INTERIM DESIGN REVIEW AIR BEARING UPGRADE FOR SHPB EXPERIMENT

<u>Group 1</u>

Joseph Chason, Donald Hayes II, Zachary Johnson, Sarah Napier

Sponsored by Eglin Air Force Research Laboratory

Dr. Joel House

Overview

- Introduction
- Requirements
- Chosen Concepts
- Decision Matrix
- Cost Analysis
- Remaining Schedule
- Summary
- Questions
- Calculations

Introduction

3

Design small scale SHPB system

Requirements

- Analyze SHPB design based on use of air bearings
- Provide analysis of:
 - Hardware cost
 - Interface requirements
 - Installation procedures
 - Impact on bar geometry
- Provide assessment of strain gauge technology
- Develop procedure to align bars
- Design a working prototype to show knowledge of system

Striker Bar Mechanism

- Sets the whole system in motion.
- Generates square pulse

• For this project – simple.

http://www.tut.fi/files/Pictures/mkar_hop21.jpg

Concept 1

- Support string Pendulum Striker Bar • Simple Frame Cost efficient Base ~\$30
 - Easy to operate

Concept 2

Push solenoid

agcoauto.com

Striker Bar Mechanism Decision Matrix

Design Factor	Weighing Factor	<u>Pendulum</u>	<u>Solenoid</u>
Cost	0.2	4	3
Simplicity	0.2	5	3
Accuracy	0.3	3	5
Durability	0.2	4	5
Weight	0.1	4	4
Total	1	3.9	4.1

Scale: 1 = worst

5 = best

Bar & Air Bushing Sizes

Bushing Specifics

- Companies: New Way , Nelson Air
 - 0.5" diameter
 - \$210.00 each (New Way)
 - \$262.00 each (Nelson)
 - 0.75" diameter
 - \$265.00 each (New Way)
 - \$331.00 each (Nelson)

Bar Specifics

- Company: McMaster-Carr
 - (2) 36" length
 - 0.5"diameter
 - \$20.00 \$55.00 each
 - 0.75" diameter
 - \$30.00 \$80.00 each
 - Diameter Tolerance: -0.0005" to -0.001"
 - Straightness: 0.002" per ft.

Bar Decision Matrix

	Weight	.5"	.75"
Cost	0.1	4	3
Weight	0.2	4	4
Size	0.1	5	5
Durability	0.2	5	5
Portability	0.1	4	4
Accuracy	0.2	3	4
Data Quality	0.1	3	4
Score		4.0	4.2

Air Bushing Supplier Decision Matrix

11

	Weight	New Way	Nelson
Cost	0.2	3	2
Weight	0.2	5	5
Size	0.1	5	5
Durability	0.2	5	4
Portability	0.1	5	5
Accuracy	0.2	5	4
Score		4.6	4

Air Supply Manifold

- Design 1: Horizontal Manifold
 - Steel Pipe
 - < \$20.00
 - (4) Air supply valves
 - End valve release
 - Purging valve

Air Supply Manifold

- Design 2: Declined Manifold
 - Steel Pipe
 - ■< \$20.00
 - (4) Air supply valves
 - End valve release
 - Purging valve

Air Manifold Decision Matrix

	Weight	Horizontal	Declined
Cost	0.2	3	3
Weight	0.1	3	3
Size	0.2	3	3
Simplicity	0.1	5	3
Durability	0.2	4	4
Portability	0.2	3	3
Score		3.4	3.2

Base

Concept 1 I beam

- □ Cost ~ \$96 6 foot section
- Steel
 - High strength
 - Heavy
- Simple alignment
- Scalable

Base

16

Concept 2 T-Slotted Framing

- □ Cost ~ \$45 8 foot section
 - Aluminum
 - Lightweight
 - Rigid geometry
- Automatic alignment
- Scalable

Base Decision Matrix

17

	Weight	l – Beam	T-Slot
Cost	.3	3	5
Simplicity	.2	4	4
Weight	.2	2	4
Portability	.3	4	5
Score		3.3	4.6

- Maintains axial alignment
- Simple insert and check
- Can be scaled to any size radius
- □ Accurate

Bearing Alignment Concept 2 Exterior Mount

Alignment

Uses secondary axis for alignment

Must be remounted for each

bearing

Can be easily scaled

Accurate

Bearing Alignment Decision Matrix

20

	Weight	Inserted	Mounted
Cost	0.2 3		3
Simplicity	0.1	2	4
Scalability	0.2	4	3
Accuracy	0.4	5	4
Ease of Use	0.1	5	3
Score		4.1	3.5

Momentum Trap

- Absorbs transmitted wave to reduce system shock.
- Requirements: low cost, high impact absorption
- Concept 1: Custom Impact Bumper
 - Simple, Durable, Low Cost
 - Replaceable, cheap absorber
 - \$30 range
 - Shock absorbing material
 - Soft Wood
 - High Density Rubber

Custom Impact Bumper

Momentum Trap

Concept 2: Manufactured Bumper

- Readily available
- Various styles
- \$30 range

Manufactured Bumpers

Less easily replaced

Momentum Trap

23

Design Factor	Weighing Factor	Custom	Prefabricated
Cost	0.2	4	4
Weight	0.1	4	3
Size	0.1	3	3
Simplicity	0.1	4	4
Durability	0.25	4	3
Scalability	0.15	4	3
Ease of Use	0.1	4	4
Totals	1	27	24
Weighted	Averages	3.9	3.4

Scale: 1 to 5 Best = 5

Strain Gauges

- SHPB experiment
 - < 1% Strain on Bars</p>
- Foil Strain Gauges
 Durable
 - Utilized on AFRL SHPB
 - Cost
 - \$10 to \$20 each (x8)
 \$80 to \$160 total cost

Foil Strain Gauge

Strain Gauges

Semiconductor Gauge

- Higher Sensitivity
- Slightly Lower Durability
- Cost
 - Micron-Instruments
 - Unmatched
 - \$10 to \$20 each (x8)
 - \$80 to \$160 Total
 - Matched Set of 4
 - \$75 to \$100 per set (x2)
 - \$150 to \$200 Total

Strain Gauges

26

Design Factor	Weighing Factor	Foil	Semiconductor
Cost	0.2	4	3
Size	0.1	4	5
Data Quality	0.3	4	5
Durability	0.2	5	4
Ease of Use	0.2	4	4
Totals	1	24	26
Weighted Averages		4	4.4

Data Acquisition

- High data rates
 - 100 kS/s/channel
- Software
 - LabVIEW
 - User friendly
 - Quick setup
 - Available at COE
- Hardware
 - Expensive
 - > \$500 for NI platforms
 - Solution
 - Make use of hardware available at COE.

		Decision	n Matrix									
T		Cost .	ien, v	sino.	Durab icity	Portab	Salab Mity	Siling Pecu	Data Que	ling .	rUse 🔽	Score
Base	Weight	<u>0.3</u>	<u>0.2</u>	<u>N/a</u>	<u>0.2</u>	<u>N/a</u>	<u>0.3</u>	<u>N/a</u>	<u>N/a</u>	<u>N/a</u>	<u>N/a</u>	
	I-beam	3	2		4		4					3.3
	T-slot	5	4		4		5					4.6
Bushing	Weight	<u>0.2</u>	<u>0.2</u>	<u>0.1</u>	<u>N/a</u>	<u>0.2</u>	<u>0.1</u>	<u>N/a</u>	<u>0.2</u>	<u>N/a</u>	<u>N/a</u>	
	New Way	3	5	5		5	5		5			4.6
	Nelson	2	5	5		4	5		4			4
Strain Gauges	Weight	0.2	<u>N/a</u>	0.1	N/a	0.2	N/a	N/a	N/a	0.3	0.2	
	Foil	4		4		5				3	4	3.9
	Semiconductor	3		5		4				5	4	4.2
<u>Bar *</u>	Weight	<u>0.1</u>	<u>0.2</u>	<u>0.1</u>	<u>N/a</u>	<u>0.2</u>	<u>0.1</u>	<u>N/a</u>	<u>0.2</u>	<u>0.1</u>	<u>N/a</u>	
	1/2 inch	4	4	5		5	4		3	3		4
	3/4 inch	3	4	5		5	4		4	4		4.2
Striker Bar	Weight	<u>0.2</u>	<u>0.1</u>	<u>N/a</u>	<u>0.2</u>	<u>0.2</u>	<u>N/a</u>	<u>N/a</u>	<u>0.3</u>	<u>N/a</u>	<u>N/a</u>	
	Solenoid	3	4		3	5			5			4.1
	Pendulum	4	4		5	4			3			3.9
Air Manifold	Weight	<u>0.2</u>	<u>0.1</u>	<u>0.2</u>	<u>0.1</u>	<u>0.2</u>	<u>0.2</u>	<u>N/a</u>	<u>N/a</u>	<u>N/a</u>	<u>N/a</u>	
	Horizontal	3	3	3	5	4	3					3.4
	Declined	3	3	3	3	4	3					3.2
Bearing Alignmen	Weight	<u>0.2</u>	<u>N/a</u>	<u>N/a</u>	<u>0.1</u>	<u>N/a</u>	<u>N/a</u>	<u>0.2</u>	<u>0.4</u>	<u>N/a</u>	<u>0.1</u>	<u>1</u>
	Insert	3			2			4	5		5	4.1
	Mounted	3			4			3	4		3	3.5
Momentum Trap	Weight	<u>0.2</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	0.25	<u>N/a</u>	<u>0.15</u>	<u>N/a</u>	<u>N/a</u>	<u>0.1</u>	
	Custom	4	4	3	4	4		4			4	3.9
	Prefabricated	4	3	3	4	3		3			4	3.4

	Senior Design Group #1: Preliminary Cos		*Prices do not	not		
		Budget	\$2,500.00	1	include sh	ipping
		Total Cost	\$1,027.61			
29		Remaining	\$1,472.39	1		
				Total		Part

			IUlai		Part
Item	Quantity	Unit Cost	Cost	Source	Number
Air Bushings 0.5 inch	4	210.00	\$840.00	New Way	S301201
				McMaster	
Solenoid	1	64.94	\$64.94	Carr	7723K12
				McMaster	
T-slot Framing 1 1/2 inch (96 inch length)	1	48.15	\$48.15	Carr	47065T119
Incident & Transmission Bar: 1566 Steel Bar				McMaster	
0.5 inch (36inch length)	2	18.67	\$37.34	Carr	6061K63
				McMaster	
Air Manifold (72 inches)	1	16.34	\$16.34	Carr	4457K35
T-slot Framing 1 1/2 inch (24 inch length)				McMaster	
For stability	1	13.98	\$13.98	Carr	47065T119
Striker Bar: 1566 Steel Bar 0.5 inch (12inch				McMaster	
length)	1	6.86	\$6.86	Carr	6061K33
DAQ			\$0.00	COE	
Momentum Trap			\$0.00	Group	
Air supply			\$0.00	Group	

Senior Design Project #1 Remaining Schedule of Responsibilities

Final Deliverable

Questions?

References

- □ FAMU-FSU College of Engineering :: Welcome. Web. 18 Nov. 2011. <http://www.eng.fsu.edu/>.
- "Austin Satellite Design Contact." Austin Satellite Design Home. Web. 18 Nov. 2011. http://www.austinsat.net/clients.html.
- Tut. "SHPB Data Graph." Web. 18 Nov. 2011. http://www.tut.fi/files/Pictures/mkar_hop21.jpg>.
- "AGCO Automotive Repair Service Baton Rouge, LA Glossary." AGCO Automotive Repair Service Baton Rouge, LA Home. Web. 18 Nov. 2011. http://www.agcoauto.com/content/Glossary.
- "Recessed Bumpers from Estco Enterprises." Estco Enterprises, Inc: Providing Rubber Bumpers, Silicone Tape, Rubber Washers, Grommets, Rubber Hole Plugs, Stem Bumpers, Gaskets, Recessed Bumpers, Arlon Tape, Jack Nuts, Well Nuts, and More. Web. 18 Nov. 2011. http://www.estcoenterprises.com/parts/recessed-bumpers.html.
- Products." New Way Air Bearings. Web. 18 Nov. 2011. http://www.newwayairbearings.com/Products.
- Direct Industry. Direct Industry. Web. 18 Nov. 2011. http://www.directindustry.com/prod/sandvik-materials-technology/stainless-steel-tubes-14608-218810.html.
- "Valve Basics & Selections." IKLIM LTD. Web. 18 Nov. 2011. http://www.iklimnet.com/expert_hvac/valves.html.
- Strain Gauge." Wikipedia, the Free Encyclopedia. Web. 18 Nov. 2011. http://en.wikipedia.org/wiki/Strain_gauge.
- "Micron Instruments Bar Gage." Micron Instruments Corporate Home Page. Web. 18 Nov. 2011. http://www.microninstruments.com/store/bargage.aspx>.
- "NI LabVIEW Improving the Productivity of Engineers and Scientists." National Instruments: Test, Measurement, and Embedded Systems. Web. 18 Nov. 2011. http://www.ni.com/labview/.

 \Box Stress $\sigma = F/A$

- $\Box \ Strain \qquad \qquad \epsilon = (Li Lo) / Lo$
- $\Box Gauge Factor GF = [(Ri Ro) / Ro] / \varepsilon$
- 🗆 Data Strain ε (Ri) = [(Ri Ro) / Ro] / GF

35

Strain in Specimen:

$$d\epsilon_{avg} / dt = (c_b / L_s) * (\epsilon_{I_{-}} - \epsilon_{R} - \epsilon_{T})$$

Integration:

$$\varepsilon_{s} = (C_{b} / L_{s}) * \int_{0}^{t} [(\varepsilon_{I_{-}} - \varepsilon_{R} - \varepsilon_{T}) * dt]$$

Strain through the specimen

36

Strain energy for each wave

Kinetic energy =
$$0.5 * m * v^2$$

□ Initial
$$E_{I} = 0.5^{*} A_{B}^{*} C_{B}^{*} E_{B}^{*} T^{*} \epsilon_{I}^{2}$$

 \square Reflected $E_r = 0.5^* A_B^* C_B^* E_B^* T^* E_R^2$

Strain energy

$$\delta S_{E} = E_{I} - E_{R} - E_{T}$$

Plastic Energy absorbed by specimen

$$E_s = 2 * \delta S_E$$