

Labyrinth Seal Test Rig Sponsored by Danfoss –Turbocor Spring 2009 Project Update Presentation

<u>Group 1</u> William Chapman Giovanni Dinitto Justin Mariniak Kristin Scheel

 Design and build a test rig which measures flow rates through a Danfoss – Turbocor labyrinth seal

GE OF ENG

- The measured flow rates will be used to analyze which seal design is superior
- The rig will allow for testing of multiple seals of various sizes
- At least two different concentricity positions must be tested

Detailed Design

- Utilized shop air to achieve 60 PSI within the high pressure Cylinder
- Test one location with a 120 micron gap between the seal
- Test another with the balancing piston making contact with the seal
- Measure flow rates through use of Venturi tube and manometer
- Bushings used to support the shaft, and allow for rotation.
 - A dial gauge will verify the position of the seal

• Figure details the location on the test rig of each measurement device

Design Changes

• Bearings to bushings

- Increases tolerance and decreases price
- Increased distance between bushings to increase shaft support

Flow meter: Venturi tube & digital manometer

- More precise for relative cost

• DTM vs. pin fitting alignment

- Pin fitting less complex, reduces parts and machining
- Reduce testing time

Reduced Number of Legs & Spacers

Progress to Date

- Received ordered materials
- Preliminary machining completed

- Electronics mounted to platform
- Identified manufacturers and welders

Cost Analysis

ltem	Cost
Raw Materials	\$333.24
Measurement Equipment	\$341.00
Welding	\$210.00
Misc.	\$185.00
Total	\$1069.70

- Does not include machining costs aside from the cost of welding
- A Venturi tube still needs to be purchased

Future Work

• Order remaining parts – Hardware & O-Rings

- •Perform leak test & seal testing
- Finish machining and welding

 Turbocor & Tallahassee Welding
- •Analyze data

• Assemble

Conclusion

- Major Design Changes
 - Bushings will replace bearing
 - Venturi Meter will replace flow meter
 - Implementing pin alignment
- Progress is on schedule
- Project is expected to be at the budget limit

Thanks to

- Danfoss Turbocor Staff:
 - Jesper Nielsen
 - Marius Dragut
 - Lin Sun
 - Joost Brasz

FAMU-FSU College of Engineering Faculty

- Dr. Chiang Shih
- Dr. Daudi Waryoba
- Mr. Bill Starch , Shop Supervisor at ASC, NHMFL

References

<u>Sources</u>

- Author Unknown <u>"Centrifugal Compressors"</u> Chapter 4: Pg 62-66
- Childs, Peter R. Mechanical Design Pg 184. Arnold Publishers © 1998
- Classical Concepts and Papers by Egli 1935
- Piotrowski, John. <u>Shaft Alignment Handbook</u>. Danbury: NetLibrary, Incorporated, 1995.

• Vendors:

- www.Metalsdepot.com
- www.Omega.com

? Questions ?