MID-POINT REVIEW AIR BEARING UPGRADE FOR SHPB EXPERIMENT

<u>Group 1</u>

Joseph Chason, Donald Hayes II, Zachary Johnson, Sarah Napier

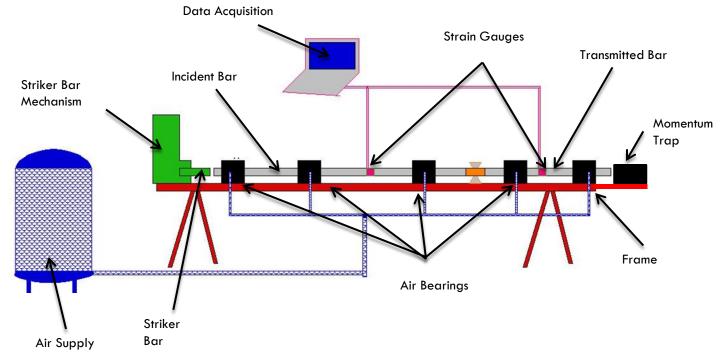
Dr. Joel House

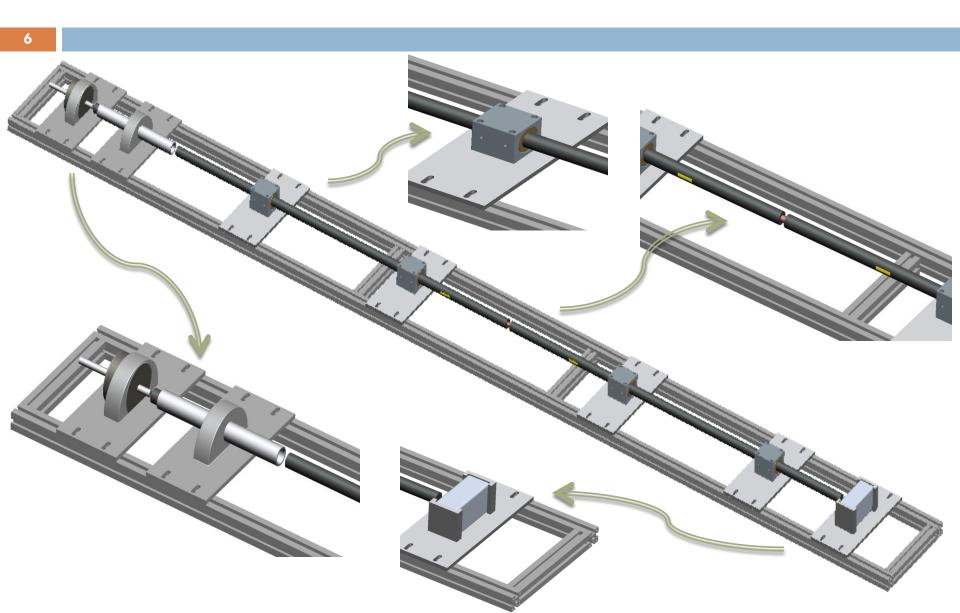
February 14, 2012

Outline

- Project Scope
- Introduction
- Current Status
- Upcoming Plans
- Schedule
- Summary

Project Scope


- Design a small scale Split-Hopkinson Pressure Bar Experiment
- Analyze SHPB design based on use of air bearings
- Provide analysis of:
 - Hardware cost
 - Interface requirements
 - Installation procedures
 - Impact on bar geometry


- Provide assessment of strain gauge technology
- Develop procedure to align bars
- Design a working prototype to show knowledge of system

Introduction - Overall Design

Design small scale SHPB system

Introduction - Final Concept Model

Current Status

Materials received

Part Machining Underway

Construction Underway

Current Status

LabView DAQ Program Under Construction

- Operations Manual Started
- □ Budget \$500 remaining of \$2,500

Upcoming Plans

□ Finalize testing location, February 21st

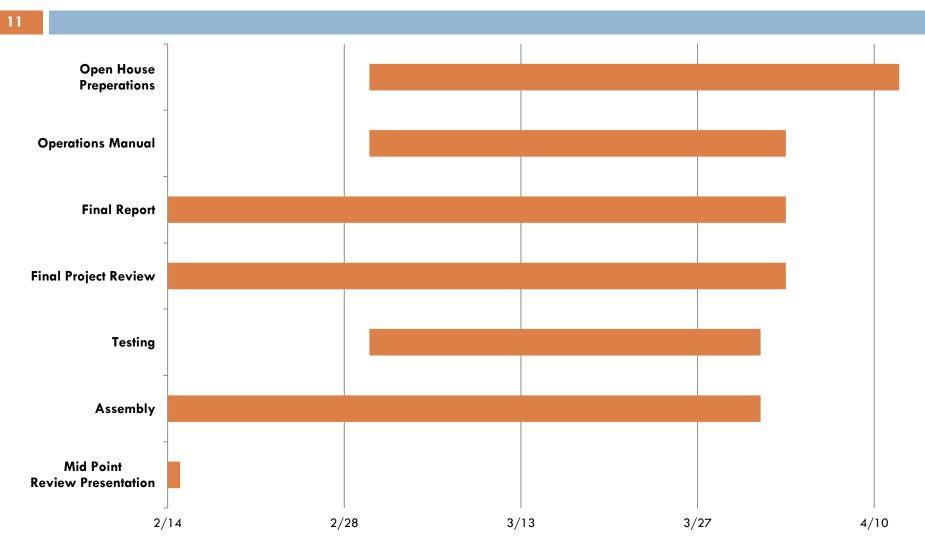
□ Complete prototype: March 5th

Complete LabView programming, March 5th

□ Test apparatus, March 12th – 26th

Checks / Tests

Construction Checks


- Bar to bushing fit/tolerances
- Bar alignments
- Striker bar and momentum trap mechanisms

Final Tests

- Dry run with no sample
 - Check strain gages
- Full run with sample
 - Obtain sample deformation data

Schedule

Senior Design Project # 1

Summary

- Machining & Construction Underway
- Finalizing Testing Location(s)
- Selecting Testing Dates
- LabView Code / Instruction Manuel Underway
- Schedule Updated

Questions?

Comments?

 \Box Stress $\sigma = F/A$

- $\Box \ Strain \qquad \qquad \epsilon = (Li Lo) / Lo$
- $\Box Gauge Factor GF = [(Ri Ro) / Ro] / \varepsilon$
- 🗆 Data Strain ε (Ri) = [(Ri Ro) / Ro] / GF

15

Strain in Specimen:

$$d\epsilon_{avg} / dt = (c_b / L_s) * (\epsilon_I - \epsilon_R - \epsilon_T)$$

Integration:

$$\varepsilon_{s} = (C_{b} / L_{s}) * \int_{0}^{t} [(\varepsilon_{l} - \varepsilon_{R} - \varepsilon_{T}) * dt]$$

Strain through the specimen

16

Strain energy for each wave

Kinetic energy =
$$0.5 * m * v^2$$

□ Initial
$$E_{I} = 0.5^{*} A_{B}^{*} C_{B}^{*} E_{B}^{*} T^{*} \epsilon_{I}^{2}$$

 $\Box \text{ Reflected } E_r = 0.5^* A_B^* C_B^* E_B^* T^* E_R^2$

17

Strain energy

$$\delta S_{E} = E_{I} - E_{R} - E_{T}$$

Plastic Energy absorbed by specimen

$$E_s = 2 * \delta S_E$$

Velocity Calculations

18

The velocity of the striker bar is needed The only requirement is that the specimen plasticaly deform while the incident and transmitter bars are only loaded elasticaly The following equations show the process

$$\sigma_{yc} := 70 \text{MPa}$$

$$\text{Area}_{c} := \pi \cdot \left(\frac{.4}{2}\text{in}\right)^{2} = \mathbf{I} \cdot \text{in}^{2}$$

$$\text{F} := \sigma_{yc} \cdot \text{Area}_{c} = \mathbf{I} \cdot \text{kN}$$

Yield stress of copper

Area of the copper

Force Required to reach Yield

Next the mass of the steel bar is computed

$$\rho := 7.85 \frac{\text{gm}}{\text{cm}^3}$$

$$\mathbf{v} := \pi \cdot \left(\frac{0.75}{2}\right)^2 \operatorname{in}^2 \cdot 6\operatorname{in} = \mathbf{v} \cdot \operatorname{in}^3$$

mass := $\mathbf{v} \cdot \boldsymbol{\rho} = \mathbf{I}$

Density of steel

Volume of the 3/4 inch diameter, 6 in striker bar

Mass of the striker bar

Velocity Calculations

19

Next the amount of time the striker bar will impact the incident bar

$c := 6100 \frac{m}{s}$	Speed of wave propogation in steel
L := 6in	Length of Striker bar
$t := 2 \cdot \frac{L}{c} = \mathbf{I} \cdot s$	Pressure wave propogating down the strikerbar and returning = 2 x length/speed
$t = \mathbf{I} \cdot \boldsymbol{\mu} \mathbf{s}$	Duration of impact

Finaly the minimum velocity of the striker bar needed to plasticaly deform the specimen

$$\mathbf{V} := \frac{\mathbf{F}}{\mathrm{mass}} \cdot \mathbf{t} = \mathbf{I}$$

$$\mathbf{V} = \mathbf{I} \cdot \frac{\mathbf{m}\mathbf{i}}{\mathbf{h}\mathbf{r}}$$

Minimum velocity of striker bar needed to plasticaly deform the copper specimen

Velocity Calculations

20

Acc := $\frac{310\text{ozf}}{\text{mass}} = \mathbf{I}$

 $L_{sol} := 1in$

$$D = D_0 + V_0 \cdot t + .5A_{cc} \cdot t^2$$

$$\operatorname{time}_{\operatorname{sol}} := \left(\frac{\mathrm{L}_{\operatorname{sol}}}{0.5 \operatorname{Acc}}\right)^{.5} = \bullet$$

$$V_{stkr} := Acc \cdot time_{sol} = \mathbf{I} \cdot \frac{mi}{hr}$$

Acceleration available from a chosen solenoid

Length of piston with given force

Generic dynamic position equation

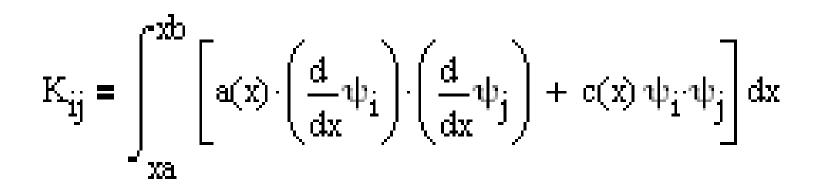
Derived time, from previous equation

Calculated velocity from given solenoic

Force_{striker.sol} :=
$$\frac{V_{stkr} \cdot mass}{t} = \mathbf{I} \cdot kN$$

Maximum force transfered from solenc

Weak Formulation for FEA


$$\rho \cdot \mathbf{A} \cdot \frac{\mathbf{d}^2}{\mathbf{dt}^2} \mathbf{T} - \frac{\mathbf{d}}{\mathbf{dx}} \left[\mathbf{E} \cdot \mathbf{A} \cdot \left(\frac{\mathbf{d}}{\mathbf{dx}} \mathbf{u} \right) \right] - \mathbf{f}(\mathbf{x}, \mathbf{t}) = 0$$

$$\int \left[w \cdot \rho \cdot A \cdot \frac{d^2}{dt^2} T - w \cdot \frac{d}{dx} \left[E \cdot A \cdot \left(\frac{d}{dx} u \right) \right] - w f(x, t) \right] d(x, t) = 0$$

$$\int \left[-(\rho \cdot \mathbf{A}) \cdot \left(\frac{\mathbf{d}}{\mathbf{d}t} \mathbf{w} \right) \cdot \left(\frac{\mathbf{d}}{\mathbf{d}t} \mathbf{T} \right) - \mathbf{w} f(\mathbf{x}, t) \right] \mathbf{d}(\mathbf{x}, t) + \mathbf{w} \cdot \mathbf{A} \cdot \rho \cdot \left(\frac{\mathbf{d}}{\mathbf{d}t} \mathbf{T} \right) = 0$$

Weak Formulation for FEA

$[\mathsf{K}]^*\{\mathsf{u}\} + [\mathsf{C}]^*\{\tilde{\mathsf{u}}\} + [\mathsf{M}]^*\{\tilde{\upsilon}\} = \{F\}$

$$M_{ij} = \int_{xa}^{xb} c_0(x) \cdot \psi_i \cdot \psi_j \, dx$$