

Labyrinth Seal Test Rig

Sponsored by Danfoss –Turbocor Spring 2009 2nd Project Update Presentation

Group 1

William Chapman Giovanni Dinitto Justin Mariniak Kristin Scheel

Overview

- Work that has been completed
- Design "Changes" that occurred after initial machining
- Revamped flow calculations (using new information)
- Pressure measurement possibilities
- Work that still needs to be completed

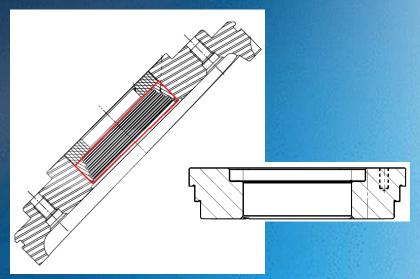
Progress to Date

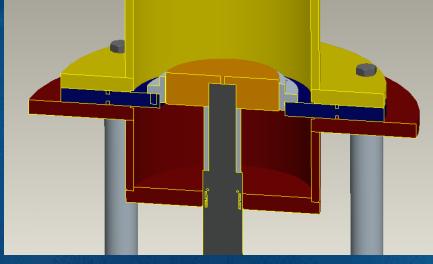
January:

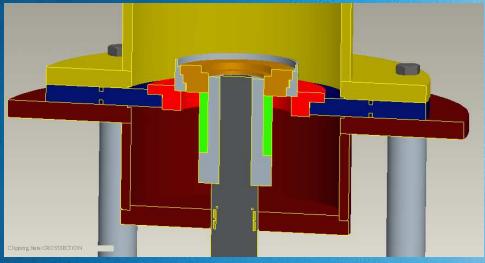
- Cut down raw materials into more manageable sizes
- Met with DTC head machinist to discuss machining options
- Performed new flow rate predictions using new pressure data and seal sizes

February:

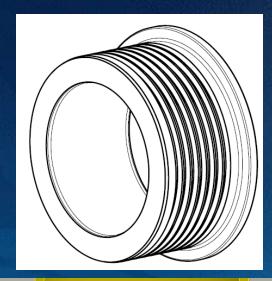
- Finished preliminary machine work
- Delivered materials to DTC for professional machining
- Built Orifice and Venturi flow meter prototypes
- Minor design alterations to save money

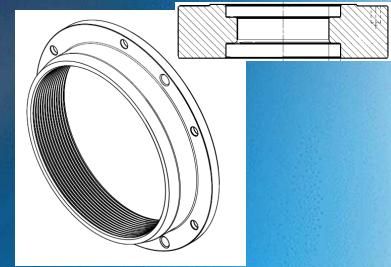


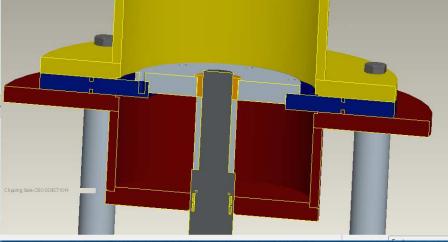

Seal Specifics

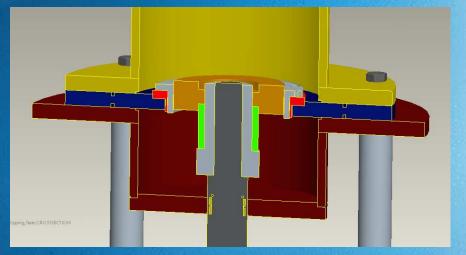

Seal Set B

Seal Set A





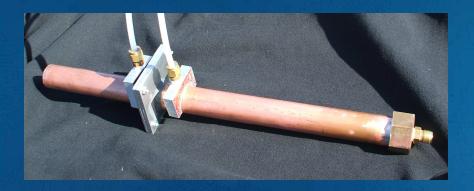

Seal Specifics


Seal Set C

Seal Set D

Predicted Flow Rates

Seal	Seal Diameter (mm)	Number of Teeth	Mass Flow Rate (kg/s)	Vol Flow Rate (L/min)
1st Stage Shrouded Impeller	93.076	9	0.06	743.486
Impeller S1.70	89.65	12	0.048	596.391
Interstage W15.48	33.6	6	0.021	262.234
Touchdown Bearing 1st step	75.215	3	0.01	128.121
Touchdown Bearing 2nd step	71.215	3	0.009	121.307
Touchdown Bearing 3rd step	67.215	3	0.009	114.494


Orifice vs Venturi

Orifice Pro's

- Simple to Build
- Variable orifice sizes
 - Wider pressure range

Orifice Con's

Lower pressure recovery

Venturi Pro's

Higher pressure recovery

Venturi Con's

Longer Build Time



Orifice/Venturi Prototype

- Built both flow meters and tested each using an Ar gas cylinder at varying flow rates
- Venturi:
 - D=1.03"
 - d=0.36"
 - $-\Delta P = 2.7 \text{ kPa } (0.4 \text{ psi}) \text{ at } 400 \text{ SCFH}$

• Orifice:

- Pipe D = 1.1"
- Orifice D= 0.5"
- Taps at 1D and ½ D
- $-\Delta P = 1.57$ kPa at 400 SCFH
- ΔP was consistently lower than Venturi

Budget Update

Raw Materials: \$333.24

Pressure Equipment: \$432.89

• Misc. Parts: \$93.57

The Joy of Senior Design: Priceless

Total: \$859.70

Remaining Budget: \$640.30

After Consulting with the head DTC machinist, we were able to make several money saving changes to put us back under budget

Timeline

- February:
 - Finalize seal adapter design
- March:
 - March 6th: Receive machined parts from DTC
 - March 7th 9th: Assemble Test Rig
 - March 10th-20th: Seal Testing
- April / Rest of the Semester:
 - Perform Results analysis
 - Write operations manual
 - Write Final Report
 - Build Presentation board

Conclusion

- Currently waiting to receive finished parts from DTC so that testing can begin
- After receiving specific seal designs and new pressure reading, flow predictions have been redone
- The new calculations are being used to pick a manometer to go along with either an orifice or venturi meter
- There is \$640.00 remaining in the budget
- After receiving the parts, we are on schedule to test the rig and complete the analysis

Thanks to

- Danfoss Turbocor Staff:
 - Jesper Nielsen
 - Marius Dragut
 - Lin Sun
 - Joost Brasz
 - Robert Parsons
- FAMU-FSU College of Engineering Faculty
 - Dr. Chiang Shih
 - Dr. Daudi Waryoba
 - Mr. Bill Starch, Shop Supervisor at ASC, NHMFL

References

Sources

- Author Unknown "Centrifugal Compressors" Chapter 4: Pg 62-66
- Childs, Peter R. <u>Mechanical Design</u> Pg 184. Arnold Publishers © 1998
- Classical Concepts and Papers by Egli 1935
- Liptak, Bella G <u>"Flow Measurement"</u>
- Miller, Richard W "Flow Measurement Engineering Handbook 3rd Edt" McGraw-Hill Publishing 1996

Vendors:

- www.Metalsdepot.com
- www.Omega.com

? Questions?