3216.07

Results

• Electronics Systems Integrated and tested.

Results

SUAS Aircraft Construction

Initial fuselage mockup prior to wirecut

Cut mockups with mold box

Molds after removal from box. Holes were present in mold walls, so patching was done before molds were sanded to a smooth finish.

Conclusion

 Fun project that explored mechanical, electrical and computer engineering aspects.

End of Presentation

FAMU/FSU COLLEGE OF ENGINEERING STUDENT UNMANNED AIRCRAFT SYSTEM