MOAS Project: Wind Energy Demonstration

Members

Nicholas Bembridge Bradley Kroger Victor Fontecchio Michael Sheehan

Suzanne Shepherd

Outline

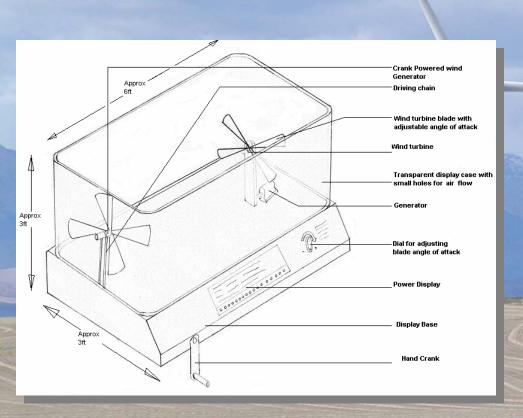
- Project Definition
- Concept Generation
- Concept Selection
- Component Selection
- Final Design Specifications
- Budget Analysis
- Future Work

Project Definition

 The Mary Brogan Museum of Arts and Sciences (MOAS) is adding new exhibits showcasing alternative energy sources

Our group was given the challenge of designing an exhibit for the museum that would educate the public about wind as an alternative energy source

Exhibit Expectations

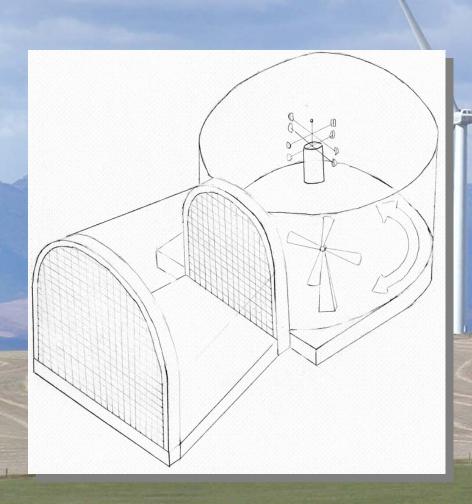

- Child friendly
- Entertaining for all ages
- Durable
- Interactive
- Visually Appealing
- Safe
- Budget
 - Project must be completed by April

Concept Generation

 Before reaching a final design for the exhibit, it went through many iterations

Ideas and suggestions came from both our sponsors as well as from group members

1st Concept

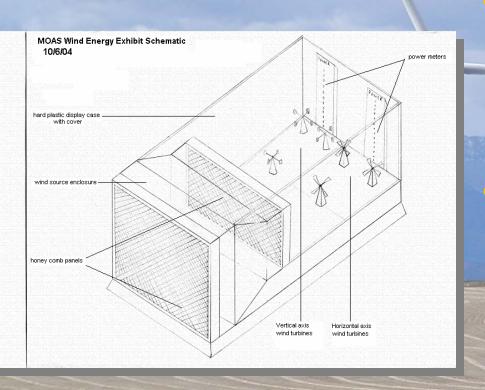

Pros

- Power Meter
- DC Motor as power generator
- Adjustable wind velocity
- Visibility

Cons

- Hand Crank
- Only one type of wind turbine

2nd Concept

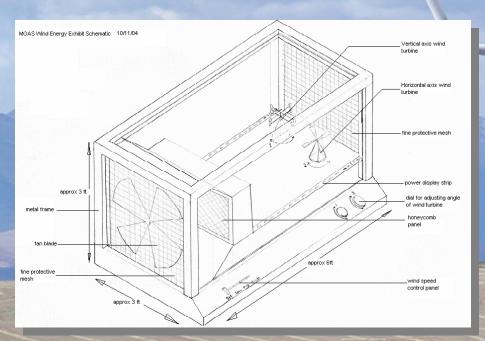

• Pros

- Multiple WindTurbines
- Variable Angle for wind turbines
- Flow Control

Cons

- No Exit for the Air Stream
- Expensive Round Plastic Casing

3rd Concept


Pros

- Power Meters
- Flow Control
- Multiple Wind Turbines
- Visibility

Cons

- No Exit for the Air Stream
- Complex wiring for multiple turbines
- Unable to vary the wind stream attack angle

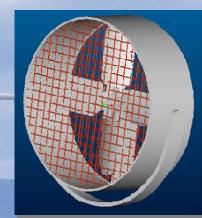
4th Concept

Pros

- Multiple Wind Turbines
- Variable Angle Of Attack
- Power Meters
- Flow Control

Cons

 Limited Visibility due to metal casing


This became the final design concept

- Fan
- DC Motors for Turbines
- Exhibit Casing
- Electronics
- Pulleys

Wind Generation Selection

To create a wind stream in the exhibit an electric fan needed to be selected.

- Qmark LDC20 20" far
 - -3 speeds
 - 110V wall source compatible

Power Generation Selection

- We were unable to find wind turbines on such a small scale, there for the turbines must be custom built
- Many of the parts needed to construct the wind turbines can be purchased at Hobby Town USA, and from McMaster

Power Generation

- Two Types of Wind Turbines
 - Vertical Axis
 - Horizontal Axis
- Support Base
 - Single vertical pole similar to real world applications

Vertical Axis

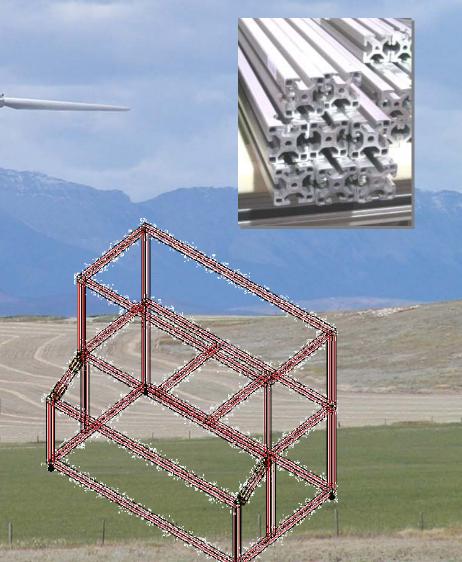
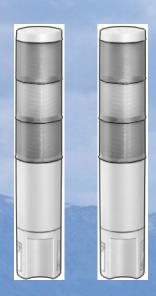

Horizontal Axis

Exhibit Casing Selection

80/20 – Aluminum
 Frame Manufacturer

 Extruded Aluminum Modular Frame

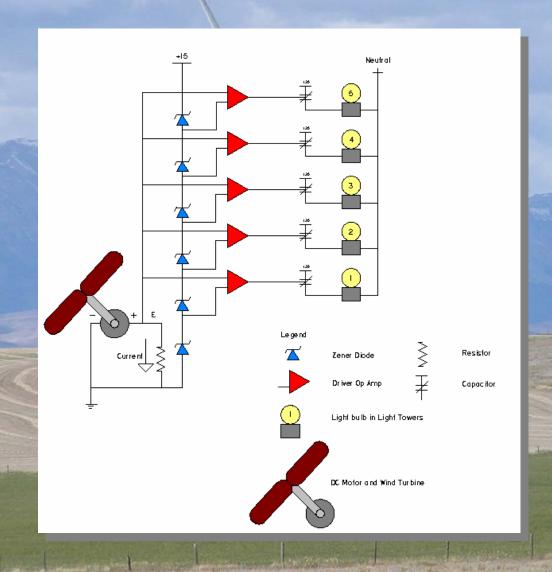
- Clear Polycarbonate Sheets to Fill the Openings and Provide an Unobstructed View to the Exhibit
- Adjustable Leveling Feet
 PVC Coated Wire Mesh,
 covers end openings allowing air to enter and exit exhibit



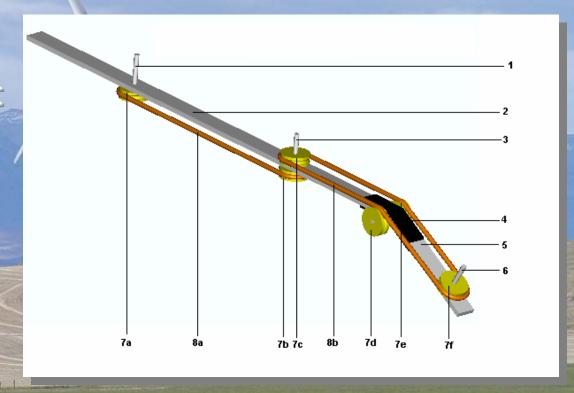
Electronics Selection

- Purchasing Light Towers from McMaster
- GT Electric will build circuits that will run the light towers from the DC motors
- Hot Wire Anemometer to display the wind speed
- Kill Switch that will turn off the the fan, a specification of the museum

Kill Switch



Light Towers


Anemometer

Electrical Circuit Diagram

Pulley Selection

- on the control panel there will be a knob that will allow a guest to rotate the turbines within the exhibit
- The rotation is made possible through the use of pulleys purchased from McMaster

Final Design Specifications

Project Analysis

 Exhibit Dimensions and Frame Design

Frame Material and Building Options

- Cabinet Maker
- Wind Generation & Velocity Measurement
- Electrician
- Budget Analysis

Components

- Wind Turbines
- Power Meters
- Start Buttons
- Kill Switch
- Honeycomb
- _ Fan

Budget

- Wind Generation
- Power Generation
- Electrical Systems
- Flow Management
- Exhibit Casing
- Sub-Total

\$415.25

\$352.64

\$1502.37

\$100,00

\$1500.00

\$3870,26

Total (With 20% Cushion)

\$4700,00

- Make Formal Presentation to the Museum
- Begin Ordering Parts
- Start the Assembly of the Exhibit
- Testing of components

CONTROL & CONTROL CONT

- Ms. Heather Whitaker Director of MAOS
- Dr. Li EE Department/
- Dr. Cartes ME Department
- Mr. Jason Schmidt 8020 Representative

Contraction of the Contraction o

www.Inspeed.com - Free Vertical Axis Rotor