

Labyrinth Seal Test Rig Sponsored by Danfoss – Turbocor Fall 2008 Final Design Review Presentation

<u>Group 1</u> William Chapman Giovanni Dinitto Justin Mariniak Kristin Scheel

Problem Definition

- Design and build a test rig that simulates conditions in a Danfoss – Turbocor compressor
- The leakage flow through the seal must be measured to show which seal is superior
- Rig must allow for interchangeable seals for testing
- The Concentricity of the shaft must be able to be adjusted

Instrumentation

- Flow Measurements:
 - Flow Meter
 - Digital Omega Brand
 - Mass Balance of gas cylinder
 - Used as a check to the flow meter readings

- Concentricity: Dial Gauge
 - Magnetic gauge connected to either shaft or rig body
 - Roll shaft
 - As the shaft rolls, gauge measures concentricity w.r.t. it's location

Differential Thread Mech.

- Uses 2 different sized screws, one of which is dual threaded (DTS)
- Smaller screw is indirectly attached to seal as well as screws into the DTS
- Screws have slightly different pitches so when the DTS is turned the smaller screw will unscrew but the seal will move a distance that is the difference between the pitches

Thread Size:

Small Screw:

1/4"diam.
 28 thread
 .907 mm pitch

Fluid Calculations

- Expected Mass Flow Through Seal
 - Use mass flow rate to find the fluid velocity through the seal
 - Use the velocity to find Re
- •The Reynolds numbers differed by several orders of magnitude
- •Unable to be matched at ambient temperature
 - •Scaling the rig is impractical
 - •A heating cooling element is not desired by the client
- •The calculations are being used to set up a relationship between air and R134a so numerical analysis and comparisons can be done

•The actual temperature may run colder than initially expected, this may influence the actual Re

 $\dot{m} = \pi 2 r_o \delta C_t C_c C_r \rho \sqrt{RT}$ $\dot{m} = \rho V A$

Re = $\frac{\rho V \delta}{\mu} = \frac{V \delta}{V}$

Rig Conditions

Operating Conditions:

- The rig will be pressurized to 400 kPA (60 psi)
- Pressure chosen based on relationship found between Pressure and mass flow rate during prototype testing
- Assumed temperature to be 24 deg C

Force Analysis:

GE OF ENG

High pressure side: $\sigma 1 = 5.51$ MPa FS1= 32.6 Low Pressure side: $\sigma 1 = 2.22$ MPa FS1= 80.8

σ2= 2.76MPa FS2= 65.3

σ2= 1.11MPa FS2= 161.5 $\sigma_{1} = \frac{\Pr}{t}$ $\sigma_{2} = \frac{\Pr}{2t}$ $FS = \frac{\tau}{\sigma}$

Prototype Testing

GE OF ENGI

A test was needed to verify mass flow calculations
Prototype material: Wood
Maximum Pressure: 8 psi estimated
4 tests were conducted:

2, 3, 4, and 5 psi
Each with flow rate of 0.00x kg/s
Exit volumetric flow rate between 200 to 500 liters/min

Detailed Design

- Vertical Design, with top-down flow
- Versatile design allows for various high pressure air supply sources
- Has the capability to include a motor

Dimensions

Height: 2 ft Total Width: 1 ft Max Seal Diameter Needed: 8.9 cm ~ 3.5" Max Seal Diameter Capable: 5.5"

Detailed Design

Garnet	Low P Side
Gold	High P Side
Blue	Adjustable Seal Mount
Gray	Misc. Housing supports

Utilizes a constant area outlet which will connect to a digital mass flow meter

Each pressure housing will be welded in order to achieve an airtight enclosure

O-rings will be incorporated into the seal mount to provide an airtight connection between each of the housings

Materials Selection

High & Low Pressure Chambers: Carbon Steel Tube

- $D = 6'' \& L = 2' t = \frac{1}{2}''$
- Circular in order to withstand high internal pressure
- Circular shape allows for greater precision machining
- Allows for welding to ensure that no unplanned leaks will occur

Chamber "Covers": A36 Steel Plate

- $-Lx w x h = 1' x 2' x \frac{1}{2}' \& L x w x h = 2' x 2' x \frac{1}{4}''$
- Used to cover tube ends to form pressure chambers
- Can be welded to pressure chamber tubes

Structural Components: Steel Rod

- L = 6'

OFENG

- Used for legs, spacers, etc
- The Seals, Balancing Pistons, and Shaft are all manufactured from steel by Danfoss –Turbocor.

Cost Analysis

Item	Cost
Steel Tube	\$138.14
Steel Plating (total)	\$168.82
Steel Rod	\$25.98
Flow Meter	\$664.00
Pressure Gauge	\$125.00
Dial Gauge	\$0.00
Pressure Regulator	\$0.00
Pressure Transducers	\$0.00
Differential Thread rods (2)	\$12.00
S&H estimate	\$95.82
Total	\$1229.76

Conclusion

- Measurements:
 - Omega digital mass flow meter is primary method
 - Concentricity measured using a dial gauge
- Rig Conditions:
 - 400 kPa
 - Approx. 24 deg C
 - Sufficient factors of safety for internal pressure forces
- Material Selection: A36 steel
 - Easy to machine and weld, magnetic
- Cost Analysis:
 - Approximately \$1230
 - Will be under budget or right at \$1500

- Acquire shop-time at Turbocor
- Shape rig housing (Cut bulk steel)
- Assemble Rig
- Begin Testing of various seals provided by Turbocor
- Rate the seals based on the flow rate measured through them

Thanks to

- Danfoss Turbocor Staff:
 - Jesper Nielsen
 - Marius Dragut
 - Lin Sun
 - Joost Brasz

FAMU-FSU College of Engineering Faculty

- Dr. Chiang Shih
- Dr. Daudi Waryoba
- Mr. Bill Starch , Shop Supervisor at ASC, NHMFL

References

<u>Sources</u>

- Author Unknown <u>"Centrifugal Compressors"</u> Chapter 4: Pg 62-66
- Childs, Peter R. Mechanical Design Pg 184. Arnold Publishers © 1998
- Classical Concepts and Papers by Egli 1935
- Piotrowski, John. <u>Shaft Alignment Handbook</u>. Danbury: NetLibrary, Incorporated, 1995.

• Vendors:

- www.Metalsdepot.com
- www.Omega.com

? Questions ?