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Preface

To the Student

This is a book on the real quantum mechanics. On quantum scales it becomes
clear that classical physics is simply wrong. It is quantum mechanics that
describes how nature truly behaves; classical physics is just a simplistic approx-
imation of it that can be used for some computations describing macroscopic
systems. And not too many of those, either.

Here you will find the same story as physicists tell their own students. The
difference is that this book is designed to be much easier to read and understand
than comparable texts. Quantum mechanics is inherently mathematical, and
this book explains it fully. But the mathematics is only covered to the extent
that it provides insight in quantum mechanics. This is not a book for developing
your skills in clever mathematical manipulations that have absolutely nothing
to do with physical understanding. You can find many other texts like that
already, if that is your goal.

The book was primarily written for engineering graduate students who find
themselves caught up in nano technology. It is a simple fact that the typical
engineering education does not provide anywhere close to the amount of physics
you will need to make sense out of the literature of your field. You can start
from scratch as an undergraduate in the physics department, or you can read
this book.

The first part of this book provides a solid introduction to classical (i.e. non-
relativistic) quantum mechanics. It is intended to explain the ideas both rig-
orously and clearly. It follows a “just-in-time” learning approach. The mathe-
matics is fully explained, but not emphasized. The intention is not to practice
clever mathematics, but to understand quantum mechanics. The coverage is at
the normal calculus and physics level of undergraduate engineering students. If
you did well in these courses, you should be able to understand the discussion,
assuming that you start reading from the beginning. In particular, you simply
cannot skip the short first chapter. There are some hints in the notations sec-
tion, if you forgot some calculus. If you forgot some physics, just don’t worry
too much about it: quantum physics is so much different that even the most
basic concepts need to be covered from scratch.

xxxv
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Whatever you do, read all of chapters 2 and 3. That is the very language of
quantum mechanics. It will be hard to read the rest of the book if you do not
know the language.

Derivations are usually “banned” to notes at the end of this book, in case
you need them for one reason or the other. They correct a considerable number
of mistakes that you will find in other books. No doubt they add a few new
ones. Let me know and I will correct them quickly; that is the advantage of a
web book.

The second part of this book discusses more advanced topics. It starts with
numerical methods, since engineering graduate students are typically supported
by a research grant, and the quicker you can produce some results, the better.
A description of density functional theory is still missing, unfortunately.

The remaining chapters of the second part are intended to provide a crash
course on many topics that nano literature would consider elementary physics,
but that nobody has ever told you about. Most of it is not really part of what
is normally understood to be a quantum mechanics course. Reading, rereading,
and understanding it is highly recommended anyway.

The purpose is not just to provide basic literacy in those topics, although
that is very important. But the purpose is also explain enough of their funda-
mentals, in terms that an engineer can understand, so that you can make sense
of the literature in those fields if you do need to know more than can be covered
here. Consider these chapters gateways into their topic areas.

There is a final chapter in part II on how to interpret quantum mechanics
philosophically. Read it if you are interested; it will probably not help you do
quantum mechanics any better. But as a matter of basic literacy, it is good to
know how truly weird quantum mechanics really is.

The usual “Why this book?” blah-blah can be found in a note at the back
of this book, {N.1} A version history is in note {N.2}.

Acknowledgments

This book is for a large part based on my reading of the excellent book by
Griffiths, [25]. It now contains essentially all material in that book in one way
or the other. (But you may need to look in the notes for some of it.) This book
also evolved to include a lot of additional material that I thought would be
appropriate for a physically-literate engineer. There are chapters on relativity,
numerical methods, thermodynamics, solid mechanics, electromagnetism, and
nuclei.

Somewhat to my surprise, I find that my coverage actually tends to be closer
to Yariv’s book, [52]. I still think Griffiths is more readable for an engineer,
though Yariv has some very good items that Griffiths does not.
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Matthew Leung pointed out that I had “left” and “right” mixed up in my
discussion of the relativistic Doppler effect. I am dyslexic that way.

The idea of using the Lagrangian for the derivations of relativistic mechanics
is from A. Kompanayets, theoretical physics, an excellent book.

I rewrote the section on functions as vectors to some extent based on com-
ments of Germano Galasso.

I thank Rob Vossen for pointing out some rather horrible typos in the section
on Dirac notation.

I thank Chris Cline for pointing out a bad label on the dot product figure
in the discussion of functions as vectors. I thank Richard Mertz and Mike Day
for pointing out typos and poor phrasing in the same sections.

The nanomaterials lectures of colleague Anter El-Azab that I audited in-
spired me to add a bit on simple quantum confinement to the first system
studied, the particle in the box. That does add a bit to a section that I wanted
to keep as simple as possible, but then I figure it also adds a sense that this is
really relevant stuff for future engineers. I also added a discussion of the effects
of confinement on the density of states to the section on the free-electron gas.

I thank Swapnil Jain for pointing out that the initial subsection on quantum
confinement in the pipe was definitely unclear and is hopefully better now.

I thank Ed Williams for pointing out a mistake in the formula for the com-
bination probabilities of the hydrogen atom electrons and Johann Joss for one
in the formula for the averaged energy of two-state systems.

Thomas Pak noted some poor phrasing in the section on metals and insula-
tors.

The discussions on two-state systems are mainly based on Feynman’s notes,
[22, chapters 8-11]. Since it is hard to determine the precise statements being
made, much of that has been augmented by data from web sources, mainly those
referenced.

I thank Murat Ozer for pointing out that the two highest wave functions in
N.2 were Z = 14 instead of 16.

The discussion of the Onsager theorem comes from Desloge, [12], an emeritus
professor of physics at the Florida State University.

The section on conservation laws and symmetries is almost completely based
on Feynman, [22] and [20].

Harald Kirsch reported various problems in the sections on conservation laws
and on position eigenfunctions.

Bob Sokalski reported an error in the section on the two-state model.
The note on the derivation of the selection rules is from [25] and lecture notes

from a University of Tennessee quantum course taught by Marianne Breinig.
The subsection on conservation laws and selection rules was inspired by Ellis,
[15].

The many-worlds discussion is based on Everett’s exposition, [17]. It is
brilliant but quite impenetrable.
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The section on the Born-Oppenheimer approximation comes from Wikipe-
dia, [[21]], with modifications including the inclusion of spin.

The section on the Hartree-Fock method is mainly based on Szabo and
Ostlund [46], a well-written book, with some Parr and Yang [34] thrown in.

The section on solids is mainly based on Sproull, [42], a good source for
practical knowledge about application of the concepts. It is surprisingly up to
date, considering it was written half a century ago. Various items, however,
come from Kittel [29]. The discussion of ionic solids really comes straight from
hyperphysics [[6]]. I prefer hyperphysics’ example of NaCl, instead of Sproull’s
equivalent discussion of KCl. My colleague Steve Van Sciver helped me get
some handle on what to say about helium and Bose-Einstein condensation.

The thermodynamics section started from Griffiths’ discussion, [25], which
follows Yariv’s, [52]. However, it expanded greatly during writing. It now comes
mostly from Baierlein [4], with some help from Feynman, [18], and some of the
books I use in undergraduate thermo.

Mark Troll noted that the discussion of the specific heat of gases was pretty
poorly written. I have rewritten it pretty much along the lines he suggested.

The derivation of the classical energy of a spinning particle in a magnetic
field is from Yariv, [52].

The initial inspiration for the chapter on nuclear physics was the Nobel Prize
acceptance lecture of Goeppert Mayer [[10]]. This is an excellent introduction to
nuclear physics for a nonspecialist audience. It is freely available on the web. As
the chapter expanded, the main reference became the popular book by Krane
[31]. That book is particularly recommended if you want an understandable
description of how the experimental evidence led physicists to formulate the
theoretical models for nuclei. Other primary references were [36] and [40]. The
Handbook of Physics, Hyperphysics, and various other web sources were also
helpful. Much of the experimental data are from NUBASE 2003, an official
database of nuclei, [3]. Updates after 2003 are not included. Data on magnetic
moments derive mostly from a 2001 preprint by Stone; see [45]. Nu-Dat 2 [[12]]
provided the the excited energy levels and additional reference data to validate
various data in [45].

Lynn Bowen corrected a bad number on the life time of helium with another
proton or neutron added, because I stupidly misread ys (yoctosecond) in a
reference as y (year). Very embarrassing, especially as I was amazed by the
number.

The discussion of the Born series follows [25].

The brief description of quantum field theory and the quantization of the
electromagnetic field is mostly from Wikipedia, [[21]], with a bit of fill-in from
Yariv [52], Feynman [18], Kittel [29], and citizendium [[2]]. The example on field
operators is an exercise from Srednicki [43], whose solution was posted online
by a TA of Joe Polchinski from UCSB.
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Acknowledgments for specific items are not listed here if a citation is given in
the text, or if, as far as I know, the argument is standard theory. This is a text
book, not a research paper or historical note. But if a reference is appropriate
somewhere, let me know.

Grammatical and spelling errors have been pointed out by Ernesto Bosque,
Eric Eros, Tag Jong Lee, Alastair McDonald, Samuel Rustan, Dan Schmidt,
Mark Vanderlaan, Ramaswami Sastry Vedamm, Mikas Vengris, Rob Vossen,
and Ed Williams. I will try to keep changing “therefor” into “therefore,” and
“send” into “sent”, but they do keep sneaking in.

Thank you all.

Comments and Feedback

If you find an error, please let me know. There seems to be an unending supply
of them. As one author described it brilliantly, “the hand is still writing though
the brain has long since disengaged.”

Also let me know if you find points that are unclear to the intended read-
ership, mechanical engineering graduate students with a typical exposure to
mathematics and physics, or equivalent. Every section, except a few explic-
itly marked as requiring advanced linear algebra, should be understandable by
anyone with a good knowledge of calculus and undergraduate physics.

The same for sections that cannot be understood without delving back into
earlier material. All within reason of course. If you pick a random starting word
somewhere in the book and start reading from there, you most likely will be
completely lost. But sections are intended to be fairly self-contained, and you
should be able read one without backing up through all of the text.

General editorial comments are also welcome. I’ll skip the philosophical
discussions. I am an engineer.

Feedback can be e-mailed to me at quantum@dommelen.net.
This is a living document. I am still adding things here and there, and fixing

various mistakes and doubtful phrasing. Even before every comma is perfect,
I think the document can be of value to people looking for an easy-to-read
introduction to quantum mechanics at a calculus level. So I am treating it as
software, with version numbers indicating the level of confidence I have in it
all.
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Chapter 1

Special Relativity [Draft]

Abstract

This first chapter reviews the theory of special relativity. It can be
skipped if desired. Special relativity is not needed to understand the
discussion of quantum mechanics in the remainder of this book. How-
ever, some parts of this chapter might provide a deeper understanding
and justification for some of the issues that will come up in quantum
mechanics.

The main reason for this chapter is that the book can be used as a review
and expansion of typical courses on “Modern Physics.” Such classes
always cover relativity. While relativity is nowhere as important as basic
quantum mechanics, it does have that “Einstein mystique” that is great
at parties.

The chapter starts with an overview of the key ideas of relativity. This
is material that is typically covered in modern physics classes. Subse-
quent sections provide more advanced explanations of the various ideas
of special relativity.

1.1 Overview of Relativity

1.1.1 A note on the history of the theory

Special relativity is commonly attributed to Albert Einstein’s 1905 papers. That
is certainly justifiable. However, Einstein swiped the big ideas of relativity from
Henri Poincaré, (who developed and named the principle of relativity in 1895
and a mass-energy relation in 1900), without giving him any credit or even
mentioning his name.

He may also have swiped the underlying mathematics he used from Lorentz,
(who is mentioned, but not in connection with the Lorentz transformation.)

3
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However, in case of Lorentz, it is possible to believe that Einstein was unaware
of his earlier work, if you are so trusting. Before you do, it must be pointed out
that a review of Lorentz’ 1904 work appeared in the second half of February
1905 in Beiblätter zu den Annalen der Physik. Einstein was well aware of that
journal, since he wrote 21 reviews for it himself in 1905. Several of these were
in the very next issue after the one with the Lorentz review, in the first half
of March. Einstein’s first paper on relativity was received June 30 1905 and
published September 26 in Annalen der Physik. Einstein had been regularly
writing papers for Annalen der Physik since 1901. You do the math.

In case of Poincaré, it is known that Einstein and a friend pored over
Poincaré’s 1902 book “Science and Hypothesis.” In fact the friend noted that
it kept them “breathless for weeks on end.” So Einstein cannot possibly have
been unaware of Poincaré’s work.

However, Einstein should not just be blamed for his boldness in swiping
most of the ideas in his paper from then more famous authors, but also be
commended for his boldness in completely abandoning the basic premises of
Newtonian mechanics, where earlier authors wavered.

It should also be noted that general relativity can surely be credited to
Einstein fair and square. But he was a lot less hungry then. And had a lot more
false starts. (There is a possibility that the mathematician Hilbert may have
some partial claim on completing general relativity, but it is clearly Einstein who
developed it. In fact, Hilbert wrote in one paper that his differential equations
seemed to agree with the “magnificent theory of general relativity established by
Einstein in his later papers.” Clearly then, Hilbert himself agreed that Einstein
established general relativity.)

1.1.2 The mass-energy relation

The most important result of relativity for the rest of this book is without doubt
Einstein’s famous relation E = mc2. Here E is energy, m mass, and c the speed
of light. (A very limited version of this relation was given before Einstein by
Poincaré.)

The relation implies that the kinetic energy of a particle is not 1
2
mv2, with

m the mass and v the velocity, as Newtonian physics would have it. Instead the
kinetic energy is the difference between the energy mvc

2 based on the mass mv

of the particle in motion and the energy mc2 based on the mass m of the same
particle at rest. According to special relativity the mass in motion is related to
the mass at rest as

mv =
m√

1− (v/c)2
(1.1)

Therefore the true kinetic energy can be written as

T =
m√

1− (v/c)2
c2 −mc2
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For velocities small compared to the tremendous speed of light, this is equiv-
alent to the classical 1

2
mv2. That can be seen from Taylor series expansion of

the square root. But when the particle speed approaches the speed of light,
the above expression implies that the kinetic energy approaches infinity. Since
there is no infinite supply of energy, the velocity of a material object must always
remain less than the speed of light.

The photons of electromagnetic radiation, (which includes radio waves, mi-
crowaves, light, x-rays, gamma rays, etcetera), do travel at the speed of light
through a vacuum. However, the only reason that they can do so is because
they have zero rest mass m. There is no way that photons in vacuum can be
brought to a halt, or even slowed down, because there would be nothing left.

If the kinetic energy is the difference between mvc
2 and mc2, then both of

these terms must have units of energy. That does of course not prove that each
term is a physically meaningful energy by itself. But it does look plausible. It
suggests that a particle at rest still has a “rest mass energy” mc2 left. And
so it turns out to be. For example, an electron and a positron can completely
annihilate each other, releasing their rest mass energies as two photons that fly
apart in opposite directions. Similarly, a photon of electromagnetic radiation
with enough energy can create an electron-positron pair out of nothing. (This
does require that a heavy nucleus is around to absorb the photon’s linear mo-
mentum without absorbing too much of its energy; otherwise it would violate
momentum conservation.) Perhaps more importantly for engineering applica-
tions, the energy released in nuclear reactions is produced by a reduction in the
rest masses of the nuclei involved.

Quantum mechanics does not use the speed v of a particle, but its momentum
p = mvv. In those terms the total energy, kinetic plus rest mass energy, can be
rewritten as

E = T +mc2 =
√
(mc2)2 + p2c2 (1.2)

This expression is readily checked by substituting in for p, then for mv, and
cleaning up.

1.1.3 The universal speed of light

The key discovery of relativity is that the observed speed of light through vac-
uum is the same regardless of how fast you are traveling. One historical step
that led to this discovery was a famous experiment by Michelson & Morley. In
simplified terms, Michelson & Morley tried to determine the absolute speed of
the earth through space by “horse-racing” it against light. If a passenger jet
airplane flies at three quarters of the speed of sound, then sound waves going
in the same direction as the plane only have a speed advantage of one quarter
of the speed of sound over the plane. Seen from inside the plane, that sound
seems to move away from it at only a quarter of the normal speed of sound.



6 CHAPTER 1. SPECIAL RELATIVITY [DRAFT]

Essentially, Michelson & Morley reasoned that the speed of the earth could
similarly be observed by measuring how much it reduces the apparent speed
of light moving in the same direction through a vacuum. But it proved that
the motion of the earth produced no reduction in the apparent speed of light
whatsoever. It is as if you are racing a fast horse, but regardless of how fast
you are going, you do not reduce the velocity difference any more than if you
would just stop your horse and have a drink.

The simplest explanation would be that earth is at rest compared to the
universe. But that cannot possibly be true. Earth is a minor planet in an outer
arm of the galaxy. And earth moves around the sun once a year. Obviously,
the entire universe could not possibly follow that noninertial motion.

So how come that earth still seems to be at rest compared to light waves
moving through vacuum? You can think up a hundred excuses. In particular,
the sound inside a plane does not seem to move any slower in the direction of
motion. But of course, sound is transmitted by real air molecules that can be
trapped inside a plane by well established mechanisms. It is not transmitted
through empty space like light.

But then, at the time of the Michelson & Morley experiment the prevailing
theory was that light did move through some hypothetical medium. This made-
up medium was called the “ether.” It was supposedly maybe dragged along
by the earth, or maybe dragged along a bit, or maybe not after all. In fact,
Michelson & Morley were really trying to decide how much it was being dragged
along. Looking back, it seems self-evident that this ether was an unsubstantiated
theory full of holes. But at the time most scientists took it very seriously.

The results of the Michelson & Morley experiment and others upped the
ante. To what could reasonably be taken to be experimental error, the earth
did not seem to move relative to light waves in vacuum. So in 1895 Poincaré
reasoned that experiments like the one of Michelson & Morley suggested that
it is impossible to detect absolute motion. In 1900 he proposed the “Principle
of Relative Motion.” It proposed that the laws of movement would be the same
in all coordinate systems regardless of their velocity, as long as they are not
accelerating. In 1902, in the book read by Einstein, he discussed philosophical
assessments on the relativity of space, time, and simultaneity, and the idea that
a violation of the relativity principle can never be detected. In 1904 he called it

“The principle of relativity, according to which the laws of phys-
ical phenomena must be the same for a stationary observer as for
one carried along in a uniform motion of translation, so that we have
no means, and can have none, of determining whether or not we are
being carried along in such a motion.”

In short, if two observers are moving at different, but constant speeds, it is
impossible to say which one, if any, is at rest. The laws of physics observed by
the two observers are exactly the same. In particular, the
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moving observers see the same speed of light regardless of their dif-
ferent physical motion.

(Do note however that if an observer is accelerating or spinning around,
that can be determined through the generated inertia forces. Not all motion is
relative. Just an important subset of it.)

A couple of additional historical notes may be appropriate. Quite a number
of historians of science argue that Poincaré did not “really” propose relativity,
because he continued to use the ether in various computations afterwards. This
argument is unjustified. To this very day, the overwhelming majority of physi-
cists and engineers still use Newtonian physics in their computations. That does
not mean that these physicists and engineers do not believe in special relativity.
It means that they find doing the Newtonian computation a lot easier, and it
gives the right answer for their applications. Similarly, Poincaré himself clearly
stated that he still considered the ether a “convenient hypothesis.” There were
well established procedures for computing such things as the propagation of
light in moving media using an assumed ether that had been well verified by
experiment.

A more interesting hypothesis advanced by historians is that Einstein may
have been more inclined to do away with the ether from the start than other
physicists. The concept of the ether was without doubt significantly motivated
by the propagation of other types of waves like sound waves and water waves.
In such waves, there is some material substance that performs a wave motion.
Unlike waves, however, particles of all kinds readily propagate through empty
space; they do not depend on a separate medium that waves. That did not seem
relevant to light, because its wave-like nature had been well established. But
in quantum mechanics, the complementary nature of light as particles called
photons was emerging. And Einstein may have been more comfortable with the
quantum mechanical concept of light than most at the time. He was a major
developer of it.

1.1.4 Disagreements about space and time

At first, it may not seem such a big deal that the speed of light is the same
regardless of the motion of the observer. But when this notion is examined in
some more detail, it leads to some very counter-intuitive conclusions.

It turns out that if observers are in motion compared to each other, they
will unavoidably disagree about such things as spatial distances and the time
that things take. Often, different observers cannot even agree on which of
two physical events takes place earlier than the other. Assuming that they
determine the times correctly in their own coordinate system, they will come
up with different answers.

Self-evidently, if observers cannot even agree on which of two events hap-
pened first, then an absolute time scale that everyone can agree on is not possible
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either. And neither is a system of absolute spatial coordinates that everybody
can agree upon.

Venus Earth Mars Venus Mars

Figure 1.1: Different views of the same experiment. Left is the view of observers
on the planets. Right is the view of an alien space ship.

Consider a basic thought experiment. A thought experiment is an experi-
ment that should in principle be possible, but you do not want to be in charge
of actually doing it. Suppose that the planets Venus and Mars happen to be at
opposite sides of earth, and at roughly the same distance from it. The left side
of figure 1.1 shows the basic idea. Experimenters on earth flash simultaneous
light waves at each planet. Since Venus happens to be a bit closer than Mars,
the light hits Venus first. All very straightforward. Observers on Venus and
Mars would agree completely with observers on earth that Venus got hit first.
They also agree with earth about how many minutes it took for the light to hit
Venus and Mars.

To be sure, the planets move with speeds of the order of 100,000 mph relative
to one another. But that speed, while very large in human terms, is so small
compared to the tremendous speed of light that it can be ignored. For the
purposes of this discussion, it can be assumed that the planets are at rest relative
to earth.

Next assume that a space ship with aliens was just passing by and watched
the whole thing, like in the right half of figure 1.1. As seen by observers on earth,
the aliens are moving to the right with half the speed of light. However, the
aliens can argue that it is they that are at rest, and that the three planets are
moving towards the left with half the speed of light. According to the principle
of relativity, both points of view are equally valid. There is nothing that can
show whether the space ship or the planets are at rest, or neither one.

In particular, the speed of the light waves that the aliens observe is identical
to the speed that earth sees. But now note that as far as the aliens are concerned,
Venus moves with half the speed of light away from its incoming light wave. Of
course, that significantly increases the time that the light needs to reach Venus.
On the other hand, the aliens see Mars moving at half the speed of light towards
its incoming light wave. That roughly halves the time needed for the light wave
to hit Mars. In short, unlike earth, the aliens observe that the light hits Mars
a lot earlier than it hits Venus.

That example demonstrates that observers in relative motion disagree about
the time difference between events occurring at different locations. Worse, even
if two events happen right in the hands of one of the observers, the observers
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will disagree about how long the entire thing takes. In that case, the observer
compared to which the location of the events is in motion will think that it takes
longer. This is called “time-dilation.” The time difference between two events
slows down according to

∆tv =
∆t0√

1− (v/c)2
(1.3)

Here ∆t0 is shorthand for the time difference between the two events as seen
by an observer compared to whom the two events occur at the same location.
Similarly ∆tv is the time difference between the two events as perceived by an
observer compared to whom the location of the events is moving at speed v.

An “event” can be anything with an unambiguous physical meaning, like
when the hands of a clock reach a certain position. So clocks are found to run
slow when they are in motion compared to the observer. The best current clocks
are accurate enough to directly measure this effect at human-scale speeds, as
low as 20 mph. But relativity has already been verified in myriad other ways.
The time is long gone that serious scientists still doubted the conclusions of
relativity.

As a more practical example, cosmic rays can create radioactive particles
in the upper atmosphere that survive long enough to reach the surface of the
earth. The surprising thing is that at rest in a laboratory these same particles
would not survive that long by far. The particles created by cosmic rays have
extremely high speed when seen by observers standing on earth. That slows
down the decay process due to time dilation.

Which of course raises the question: should then not an observer moving
along with one such particle observe that the particle does not reach the earth?
The answer is no; relativity maintains a single reality; a particle either reaches
the earth or not, regardless of who is doing the observing. It is quantum me-
chanics, not relativity, that does away with a single reality. The observer moving
with the particle observes that the particle reaches the earth, not because the
particle seems to last longer than usual, but because the distance to travel to the
surface of the earth has become much shorter! This is called “Lorentz-Fitzgerald
contraction.”

For the observer moving with the particle, it seems that the entire earth
system, including the atmosphere, is in motion with almost the speed of light.
The size of objects in motion seems to contract in the direction of the motion
according to

∆xv = ∆x0
√
1− (v/c)2 (1.4)

Here the x-axis is taken to be in the direction of motion. Also ∆x0 is the distance
in the x-direction between any two points as seen by an observer compared to
whom the points are at rest. Similarly, ∆xv is the distance as seen by an observer
compared to whom the points are moving with speed v in the x-direction.
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In short, for the observer standing on earth, the particle reaches earth be-
cause its motion slows down the decay process by a factor 1/

√
1− (v/c)2. For

the observer moving along with the particle, the particle reaches earth because
the distance to travel to the surface of the earth has become shorter by exactly
that same factor. The reciprocal square root is called the “Lorentz factor.”

Lorentz-Fitzgerald contraction is also evident in how the aliens see the plan-
ets in figure 1.1. But note that the difference in the wave lengths of the light
waves is not a simple matter of Lorentz-Fitzgerald contraction. The light waves
are in motion compared to both observers, so Lorentz-Fitzgerald contraction
simply does not apply.

The correct equation that governs the difference in observed wave length λ
of the light, and the corresponding difference in observed frequency ω, is

λv = λ0

√
1 + (v/c)

1− (v/c)
ωv = ω0

√
1− (v/c)

1 + (v/c)
(1.5)

Here the subscript 0 stands for the emitter of the light, and subscript v for an
observer moving with speed v away from the emitter. If the observer moves
towards the emitter, v is negative. (To be true, the formulae above apply
whether the observer 0 is emitting the light or not. But in most practical
applications, observer 0 is indeed the emitter.)

In terms of the example figure 1.1, 0 indicates the emitter earth, and v
indicates the aliens observing the radiation. If the aliens are still to the left of
earth, they are still closing in on it and v is negative. Then the formulae above
say that the wave length seen by the aliens is shorter than the one seen by earth.
Also, the frequency seen by the aliens is higher than the one seen by earth, and
so is the energy of the light. When the aliens get to the right of earth, they are
moving away from it. That makes v positive, and the light from earth that is
reaching them now seems to be of longer wave length, of lower frequency, and
less energetic. These changes are referred to as “Doppler shifts.”

One related effect is cosmic redshift. The entire universe is expanding. As
a result, far away galaxies move away from us at extremely high speeds. That
causes wave length shifts; the radiation emitted or absorbed by various excited
atoms in these galaxies appears to us to have wave lengths that are too long.
The received wave lengths are longer than those that these same atoms would
emit or absorb on earth. In particular, the colors of visible light are shifted
towards the red side of the spectrum. To observers in the galaxies themselves,
however, the colors would look perfectly fine.

Note that the cosmic redshift can only qualitatively be understood from the
formulae above. It is more accurate to say that the photons traveling to us
from remote galaxies get stretched due to the expansion of the universe. The
cosmic redshift is not due to the motion of the galaxies through space, but due
to the motion of space itself. If the expansion of space is rephrased in terms of
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a relative velocity of the galaxies compared to us, that velocity can exceed the
speed of light. That would produce nonsense in the formulae above. Objects
cannot move faster than the speed of light through space, but the velocity of
different regions of space compared to each other can exceed the speed of light.

Returning to the normal Doppler shift, the changes in wave length are not
directly due to Lorentz-Fitzgerald contraction. Instead, they can in part be
attributed to time dilation. In figure 1.1 both the aliens and earth can deduce
the wave length from how frequently the peaks of the wave leave the emitter
earth. But in doing so, one source of disagreement is time dilation. Since earth
is in motion compared to the aliens, the aliens think that the peaks leave earth
less frequently than earth does. In addition, the aliens and earth disagree about
the relative velocity between the light waves and earth. Earth thinks that the
light waves leave with the speed of light relative to earth. The aliens also think
that the light waves travel with the speed of light, but in addition they see earth
moving towards the left with half the speed of light. Combine the two effects,
for arbitrary velocity of the aliens, and the relation between the wave lengths
is as given above. Further, since the speed of light is the same for both earth
and aliens, the observed frequency of the light is inversely proportional to the
observed wave length.

1.2 The Lorentz Transformation

The “Lorentz transformation” describes how measurements of the position and
time of events change from one observer to the next. It includes Lorentz-
Fitzgerald contraction and time dilation as special cases.

1.2.1 The transformation formulae

This subsection explains how the position and time coordinates of events differ
from one observer to the next.

✉✏✏✏✏
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✲VA

xA

yA

zA

B
xB

yB

zB

✉✏✏✏✏

✉✏✏✏✏
✛ V A

xA

yA

zA

B
xB

yB

zB

Figure 1.2: Coordinate systems for the Lorentz transformation.
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Consider two observers A and B that are in motion compared to each other
with a relative speed V . To make things as simple as possible, it will be assumed
that the relative motion is along the line through the two observers,

As the left side of figure 1.2 shows, observer A can believe herself to be at
rest and see observer B moving away from her at speed V ; similarly, observer B
can believe himself to be at rest and see observer A moving away from him at
speed V , as in the right side of the figure. The principle of relativity says that
both views are equally valid; there is no physical measurement that can find
a fundamental difference between the two observers. That implies that both
observers must agree on the same magnitude of the relative velocity V between
them. And it implies that they need to agree on the speed c that light moves.

It will further be assumed that both observers use coordinate systems with
themselves at the origin to describe the locations and times of events. In addi-
tion, they both take their x axes along the line of their relative motion. They
also align their y and z axes. And they both define time to be zero at the instant
that they meet.

In that case the Lorentz transformation says that the relation between po-
sitions and times of events as perceived by the two observers is, {D.4}:

ctB =
ctA − (V/c)xA√

1− (V/c)2
xB =

xA − (V/c)ctA√
1− (V/c)2

yB = yA zB = zA (1.6)

To get the transformation of the coordinates of B into those of A, just swap A
and B and replace V by −V . Indeed, if observer B is moving in the positive x-
direction with speed V compared to observer A, then observer A is moving in the
negative x-direction with speed V compared to observer B, as in figure 1.2. In
the limit that the speed of light c becomes infinite, the Lorentz transformation
becomes the nonrelativistic “Galilean transformation” in which tB is simply tA
and xB = xA − V t, i.e. xB equals xA except for a shift of magnitude V t.

The made assumptions are that A and B are at the origin of their coordinate
system. And that their spatial coordinate systems are aligned. And that their
relative motion is along the x axes. And that they take the zero of time to
be the instant that they meet. These simplifying assumptions may look very
restrictive. But they are not. A different observer A’ at rest relative to A can
still use any coordinate system he wants, with any arbitrary orientation, origin,
and zero of time. Since A’ is at rest relative to A, the two fundamentally agree
about space and time. So whatever coordinates and times A’ uses for events
are easily converted to those that A uses in the classical way, {A.3}. Similarly
an observer B’ at rest compared to B can still use any arbitrary coordinate
system that she wants. The coordinates and times of events observed by the
arbitrary observers A’ and B’ can then be related to each other in stages. First
relate the coordinates of A’ to those of A in the classical way. Next use the
Lorentz transformation as given above to relate those to the coordinates of B.
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Then relate those in the classical way to the coordinates of B’. In this way, the
coordinates and times of any two observers in relative motion to each other,
using arbitrary coordinate systems and zeros of time, can be related. The
simple Lorentz transformation above describes the nontrivial part of how the
observations of different observers relate.

Time dilation is one special case of the Lorentz transformation. Assume that
two events 1 and 2 happen at the same location xA, yA, zA in system A. Then
the first Lorentz transformation formula (1.6) gives

t2,B − t1,B =
t2,A − t1,A√
1− (V/c)2

So observer B finds that the time difference between the events is larger. The
same is of course true vice-versa, just use the inverse formulae.

Lorentz-Fitzgerald contraction is another special case of the Lorentz trans-
formation. Assume that two stationary locations in system B are apart by a
distance x2,B − x1,B in the direction of relative motion. The second Lorentz
transformation formula (1.6) then says how far these points are apart in system
A at any given time tA:

x2,B − x1,B =
x2,A − x1,A√
1− (V/c)2

Taking the square root to the other side gives the contraction.
As a result of the Lorentz transformation, measured velocities are related as

vx,B =
vx,A − V

1− (V/c2)vx,A
vy,B =

vy,A
√
1− (V/c)2

1− (V/c2)vx,A
vz,B =

vz,A
√
1− (V/c)2

1− (V/c2)vx,A
(1.7)

Note that vx, vy, vz refer here to the perceived velocity components of some
moving object; they are not components of the velocity difference V between
the coordinate systems.

1.2.2 Proper time and distance

In classical Newtonian mechanics, time is absolute. All observers agree about
the difference in time ∆t between any two events:

nonrelativistic: ∆t is independent of the observer

The time difference is an “invariant;” it is the same for all observers.
All observers, regardless of how their spatial coordinate systems are oriented,

also agree over the distance |∆~r| between two events that occur at the same time:

nonrelativistic: |∆~r| is independent of the observer if ∆t = 0
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Here the distance between any two points 1 and 2 is found as

|∆~r| ≡
√

(∆~r) · (∆~r) =
√
(∆x)2 + (∆y)2 + (∆z)2 ∆~r ≡ ~r2 −~r1

The fact that the distance may be expressed as a square root of the sum of the
square components is known as the “Pythagorean theorem.”

Relativity messes all these things up big time. As time dilation shows,
the time between events now depends on who is doing the observing. And as
Lorentz-Fitzgerald contraction shows, distances now depend on who is doing
the observing. For example, consider a moving ticking clock. Not only do dif-
ferent observers disagree over the distance |∆~r| traveled between ticks, (as they
would do nonrelativistically), but they also disagree about the time difference
∆t between ticks, (which they would not do nonrelativistically).

However, there is one thing that all observers can agree on. They do agree
on how much time between ticks an observer moving along with the clock would
measure. That time difference is called the “proper time” difference. (The word
proper is a wrongly translated French “propre,” which here means “own.” So
proper time really means the clock’s own time.) The time difference ∆t that an
observer actually perceives is longer than the proper time difference ∆t0 due to
the time dilation:

∆t =
∆t0√

1− (v/c)2

Here v is the velocity of the clock as perceived by the observer.
To clean this up, take the square root to the other side and write v as the

distance |∆~r| traveled by the clock divided by ∆t. That gives the proper time
difference ∆t0 between two events, like the ticks of a clock here, as

∆t0 = ∆t

√
1− (∆x)2 + (∆y)2 + (∆z)2

(c∆t)2
(1.8)

The numerator in the ratio is the square of the distance between the events.
Note however that the proper time difference is imaginary if the quantity

under the square root is negative. For example, if an observer perceives two
events as happening simultaneously at two different locations, then the proper
time difference between those two events is imaginary. To avoid dealing with
complex numbers, it is then more convenient to define the “proper distance”
∆s between the two events as

∆s =
√
(∆x)2 + (∆y)2 + (∆z)2 − (c∆t)2 (1.9)

Note that this is the ordinary distance between the two events if they are at
the same time, i.e. ∆t = 0. The proper distance is different from the proper
time difference by a factor

√
−c2. Because of the minus sign under the square
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root, this factor is imaginary. As a result, ∆s is imaginary if ∆t0 is real and
vice-versa.

All observers agree about the values of the proper time difference ∆t0 and
the proper distance ∆s for any two given events.

Physicists define the square of the proper distance to be the “space-time
interval” I. The term is obviously confusing, as a dictionary defines an interval
as a difference in time or space, not as the square of such a difference. To add
more confusion, some physicists change sign in the definition, and others divide
by the square speed of light. And some rightly define the interval to be ∆s
without the square, unfortunately causing still more confusion.

If the interval, defined as (∆s)2, is positive, then the proper distance ∆s
between the two events is real. Such an interval is called “space-like.” On the
other hand, if the interval is negative, then the proper distance is imaginary. In
that case it is the proper time difference between the events that is real. Such
an interval is called “time-like.”

If the proper time difference is real, the earlier event can affect, or even
cause, the later event. If the proper time difference is imaginary however, then
the effects of either event cannot reach the other event even if traveling at the
speed of light. It follows that the sign of the interval is directly related to
“causality,” to what can cause what. Since all observers agree about the value
of the proper time difference, they all agree about what can cause what.

For small differences in time and location, all differences ∆ above become
differentials d.

1.2.3 Subluminal and superluminal effects

Suppose you stepped off the curb at the wrong moment and are now in the
hospital. The pain is agonizing, so you contact one of the telecommunications
microchips buzzing in the sky overhead. These chips are capable of sending
out a “superluminal” beam; a beam that propagates with a speed greater than
the speed of light. The factor with which the speed of the beam exceeds the
speed of light is called the “warp factor” w. A beam with a high warp factor
is great for rapid communication with space ships at distant locations in the
solar system and beyond. A beam with a warp factor of 10 allows ten times
quicker communication than those old-fashioned radio waves that propagate at
the speed of light. And these chips have other very helpful uses, like for your
predicament.

You select a microchip that is moving at high speed away from the location
where the accident occurred. The microchip sends out its superluminal beam.
In its coordinate system, the beam reaches the location of the accident at a
time tm, at which time the beam has traveled a distance xm equal to wctm.
According to the Lorentz transformation (1.6), in the coordinate system fixed
to the earth, the beam reaches the location of the accident at a position and
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time equal to

t =
1− (wV/c)√
1− (V/c)2

tm x =
wc− V√
1− (V/c)2

tm

Because of the high speed V of the microchip and the additional warp factor,
the time that the beam reaches the location of the accident is negative; the
beam has entered into the past. Not far enough in the past however, so another
microchip picks up the message and beams it back, achieving another reduction
in time. After a few more bounces, the message is beamed to your cell phone. It
reaches you just when you are about to step off the curb. The message will warn
you of the approaching car, but it is not really needed. The mere distraction
of your buzzing cell phone causes you to pause for just a second, and the car
rushes past safely. So the accident never happens; you are no longer in agony in
the hospital, but on your Bermuda vacation as planned. And these microchips
are great for investing in the stock market too.

Sounds good, does it not? Unfortunately, there is a hitch. Physicists refuse
to work on the underlying physics to enable this technology. They claim it will
not be workable, since it will force them to think up answers to tough questions
like: “if you did not end up in the hospital after all, then why did you still send
the message?” Until they change their mind, our reality will be that observable
matter or radiation cannot propagate faster than the speed of light.

Therefore, manipulating the past is not possible. An event can only affect
later events. Even more specifically, an event can only affect a later event if
the location of that later event is sufficiently close that it can be reached with
a speed of no more than the speed of light. A look at the definition of the
proper time interval then shows that this means that the proper time interval
between the events must be real, or “time-like.” And while different observers
may disagree about the location and time of the events, they all agree about
the proper time interval. So all observers, regardless of their velocity, agree on
whether an event can affect another event. And they also all agree on which
event is the earlier one, because before the time interval ∆t could change sign
for some observer speeds, it would have to pass through zero. It cannot, because
it must be the same for all observers. Relativity maintains a single reality, even
though observers may disagree about precise times and locations.

A more visual interpretation of those concepts can also be given. Imagine a
hypothetical spherical wave front spreading out from the earlier event with the
speed of light. Then a later event can be affected by the earlier event only if that
later event is within or on that spherical wave front. If you restrict attention to
events in the x, y plane, you can use the z-coordinate to plot the values of time.
In such a plot, the expanding circular wave front becomes a cone, called the
“light-cone.” Only events within this light cone can be affected. Similarly in
three dimensions and time, an event can only be affected if it is within the light
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cone in four-dimensional space-time. But of course, a cone in four dimensions
is hard to visualize geometrically.

1.2.4 Four-vectors

The Lorentz transformation mixes up the space and time coordinates badly. In
relativity, it is therefore best to think of the spatial coordinates and time as
coordinates in a four-dimensional “space-time.”

Since you would surely like all components in a vector to have the same
units, you probably want to multiply time by the speed of light, because ct
has units of length. So the four-dimensional “position vector” can logically be
defined to be (ct, x, y, z); ct is the “zeroth” component of the vector where x,
y, and z are components number 1, 2, and 3 as usual. This four-dimensional
position vector will be indicated by

→֒
r ≡




ct
x
y
z


 ≡




r0
r1
r2
r3


 (1.10)

The hook on the arrow indicates that time has been hooked into it.
How about the important dot product between vectors? In three dimensional

space this produces such important quantities as the length of vectors and the
angle between vectors. Moreover, the dot product between two vectors is the
same regardless of the orientation of the coordinate system in which it is viewed.

It turns out that the proper way to define the dot product for four-vectors
reverses the sign of the contribution of the time components:

→֒
r1 · →֒

r2 ≡ −c2t1t2 + x1x2 + y1y2 + z1z2 (1.11)

It can be checked by simple substitution that the Lorentz transformation (1.6)
preserves this dot product. In more expensive words, this “inner product” is
“invariant under the Lorentz transformation.” Different observers may disagree
about the individual components of four-vectors, but not about their dot prod-
ucts.

The difference between the four-vector positions of two events has a “proper
length” equal to the proper distance between the events

∆s =
√
(∆

→֒
r) · (∆→֒

r) (1.12)

So, the fact that all observers agree about proper distance can be seen as a
consequence of the fact that they all agree about dot products.

It should be pointed out that many physicist reverse the sign of the spatial
components instead of the time in their inner product. Obviously, this is com-
pletely inconsistent with the nonrelativistic analysis, which is often still a valid
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approximation. And this inconsistent sign convention seems to be becoming
the dominant one too. Count on physicists to argue for more than a century
about a sign convention and end up getting it all wrong in the end. One very
notable exception is [49]; you can see why he would end up with a Nobel Prize
in physics.

Some physicists also like to point out that if time is replaced by it, then the
above dot product becomes the normal one. The Lorentz transformation can
then be considered as a mere rotation of the coordinate system in this four-di-
mensional space-time. Gee, thanks physicists! This will be very helpful when
examining what happens in universes in which time is imaginary, unlike our own
universe, in which it is real. The good thing you can say about these physicists
is that they define the dot product the right way: the i2 takes care of the minus
sign on the zeroth component.

Returning to our own universe, the proper length of a four-vector can be
imaginary, and a zero proper length does not imply that the four-vector is zero
as it does in normal three-dimensional space. In fact, a zero proper length
merely indicates that it requires motion at the speed of light to go from the
start point of the four-vector to its end point.

1.2.5 Index notation

The notations used in the previous subsection are not standard. In literature,
you will almost invariably find the four-vectors and the Lorentz transform writ-
ten out in index notation. Fortunately, it does not require courses in linear
algebra and tensor algebra to make some basic sense out of it.

First of all, in the nonrelativistic case position vectors are normally indicated
by ~r. The three components of this vector are commonly indicated by x, y, and
z, or using indices, by r1, r2, and r3. To handle space-time, physicists do not
simply add a zeroth component r0 equal to ct. That would make the meaning too
easy to guess. Instead physicists like to indicate the components of four-vectors
by x0, x1, x2, x3. It is harder to guess correctly what that means, especially since
the letter x is already greatly over-used as it is. A generic component may be
denoted as xµ. An entire four-vector can then be indicated by {xµ} where the
brackets indicate the set of all four components. Needless to say, most physicists
forget about the brackets, because using a component where a vector is required
can have hilarious consequences.

In short,




ct
x
y
z


 ≡

→֒
r ≡




r0
r1
r2
r3







ct
x
y
z


 ≡ {x

µ} ≡




x0

x1

x2

x3
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shows this book’s common sense notation to the left and the index notation
commonly used in physics to the right.

Recall now the Lorentz transformation (1.6). It described the relationship
between the positions and times of events as observed by two different observers
A and B. These observers were in motion compared to each other with a relative
speed V . Physicists like to put the coefficients of such a Lorentz transformation
into a table, as follows:

Λ ≡




λ00 λ01 λ02 λ03
λ10 λ11 λ12 λ13
λ20 λ21 λ22 λ23
λ30 λ31 λ32 λ33


 ≡




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1


 (1.13)

where

γ ≡ 1√
1− (V/c)2

β ≡ V

c
γ2 − β2γ2 = 1

A table like Λ is called a “matrix” or “second-order tensor.” The individual
entries in the matrix are indicated by λµν where µ is the number of the row
and ν the number of the column. Note also the convention of showing the first
index as a superscript. That is a tensor algebra convention. In linear algebra,
you normally make all indices subscripts.

(Different sources use different letters for the Lorentz matrix and its entries.
Some common examples are Λµν and aµν . The name “Lorentz” starts with L
and the Greek letter for L is Λ. And Lorentz was Dutch, which makes him a
European just like the Greek. Therefore Λ is a good choice for the name of the
Lorentz matrix, and Λ or lower case λ for the entries of the matrix. An L for
the matrix and l for its entries would be just too easy to guess. Also, λ is the
standard name for the eigenvalues of matrices and Λ for the matrix of those
eigenvalues. So there is some potential for hilarious confusion there. An “a” for
the Lorentz matrix is good too: the name “Lorentz” consists of roman letters
and a is the first letter of the roman alphabet.)

The values of the entries λµν may vary. The ones shown in the final matrix
in (1.13) above apply only in the simplest nontrivial case. In particular, they
require that the relative motion of the observers is aligned with the x axes as
in figure 1.2. If that is not the case, the values become a lot more messy.

In terms of the above notations, the Lorentz transformation (1.6) can be
written as

xµB =
3∑

ν=0

λµνx
ν
A for all four values µ = 0, 1, 2, 3

That is obviously a lot more concise than (1.6). Some further shorthand notation
is now used. In particular, the “Einstein summation convention” is to leave away
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the summation symbol
∑

. So, you will likely find the Lorentz transformation
written more concisely as

xµB = λµνx
ν
A

Whenever an index like ν appears twice in an expression, summation over that
index is to be understood. In other words, you yourself are supposed to mentally
add back the missing summation over all four values of ν to the expression above.
Also, if an index appears only once, like µ above, it is to be understood that
the equation is valid for all four values of that index.

It should be noted that mathematicians call the matrix Λ the transformation
matrix from B to A, even though it produces the coordinates of B from those
of A. However, after you have read some more in this book, insane notation will
no longer surprise you. Just that in this case it comes from mathematicians.

In understanding tensor algebra, it is essential to recognize one thing. It is
that a quantity like a position differential transforms different from a quantity
like a gradient:

dxµB =
∂xµB
∂xνA

dxνA
∂f

∂xµB
=

∂f

∂xνA

∂xνA
∂xµB

In the first expression, the partial derivatives are by definition the entries of the
Lorentz matrix Λ,

∂xµB
∂xνA

≡ λµν

In the second expression, the corresponding partial derivatives will be indicated
by

∂xµA
∂xνB

≡ (λ−1)µν

The entries (λ−1)µν form the so-called “inverse” Lorentz matrix Λ−1. If the
Lorentz transformation describes a transformation from an observer A to an
observer B, then the inverse transformation describes the transformation from
B to A.

Assuming that the Lorentz transformation matrix is the simple one to the
right in (1.13), the inverse matrix Λ−1 looks exactly the same as Λ except that
−β gets replaced by +β. The reason is fairly simple. The quantity β is the
velocity between the observers scaled with the speed of light. And the relative
velocity of B seen by A is the opposite of the one of A seen by B, if their
coordinate systems are aligned.

Consider now the reason why tensor analysis raises some indices. Physicists
use a superscript index on a vector if it transforms using the normal Lorentz
transformation matrix Λ. Such a vector is called a “contravariant” vector for
reasons not worth describing. As an example, a position differential is a con-
travariant vector. So the components of a position differential are indicated by
dxµ with a superscript index.
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If a vector transforms using the inverse matrix Λ−1, it is called a “covariant”
vector. In that case subscript indices are used. For example, the gradient of a
function f is a covariant vector. So a component ∂f/∂xµ is commonly indicated
by ∂µf .

Now suppose that you flip over the sign of the zeroth, time, component of
a four-vector like a position or a position differential. It turns out that the
resulting four-vector then transforms using the inverse Lorentz transformation
matrix. That means that it has become a covariant vector. (You can easily
verify this in case of the simple Lorentz transform above.) Therefore lower
indices are used for the flipped-over vector:

{xµ} ≡ (−ct, x, y, z) ≡ (x0, x1, x2, x3)

The convention of showing covariant vectors as rows instead of columns comes
from linear algebra. Tensor notation by itself does not have such a graphical
interpretation.

Keep one important thing in mind though. If you flip the sign of a component
of a vector, you get a fundamentally different vector. The vector {xµ} is not just
a somewhat different way to write the position four-vector {xµ} of the space-
time point that you are interested in. Now normally if you define some new
vector that is different from a vector that you are already using, you change
the name. For example, you might change the name from x to y or to xL say.
Tensor algebra does not do that. Therefore the golden rule is:

The names of tensors are only correct if the indices are at the right
height.

If you remember that, tensor algebra becomes a lot less confusing. The expres-
sion {xµ} is only your space-time location named x if the index is a superscript
as shown. The four-vector {xµ} is simply a different animal. How do you know
what is the right height? You just have to remember, you know.

Now consider two different contravariant four-vectors, call them {xµ} and
{yµ}. The dot product between these two four-vectors can be written as

xµy
µ

To see why, recall that since the index µ appears twice, summation over that
index is understood. Also, the lowered index of xµ indicates that the sign of
the zeroth component is flipped over. That produces the required minus sign
on the product of the time components in the dot product.

Note also from the above examples that summation indices appear once as
a subscript and once as a superscript. That is characteristic of tensor algebra.

Addendum {A.4} gives a more extensive description of the most important
tensor algebra formulae for those with a good knowledge of linear algebra.
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1.2.6 Group property

The derivation of the Lorentz transformation as given earlier examined two ob-
servers A and B. But now assume that a third observer C is in motion compared
to observer B. The coordinates of an event as perceived by observer C may then
be computed from those of B using the corresponding Lorentz transformation,
and the coordinates of B may in turn be computed from those of A using that
Lorentz transformation. Schematically,

→֒
rC = ΛC←B

→֒
rB = ΛC←BΛB←A

→֒
rA

But if everything is OK, that means that the Lorentz transformations from A to
B followed by the Lorentz transformation from B to C must be the same as the
Lorentz transformation from A directly to C. In other words, the combination
of two Lorentz transformations must be another Lorentz transformation.

Mathematicians say that Lorentz transformations must form a “group.” It
is much like rotations of a coordinate system in three spatial dimensions: a
rotation followed by another one is equivalent to a single rotation over some
combined angle. In fact, such spatial rotations are Lorentz transformations;
just between coordinate systems that do not move compared to each other.

Using a lot of linear algebra, it may be verified that indeed the Lorentz
transformations form a group, {D.5}.

1.3 Relativistic Mechanics

1.3.1 Intro to relativistic mechanics

Nonrelativistic mechanics is often based on the use of a potential energy to
describe the forces. For example, in a typical molecular dynamics computation,
the forces between the molecules are derived from a potential that depends
on the differences in position between the atoms. Unfortunately, this sort of
description fails badly in the truly relativistic case.

The basic problem is not difficult to understand. If a potential depends
only on the spatial configuration of the atoms involved, then the motion of
an atom instantaneously affects all the other ones. Relativity simply cannot
handle instantaneous effects; they must be limited by the speed of light or
major problems appear. It makes relativistic mechanics more difficult.

The simplest way to deal with the problem is to look at collisions between
particles. Direct collisions inherently avoid erroneous action at a distance. They
allow simple dynamics to be done without the use of a potential between par-
ticles that is relativistically suspect.

As a first example, consider two particles of equal mass and opposite speeds
that collide as shown in the center of figure 1.3. You might think of the particles
as two helium atoms. It will be assumed that while the speed of the atoms may
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Figure 1.3: Example elastic collision seen by different observers.

be quite high, the collision is at a shallow enough angle that it does not excite
the atoms. In other words, it is assumed that the collision is elastic.

As seen by observer C, the collision is perfectly symmetric. Regardless of
the mechanics of the actual collision, observer C sees nothing wrong with it.
The energy of the helium atoms is the same after the collision as before. Also,
the net linear momentum was zero before the collision and still zero afterwards.
And whatever little angular momentum there is, it too is still the same after
the collision.

But now consider an observer A that moves horizontally along with the top
helium atom. For this observer, the top helium atom comes down vertically and
bounces back vertically. Observer B moves along with the bottom helium atom
in the horizontal direction and sees that atom moving vertically. Now consider
the Lorentz transformation (1.7) of the vertical velocity vy,2 of the top atom as
seen by observer A into the vertical velocity vy of that atom as seen by observer
B:

vy =
√
1− (vx/c)2vy,2

They are different! In particular, vy is smaller than vy,2. Therefore, if the masses
of the helium atoms that the observers perceive would be their rest mass, linear
momentum would not be conserved. For example, observer A would perceive a
net downwards linear momentum before the collision and a net upwards linear
momentum after it.

Clearly, linear momentum conservation is too fundamental a concept to be
summarily thrown out. Instead, observer A perceives the mass of the rapidly
moving lower atom to be the moving mass mv, which is larger than the rest
mass m by the Lorentz factor:

mv =
m√

1− (v/c)2

and that exactly compensates for the lower vertical velocity in the expression
for the momentum. (Remember that it was assumed that the collision is under
a shallow angle, so the vertical velocity components are too small to have an
effect on the masses.)

It is not difficult to understand why things are like this. The nonrelativistic
definition of momentum allows two plausible generalizations to the relativistic
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case:

~p = m
d~r

dt
=⇒





→֒
p = m

d
→֒
r

dt
?

→֒
p = m

d
→֒
r

dt0
?

Indeed, nonrelativistically, all observers agree about time intervals. However,
relativistically the question arises whether the right time differential in momen-
tum is dt as perceived by the observer, or the proper time difference dt0 as
perceived by a hypothetical second observer moving along with the particle.

A little thought shows that the right time differential has to be dt0. For, after
collisions the sum of the momenta should be the same as before them. How-
ever, the Lorentz velocity transformation (1.7) shows that perceived velocities
transform nonlinearly from one observer to the next. For a nonlinear transfor-
mation, there is no reason to assume that if the momenta after a collision are
the same as before for one observer, they are also so for another observer. On
the other hand, since all observers agree about the proper time intervals, mo-
mentum based on the proper time interval dt0 transforms like d

→֒
r, like position,

and that is linear. A linear transformation does assure that if an observer A
perceives that the sum of the momenta of a collection of particles j = 1,2,. . . is
the same before and after,

∑

j

→֒
pjA,after =

∑

j

→֒
pjA,before

then so does any other observer B:

∑

j

ΛB←A
→֒
pjA,after =

∑

j

ΛB←A
→֒
pjA,before ⇒

∑

j

→֒
pjB,after =

∑

j

→֒
pjB,before

Using the chain rule of differentiation, the components of the momentum
four-vector

→֒
p can be written out as

p0 = mc
dt

dt0
p1 = m

dt

dt0

dx

dt
p2 = m

dt

dt0

dy

dt
p3 = m

dt

dt0

dz

dt
(1.14)

The components p1, p2, p3 can be written in the same form as in the nonrela-
tivistic case by defining a moving mass

mv = m
dt

dt0
=

m√
1− (v/c)2

(1.15)

How about the zeroth component? Since it too is part of the conservation
law, reasonably speaking it can only be the relativistic equivalent of the nonrel-
ativistic kinetic energy. Indeed, it equals mvc

2 except for a trivial scaling factor
1/c to give it units of momentum.
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Before:

After:
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❄

Figure 1.4: A completely inelastic collision.

Note that so far, this only indicates that the difference betweenmvc
2 andmc2

gives the kinetic energy. It does not imply that mc2 by itself also corresponds to
a meaningful energy. However, there is a beautifully simple argument to show
that indeed kinetic energy can be converted into rest mass, [21]. Consider two
identical rest masses m that are accelerated to high speed and then made to
crash into each other head-on, as in the left part of figure 1.4. In this case, think
of the masses as macroscopic objects, so that thermal energy is a meaningful
concept for them. Assume that the collision has so much energy that the masses
melt and merge without any rebound. By symmetry, the combined massM has
zero velocity. Momentum is conserved: the net momentum was zero before the
collision because the masses had opposite velocity, and it is still zero after the
collision. All very straightforward.

But now consider the same collision from the point of view of a second
observer who is moving upwards slowly compared to the first observer with
a small speed vB. No relativity involved here at all; going up so slowly, the
second observer sees almost the same thing as the first one, with one difference.
According to the second observer, the entire collision process seems to have a
small downward velocity vB. The two masses have a slight downward velocity
vB before the collision and so has the mass M after the collision. But then
vertical momentum conservation inevitably implies

2mvvB =MvB

So M must be twice the moving mass mv. The combined rest mass M is not
the sum of the rest masses m, but of the moving masses mv. All the kinetic
energy given to the two masses has ended up as additional rest mass in M .

1.3.2 Lagrangian mechanics

Lagrangian mechanics can simplify many complicated dynamics problems. As
an example, in this section it is used to derive the relativistic motion of a particle
in an electromagnetic field.

Consider first the nonrelativistic motion of a particle in an electrostatic field.
That is an important case for this book, because it is a good approximation for
the electron in the hydrogen atom. To describe such purely nonrelativistic
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motion, physicists like to define a Lagrangian as

L = 1
2
m|~v|2 − qϕ (1.16)

where m is the mass of the particle, ~v its velocity, and q its charge, while
qϕ is the potential energy due to the electrostatic field, which depends on the
position of the particle. (It is important to remember that the Lagrangian should
mathematically be treated as a function of velocity and position of the particle.
While for a given motion, the position and velocity are in turn functions of time,
time derivatives must be implemented through the chain rule, i.e. by means of
total derivatives of the Lagrangian.)

Physicists next define canonical, or generalized, momentum as the partial
derivative of the Lagrangian with respect to velocity. An arbitrary component
pci of the canonical momentum is found as

pci =
∂L
∂vi

(1.17)

This works out to be simply component pi = mvi of the normal momentum.
The equations of motion are taken to be

dpci
dt

=
∂L
∂ri

(1.18)

which is found to be
dpi
dt

= −q ∂ϕ
∂ri

That is simply Newton’s second law; the left hand side is just mass times accel-
eration while in the right hand side minus the spatial derivative of the potential
energy gives the force. It can also be seen that the sum of kinetic and potential
energy of the particle remains constant, by multiplying Newton’s equation by
vi and summing over i.

Since the Lagrangian is a just a scalar, it is relatively simple to guess its
form in the relativistic case. To get the momentum right, simply replace the
kinetic energy by an reciprocal Lorentz factor,

−mc2
√
1− (|~v|/c)2

For velocities small compared to the speed of light, a two term Taylor series
shows this is equivalent to mc2 plus the kinetic energy. The constant mc2 is
of no importance since only derivatives of the Lagrangian are used. For any
velocity, big or small, the canonical momentum as defined above produces the
relativistic momentum based on the moving mass as it should.

The potential energy part of the Lagrangian is a bit trickier. The previous
section showed that momentum is a four-vector including energy. Therefore,
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going from one observer to another mixes up energy and momentum nontriv-
ially, just like it mixes up space and time. That has consequences for energy
conservation. In the classical solution, kinetic energy of the particle can tem-
porarily be stored away as electrostatic potential energy and recovered later
intact. But relativistically, the kinetic energy seen by one observer becomes
momentum seen by another one. If that momentum is to be recovered intact
later, there should be something like potential momentum. Since momentum is
a vector, obviously so should potential momentum be: there must be something
like a vector potential ~A.

Based on those arguments, you might guess that the Lagrangian should be
something like

L = −mc2
√
1− (|~v|/c)2 + q

→֒

A · d
→֒
r

dt

→֒

A =
(1
c
ϕ,Ax, Ay, Az

)
(1.19)

And that is in fact right. Component zero of the potential four-vector is the
classical electrostatic potential. The spatial vector ~A = (Ax, Ay, Az) is called
the “magnetic vector potential.”

The canonical momentum is now

pci =
∂L
∂vi

= mvvi + qAi (1.20)

and that is no longer just the normal momentum, pi = mvvi, but includes the
magnetic vector potential.

The Lagrangian equations of motion become, the same way as before, but
after clean up and in vector notation, {D.6}:

d~p

dt
= q~E + q~v × ~B (1.21)

The right-hand side in this equation of motion is called the Lorentz force. In it,
~E is called the electric field and ~B the magnetic field. These fields are related
to the four-vector potential as

~E = −∇ϕ− ∂ ~A

∂t
~B = ∇× ~A

where by definition

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

is the vector operator called nabla or del.
Of course, if the Lagrangian above is right, it should apply to all observers,

regardless of their relative motion. In particular, all observers should agree
that the so-called “action” integral

∫
Ldt is stationary for the way that the
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particle moves, {A.1.3}, {D.3.1} That requires that →֒

A transforms according to
the Lorentz transformation.

(To see why, recall that dot products are the same for all observers, and
that the square root in the Lagrangian (1.19) equals dt0/dt where the proper
time interval dt0 is the same for all observers. So the action is the same for all
observers.)

From the Lorentz transformation of
→֒

A , that of the electric and magnetic
fields may be found; that is not a Lorentz transformation. Note that this sug-
gests that

→֒

A might be more fundamental physically than the more intuitive
electric and magnetic fields. And that is in fact exactly what more advanced
quantum mechanics shows, chapter 13.1.

It may be noted that the field strengths are unchanged in a “gauge trans-
formation” that modifies ϕ and ~A into

ϕ′ = ϕ− ∂χ

∂t
~A′ = ~A+∇χ (1.22)

where χ is any arbitrary function of position and time. This might at first seem
no more than a neat mathematical trick. But actually, in advanced quantum
mechanics it is of decisive importance, chapter 7.3, {A.19.5}.

The energy can be found following addendum {A.1} as

E = ~v · ~p c − L = mvc
2 + qϕ

The Hamiltonian is the energy expressed in terms of the canonical momentum
~p c instead of ~v; that works out to

H =

√
(mc2)2 + (~p c − q ~A)2c2 + qϕ

using the formula given in the overview subsection. The Hamiltonian is of great
importance in quantum mechanics.
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Basic Quantum Mechanics
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Chapter 2

Mathematical Prerequisites

Abstract

Quantum mechanics is based on a number of advanced mathematical
ideas that are described in this chapter.

First the normal real numbers will be generalized to complex numbers.
A number such as i =

√
−1 is an invalid real number, but it is considered

to be a valid complex one. The mathematics of quantum mechanics is
most easily described in terms of complex numbers.

Classical physics tends to deal with numbers such as the position, ve-
locity, and acceleration of particles. However, quantum mechanics deals
primarily with functions rather than with numbers. To facilitate ma-
nipulating functions, they will be modeled as vectors in infinitely many
dimensions. Dot products, lengths, and orthogonality can then all be
used to manipulate functions. Dot products will however be renamed to
be “inner products” and lengths to be “norms.”

“Operators” will be defined that turn functions into other functions. Par-
ticularly important for quantum mechanics are “eigenvalue” cases, in
which an operator turns a function into a simple multiple of itself.

A special class of operators, “Hermitian” operators will be defined. These
will eventually turn out to be very important, because quantum mechan-
ics associates physical quantities like position, momentum, and energy
with corresponding Hermitian operators and their eigenvalues.

2.1 Complex Numbers

Quantum mechanics is full of complex numbers, numbers involving

i =
√
−1.

31
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Note that
√
−1 is not an ordinary, “real”, number, since there is no real number

whose square is −1; the square of a real number is always positive. This section
summarizes the most important properties of complex numbers.

First, any complex number, call it c, can by definition always be written in
the form

c = cr + ici (2.1)

where both cr and ci are ordinary real numbers, not involving
√
−1. The number

cr is called the real part of c and ci the imaginary part.
You can think of the real and imaginary parts of a complex number as the

components of a two-dimensional vector:

cr

ci

✟✟✟✟✟✟✟✯
c

The length of that vector is called the “magnitude,” or “absolute value” |c| of
the complex number. It equals

|c| =
√
c2r + c2i .

Complex numbers can be manipulated pretty much in the same way as
ordinary numbers can. A relation to remember is:

1

i
= −i (2.2)

which can be verified by multiplying the top and bottom of the fraction by i
and noting that by definition i2 = −1 in the bottom.

The complex conjugate of a complex number c, denoted by c∗, is found by
replacing i everywhere by −i. In particular, if c = cr + ici, where cr and ci are
real numbers, the complex conjugate is

c∗ = cr − ici (2.3)

The following picture shows that graphically, you get the complex conjugate of
a complex number by flipping it over around the horizontal axis:

cr

ci

−ci

✟✟✟✟✟✟✟✯
c

❍❍❍❍❍❍❍❥
c∗
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You can get the magnitude of a complex number c by multiplying c with its
complex conjugate c∗ and taking a square root:

|c| =
√
c∗c (2.4)

If c = cr + ici, where cr and ci are real numbers, multiplying out c∗c shows the
magnitude of c to be

|c| =
√
c2r + c2i

which is indeed the same as before.
From the above graph of the vector representing a complex number c, the

real part is cr = |c| cosα where α is the angle that the vector makes with the
horizontal axis, and the imaginary part is ci = |c| sinα. So you can write any
complex number in the form

c = |c| (cosα + i sinα)

The critically important Euler formula says that:

cosα + i sinα = eiα (2.5)

So, any complex number can be written in “polar form” as

c = |c|eiα (2.6)

where both the magnitude |c| and the phase angle (or argument) α are real
numbers.

Any complex number of magnitude one can therefore be written as eiα. Note
that the only two real numbers of magnitude one, 1 and −1, are included for α
= 0, respectively α = π. The number i is obtained for α = π/2 and −i for α =
−π/2.

(See derivation {D.7} if you want to know where the Euler formula comes
from.)

Key Points

0 Complex numbers include the square root of minus one, i, as a valid
number.

0 All complex numbers can be written as a real part plus i times an
imaginary part, where both parts are normal real numbers.

0 The complex conjugate of a complex number is obtained by replacing
i everywhere by −i.

0 The magnitude of a complex number is obtained by multiplying the
number by its complex conjugate and then taking a square root.
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0 The Euler formula relates exponentials to sines and cosines.

2.1 Review Questions

1. Multiply out (2 + 3i)2 and then find its real and imaginary part.

Solution mathcplx-a

2. Show more directly that 1/i = −i.
Solution mathcplx-b

3. Multiply out (2 + 3i)(2− 3i) and then find its real and imaginary part.

Solution mathcplx-c

4. Find the magnitude or absolute value of 2 + 3i.

Solution mathcplx-d

5. Verify that (2− 3i)2 is still the complex conjugate of (2+ 3i)2 if both are
multiplied out.

Solution mathcplx-e

6. Verify that e−2i is still the complex conjugate of e2i after both are rewrit-
ten using the Euler formula.

Solution mathcplx-f

7. Verify that
(
eiα + e−iα

)
/2 = cosα.

Solution mathcplx-g

8. Verify that
(
eiα − e−iα

)
/2i = sinα.

Solution mathcplx-h

2.2 Functions as Vectors

The second mathematical idea that is crucial for quantum mechanics is that
functions can be treated in a way that is fundamentally not that much different
from vectors.

A vector ~f (which might be velocity ~v, linear momentum ~p = m~v, force ~F ,
or whatever) is usually shown in physics in the form of an arrow:

y

x

~f

fx

fy

m

Figure 2.1: The classical picture of a vector.

However, the same vector may instead be represented as a spike diagram,
by plotting the value of the components versus the component index:

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-c.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-d.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-e.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-f.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-g.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathcplx-h.html
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fi
fx

fy
1 2 i

Figure 2.2: Spike diagram of a vector.

(The symbol i for the component index is not to be confused with i =
√
−1.)

In the same way as in two dimensions, a vector in three dimensions, or, for
that matter, in thirty dimensions, can be represented by a spike diagram:

fi
fx fy

fz
1 2 3 i

fi

1 30 i

Figure 2.3: More dimensions.

And just like vectors can be interpreted as spike diagrams, spike diagrams
can be interpreted as vectors. So a spike diagram with very many spikes can
be considered to be a single vector in a space with a very high number of
dimensions.

In the limit of infinitely many spikes, the large values of i can be rescaled
into a continuous coordinate, call it x. For example, x might be defined as i
divided by the number of dimensions. In any case, the spike diagram becomes
a function f of a continuous coordinate x:

f(x)

x

Figure 2.4: Infinite dimensions.

For functions, the spikes are usually not shown:

f(x)

x

Figure 2.5: The classical picture of a function.
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In this way, a function is just a single vector in an infinite dimensional space.

Note that the (x) in f(x) does not mean “multiply by x.” Here the (x) is
only a way of reminding you that f is not a simple number but a function. Just
like the arrow in ~f is only a way of reminding you that that f is not a simple
number but a vector.

(It should be noted that to make the transition to infinite dimensions math-
ematically meaningful, you need to impose some smoothness constraints on the
function. Typically, it is required that the function is continuous, or at least
integrable in some sense. These details are not important for this book.)

Key Points

0 A function can be thought of as a vector with infinitely many com-
ponents.

0 This allows quantum mechanics do the same things with functions
as you can do with vectors.

2.2 Review Questions

1. Graphically compare the spike diagram of the 10-dimensional vector ~v
with components (0.5,1,1.5,2,2.5,3,3.5,4,4.5,5) with the plot of the func-
tion f(x) = 0.5 x.

Solution funcvec-a

2. Graphically compare the spike diagram of the 10-dimensional unit vector
ı̂3, with components (0,0,1,0,0,0,0,0,0,0), with the plot of the function
f(x) = 1. (No, they do not look alike.)

Solution funcvec-b

2.3 The Dot, oops, INNER Product

The dot product of vectors is an important tool. It makes it possible to find
the length of a vector, by multiplying the vector by itself and taking the square
root. It is also used to check if two vectors are orthogonal: if their dot product
is zero, they are. In this subsection, the dot product is defined for complex
vectors and functions.

The usual dot product of two vectors ~f and ~g can be found by multiplying
components with the same index i together and summing that:

~f · ~g ≡ f1g1 + f2g2 + f3g3

(The emphatic equal, ≡, is commonly used to indicate “is by definition equal” or
“is always equal.”) Figure 2.6 shows multiplied components using equal colors.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/funcvec-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/funcvec-b.html
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fi
f1 f2

f3
1 2 3 i

gi

g1
g2

g3

1 3 i

Figure 2.6: Forming the dot product of two vectors.

Note the use of numeric subscripts, f1, f2, and f3 rather than fx, fy, and fz;
it means the same thing. Numeric subscripts allow the three term sum above
to be written more compactly as:

~f · ~g ≡
∑

all i

figi

The Σ is called the “summation symbol.”
The length of a vector ~f , indicated by |~f | or simply by f , is normally com-

puted as

|~f | =
√
~f · ~f =

√∑

all i

f 2
i

However, this does not work correctly for complex vectors. The difficulty is that
terms of the form f 2

i are no longer necessarily positive numbers. For example,
i2 = −1.

Therefore, it is necessary to use a generalized “inner product” for complex
vectors, which puts a complex conjugate on the first vector:

〈
~f
∣∣∣~g
〉
≡
∑

all i

f ∗i gi (2.7)

If the vector ~f is real, the complex conjugate does nothing, and the inner product〈
~f
∣∣∣~g
〉
is the same as the dot product ~f · ~g. Otherwise, in the inner product ~f

and ~g are no longer interchangeable; the conjugates are only on the first factor,
~f . Interchanging ~f and ~g changes the inner product’s value into its complex
conjugate.

The length of a nonzero vector is now always a positive number:

|~f | =
√〈

~f
∣∣∣~f
〉
=

√∑

all i

|fi|2 (2.8)

Physicists take the inner product “bracket” verbally apart as
〈
~f
∣∣∣ |~g〉

bra /c ket
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and refer to vectors as bras and kets.
The inner product of functions is defined in exactly the same way as for

vectors, by multiplying values at the same x-position together and summing.
But since there are infinitely many x values, the sum becomes an integral:

〈f |g〉 =
∫

all x

f ∗(x)g(x) dx (2.9)

Figure 2.7 shows multiplied function values using equal colors:

f(x)

x

g(x)

x

Figure 2.7: Forming the inner product of two functions.

The equivalent of the length of a vector is in the case of a function called its
“norm:”

||f || ≡
√
〈f |f〉 =

√∫

all x

|f(x)|2 dx (2.10)

The double bars are used to avoid confusion with the absolute value of the
function.

A vector or function is called “normalized” if its length or norm is one:

〈f |f〉 = 1 iff f is normalized. (2.11)

(“iff” should really be read as “if and only if.”)
Two vectors, or two functions, f and g, are by definition orthogonal if their

inner product is zero:

〈f |g〉 = 0 iff f and g are orthogonal. (2.12)

Sets of vectors or functions that are all
• mutually orthogonal, and
• normalized

occur a lot in quantum mechanics. Such sets should be called “orthonormal”,
though the less precise term “orthogonal” is often used instead. This document
will refer to them correctly as being orthonormal.

So, a set of functions or vectors f1, f2, f3, . . . is orthonormal if

0 = 〈f1|f2〉 = 〈f2|f1〉 = 〈f1|f3〉 = 〈f3|f1〉 = 〈f2|f3〉 = 〈f3|f2〉 = . . .

and
1 = 〈f1|f1〉 = 〈f2|f2〉 = 〈f3|f3〉 = . . .
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Key Points

0 For complex vectors and functions, the normal dot product becomes
the inner product.

0 To take an inner product of vectors,
• take complex conjugates of the components of the first

vector;
• multiply corresponding components of the two vectors

together;
• sum these products.

0 To take an inner product of functions,
• take the complex conjugate of the first function;
• multiply the two functions;
• integrate the product function.

0 To find the length of a vector, take the inner product of the vector
with itself, and then a square root.

0 To find the norm of a function, take the inner product of the function
with itself, and then a square root.

0 A pair of vectors, or a pair of functions, is orthogonal if their inner
product is zero.

0 A set of vectors forms an orthonormal set if every one is orthogonal
to all the rest, and every one is of unit length.

0 A set of functions forms an orthonormal set if every one is orthogonal
to all the rest, and every one is of unit norm.

2.3 Review Questions

1. Find the following inner product of the two vectors:
〈(

1 + i
2− i

) ∣∣∣∣∣

(
2i
3

)〉

Solution dot-a

2. Find the length of the vector
(

1 + i
3

)

Solution dot-b

3. Find the inner product of the functions sin(x) and cos(x) on the interval
0 6 x 6 1.
Solution dot-c

4. Show that the functions sin(x) and cos(x) are orthogonal on the interval
0 6 x 6 2π.
Solution dot-d

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/dot-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/dot-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/dot-c.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/dot-d.html
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5. Verify that sin(x) is not a normalized function on the interval 0 6 x 6

2π, and normalize it by dividing by its norm.

Solution dot-e

6. Verify that the most general multiple of sin(x) that is normalized on
the interval 0 6 x 6 2π is eiα sin(x)/

√
π where α is any arbitrary real

number. So, using the Euler formula, the following multiples of sin(x)
are all normalized: sin(x)/

√
π, (for α = 0), − sin(x)/

√
π, (for α = π),

and i sin(x)/
√
π, (for α = π/2).

Solution dot-f

7. Show that the functions e4iπx and e6iπx are an orthonormal set on the
interval 0 6 x 6 1.

Solution dot-g

2.4 Operators

This section defines operators, which are a generalization of matrices. Operators
are the principal components of quantum mechanics.

In a finite number of dimensions, a matrix A can transform any arbitrary
vector v into a different vector A~v:

~v
matrix A

✲ ~w = A~v

Similarly, an operator transforms a function into another function:

f(x)
operator A

✲ g(x) = Af(x)

Some simple examples of operators:

f(x)
x̂ ✲ g(x) = xf(x)

f(x)

d

dx ✲ g(x) = f ′(x)

Note that a hat is often used to indicate operators; for example, x̂ is the sym-
bol for the operator that corresponds to multiplying by x. If it is clear that
something is an operator, such as d/dx, no hat will be used.

It should really be noted that the operators that you are interested in in
quantum mechanics are “linear” operators. If you increase a function f by a
factor, Af increases by that same factor. Also, for any two functions f and g,
A(f + g) will be (Af) + (Ag). For example, differentiation is a linear operator:

d
(
c1f(x) + c2g(x)

)

dx
= c1

df(x)

dx
+ c2

dg(x)

dx

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/dot-e.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/dot-f.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/dot-g.html
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Squaring is not a linear operator:
(
c1f(x) + c2g(x)

)2
= c21f

2(x) + 2c1c2f(x)g(x) + c22g
2(x) 6= c1f

2(x) + c2g
2(x)

However, it is not something to really worry about. You will not find a single
nonlinear operator in the rest of this entire book.

Key Points

0 Matrices turn vectors into other vectors.

0 Operators turn functions into other functions.

2.4 Review Questions

1. So what is the result if the operator d/dx is applied to the function sin(x)?
Solution mathops-a

2. If, say, x̂2 sin(x) is simply the function x2 sin(x), then what is the differ-

ence between x̂2 and x2?
Solution mathops-b

3. A less self-evident operator than the above examples is a translation op-
erator like Tπ/2 that translates the graph of a function towards the left

by an amount π/2: Tπ/2f(x) = f
(
x+ 1

2π
)
. (Curiously enough, transla-

tion operators turn out to be responsible for the law of conservation of
momentum.) Show that Tπ/2 turns sin(x) into cos(x).
Solution mathops-c

4. The inversion, or parity, operator Π turns f(x) into f(−x). (It plays a
part in the question to what extent physics looks the same when seen in
the mirror.) Show that Π leaves cos(x) unchanged, but turns sin(x) into
−sin(x).
Solution mathops-d

2.5 Eigenvalue Problems

To analyze quantum mechanical systems, it is normally necessary to find so-
called eigenvalues and eigenvectors or eigenfunctions. This section defines what
they are.

A nonzero vector ~v is called an eigenvector of a matrix A if A~v is a multiple
of the same vector:

A~v = a~v iff ~v is an eigenvector of A (2.13)

The multiple a is called the eigenvalue. It is just a number.
A nonzero function f is called an eigenfunction of an operator A if Af is a

multiple of the same function:

Af = af iff f is an eigenfunction of A. (2.14)

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathops-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathops-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathops-c.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/mathops-d.html
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x π

1

−1

sin(2x) 2 cos(2x)

−4 sin(2x)

Figure 2.8: Illustration of the eigenfunction concept. Function sin(2x) is shown
in black. Its first derivative 2 cos(2x), shown in red, is not just a multiple of
sin(2x). Therefore sin(2x) is not an eigenfunction of the first derivative operator.
However, the second derivative of sin(2x) is −4 sin(2x), which is shown in green,
and that is indeed a multiple of sin(2x). So sin(2x) is an eigenfunction of the
second derivative operator, and with eigenvalue −4.

For example, ex is an eigenfunction of the operator d/dx with eigenvalue 1,
since dex/dx = 1 ex. Another simple example is illustrated in figure 2.8; the
function sin(2x) is not an eigenfunction of the first derivative operator d/dx.
However it is an eigenfunction of the second derivative operator d2/dx2, and
with eigenvalue −4.

Eigenfunctions like ex are not very common in quantum mechanics since
they become very large at large x, and that typically does not describe physical
situations. The eigenfunctions of the first derivative operator d/dx that do
appear a lot are of the form eikx, where i =

√
−1 and k is an arbitrary real

number. The eigenvalue is ik:

d

dx
eikx = ikeikx

Function eikx does not blow up at large x; in particular, the Euler formula (2.5)
says:

eikx = cos(kx) + i sin(kx)

The constant k is called the “wave number.”

Key Points

0 If a matrix turns a nonzero vector into a multiple of that vector, then
that vector is an eigenvector of the matrix, and the multiple is the
eigenvalue.

0 If an operator turns a nonzero function into a multiple of that func-
tion, then that function is an eigenfunction of the operator, and the
multiple is the eigenvalue.
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2.5 Review Questions

1. Show that eikx, above, is also an eigenfunction of d2/dx2, but with eigen-
value −k2. In fact, it is easy to see that the square of any operator has
the same eigenfunctions, but with the square eigenvalues.

Solution eigvals-a

2. Show that any function of the form sin(kx) and any function of the form
cos(kx), where k is a constant called the wave number, is an eigenfunction
of the operator d2/dx2, though they are not eigenfunctions of d/dx.

Solution eigvals-b

3. Show that sin(kx) and cos(kx), with k a constant, are eigenfunctions of
the inversion operator Π, which turns any function f(x) into f(−x), and
find the eigenvalues.

Solution eigvals-c

2.6 Hermitian Operators

Most operators in quantum mechanics are of a special kind called “Hermitian”.
This section lists their most important properties.

An operator is called Hermitian when it can always be flipped over to the
other side if it appears in a inner product:

〈f |Ag〉 = 〈Af |g〉 always iff A is Hermitian. (2.15)

That is the definition, but Hermitian operators have the following additional
special properties:
• They always have real eigenvalues, not involving i =

√
−1. (But the

eigenfunctions, or eigenvectors if the operator is a matrix, might be
complex.) Physical values such as position, momentum, and energy
are ordinary real numbers since they are eigenvalues of Hermitian
operators {N.3}.
• Their eigenfunctions can always be chosen so that they are normal-
ized and mutually orthogonal, in other words, an orthonormal set.
This tends to simplify the various mathematics a lot.
• Their eigenfunctions form a “complete” set. This means that any
function can be written as some linear combination of the eigen-
functions. (There is a proof in derivation {D.8} for an important
example. But see also {N.4}.) In practical terms, it means that you
only need to look at the eigenfunctions to completely understand
what the operator does.

In the linear algebra of real matrices, Hermitian operators are simply sym-
metric matrices. A basic example is the inertia matrix of a solid body in New-
tonian dynamics. The orthonormal eigenvectors of the inertia matrix give the
directions of the principal axes of inertia of the body.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/eigvals-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/eigvals-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/eigvals-c.html
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An orthonormal complete set of eigenvectors or eigenfunctions is an example
of a so-called “basis.” In general, a basis is a minimal set of vectors or functions
that you can write all other vectors or functions in terms of. For example, the
unit vectors ı̂, ̂, and k̂ are a basis for normal three-dimensional space. Every
three-dimensional vector can be written as a linear combination of the three.

The following properties of inner products involving Hermitian operators are
often needed, so they are listed here:

If A is Hermitian: 〈g|Af〉 = 〈f |Ag〉∗, 〈f |Af〉 is real. (2.16)

The first says that you can swap f and g if you take the complex conjugate. (It
is simply a reflection of the fact that if you change the sides in an inner product,
you turn it into its complex conjugate. Normally, that puts the operator at the
other side, but for a Hermitian operator, it does not make a difference.) The
second is important because ordinary real numbers typically occupy a special
place in the grand scheme of things. (The fact that the inner product is real
merely reflects the fact that if a number is equal to its complex conjugate, it
must be real; if there was an i in it, the number would change by a complex
conjugate.)

Key Points

0 Hermitian operators can be flipped over to the other side in inner
products.

0 Hermitian operators have only real eigenvalues.

0 Hermitian operators have a complete set of orthonormal eigenfunc-
tions (or eigenvectors).

2.6 Review Questions

1. A matrix A is defined to convert any vector ~r = xı̂+ŷ into ~r2 = 2xı̂+4ŷ.
Verify that ı̂ and ̂ are orthonormal eigenvectors of this matrix, with
eigenvalues 2, respectively 4.
Solution herm-a

2. A matrix A is defined to convert any vector ~r = (x, y) into the vector ~r2
= (x+ y, x+ y). Verify that (cos 45◦, sin 45◦) and (cos 45◦,− sin 45◦) are
orthonormal eigenvectors of this matrix, with eigenvalues 2 respectively
0. Note: cos 45◦ = sin 45◦ = 1

2

√
2.

Solution herm-b

3. Show that the operator 2̂ is a Hermitian operator, but î is not.
Solution herm-c

4. Generalize the previous question, by showing that any complex constant
c comes out of the right hand side of an inner product unchanged, but
out of the left hand side as its complex conjugate;

〈f |cg〉 = c〈f |g〉 〈cf |g〉 = c∗〈f |g〉.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-c.html
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As a result, a number c is only a Hermitian operator if it is real: if c is
complex, the two expressions above are not the same.

Solution herm-d

5. Show that an operator such as x̂2, corresponding to multiplying by a real
function, is an Hermitian operator.

Solution herm-e

6. Show that the operator d/dx is not a Hermitian operator, but id/dx is,
assuming that the functions on which they act vanish at the ends of the
interval a 6 x 6 b on which they are defined. (Less restrictively, it is
only required that the functions are “periodic”; they must return to the
same value at x = b that they had at x = a.)

Solution herm-f

7. Show that if A is a Hermitian operator, then so is A2. As a result, under
the conditions of the previous question, −d2/dx2 is a Hermitian operator
too. (And so is just d2/dx2, of course, but −d2/dx2 is the one with the
positive eigenvalues, the squares of the eigenvalues of id/dx.)

Solution herm-g

8. A complete set of orthonormal eigenfunctions of −d2/dx2 on the interval
0 6 x 6 π that are zero at the end points is the infinite set of functions

sin(x)√
π/2

,
sin(2x)√
π/2

,
sin(3x)√
π/2

,
sin(4x)√
π/2

, . . .

Check that these functions are indeed zero at x = 0 and x = π, that
they are indeed orthonormal, and that they are eigenfunctions of−d2/dx2
with the positive real eigenvalues

1, 4, 9, 16, . . .

Completeness is a much more difficult thing to prove, but they are.
The completeness proof in the notes covers this case.

Solution herm-h

9. A complete set of orthonormal eigenfunctions of the operator id/dx that
are periodic on the interval 0 6 x 6 2π are the infinite set of functions

. . . ,
e−3ix√
2π

,
e−2ix√
2π

,
e−ix√
2π
,

1√
2π
,
eix√
2π
,
e2ix√
2π
,
e3ix√
2π
, . . .

Check that these functions are indeed periodic, orthonormal, and that
they are eigenfunctions of id/dx with the real eigenvalues

. . . , 3, 2, 1, 0,−1,−2,−3, . . .

Completeness is a much more difficult thing to prove, but they are.
The completeness proof in the notes covers this case.

Solution herm-i

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-d.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-e.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-f.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-g.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-h.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/herm-i.html
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2.7 Additional Points

This subsection describes a few further issues of importance for this book.

2.7.1 Dirac notation

Physicists like to write inner products such as 〈f |Ag〉 in “Dirac notation”:

〈f |A|g〉 ≡ 〈f |Ag〉
since this conforms more closely to how you would think of it in linear algebra:

〈f | A |g〉
bra operator ket

The various advanced ideas of linear algebra can be extended to operators in
this way, but they will not be needed in this book.

One thing will be needed in some more advanced addenda, however. That
is the case that operator A is not Hermitian. In that case, if you want to take
A to the other side of the inner product, you need to change it into a different
operator. That operator is called the “Hermitian conjugate” of A. In physics,
it is almost always indicated as A†. So, simply by definition,

〈f |Ag〉 ≡
∫

all x

f ∗(x) (Ag(x)) dx ≡
∫

all x

(A†f(x))∗g(x) dx ≡
〈
A†f

∣∣g
〉

Then there are some more things that this book will not use. However,
you will almost surely encounter these when you read other books on quantum
mechanics.

First, the dagger is used much like a generalization of “complex conjugate,”

f † ≡ f ∗ |f〉† ≡ 〈f |
etcetera. Applying a dagger a second time gives the original back. Also, if you
work out the dagger on a product, you need to reverse the order of the factors.
For example (

A†|f〉
)†
|g〉 = 〈f |A|g〉

In words, putting A†|f〉 into the left side of an inner product gives 〈f |A.
The second point will be illustrated for the case of vectors in three dimen-

sions. Such a vector can be written as

~v = ı̂vx + ̂vy + k̂vz

Here ı̂, ̂, and k̂ are the three unit vectors in the axial directions. The compo-
nents vx, vy and vz can be found using dot products:

~v = ı̂(̂ı · ~v) + ̂(̂ · ~v) + k̂(k̂ · ~v)
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Symbolically, you can write this as

~v = (̂ı̂ı ·+̂̂ ·+k̂k̂·)~v

In fact, the operator in parentheses can be defined by saying that for any vector
~v, it gives the exact same vector back. Such an operator is called an “identity
operator.”

The relation
(̂ı̂ı ·+̂̂ ·+k̂k̂·) = 1

is called the “completeness relation.” To see why, suppose you leave off the
third part of the operator. Then

(̂ı̂ı ·+̂̂·)~v = ı̂vx + ̂vy

The z-component is gone! Now the vector ~v gets projected onto the x, y-plane.
The operator has become a “projection operator” instead of an identity operator
by not suming over the complete set of unit vectors.

You will almost always find these things in terms of bras and kets. To see
how that looks, define

ı̂ ≡ |1〉 ̂ ≡ |2〉 k̂ ≡ |3〉 ~v ≡ |v〉

Then
|v〉 = |1〉〈1||v〉+ |2〉〈2||v〉+ |3〉〈3||v〉 =

∑

all i

|i〉〈i||v〉

so the completeness relation looks like
∑

all i

|i〉〈i| = 1

If you do not sum over the complete set of kets, you get a projection operator
instead of an identity one.

2.7.2 Additional independent variables

In many cases, the functions involved in an inner product may depend on more
than a single variable x. For example, they might depend on the position (x, y, z)
in three-dimensional space.

The rule to deal with that is to ensure that the inner product integrations
are over all independent variables. For example, in three spatial dimensions:

〈f |g〉 =
∫

all x

∫

all y

∫

all z

f ∗(x, y, z)g(x, y, z) dxdydz

Note that the time t is a somewhat different variable from the rest, and time
is not included in the inner product integrations.





Chapter 3

Basic Ideas of Quantum
Mechanics

Abstract

In this chapter the basic ideas of quantum mechanics are described and
then a basic but very important example is worked out.

Before embarking on this chapter, do take note of the very sage advice
given by Richard Feynman, Nobel-prize winning pioneer of relativistic
quantum mechanics:

“Do not keep saying to yourself, if you can possibly avoid it,
‘But how can it be like that?’ because you will get ‘down the
drain,’ into a blind alley from which nobody has yet escaped.
Nobody knows how it can be like that.” [Richard P. Feynman
(1965) The Character of Physical Law 129. BBC/Penguin]

“So do not take the lecture too seriously, . . . , but just relax
and enjoy it.” [ibid.]

And it may be uncertain whether Niels Bohr, Nobel-prize winning pioneer
of early quantum mechanics actually said it to Albert Einstein, and if so,
exactly what he said, but it may be the sanest statement about quantum
mechanics of all:

“Stop telling God what to do.” [Neils Bohr, reputed].

First of all, this chapter will throw out the classical picture of particles
with positions and velocities. Completely.

Quantum mechanics substitutes instead a function called the “wave func-
tion” that associates a numerical value with every possible state of the

universe. If the “universe” that you are considering is just a single parti-
cle, the wave function of interest associates a numerical value with every
possible position of that particle, at every time.

49
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The physical meaning of the value of the wave function, also called the
“quantum amplitude,” itself is somewhat hazy. It is just a complex num-
ber. However, the square magnitude of the number has a clear meaning,
first stated by Born: The square magnitude of the wave function at a
point is a measure of the probability of finding the particle at that point,
if you conduct such a search.

But if you do, watch out. Heisenberg has shown that if you eliminate the
uncertainty in the position of a particle, its linear momentum explodes. If
the position is precise, the linear momentum has infinite uncertainty. The
same thing also applies in reverse. Neither position nor linear momentum
can have an precise value for a particle. And usually other quantities like
energy do not either.

Which brings up the question what meaning to attach to such physical
quantities. Quantum mechanics answers that by associating a separate
Hermitian operator with every physical quantity. The most important
ones will be described. These operators act on the wave function. If,
and only if, the wave function is an eigenfunction of such a Hermitian
operator, only then does the corresponding physical quantity have a def-
inite value: the eigenvalue. In all other cases the physical quantity is
uncertain.

The most important Hermitian operator is called the “Hamiltonian.” It
is associated with the total energy of the particle. The eigenvalues of the
Hamiltonian describe the only possible values that the total energy of the
particle can have.

The chapter will conclude by analyzing a simple quantum system in de-
tail. It is a particle stuck in a pipe of square cross section. While relatively
simple, this case describes some of the quantum effects encountered in
nanotechnology. In later chapters, it will be found that this case also
provides a basic model for such systems as valence electrons in metals,
molecules in ideal gases, nucleons in nuclei, and much more.

3.1 The Revised Picture of Nature

This section describes the view quantum mechanics has of nature, which is in
terms of a mysterious function called the “wave function”.

According to quantum mechanics, the way that the old Newtonian physics
describes nature is wrong if examined closely enough. Not just a bit wrong.
Totally wrong. For example, the Newtonian picture for a particle of mass m
looks like figure 3.1:
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velocity: vx =
dx

dt
, etc.

linear momentum: px = mvx, etc.

force: Fx = m
dvx
dt

, etc. (Newton’s second law)

Figure 3.1: The old incorrect Newtonian physics.

The problems? A numerical position for the particle simply does not exist.
A numerical velocity or linear momentum for the particle does not exist.

What does exist according to quantum mechanics is the so-called wave func-
tion Ψ(x, y, z; t). Its square magnitude, |Ψ|2, can be shown as grey tones (darker
where the magnitude is larger), as in figure 3.2:

x

y

z

m

A precise position does not exist. Neither does a precise
velocity or linear momentum.

Quantum mechanics does not use forces, but the potential
energy V . It is implicitly defined by:

Fx = −∂V
∂x

Fy = −
∂V

∂y
Fz = −

∂V

∂z

Figure 3.2: The correct quantum physics.

The physical meaning of the wave function is known as “Born’s statistical
interpretation”: darker regions are regions where the particle is more likely to
be found if the location is narrowed down. More precisely, if ~r = (x, y, z) is a
given location, then

|Ψ(~r; t)|2 d3~r (3.1)

is the probability of finding the particle within a small volume, of size d3~r =
dxdydz, around that given location, if such a measurement is attempted.

(And if such a position measurement is actually done, it affects the wave
function: after the measurement, the new wave function will be restricted to
the volume to which the position was narrowed down. But it will spread out
again in time if allowed to do so afterwards.)

The particle must be found somewhere if you look everywhere. In quantum
mechanics, that is expressed by the fact that the total probability to find the
particle, integrated over all possible locations, must be 100% (certainty):

∫

all ~r

|Ψ(~r; t)|2 d3~r = 1 (3.2)

extrascale=3
extrascale=3
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In other words, proper wave functions are normalized, 〈Ψ|Ψ〉 = 1.
The position of macroscopic particles is typically very much narrowed down

by incident light, surrounding objects, earlier history, etcetera. For such par-
ticles, the “blob size” of the wave function is extremely small. As a result,
claiming that a macroscopic particle, is, say, at the center point of the wave
function blob may be just fine in practical applications. But when you are in-
terested in what happens on very small scales, the nonzero blob size can make
a big difference.

In addition, even on macroscopic scales, position can be ill defined. Consider
what happens if you take the wave function blob apart and send half to Mars
and half to Venus. Quantum mechanics allows it; this is what happens in a
“scattering” experiment. You would presumably need to be extremely careful
to do it on such a large scale, but there is no fundamental theoretical objection
in quantum mechanics. So, where is the particle now? Hiding on Mars? Hiding
on Venus?

Orthodox quantum mechanics says: neither. It will pop up on one of the two
planets if measurements force it to reveal its presence. But until that moment,
it is just as ready to pop up on Mars as on Venus, at an instant’s notice. If it was
hiding on Mars, it could not possibly pop up on Venus on an instant’s notice;
the fastest it would be allowed to move is at the speed of light. Worse, when the
electron does pop up on Mars, it must communicate that fact instantaneously to
Venus to prevent itself from also popping up there. That requires that quantum
mechanics internally communicates at speeds faster than the speed of light.
That is called the Einstein-Podolski-Rosen paradox. A famous theorem by John
Bell in 1964 implies that nature really does communicate instantaneously; it is
not just some unknown deficiency in the theory of quantum mechanics, chapter
8.2.

Of course, quantum mechanics is largely a matter of inference. The wave
function cannot be directly observed. But that is not as strong an argument
against quantum mechanics as it may seem. The more you learn about quan-
tum mechanics, the more its weirdness will probably become inescapable. After
almost a century, quantum mechanics is still standing, with no real “more rea-
sonable” competitors, ones that stay closer to the common sense picture. And
the best minds in physics have tried.

From a more practical point of view, you might object that the Born inter-
pretation cheats: it only explains what the absolute value of the wave function
is, not what the wave function itself is. And you would have a very good point
there. Ahem. The wave function Ψ(~r, t) itself gives the “quantum amplitude”
that the particle can be found at position ~r. No, indeed that does not help at
all. That is just a definition.

However, for unknown reasons nature always “computes” with a wave func-
tion, never with probabilities. The classical example is where you shoot electrons
at random at a tiny pinhole in a wall. Open up a second hole, and you would
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expect that every point behind the wall would receive more electrons, with an-
other hole open. The probability of getting the electron from the second hole
should add to the probability of getting it from the first one. But that is not
what happens. Some points may now get no electrons at all. The wave function
trace passing through the second hole may arrive with the opposite sign of the
wave function trace passing through the first hole. If that happens, the net wave
function becomes zero, and so its square magnitude, the probability of finding
an electron, does too. Electrons are prevented from reaching the location by
giving them an additional way to get there. It is weird. Then again, there is
little profit in worrying about it.

Key Points

0 According to quantum mechanics, particles do not have precise values
of position or velocity when examined closely enough.

0 What they do have is a “wave function“ that depends on position.

0 Larger values of the magnitude of the wave function, (indicated in this
book by darker regions,) correspond to regions where the particle is
more likely to be found if a location measurement is done.

0 Such a measurement changes the wave function; the measurement
itself creates the reduced uncertainty in position that exists immedi-
ately after the measurement.

0 In other words, the wave function is all there is; you cannot identify
a hidden position in a given wave function, just create a new wave
function that more precisely locates the particle.

0 The creation of such a more localized wave function during a position
measurement is governed by laws of chance: the more localized wave
function is more likely to end up in regions where the initial wave
function had a larger magnitude.

0 Proper wave functions are normalized.

3.2 The Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle is a way of expressing the qualitative prop-
erties of quantum mechanics in an easy to visualize way.

Figure 3.3 is a combination plot of the position x of a particle and the
corresponding linear momentum px =mvx, (withm the mass and vx the velocity
in the x-direction). To the left in the figure, both the position and the linear
momentum have some uncertainty.

The right of the figure shows what happens if you squeeze down on the
particle to try to restrict it to one position x: it stretches out in the momentum
direction.
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x x

px px

Figure 3.3: Illustration of the Heisenberg uncertainty principle. A combination
plot of position and linear momentum components in a single direction is shown.
Left: Fairly localized state with fairly low linear momentum. Right: narrowing
down the position makes the linear momentum explode.

Heisenberg showed that according to quantum mechanics, the area of the
“blob” cannot be contracted to a point. When you try to narrow down the
position of a particle, you get into trouble with momentum. Conversely, if you
try to pin down a precise momentum, you lose all hold on the position.

The area of the blob has a minimum value below which you cannot go.
This minimum area is comparable in size to the so-called “Planck constant,”
roughly 10−34 kg m2/s. That is an extremely small area for macroscopic systems,
relatively speaking. But it is big enough to dominate the motion of microscopic
systems, like say electrons in atoms.

Key Points

0 The Heisenberg uncertainty principle says that there is always a min-
imum combined uncertainty in position and linear momentum.

0 It implies that a particle cannot have a mathematically precise po-
sition, because that would require an infinite uncertainty in linear
momentum.

0 It also implies that a particle cannot have a mathematically precise
linear momentum (velocity), since that would imply an infinite un-
certainty in position.

3.3 The Operators of Quantum Mechanics

The numerical quantities that the old Newtonian physics uses, (position, mo-
mentum, energy, ...), are just “shadows” of what really describes nature: opera-
tors. The operators described in this section are the key to quantum mechanics.

extrascale=3
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As the first example, while a mathematically precise value of the position x
of a particle never exists, instead there is an x-position operator x̂. It turns the
wave function Ψ into xΨ:

Ψ(x, y, z, t) x̂ ✲ xΨ(x, y, z, t) (3.3)

The operators ŷ and ẑ are defined similarly as x̂.
Instead of a linear momentum px = mu, there is an x-momentum operator

p̂x =
~

i

∂

∂x
(3.4)

that turns Ψ into its x-derivative:

Ψ(x, y, z, t)
p̂x =

~

i

∂

∂x✲
~

i
Ψx(x, y, z, t) (3.5)

The constant ~ is called “Planck’s constant.” (Or rather, it is Planck’s origi-
nal constant h divided by 2π.) If it would have been zero, all these troubles
with quantum mechanics would not occur. The blobs would become points.
Unfortunately, ~ is very small, but nonzero. It is about 10−34 kg m2/s.

The factor i in p̂x makes it a Hermitian operator (a proof of that is in
derivation {D.9}). All operators reflecting macroscopic physical quantities are
Hermitian.

The operators p̂y and p̂z are defined similarly as p̂x:

p̂y =
~

i

∂

∂y
p̂z =

~

i

∂

∂z
(3.6)

The kinetic energy operator T̂ is:

T̂ =
p̂2x + p̂2y + p̂2z

2m
(3.7)

Its shadow is the Newtonian notion that the kinetic energy equals:

T =
1

2
m
(
u2 + v2 + w2

)
=

(mu)2 + (mv)2 + (mw)2

2m

This is an example of the “Newtonian analogy”: the relationships between
the different operators in quantum mechanics are in general the same as those
between the corresponding numerical values in Newtonian physics. But since
the momentum operators are gradients, the actual kinetic energy operator is,
from the momentum operators above:

T̂ = − ~
2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
. (3.8)
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Mathematicians call the set of second order derivative operators in the ki-
netic energy operator the “Laplacian”, and indicate it by ∇2:

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.9)

In those terms, the kinetic energy operator can be written more concisely as:

T̂ = − ~
2

2m
∇2 (3.10)

Following the Newtonian analogy once more, the total energy operator, in-
dicated by H, is the the sum of the kinetic energy operator above and the
potential energy operator V (x, y, z, t):

H = − ~
2

2m
∇2 + V (3.11)

This total energy operator H is called the Hamiltonian and it is very impor-
tant. Its eigenvalues are indicated by E (for energy), for example E1, E2, E3,
. . . with:

Hψn = Enψn for n = 1, 2, 3, ... (3.12)

where ψn is eigenfunction number n of the Hamiltonian.
It is seen later that in many cases a more elaborate numbering of the eigen-

values and eigenvectors of the Hamiltonian is desirable instead of using a single
counter n. For example, for the electron of the hydrogen atom, there is more
than one eigenfunction for each different eigenvalue En, and additional counters
l and m are used to distinguish them. It is usually best to solve the eigenvalue
problem first and decide on how to number the solutions afterwards.

(It is also important to remember that in the literature, the Hamiltonian
eigenvalue problem is commonly referred to as the “time-independent Schrö-
dinger equation.” However, this book prefers to reserve the term Schrödinger
equation for the unsteady evolution of the wave function.)

Key Points

0 Physical quantities correspond to operators in quantum mechanics.

0 Expressions for various important operators were given.

0 Kinetic energy is in terms of the so-called Laplacian operator.

0 The important total energy operator, (kinetic plus potential energy,)
is called the Hamiltonian.
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3.4 The Orthodox Statistical Interpretation

In addition to the operators defined in the previous section, quantum mechanics
requires rules on how to use them. This section gives those rules, along with a
critical discussion what they really mean.

3.4.1 Only eigenvalues

According to quantum mechanics, the only “measurable values” of position,
momentum, energy, etcetera, are the eigenvalues of the corresponding operator.
For example, if the total energy of a particle is “measured”, the only numbers
that can come out are the eigenvalues of the total energy Hamiltonian.

There is really no controversy that only the eigenvalues come out; this has
been verified overwhelmingly in experiments, often to astonishingly many digits
accuracy. It is the reason for the line spectra that allow the elements to be
recognized, either on earth or halfway across the observable universe, for lasers,
for the blackbody radiation spectrum, for the value of the speed of sound, for
the accuracy of atomic clocks, for the properties of chemical bonds, for the fact
that a Stern-Gerlach apparatus does not fan out a beam of atoms but splits it
into discrete rays, and countless other basic properties of nature.

But the question why and how only the eigenvalues come out is much more
tricky. In general the wave function that describes physics is a combination
of eigenfunctions, not a single eigenfunction. (Even if the wave function was
an eigenfunction of one operator, it would not be one of another operator.) If
the wave function is a combination of eigenfunctions, then why is the measured
value not a combination, (maybe some average), of eigenvalues, but a single
eigenvalue? And what happens to the eigenvalues in the combination that do
not come out? It is a question that has plagued quantum mechanics since the
beginning.

The most generally given answer in the physics community is the “orthodox
interpretation.” It is commonly referred to as the “Copenhagen Interpretation”,
though that interpretation, as promoted by Niels Bohr, was actually much more
circumspect than what is usually presented.

According to the orthodox interpretation, “measurement” causes the
wave function Ψ to “collapse” into one of the eigenfunctions of the
quantity being measured.

Staying with energy measurements as the example, any total energy “mea-
surement” will cause the wave function to collapse into one of the eigenfunctions
ψn of the total energy Hamiltonian. The energy that is measured is the corre-
sponding eigenvalue:

Ψ = c1ψ1 + c2ψ2 + . . .
Energy is uncertain

}
energy measurement

✲

{
Ψ = cnψn
Energy = En

for some n
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This story, of course, is nonsense. It makes a distinction between “nature”
(the particle, say) and the “measurement device” supposedly producing an exact
value. But the measurement device is a part of nature too, and therefore also
uncertain. What measures the measurement device?

Worse, there is no definition at all of what “measurement” is or is not,
so anything physicists, and philosophers, want to put there goes. Needless to
say, theories have proliferated, many totally devoid of common sense. The more
reasonable “interpretations of the interpretation” tend to identify measurements
as interactions with macroscopic systems. Still, there is no indication how and
when a system would be sufficiently macroscopic, and how that would produce
a collapse or at least something approximating it.

If that is not bad enough, quantum mechanics already has a law, called the
Schrödinger equation (chapter 7.1), that says how the wave function evolves.
This equation contradicts the collapse, (chapter 8.5.)

The collapse in the orthodox interpretation is what the classical theater
world would have called “Deus ex Machina”. It is a god that appears out of thin
air to make things right. A god that has the power to distort the normal laws
of nature at will. Mere humans may not question the god. In fact, physicists
tend to actually get upset if you do.

However, it is a fact that after a real-life measurement has been made, further
follow-up measurements have statistics that are consistent with a collapsed wave
function, (which can be computed.) The orthodox interpretation does describe
what happens practically in actual laboratory settings well. It just offers no
practical help in circumstances that are not so clear cut, being phrased in terms
that are essentially meaningless.

Key Points

0 Even if a system is initially in a combination of the eigenfunctions
of a physical quantity, a measurement of that quantity pushes the
measured system into a single eigenfunction.

0 The measured value is the corresponding eigenvalue.

3.4.2 Statistical selection

There is another hot potato besides the collapse itself; it is the selection of the
eigenfunction to collapse to. If the wave function before a “measurement” is a
combination of many different eigenfunctions, then what eigenfunction will the
measurement produce? Will it be ψ1? ψ2? ψ10?

The answer of the orthodox interpretation is that nature contains a mysteri-
ous random number generator. If the wave function Ψ before the “measurement”
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equals, in terms of the eigenfunctions,

Ψ = c1ψ1 + c2ψ2 + c3ψ3 + . . .

then this random number generator will, in Einstein’s words, “throw the dice”
and select one of the eigenfunctions based on the result. It will collapse the
wave function to eigenfunction ψ1 in on average a fraction |c1|2 of the cases, it
will collapse the wave function to ψ2 in a fraction |c2|2 of the cases, etc.

The orthodox interpretation says that the square magnitudes of the
coefficients of the eigenfunctions give the probabilities of the corre-
sponding eigenvalues.

This too describes very well what happens practically in laboratory exper-
iments, but offers again no insight into why and when. And the notion that
nature would somehow come with, maybe not a physical random number gen-
erator, but certainly an endless sequence of truly random numbers seemed very
hard to believe even for an early pioneer of quantum mechanics like Einstein.
Many have proposed that the eigenfunction selections are not truly random, but
reflect unobserved “hidden variables” that merely seem random to us humans.
Yet, after almost a century, none of these theories have found convincing evi-
dence or general acceptance. Physicists still tend to insist quite forcefully on
a literal random number generator. Somehow, when belief is based on faith,
rather than solid facts, tolerance of alternative views is much less, even among
scientists.

While the usual philosophy about the orthodox interpretation can be taken
with a big grain of salt, the bottom line to remember is:

Random collapse of the wave function, with chances governed by the
square magnitudes of the coefficients, is indeed the correct way for
us humans to describe what happens in our observations.

As explained in chapter 8.6, this is despite the fact that the wave function does
not collapse: the collapse is an artifact produced by limitations in our capability
to see the entire picture. We humans have no choice but to work within our
limitations, and within these, the rules of the orthodox interpretation do apply.

Schrödinger gave a famous, rather cruel, example of a cat in a box to show
how weird the predictions of quantum mechanics really are. It is discussed in
chapter 8.1.

Key Points

0 If a system is initially in a combination of the eigenfunctions of a
physical quantity, a measurement of that quantity picks one of the
eigenvalues at random.
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0 The chances of a given eigenvalue being picked are proportional to the
square magnitude of the coefficient of the corresponding eigenfunction
in the combination.

3.5 A Particle Confined Inside a Pipe

This section demonstrates the general procedure for analyzing quantum systems
using a very elementary example. The system to be studied is that of a particle,
say an electron, confined to the inside of a narrow pipe with sealed ends. This
example will be studied in some detail, since if you understand it thoroughly, it
becomes much easier not to get lost in the more advanced examples of quantum
mechanics discussed later. And as the final subsection 3.5.9 shows, as well as
much of chapter 6, the particle in a pipe is really quite interesting despite its
simplicity.

3.5.1 The physical system

The system to be analyzed is shown in figure 3.4 as it would appear in classical
nonquantum physics. A particle is bouncing around between the two ends of a

Figure 3.4: Classical picture of a particle in a closed pipe.

pipe. It is assumed that there is no friction, so the particle will keep bouncing
back and forward forever. (Friction is a macroscopic effect that has no place in
the sort of quantum-scale systems analyzed here.) Typically, classical physics
draws the particles that it describes as little spheres, so that is what figure 3.4
shows.

The actual quantum system to be analyzed is shown in figure 3.5. A particle

Figure 3.5: Quantum mechanics picture of a particle in a closed pipe.

like an electron has no (known) specific shape or size, but it does have a wave
function “blob.” So in quantum mechanics the equivalent of a particle bouncing
around is a wave function blob bouncing around between the ends of the pipe.

Please do not ask what this impenetrable pipe is made off. It is obviously a
crude idealization. You could imagine that the electron is a valence electron in

extrascale=3,notransparent
extrascale=3,notransparent
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a very tiny bar of copper. In that case the pipe walls would correspond to the
surface of the copper bar, and it is assumed that the electron cannot get off the
bar.

But of course, a copper bar would have nuclei, and other electrons, and the
analysis here does not consider those. So maybe it is better to think of the
particle as being a lone helium atom stuck inside a carbon nanotube.

Key Points

0 An idealized problem of a particle bouncing about in a pipe will be
considered.

3.5.2 Mathematical notations

The first step in the solution process is to describe the problem mathematically.
To do so, an x-coordinate that measures longitudinal position inside the pipe
will be used, as shown in figure 3.6. Also,the length of the pipe will be called
ℓx.

✲✛ ℓx

✲ x
x = 0 x = ℓx

Figure 3.6: Definitions for one-dimensional motion in a pipe.

To make the problem as easy to solve as possible, it will be assumed that the
only position coordinate that exists is the longitudinal position x along the pipe.
For now, the existence of any coordinates y and z that measure the location in
cross section will be completely ignored.

Key Points

0 The only position coordinate to be considered for now is x.

0 The notations have been defined.

3.5.3 The Hamiltonian

To analyze a quantum system you must find the Hamiltonian. The Hamiltonian
is the total energy operator, equal to the sum of kinetic plus potential energy.

extrascale=3,notransparent
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The potential energy V is the easiest to find: since it is assumed that the
particle does not experience forces inside the pipe, (until it hits the ends of the
pipe, that is), the potential energy must be constant inside the pipe:

V = constant

(The force is the derivative of the potential energy, so a constant potential
energy produces zero force.) Further, since the value of the constant does not
make any difference physically, you may as well assume that it is zero and save
some writing:

V = 0

Next, the kinetic energy operator T̂ is needed. You can just look up its
precise form in section 3.3 and find it is:

T̂ = − ~
2

2m

∂2

∂x2

Note that only the x term is used here; the existence of the other two coordinates
y and z is completely ignored. The constant m is the mass of the particle, and
~ is Planck’s constant.

Since the potential energy is zero, the Hamiltonian H is just this kinetic
energy:

H = − ~
2

2m

∂2

∂x2
(3.13)

Key Points

0 The one-dimensional Hamiltonian (3.13) has been written down.

3.5.4 The Hamiltonian eigenvalue problem

With the Hamiltonian H found, the next step is to formulate the Hamilto-
nian eigenvalue problem, (or “time-independent Schrödinger equation.”). This
problem is always of the form

Hψ = Eψ

Any nonzero solution ψ of this equation is called an energy eigenfunction and
the corresponding constant E is called the energy eigenvalue.

Substituting the Hamiltonian for the pipe as found in the previous subsec-
tion, the eigenvalue problem is:

− ~
2

2m

∂2ψ

∂x2
= Eψ (3.14)
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The problem is not complete yet. These problems also need so called “bound-
ary conditions”, conditions that say what happens at the ends of the x range.
In this case, the ends of the x range are the ends of the pipe. Now recall that
the square magnitude of the wave function gives the probability of finding the
particle. So the wave function must be zero wherever there is no possibility of
finding the particle. That is outside the pipe: it is assumed that the particle is
confined to the pipe. So the wave function is zero outside the pipe. And since
the outside of the pipe starts at the ends of the pipe, that means that the wave
function must be zero at the ends {N.5}:

ψ = 0 at x = 0 and ψ = 0 at x = ℓx (3.15)

Key Points

0 The Hamiltonian eigenvalue problem (3.14)has been found.

0 It also includes the boundary conditions (3.15).

3.5.5 All solutions of the eigenvalue problem

The previous section found the Hamiltonian eigenvalue problem to be:

− ~
2

2m

∂2ψ

∂x2
= Eψ

Now you need to solve this equation. Mathematicians call an equation of this
type an ordinary differential equation; “differential” because it has a derivative
in it, and “ordinary” since there are no derivatives with respect to variables
other than x.

If you do not know how to solve ordinary differential equations, it is no big
deal. The best way is usually to look them up anyway. The equation above can
be found in most mathematical table books, e.g. [41, item 19.7]. According to
what it says there, (with changes in notation), if you assume that the energy E
is negative, the solution is

ψ = C1e
κx + C2e

−κx κ =

√
−2mE
~

This solution may easily by checked by simply substituting it into the ordinary
differential equation.

As far as the ordinary differential equation is concerned, the constants C1

and C2 could be any two numbers. But you also need to satisfy the two boundary
conditions given in the previous subsection. The boundary condition that ψ =
0 when x = 0 produces, if ψ is as above,

C1e
0 + C2e

0 = 0
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and since e0 = 1, this can be used to find an expression for C2:

C2 = −C1

The second boundary condition, that ψ = 0 at x = ℓx, produces

C1e
κℓx + C2e

−κℓx = 0

or, since you just found out that C2 = −C1,

C1

(
eκℓx − e−κℓx

)
= 0

This equation spells trouble because the term between parentheses cannot be
zero; the exponentials are not equal. Instead C1 will have to be zero; that is
bad news since it implies that C2 = −C1 is zero too, and then so is the wave
function ψ:

ψ = C1e
κx + C2e

−κx = 0

A zero wave function is not acceptable, since there would be no possibility to
find the particle anywhere!

Everything was done right. So the problem must be the initial assumption
that the energy is negative. Apparently, the energy cannot be negative. This
can be understood from the fact that for this particle, the energy is all kinetic
energy. Classical physics would say that the kinetic energy cannot be negative
because it is proportional to the square of the velocity. You now see that
quantum mechanics agrees that the kinetic energy cannot be negative, but says
it is because of the boundary conditions on the wave function.

Try again, but now assume that the energy E is zero instead of negative. In
that case the solution of the ordinary differential equation is according to [41,
item 19.7]

ψ = C1 + C2x

The boundary condition that ψ = 0 at x = 0 now produces:

C1 + C20 = C1 = 0

so C1 must be zero. The boundary condition that ψ = 0 at x = ℓx gives:

0 + C2ℓx = 0

so C2 must be zero too. Once again there is no nonzero solution, so the assump-
tion that the energy E can be zero must be wrong too.

Note that classically, it is perfectly OK for the energy to be zero: it would
simply mean that the particle is sitting in the pipe at rest. But in quantum
mechanics, zero kinetic energy is not acceptable, and it all has to do with
Heisenberg’s uncertainty principle. Since the particle is restricted to the inside
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of the pipe, its position is constrained, and so the uncertainty principle requires
that the linear momentum must be uncertain. Uncertain momentum cannot be
zero momentum; measurements will show a range of values for the momentum
of the particle, implying that it is in motion and therefore has kinetic energy.

Try, try again. The only possibility left is that the energy E is positive. In
that case, the solution of the ordinary differential equation is according to [41,
item 19.7]:

ψ = C1 cos(kx) + C2 sin(kx) k =

√
2mE

~

Here the constant k is called the “wave number.”
The boundary condition that ψ = 0 at x = 0 is:

C11 + C20 = C1 = 0

so C1 must be zero. The boundary condition ψ = 0 at x = ℓx is then:

0 + C2 sin(kℓx) = 0

There finally is possibility to get a nonzero coefficient C2: this equation can be
satisfied if sin(kℓx) = 0 instead of C2. In fact, there is not just one possibility for
this to happen: a sine is zero when its argument equals π, 2π, 3π, . . . . So there
is a nonzero solution for each of the following values of the positive constant k:

k =
π

ℓx
, k =

2π

ℓx
, k =

3π

ℓx
, . . .

Each of these possibilities gives one solution ψ. Different solutions ψ will be
distinguished by giving them a numeric subscript:

ψ1 = C2 sin

(
π

ℓx
x

)
, ψ2 = C2 sin

(
2π

ℓx
x

)
, ψ3 = C2 sin

(
3π

ℓx
x

)
, . . .

The generic solution can be written more concisely using a counter n as:

ψn = C2 sin

(
nπ

ℓx
x

)
for n = 1, 2, 3, . . .

Let’s check the solutions. Clearly each is zero when x = 0 and when x = ℓx.
Also, substitution of each of the solutions into the ordinary differential equation

− ~
2

2m

∂2ψ

∂x2
= Eψ

shows that they all satisfy it, provided that their energy values are, respectively:

E1 =
~
2π2

2mℓ2x
, E2 =

22~2π2

2mℓ2x
, E3 =

32~2π2

2mℓ2x
, . . .
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or generically:

En =
n2
~
2π2

2mℓ2x
for n = 1, 2, 3, . . .

There is one more condition that must be satisfied: each solution must be
normalized so that the total probability of finding the particle integrated over
all possible positions is 1 (certainty). That requires:

1 = 〈ψn|ψn〉 =
∫ ℓx

x=0

|C2|2 sin2

(
nπ

ℓx
x

)
dx

which after integration fixes C2 (assuming you choose it to be a positive real
number):

C2 =

√
2

ℓx

Summarizing the results of this subsection, there is not just one energy
eigenfunction and corresponding eigenvalue, but an infinite set of them:

ψ1 =

√
2

ℓx
sin

(
π

ℓx
x

)
E1 =

~
2π2

2mℓ2x

ψ2 =

√
2

ℓx
sin

(
2π

ℓx
x

)
E2 =

22~2π2

2mℓ2x

ψ3 =

√
2

ℓx
sin

(
3π

ℓx
x

)
E3 =

32~2π2

2mℓ2x

...
...

(3.16)

or in generic form:

ψn =

√
2

ℓx
sin

(
nπ

ℓx
x

)
En =

n2
~
2π2

2mℓ2x
for n = 1, 2, 3, 4, 5, . . . (3.17)

The next thing will be to take a better look at these results.

Key Points

0 After a lot of grinding mathematics armed with table books, the
energy eigenfunctions and eigenvalues have finally been found

0 There are infinitely many of them.

0 They are as listed in (3.17) above. The first few are also written out
explicitly in (3.16).
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3.5.5 Review Questions

1. Write down eigenfunction number 6.
Solution piped-a

2. Write down eigenvalue number 6.
Solution piped-b

3.5.6 Discussion of the energy values

This subsection discusses the energy that the particle in the pipe can have. It
was already discovered in the previous subsection that the particle cannot have
negative energy, nor zero energy. In fact, according to the orthodox interpreta-
tion, the only values that the total energy of the particle can take are the energy
eigenvalues

E1 =
~
2π2

2mℓ2x
, E2 =

22~2π2

2mℓ2x
, E3 =

32~2π2

2mℓ2x
, . . .

derived in the previous subsection.
Energy values are typically shown graphically in the form of an “energy

spectrum”, as in figure 3.7. Energy is plotted upwards, so the vertical height

~
2π2/2mℓ2x

4~2π2/2mℓ2x

9~2π2/2mℓ2x

16~2π2/2mℓ2x

25~2π2/2mℓ2x

n = 1

n = 2

n = 3

n = 4

n = 5
✻E

Figure 3.7: One-dimensional energy spectrum for a particle in a pipe.

of each energy level indicates the amount of energy it has. To the right of each
energy level, the solution counter, or “quantum number”, n is listed.

Classically, the total energy of the particle can have any nonnegative value.
But according to quantum mechanics, that is not true: the total energy must
be one of the levels shown in the energy spectrum figure 3.7. It should be noted
that for a macroscopic particle, you would not know the difference; the spacing
between the energy levels is macroscopically very fine, since Planck’s constant ~
is so small. However, for a quantum-scale system, the discreteness of the energy
values can make a major difference.

Another point: at absolute zero temperature, the particle will be stuck in
the lowest possible energy level, E1 = ~

2π2/2mℓ2x, in the spectrum figure 3.7.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/piped-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/piped-b.html
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This lowest possible energy level is called the “ground state.” Classically you
would expect that at absolute zero the particle has no kinetic energy, so zero
total energy. But quantum mechanics does not allow it. Heisenberg’s principle
requires some momentum, hence kinetic energy to remain for a confined particle
even at zero temperature.

Key Points

0 Energy values can be shown as an energy spectrum.

0 The possible energy levels are discrete.

0 But for a macroscopic particle, they are extremely close together.

0 The ground state of lowest energy has nonzero kinetic energy.

3.5.6 Review Questions

1. Plug the mass of an electron, m = 9.109 38 10−31 kg, and the rough
size of an hydrogen atom, call it ℓx = 2 10−10 m, into the expression
for the ground state kinetic energy and see how big it is. Note that
~ = 1.054 57 10−34 J s. Express in units of eV, where one eV equals
1.602 18 10−19 J.
Solution pipee-a

2. Just for fun, plug macroscopic values, m = 1 kg and ℓx = 1 m, into the
expression for the ground state energy and see how big it is. Note that ~
= 1.054 57 10−34 J s.
Solution pipee-b

3. What is the eigenfunction number, or quantum number, n that produces
a macroscopic amount of energy, 1 J, for macroscopic values m = 1 kg
and ℓx = 1 m? With that many energy levels involved, would you see the
difference between successive ones?
Solution pipee-c

3.5.7 Discussion of the eigenfunctions

This subsection discusses the one-dimensional energy eigenfunctions of the par-
ticle in the pipe. The solution of subsection 3.5.5 found them to be:

ψ1 =

√
2

ℓx
sin

(
π

ℓx
x

)
, ψ2 =

√
2

ℓx
sin

(
2π

ℓx
x

)
, ψ3 =

√
2

ℓx
sin

(
3π

ℓx
x

)
, . . .

The first one to look at is the ground state eigenfunction

ψ1 =

√
2

ℓx
sin

(
π

ℓx
x

)
.

It is plotted at the top of figure 3.8. As noted in section 3.1, it is the square
magnitude of a wave function that gives the probability of finding the particle.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipee-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipee-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipee-c.html
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So, the second graph in figure 3.8 shows the square of the ground state wave
function, and the higher values of this function then give the locations where the
particle is more likely to be found. This book shows regions where the particle
is more likely to be found as darker regions, and in those terms the probability
of finding the particle is as shown in the bottom graphic of figure 3.8. It is seen

x

ψ1

x

|ψ1|2
light

dark

light

Figure 3.8: One-dimensional ground state of a particle in a pipe.

that in the ground state, the particle is much more likely to be found somewhere
in the middle of the pipe than close to the ends.

x

ψ2

x

|ψ2|2
light

dark

light

dark

light

x

ψ3

x

|ψ3|2
light

dark

light

dark

light

dark

light

Figure 3.9: Second and third lowest one-dimensional energy states.

Figure 3.9 shows the two next lowest energy states

ψ2 =

√
2

ℓx
sin

(
2π

ℓx
x

)
and ψ3 =

√
2

ℓx
sin

(
3π

ℓx
x

)
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as grey tones. Regions where the particle is relatively likely to be found alternate
with ones where it is less likely to be found. And the higher the energy, the
more such regions there are. Also note that in sharp contrast to the ground
state, for eigenfunction ψ2 there is almost no likelihood of finding the particle
close to the center.

Needless to say, none of those energy states looks at all like the wave func-
tion blob bouncing around in figure 3.5. Moreover, it turns out that energy
eigenstates are stationary states: the probabilities shown in figures 3.8 and 3.9
do not change with time.

In order to describe a localized wave function blob bouncing around, states
of different energy must be combined. It will take until chapter 7.11.4 before
the analytical tools to do so have been described. For now, the discussion
must remain restricted to just finding the energy levels. And these are impor-
tant enough by themselves anyway, sufficient for many practical applications of
quantum mechanics.

Key Points

0 In the energy eigenfunctions, the particle is not localized to within
any particular small region of the pipe.

0 In general there are regions where the particle may be found separated
by regions in which there is little chance to find the particle.

0 The higher the energy level, the more such regions there are.

3.5.7 Review Questions

1. So how does, say, the one-dimensional eigenstate ψ6 look?

Solution pipef-a

2. Generalizing the results above, for eigenfunction ψn, any n, how many
distinct regions are there where the particle may be found?

Solution pipef-b

3. If you are up to a trick question, consider the following. There are no
forces inside the pipe, so the particle has to keep moving until it hits an
end of the pipe, then reflect backward until it hits the other side and so
on. So, it has to cross the center of the pipe regularly. But in the energy
eigenstate ψ2, the particle has zero chance of ever being found at the
center of the pipe. What gives?

Solution pipef-c

3.5.8 Three-dimensional solution

The solution for the particle stuck in a pipe that was obtained in the previous
subsections cheated. It pretended that there was only one spatial coordinate x.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipef-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipef-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipef-c.html
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Real life is three-dimensional. And yes, as a result, the solution as obtained is
simply wrong.

Fortunately, it turns out that you can fix up the problem pretty easily if you
assume that the pipe has a square cross section. There is a way of combining
one-dimensional solutions for all three coordinates into full three-dimensional
solutions. This is called the “separation of variables” idea: Solve each of the
three variables x, y, and z separately, then combine the results.

The full coordinate system for the problem is shown in figure 3.10: in addi-
tion to the x-coordinate along the length of the pipe, there is also a y-coordinate
giving the vertical position in cross section, and similarly a z-coordinate giving
the position in cross section towards you.

✲✛ ℓx

✲ x
x = 0 x = ℓx

✻
❄

ℓy
y = ℓy

y = 0✻

y❡qz, ℓz

Figure 3.10: Definition of all variables for motion in a pipe.

Now recall the one-dimensional solutions that were obtained assuming there
is just an x-coordinate, but add subscripts “x” to keep them apart from any
solutions for y and z:

ψx1 =

√
2

ℓx
sin

(
π

ℓx
x

)
Ex1 =

~
2π2

2mℓ2x

ψx2 =

√
2

ℓx
sin

(
2π

ℓx
x

)
Ex2 =

22~2π2

2mℓ2x

ψx3 =

√
2

ℓx
sin

(
3π

ℓx
x

)
Ex3 =

32~2π2

2mℓ2x

...
...

(3.18)

or in generic form:

ψxnx
=

√
2

ℓx
sin

(
nxπ

ℓx
x

)
Exnx

=
n2
x~

2π2

2mℓ2x
for nx = 1, 2, 3, . . . (3.19)

Since it is assumed that the cross section of the pipe is square or rectangular
of dimensions ℓy × ℓz, the y and z directions have one-dimensional solutions

extrascale=3,notransparent
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completely equivalent to the x direction:

ψyny
=

√
2

ℓy
sin

(
nyπ

ℓy
y

)
Eyny

=
n2
y~

2π2

2mℓ2y
for ny = 1, 2, 3, . . . (3.20)

and

ψznz
=

√
2

ℓz
sin

(
nzπ

ℓz
z

)
Eznz

=
n2
z~

2π2

2mℓ2z
for nz = 1, 2, 3, . . . (3.21)

After all, there is no fundamental difference between the three coordinate direc-
tions; each is along an edge of a rectangular box.

Now it turns out, {D.11}, that the full three-dimensional problem has eigen-
functions ψnxnynz

that are simply products of the one-dimensional ones:

ψnxnynz
=

√
8

ℓxℓyℓz
sin

(
nxπ

ℓx
x

)
sin

(
nyπ

ℓy
y

)
sin

(
nzπ

ℓz
z

)
(3.22)

There is one such three-dimensional eigenfunction for each set of three numbers
(nx, ny, nz). These numbers are the three “quantum numbers” of the eigenfunc-
tion.

Further, the energy eigenvalues Enxnynz
of the three-dimensional problem

are the sum of those of the one-dimensional problems:

Enxnynz
=
n2
x~

2π2

2mℓ2x
+
n2
y~

2π2

2mℓ2y
+
n2
z~

2π2

2mℓ2z
(3.23)

For example, the ground state of lowest energy occurs when all three quan-
tum numbers are lowest, nx = ny = nz = 1. The three-dimensional ground state
wave function is therefore:

ψ111 =

√
8

ℓxℓyℓz
sin

(
π

ℓx
x

)
sin

(
π

ℓy
y

)
sin

(
π

ℓz
z

)
(3.24)

This ground state is shown in figure 3.11. The y and z factors ensure that the
wave function is now zero at all the surfaces of the pipe.

The ground state energy is:

E111 =
~
2π2

2mℓ2x
+

~
2π2

2mℓ2y
+

~
2π2

2mℓ2z
(3.25)

Since the cross section dimensions ℓy and ℓz are small compared to the length
of the pipe, the last two terms are large compared to the first one. They make
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x
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x

|ψx1|2
light

dark
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ψy1 |ψy1|2
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dark
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Figure 3.11: True ground state of a particle in a pipe.

Figure 3.12: True second and third lowest energy states.

the true ground state energy much larger than the one-dimensional value, which
was just the first term.

The next two lowest energy levels occur for nx = 2, ny = nz = 1 respectively
nx = 3, ny = nz = 1. (The latter assumes that the cross section dimensions are
small enough that the alternative possibilities ny = 2, nx = nz =1 and nz =2,
nx = ny =1 have more energy.) The energy eigenfunctions

ψ211 =

√
8

ℓxℓyℓz
sin

(
2π

ℓx
x

)
sin

(
π

ℓy
y

)
sin

(
π

ℓz
z

)
(3.26)

ψ311 =

√
8

ℓxℓyℓz
sin

(
3π

ℓx
x

)
sin

(
π

ℓy
y

)
sin

(
π

ℓz
z

)
(3.27)

are shown in figure 3.12. They have energy levels:

E211 =
4~2π2

2mℓ2x
+

~
2π2

2mℓ2y
+

~
2π2

2mℓ2z
E311 =

9~2π2

2mℓ2x
+

~
2π2

2mℓ2y
+

~
2π2

2mℓ2z
(3.28)

Key Points

0 Three-dimensional energy eigenfunctions can be found as products of
one-dimensional ones.

0 Three-dimensional energies can be found as sums of one-dimensional
ones.

extrascale=3,notransparent
extrascale=3,notransparent


74 CHAPTER 3. BASIC IDEAS OF QUANTUM MECHANICS

0 Example three-dimensional eigenstates have been shown.

3.5.8 Review Questions

1. If the cross section dimensions ℓy and ℓz are one tenth the size of the pipe
length, how much bigger are the energies Ey1 and Ez1 compared to Ex1?
So, by what percentage is the one-dimensional ground state energy Ex1
as an approximation to the three-dimensional one, E111, then in error?

Solution pipeg-a

2. At what ratio of ℓy/ℓx does the energy E121 become higher than the
energy E311?

Solution pipeg-b

3. Shade the regions where the particle is likely to be found in the ψ322

energy eigenstate.

Solution pipeg-c

3.5.9 Quantum confinement

Normally, motion in physics occurs in three dimensions. Even in a narrow pipe,
in classical physics a point particle of zero size would be able to move in all
three directions. But in quantum mechanics, if the pipe gets very narrow, the
motion becomes truly one-dimensional.

To understand why, the first problem that must be addressed is what “mo-
tion” means in the first place, because normally motion is defined as change
in position, and in quantum mechanics particles do not have a well-defined
position.

Consider the particle in the ground state of lowest energy, shown in figure
3.11. This is one boring state; the picture never changes. You might be surprised
by that; after all, it was found that the ground state has energy, and it is all
kinetic energy. If the particle has kinetic energy, should not the positions where
the particle is likely to be found change with time?

The answer is no; kinetic energy is not directly related to changes in likely
positions of a particle; that is only an approximation valid for macroscopic
systems. It is not necessarily true for quantum-scale systems, certainly not if
they are in the ground state. Like it or not, in quantum mechanics kinetic
energy is second-order derivatives of the wave function, and nothing else.

Next, as already pointed out, all the other energy eigenstates, like those in
figure 3.12, have the same boring property of not changing with time.

Things only become somewhat interesting when you combine states of dif-
ferent energy. As the simplest possible example, consider the possibility that
the particle has the wave function:

Ψ =
√

4
5
ψ111 +

√
1
5
ψ211

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipeg-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipeg-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/pipeg-c.html
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at some starting time, which will be taken as t = 0. According to the orthodox
interpretation, in an energy measurement this particle would have a 4

5
= 80%

chance of being found at the ground state energy E111 and a 20% chance of
being found at the elevated energy level E211. So there is now uncertainty in
energy; that is critical.

(a)

(b)

(c)

(d)

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/pipemv.gif

Figure 3.13: A combination of ψ111 and ψ211 seen at some typical times.

In chapter 7.1 it will be found that for nonzero times, the wave function of
this particle is given by

Ψ =
√

4
5
e−iE111t/~ψ111 +

√
1
5
e−iE211t/~ψ211.

Using this expression, the probability of finding the particle, |Ψ|2, can be plotted
for various times. That is done in figure 3.13 for four typical times. It shows
that with uncertainty in energy, the wave function blob does move. It performs
a periodic oscillation: after figure 3.13(d), the wave function returns to state
3.13(a), and the cycle repeats.

You would not yet want to call the particle localized, but at least the lo-
cations where the particle can be found are now bouncing back and forwards
between the ends of the pipe. And if you add additional wave functions ψ311,
ψ411, . . . , you can get closer and closer to a localized wave function blob bounc-
ing around.

But if you look closer at figure 3.13, you will note that the wave function
blob does not move at all in the y-direction; it remains at all times centered
around the horizontal pipe centerline. It may seem that this is no big deal; just
add one or more wave functions with an ny value greater than one, like ψ121,
and bingo, there will be interesting motion in the y-direction too.

But there is a catch, and it has to do with the required energy. According
to the previous section, the kinetic energy in the y-direction takes the values

Ey1 =
~
2π2

2mℓ2y
, Ey2 =

4~2π2

2mℓ2y
, Ey3 =

9~2π2

2mℓ2y
, . . .

http://www.eng.famu.fsu.edu/~dommelen/quansup/pipemv.gif
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That will be very large energies for a narrow pipe in which ℓy is small. The
particle will certainly have the large energy Ey1 in the y-direction; if it is in the
pipe at all it has at least that amount of energy. But if the pipe is really narrow,
it will simply not have enough additional, say thermal, energy to get anywhere
close to the next level Ey2. The kinetic energy in the y-direction will therefore
be stuck at the lowest possible level Ey1.

The result is that absolutely nothing interesting goes on in the y-direction.
As far as a particle in a narrow pipe is concerned, the y-direction might just as
well not exist. It is ironic that while the kinetic energy in the y-direction, Ey1,
is very large, nothing actually happens in that direction.

If the pipe is also narrow in the z-direction, the only interesting motion is in
the x-direction, making the nontrivial physics truly one-dimensional. It becomes
a “quantum wire”. However, if the pipe size in the z-direction is relatively wide,
the particle will have lots of different energy states in the z-direction available
too and the motion will be two-dimensional, a “quantum well”. Conversely, if
the pipe is narrow in all three directions, you get a zero-dimensional “quantum
dot” in which the particle does nothing unless it gets a sizable chunk of energy.

An isolated atom can be regarded as an example of a quantum dot; the
electrons are confined to a small region around the nucleus and will be at a single
energy level unless they are given a considerable amount of energy. But note
that when people talk about quantum confinement, they are normally talking
about semi-conductors, for which similar effects occur at significantly larger
scales, maybe tens of times as large, making them much easier to manufacture.
An actual quantum dot is often referred to as an “artificial atom”, and has
similar properties as a real atom.

It may give you a rough idea of all the interesting things you can do in
nanotechnology when you restrict the motion of particles, in particular of elec-
trons, in various directions. You truly change the dimensionality of the normal
three-dimensional world into a lower dimensional one. Only quantum mechanics
can explain why, by making the energy levels discrete instead of continuously
varying. And the lower dimensional worlds can have your choice of topology (a
ring, a letter 8, a sphere, a cylinder, a Möbius strip?, . . . ,) to make things really
exciting.

Key Points

0 Quantum mechanics allows you to create lower-dimensional worlds
for particles.



Chapter 4

Single-Particle Systems

Abstract

In this chapter, the machinery to deal with single particles is worked out,
culminating in the vital solutions for the hydrogen atom and hydrogen
molecular ion.

The first section covers the harmonic oscillator. This vibrating system is
a simple model for such systems as an atom in a trap, crystal vibrations,
and electromagnetic waves.

Next, before the hydrogen atom can be discussed, first the quantum me-
chanics of angular momentum needs to be covered. Just like you need
angular momentum to solve the motion of a planet around the sun in
classical physics, so do you need angular momentum for the motion of
an electron around a nucleus in quantum mechanics. The eigenvalues of
angular momentum and their quantum numbers are critically important
for many other reasons besides the hydrogen atom.

After angular momentum, the hydrogen atom can be discussed. The
solution is messy, but fundamentally not much different from that of the
particle in the pipe or the harmonic oscillator of the previous chapter.

The hydrogen atom is the major step towards explaining heavier atoms
and then chemical bonds. One rather unusual chemical bond can already
be discussed in this chapter: that of a ionized hydrogen molecule. A
hydrogen molecular ion has only one electron.

But the hydrogen molecular ion cannot readily be solved exactly, even if
the motion of the nuclei is ignored. So an approximate method will be
used. Before this can be done, however, a problem must be addressed.
The hydrogen molecular ion ground state is defined to be the state of
lowest energy. But an approximate ground state is not an exact energy
eigenfunction and has uncertain energy. So how should the term “lowest
energy” be defined for the approximation?

77
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To answer that, before tackling the molecular ion, first systems with
uncertainty in a variable of interest are discussed. The “expectation
value” of a variable will be defined to be the average of the eigenvalues,
weighted by their probability. The “standard deviation” will be defined
as a measure of how much uncertainty there is to that expectation value.

With a precise mathematical definition of uncertainty, the obvious next
question is whether two different variables can be certain at the same
time. The “commutator” of the two operators will be introduced to
answer it. That then allows the Heisenberg uncertainty relationship to
be formulated. Not only can position and linear momentum not be certain
at the same time; a specific equation can be written down for how big
the uncertainty must be, at the very least.

With the mathematical machinery of uncertainty defined, the hydrogen
molecular ion is solved last.

4.1 The Harmonic Oscillator

This section provides an in-depth discussion of a basic quantum system. The
case to be analyzed is a particle that is constrained by some kind of forces to
remain at approximately the same position. This can describe systems such as
an atom in a solid or in a molecule. If the forces pushing the particle back to its
nominal position are proportional to the distance that the particle moves away
from it, you have what is called an harmonic oscillator. Even if the forces vary
nonlinearly with position, they can often still be approximated to vary linearly
as long as the distances from the nominal position remain small.

The particle’s displacement from the nominal position will be indicated by
(x, y, z). The forces keeping the particle constrained can be modeled as springs,
as sketched in figure 4.1. The stiffness of the springs is characterized by the

m x

y

z

c

c

c

Figure 4.1: Classical picture of an harmonic oscillator.

so called “spring constant” c, giving the ratio between force and displacement.
Note that it will be assumed that the three spring stiffnesses are equal.
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For a quantum picture of a harmonic oscillator, imagine a light atom like
a carbon atom surrounded by much heavier atoms. When the carbon atom
tries to move away from its nominal position, the heavy atoms push it back.
The harmonic oscillator is also the basic relativistic model for the quantum
electromagnetic field.

According to classical Newtonian physics, the particle vibrates back and
forth around its nominal position with a frequency

ω =

√
c

m
(4.1)

in radians per second. In quantum mechanics, a particle does not have a precise
position. But the natural frequency above remains a convenient computational
quantity in the quantum solution.

Key Points

0 The system to be described is that of a particle held in place by
forces that increase proportional to the distance that the particle
moves away from its equilibrium position.

0 The relation between distance and force is assumed to be the same
in all three coordinate directions.

0 Number c is a measure of the strength of the forces and ω is the
frequency of vibration according to classical physics.

4.1.1 The Hamiltonian

In order to find the energy levels that the oscillating particle can have, you must
first write down the total energy Hamiltonian.

As far as the potential energy is concerned, the spring in the x-direction
holds an amount of potential energy equal to 1

2
cx2, and similarly the ones in

the y and z directions.

To this total potential energy, you need to add the kinetic energy operator
T̂ from section 3.3 to get the Hamiltonian:

H = − ~
2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ 1

2
c
(
x2 + y2 + z2

)
(4.2)

Key Points

0 The Hamiltonian (4.2) has been found.
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4.1.2 Solution using separation of variables

This section finds the energy eigenfunctions and eigenvalues of the harmonic os-
cillator using the Hamiltonian as found in the previous subsection. Every energy
eigenfunction ψ and its eigenvalue E must satisfy the Hamiltonian eigenvalue
problem, (or “time-independent Schrödinger equation”):

[
− ~

2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ 1

2
c
(
x2 + y2 + z2

)]
ψ = Eψ (4.3)

The boundary condition is that ψ becomes zero at large distance from the
nominal position. After all, the magnitude of ψ tells you the relative probability
of finding the particle at that position, and because of the rapidly increasing
potential energy, the chances of finding the particle very far from the nominal
position should be vanishingly small.

Like for the particle in the pipe of the previous section, it will be assumed
that each eigenfunction is a product of one-dimensional eigenfunctions, one in
each direction:

ψ = ψx(x)ψy(y)ψz(z) (4.4)

Finding the eigenfunctions and eigenvalues by making such an assumption is
known in mathematics as the “method of separation of variables”.

Substituting the assumption in the eigenvalue problem above, and dividing
everything by ψx(x)ψy(y)ψz(z) reveals that E consists of three parts that will
be called Ex, Ey, and Ez:

E = Ex + Ey + Ez

Ex = −
~
2

2m

ψ′′x(x)

ψx(x)
+ 1

2
cx2

Ey = −
~
2

2m

ψ′′y(y)

ψy(y)
+ 1

2
cy2

Ez = −
~
2

2m

ψ′′z (z)

ψz(z)
+ 1

2
cz2

(4.5)

where the primes indicate derivatives. The three parts represent the x, y, and
z dependent terms.

By the definition above, the quantity Ex can only depend on x; variables
y and z do not appear in its definition. But actually, Ex cannot depend on x
either, since Ex = E−Ey−Ez, and none of those quantities depends on x. The
inescapable conclusion is that Ex must be a constant, independent of all three
variables (x, y, z). The same way Ey and Ez must be constants.
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If now in the definition of Ex above, both sides are multiplied by ψx(x), a
one-dimensional eigenvalue problem results:

[
− ~

2

2m

∂2

∂x2
+ 1

2
cx2
]
ψx = Exψx (4.6)

The operator within the square brackets here, call it Hx, involves only the x-
related terms in the full Hamiltonian. Similar problems can be written down
for Ey and Ez. Separate problems in each of the three variables x, y, and z have
been obtained, explaining why this mathematical method is called separation
of variables.

Solving the one-dimensional problem for ψx can be done by fairly elementary
but elaborate means. If you are interested, you can find how it is done in
derivation {D.12}, but that is mathematics and it will not teach you much
about quantum mechanics. It turns out that, like for the particle in the pipe of
the previous section, there is again an infinite number of different solutions for
Ex and ψx:

Ex0 =
1
2
~ω ψx0(x) = h0(x)

Ex1 =
3
2
~ω ψx1(x) = h1(x)

Ex2 =
5
2
~ω ψx2(x) = h2(x)

...
...

(4.7)

Unlike for the particle in the pipe, here by convention the solutions are numbered
starting from 0, rather than from 1. So the first eigenvalue is Ex0 and the first
eigenfunction ψx0. That is just how people choose to do it.

Also, the eigenfunctions are not sines like for the particle in the pipe; instead,
as table 4.1 shows, they take the form of some polynomial times an exponential.
But you will probably really not care much about what kind of functions they
are anyway unless you end up writing a textbook on quantum mechanics and
have to plot them. In that case, you can find a general expression, (D.4), in
derivation {D.12}.

But the eigenvalues are what you want to remember from this solution.
According to the orthodox interpretation, these are the measurable values of
the total energy in the x-direction (potential energy in the x-direction spring
plus kinetic energy of the motion in the x-direction.) Instead of writing them
all out as was done above, they can be described using the generic expression:

Exnx
=

2nx + 1

2
~ω for nx = 0, 1, 2, 3, . . . (4.8)

The eigenvalue problem has now been solved, because the equations for Y
and Z are mathematically the same and must therefore have corresponding
solutions:

Eyny
=

2ny + 1

2
~ω for ny = 0, 1, 2, 3, . . . (4.9)
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h0(x) =
1

(πℓ2)1/4
e−ξ

2/2

h1(x) =
2ξ

(4πℓ2)1/4
e−ξ

2/2

h2(x) =
2ξ2 − 1

(4πℓ2)1/4
e−ξ

2/2

h3(x) =
2ξ3 − 3ξ

(9πℓ2)1/4
e−ξ

2/2

h4(x) =
4ξ4 − 12ξ2 + 3

(576πℓ2)1/4
e−ξ

2/2

ω =

√
c

m

ℓ =

√
~

mω

ξ =
x

ℓ

Table 4.1: First few one-dimensional eigenfunctions of the harmonic oscillator.

Eznz
=

2nz + 1

2
~ω for nz = 0, 1, 2, 3, . . . (4.10)

The total energy E of the complete system is the sum of Ex, Ey, and Ez.
Any nonnegative choice for number nx, combined with any nonnegative choice
for number ny, and for nz, produces one combined total energy value Exnx

+
Eyny

+Eznz
, which will be indicated by Enxnynz

. Putting in the expressions for
the three partial energies above, these total energy eigenvalues become:

Enxnynz
=

2nx + 2ny + 2nz + 3

2
~ω (4.11)

where the “quantum numbers” nx, ny, and nz may each have any value in the
range 0, 1, 2, 3, . . .

The corresponding eigenfunction of the complete system is:

ψnxnynz
= hnx

(x)hny
(y)hnz

(z) (4.12)

where the functions h0, h1, . . . are in table 4.1 or in (D.4) if you need them.
Note that the nx, ny, nz numbering system for the solutions arose naturally

from the solution process; it was not imposed a priori.

Key Points

0 The eigenvalues and eigenfunctions have been found, skipping a lot
of tedious math that you can check when the weather is bad during
spring break.
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0 Generic expressions for the eigenvalues are above in (4.11) and for
the eigenfunctions in (4.12).

4.1.2 Review Questions

1. Write out the ground state energy.
Solution harmb-a

2. Write out the ground state wave function fully.
Solution harmb-b

3. Write out the energy E100.
Solution harmb-c

4. Write out the eigenstate ψ100 fully.
Solution harmb-d

4.1.3 Discussion of the eigenvalues

As the previous subsection showed, for every set of three nonnegative whole
numbers nx, ny, nz, there is one unique energy eigenfunction, or eigenstate,
(4.12) and a corresponding energy eigenvalue (4.11). The “quantum numbers”
nx, ny, and nz correspond to the numbering system of the one-dimensional
solutions that make up the full solution.

This section will examine the energy eigenvalues. These are of great physical
importance, because according to the orthodox interpretation, they are the only
measurable values of the total energy, the only energy levels that the oscillator
can ever be found at.

The energy levels can be plotted in the form of a so-called “energy spectrum”,
as in figure 4.2. The energy values are listed along the vertical axis, and the
sets of quantum numbers nx, ny, nz for which they occur are shown to the right
of the plot.

The first point of interest illustrated by the energy spectrum is that the
energy of the oscillating particle cannot take on any arbitrary value, but only
certain discrete values. Of course, that is just like for the particle in the pipe
of the previous section, but for the harmonic oscillator, the energy levels are
evenly spaced. In particular the energy value is always an odd multiple of 1

2
~ω.

It contradicts the Newtonian notion that a harmonic oscillator can have any
energy level. But since ~ is so small, about 10−34 kg m2/s, macroscopically the
different energy levels are extremely close together. Though the old Newtonian
theory is strictly speaking incorrect, it remains an excellent approximation for
macroscopic oscillators.

Also note that the energy levels have no largest value; however high the
energy of the particle in a true harmonic oscillator may be, it will never escape.
The further it tries to go, the larger the forces that pull it back. It can’t win.

Another striking feature of the energy spectrum is that the lowest possible
energy is again nonzero. The lowest energy occurs for nx = ny = nz = 0 and

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/harmb-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/harmb-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/harmb-c.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/harmb-d.html
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0

3
2
~ω

5
2
~ω

7
2
~ω

9
2
~ω

nx = 0
ny = 0
nz = 0

nx = 1 0 0
ny = 0 1 0
nz = 0 0 1

nx = 2 0 0 1 1 0
ny = 0 2 0 1 0 1
nz = 0 0 2 0 1 1

nx = 3 0 0 2 0 1 0 2 1 1
ny = 0 3 0 1 2 0 1 0 2 1
nz = 0 0 3 0 1 2 2 1 0 1

Figure 4.2: The energy spectrum of the harmonic oscillator.

has a value:
E000 =

3
2
~ω (4.13)

So, even at absolute zero temperature, the particle is not completely at rest at
its nominal position; it still has 3

2
~ω worth of kinetic and potential energy left

that it can never get rid of. This lowest energy state is the ground state.
The reason that the energy cannot be zero can be understood from the

uncertainty principle. To get the potential energy to be zero, the particle would
have to be at its nominal position for certain. But the uncertainty principle
does not allow a precise position. Also, to get the kinetic energy to be zero,
the linear momentum would have to be zero for certain, and the uncertainty
principle does not allow that either.

The actual ground state is a compromise between uncertainties in momen-
tum and position that make the total energy as small as Heisenberg’s relation-
ship allows. There is enough uncertainty in momentum to keep the particle near
the nominal position, minimizing potential energy, but there is still enough un-
certainty in position to keep the momentum low, minimizing kinetic energy. In
fact, the compromise results in potential and kinetic energies that are exactly
equal, {D.13}.

For energy levels above the ground state, figure 4.2 shows that there is a
rapidly increasing number of different sets of quantum numbers nx, ny, and nz
that all produce that energy. Since each set represents one eigenstate, it means
that multiple states produce the same energy.

Key Points

0 Energy values can be graphically represented as an energy spectrum.



4.1. THE HARMONIC OSCILLATOR 85

0 The energy values of the harmonic oscillator are equally spaced, with
a constant energy difference of ~ω between successive levels.

0 The ground state of lowest energy has nonzero kinetic and potential
energy.

0 For any energy level above the ground state, there is more than one
eigenstate that produces that energy.

4.1.3 Review Questions

1. Verify that the sets of quantum numbers shown in the spectrum figure
4.2 do indeed produce the indicated energy levels.

Solution harmc-a

2. Verify that there are no sets of quantum numbers missing in the spectrum
figure 4.2; the listed ones are the only ones that produce those energy
levels.

Solution harmc-b

4.1.4 Discussion of the eigenfunctions

This section takes a look at the energy eigenfunctions of the harmonic oscillator
to see what can be said about the position of the particle at various energy
levels.

At absolute zero temperature, the particle will be in the ground state of
lowest energy. The eigenfunction describing this state has the lowest possible
numbering nx = ny = nz = 0, and is according to (4.12) of subsection 4.1.2
equal to

ψ000 = h0(x)h0(y)h0(z) (4.14)

where function h0 is in table 4.1. The wave function in the ground state must
be equal to the eigenfunction to within a constant:

Ψgs = c000h0(x)h0(y)h0(z) (4.15)

where the magnitude of the constant c000 must be one. Using the expression for
function h0 from table 4.1, the properties of the ground state can be explored.

As noted earlier in section 3.1, it is useful to plot the square magnitude of
Ψ as grey tones, because the darker regions will be the ones where the particle
is more likely to be found. Such a plot for the ground state is shown in figure
4.3. It shows that in the ground state, the particle is most likely to be found
near the nominal position, and that the probability of finding the particle falls
off quickly to zero beyond a certain distance from the nominal position.

The region in which the particle is likely to be found extends, roughly speak-
ing, about a distance ℓ =

√
~/mω from the nominal position. For a macroscopic

oscillator, this will be a very small distance because of the smallness of ~. That

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/harmc-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/harmc-b.html
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Figure 4.3: Ground state of the harmonic oscillator

is somewhat comforting, because macroscopically, you would expect an oscilla-
tor to be able to be at rest at the nominal position. While quantum mechanics
does not allow it, at least the distance ℓ from the nominal position, and the
energy 3

2
~ω are extremely small.

But obviously, the bad news is that the ground state probability density of
figure 4.3 does not at all resemble the classical Newtonian picture of a localized
particle oscillating back and forwards. In fact, the probability density does not
even depend on time: the chances of finding the particle in any given location
are the same for all times. The probability density is also spherically symmetric;
it only depends on the distance from the nominal position, and is the same at all
angular orientations. To get something that can start to resemble a Newtonian
spring-mass oscillator, one requirement is that the energy is well above the
ground level.

Turning now to the second lowest energy level, this energy level is achieved
by three different energy eigenfunctions, ψ100, ψ010, and ψ001. The probability
distribution of each of the three takes the form of two separate “blobs”; figure
4.4 shows ψ100 and ψ010 when seen along the z-direction. In case of ψ001, one
blob hides the other, so this eigenfunction was not shown.

Obviously, these states too do not resemble a Newtonian oscillator at all.
The probability distributions once again stay the same at all times. (This is
a consequence of energy conservation, as discussed later in chapter 7.1.) Also,
while in each case there are two blobs occupied by a single particle, the particle
will never be be caught on the symmetry plane in between the blobs, which
naively could be taken as a sign of the particle moving from one blob to the
other.

The eigenfunctions for still higher energy levels show similar lack of resem-
blance to the classical motion. As an arbitrary example, figure 4.5 shows eigen-

extrascale=3,notransparent
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Figure 4.4: Wave functions ψ100 and ψ010.

function ψ213 when looking along the z-axis. To resemble a classical oscillator,
the particle would need to be restricted to, maybe not an exact moving point,
but at most a very small moving region. Instead, all energy eigenfunctions
have steady probability distributions and the locations where the particle may
be found extend over large regions. It turns out that there is an uncertainty
principle involved here: in order to get some localization of the position of the
particle, you need to allow some uncertainty in its energy. This will have to
wait until much later, in chapter 7.11.4.

The basic reason that quantum mechanics is so slow is simple. To analyze,
say the x motion, classical physics says: “the value of the total energy Ex is

Ex =
1
2
mẋ2 + 1

2
cx2,

now go analyze the motion!”. Quantum mechanics says: “the total energy
operator Hx is

Hx =
1
2
m

(
~

im

∂

∂x

)2

+ 1
2
cx̂2,

now first figure out the possible energy values Ex0, Ex1, . . . before you can even
start thinking about analyzing the motion.”

Key Points

0 The ground state wave function is spherically symmetric: it looks the
same seen from any angle.

0 In energy eigenstates the particle position is uncertain.

extrascale=3,notransparent
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Figure 4.5: Energy eigenfunction ψ213.

4.1.4 Review Questions

1. Write out the ground state wave function and show that it is indeed
spherically symmetric.

Solution harmd-a

2. Show that the ground state wave function is maximal at the origin and,
like all the other energy eigenfunctions, becomes zero at large distances
from the origin.

Solution harmd-b

3. Write down the explicit expression for the eigenstate ψ213 using table 4.1,
then verify that it looks like figure 4.5 when looking along the z-axis, with
the x-axis horizontal and the y-axis vertical.

Solution harmd-c

4.1.5 Degeneracy

As the energy spectrum figure 4.2 illustrated, the only energy level for which
there is only a single energy eigenfunction is the ground state. All higher energy
levels are what is called “degenerate”; there is more than one eigenfunction that
produces that energy. (In other words, more than one set of three quantum
numbers nx, ny, and nz.)

It turns out that degeneracy always results in nonuniqueness of the eigen-
functions. That is important for a variety of reasons. For example, in the
quantum mechanics of molecules, chemical bonds often select among nonunique
theoretical solutions those that best fit the given conditions. Also, to find spe-

extrascale=3,notransparent
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cific mathematical or numerical solutions for the eigenfunctions of a quantum
system, the nonuniquenesses will somehow have to be resolved.

Nonuniqueness also poses problems for advanced analysis. For example, sup-
pose you try to analyze the effect of various small perturbations that a harmonic
oscillator might experience in real life. Analyzing the effect of small perturba-
tions is typically a relatively easy mathematical problem: the perturbation will
slightly change an eigenfunction, but it can still be approximated by the unper-
turbed one. So, if you know the unperturbed eigenfunction you are in business;
unfortunately, if the unperturbed eigenfunction is not unique, you may not know
which is the right one to use in the analysis.

The nonuniqueness arises from the fact that:

Linear combinations of eigenfunctions at the same energy level pro-
duce alternative eigenfunctions that still have that same energy level.

For example, the eigenfunctions ψ100, and ψ010 of the harmonic oscillator
have the same energy E100 = E010 =

5
2
~ω (as does ψ001, but this example will be

restricted to two eigenfunctions.) Any linear combination of the two has that
energy too, so you could replace eigenfunctions ψ100 and ψ010 by two alternative
ones such as:

ψ100 + ψ010√
2

and
ψ010 − ψ100√

2

It is readily verified these linear combinations are indeed still eigenfunctions with
eigenvalue E100 = E010: applying the Hamiltonian H to either one will multiply
each term by E100 = E010, hence the entire combination by that amount. How
do these alternative eigenfunctions look? Exactly like ψ100 and ψ010 in figure
4.4, except that they are rotated over 45 degrees. Clearly then, they are just as
good as the originals, just seen under a different angle.

Which raises the question, how come the analysis ended up with the ones
that it did in the first place? The answer is in the method of separation of vari-
ables that was used in subsection 4.1.2. It produced eigenfunctions of the form
hnx

(x)hny
(y)hnz

(z) that were not just eigenfunctions of the full Hamiltonian H,
but also of the partial Hamiltonians Hx, Hy, and Hz, being the x, y, and z parts
of it.

For example, ψ100 = h1(x)h0(y)h0(z) is an eigenfunction of Hx with eigen-
value Ex1 = 3

2
~ω, of Hy with eigenvalue Ey0 = 1

2
~ω, and of Hz with eigenvalue

Ez0 = 1
2
~ω, as well as of H with eigenvalue E100 = 5

2
~ω.

The alternative eigenfunctions are still eigenfunctions of H, but no longer of
the partial Hamiltonians. For example,

ψ100 + ψ010√
2

=
h1(x)h0(y)h0(z) + h0(x)h1(y)h0(z)√

2

is not an eigenfunction ofHx: takingHx times this eigenfunction would multiply
the first term by Ex1 but the second term by Ex0.
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So, the obtained eigenfunctions were really made determinate by ensuring
that they are simultaneously eigenfunctions of H, Hx, Hy, and Hz. The nice
thing about them is that they can answer questions not just about the total
energy of the oscillator, but also about how much of that energy is in each of
the three directions.

Key Points

0 Degeneracy occurs when different eigenfunctions produce the same
energy.

0 It causes nonuniqueness: alternative eigenfunctions will exist.

0 That can make various analysis a lot more complex.

4.1.5 Review Questions

1. Just to check that this book is not lying, (you cannot be too careful),
write down the analytical expression for ψ100 and ψ010 using table 4.1.
Next write down (ψ100 + ψ010)/

√
2 and (ψ010 − ψ100)/

√
2. Verify that the

latter two are the functions ψ100 and ψ010 in a coordinate system (x̄, ȳ, z)
that is rotated 45 degrees counter-clockwise around the z-axis compared
to the original (x, y, z) coordinate system.

Solution harme-a

4.1.6 Noneigenstates

It should not be thought that the harmonic oscillator only exists in energy
eigenstates. The opposite is more like it. Anything that somewhat localizes
the particle will produce an uncertainty in energy. This section explores the
procedures to deal with states that are not energy eigenstates.

First, even if the wave function is not an energy eigenfunction, it can still
always be written as a combination of the eigenfunctions:

Ψ(x, y, z, t) =
∞∑

nx=0

∞∑

ny=0

∞∑

nz=0

cnxnynz
ψnxnynz

(4.16)

That this is always possible is a consequence of the completeness of the eigen-
functions of Hermitian operators such as the Hamiltonian. An arbitrary example
of such a combination state is shown in figure 4.6.

The coefficients cnxnynz
in the combination are important: according to the

orthodox statistical interpretation, their square magnitude gives the probability
to find the energy to be the corresponding eigenvalue Enxnynz

. For example,
|c000|2 gives the probability of finding that the oscillator is in the ground state
of lowest energy.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/harme-a.html


4.1. THE HARMONIC OSCILLATOR 91

Figure 4.6: Arbitrary wave function (not an energy eigenfunction).

If the wave function Ψ is in a known state, (maybe because the position of
the particle was fairly accurately measured), then each coefficient cnxnynz

can
be found by computing an inner product:

cnxnynz
= 〈ψnxnynz

|Ψ〉 (4.17)

The reason this works is orthonormality of the eigenfunctions. As an exam-
ple, consider the case of coefficient c100:

c100 = 〈ψ100|Ψ〉 = 〈ψ100|c000ψ000 + c100ψ100 + c010ψ010 + c001ψ001 + c200ψ200 + . . .〉

Now proper eigenfunctions of Hermitian operators are orthonormal; the inner
product between different eigenfunctions is zero, and between identical eigen-
functions is one:

〈ψ100|ψ000〉 = 0 〈ψ100|ψ100〉 = 1 〈ψ100|ψ010〉 = 0 〈ψ100|ψ001〉 = 0 . . .

So, the inner product above must indeed produce c100.

Chapter 7.1 will discuss another reason why the coefficients are important:
they determine the time evolution of the wave function. It may be recalled that
the Hamiltonian, and hence the eigenfunctions derived from it, did not involve
time. However, the coefficients do.

Even if the wave function is initially in a state involving many eigenfunc-
tions, such as the one in figure 4.6, the orthodox interpretation says that energy
“measurement” will collapse it into a single eigenfunction. For example, assume

extrascale=3,notransparent
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that the energies in all three coordinate directions are measured and that they
return the values:

Ex2 =
5
2
~ω Ey1 =

3
2
~ω Ez3 =

7
2
~ω

for a total energy E = 15
2
~ω. Quantum mechanics could not exactly predict that

this was going to happen, but it did predict that the energies had to be odd
multiples of 1

2
~ω. Also, quantum mechanics gave the probability of measuring

the given values to be whatever |c213|2 was. Or in other words, what |〈ψ213|Ψ〉|2
was.

After the example measurement, the predictions become much more specific,
because the wave function is now collapsed into the measured one:

Ψnew = cnew213 ψ213

This eigenfunction was shown earlier in figure 4.5.

If another measurement of the energies is now done, the only values that
can come out are Ex2, Ey1, and Ez3, the same as in the first measurement.
There is now certainty of getting those values; the probability |cnew213 |2 = 1. This
will continue to be true for energy measurements until the system is disturbed,
maybe by a position measurement.

Key Points

0 The basic ideas of quantum mechanics were illustrated using an ex-
ample.

0 The energy eigenfunctions are not the only game in town. Their
seemingly lowly coefficients are important too.

0 When the wave function is known, the coefficient of any eigenfunction
can be found by taking an inner product of the wave function with
that eigenfunction.

4.2 Angular Momentum

Before a solution can be found for the important electronic structure of the hy-
drogen atom, the basis for the description of all the other elements and chemical
bonds, first angular momentum must be discussed. Like in the classical New-
tonian case, angular momentum is essential for the analysis, and in quantum
mechanics, angular momentum is also essential for describing the final solution.
Moreover, the quantum properties of angular momentum turn out to be quite
unexpected and important for practical applications.
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4.2.1 Definition of angular momentum

The old Newtonian physics defines angular momentum ~L as the vectorial prod-
uct ~r × ~p, where ~r is the position of the particle in question and ~p is its linear
momentum.

Following the Newtonian analogy, quantum mechanics substitutes the gradi-
ent operator ~∇/i for the linear momentum, so the angular momentum operator
becomes:

~̂L =
~

i
~̂r ×∇ ~̂r ≡ (x̂, ŷ, ẑ) ∇ ≡

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(4.18)

Unlike the Hamiltonian, the angular momentum operator is not specific to a
given system. All observations about angular momentum will apply regardless
of the physical system being studied.

Key Points

0 The angular momentum operator (4.18) has been identified.

4.2.2 Angular momentum in an arbitrary direction

The intent in this subsection is to find the operator for the angular momentum
in an arbitrary direction and its eigenfunctions and eigenvalues.

For convenience, the direction in which the angular momentum is desired
will be taken as the z-axis of the coordinate system. In fact, much of the
mathematics that you do in quantum mechanics requires you to select some
arbitrary direction as your z-axis, even if the physics itself does not have any
preferred direction. It is further conventional in the quantum mechanics of
atoms and molecules to draw the chosen z-axis horizontal, (though not in [25]
or [52]), and that is what will be done here.

Things further simplify greatly if you switch from Cartesian coordinates x,
y, and z to “spherical coordinates” r, θ, and φ, as shown in figure 4.7. The
coordinate r is the distance from the chosen origin, θ is the angular position
away from the chosen z-axis, and φ is the angular position around the z-axis,
measured from the chosen x-axis.

In terms of these spherical coordinates, the z-component of angular momen-
tum simplifies to:

L̂z ≡
~

i

∂

∂φ
(4.19)

This can be verified by looking up the gradient operator ∇ in spherical coor-
dinates in [41, pp. 124-126] and then taking the component of ~r ×∇ in the z-
direction.
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x

y

z

r

θ

φ

P

Figure 4.7: Spherical coordinates of an arbitrary point P.

In any case, with a bit of thought, it clearly makes sense: the z-component
of linear momentum classically describes the motion in the direction of the z-
axis, while the z-component of angular momentum describes the motion around
the z-axis. So if in quantum mechanics the z linear momentum is ~/i times the
derivative with respect the coordinate z along the z-axis, then surely the logical
equivalent for z angular momentum is ~/i times the derivative with respect to
the angle φ around the z-axis?

Anyway, the eigenfunctions of the operator L̂z above turn out to be expo-
nentials in φ. More precisely, the eigenfunctions are of the form

C(r, θ)eimφ (4.20)

Here m is a constant and C(r, θ) can be any arbitrary function of r and θ.
For historical reasons, the number m is called the “magnetic quantum num-
ber”. Historically, physicists have never seen a need to get rid of obsolete and
confusing terms. The magnetic quantum number must be an integer, one of
. . . ,−2,−1, 0, 1, 2, 3, . . . The reason is that if you increase the angle φ by 2π,
you make a complete circle around the z-axis and return to the same point.
Then the eigenfunction (4.20) must again be the same, but that is only the case
if m is an integer. To verify this, use the Euler formula (2.5).

Note further that the orbital momentum is associated with a particle whose
mass is also indicated by m. This book will more specifically indicate the
magnetic quantum number as ml if confusion between the two is likely.

The above solution is easily verified directly, and the eigenvalue Lz identi-
fied, by substitution into the eigenvalue problem L̂zCe

imφ = LzCe
imφ using the

expression for L̂z above:

~

i

∂Ceimφ

∂φ
= LzCe

imφ =⇒ ~

i
imCeimφ = LzCe

imφ
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It follows that every eigenvalue is of the form:

Lz = ml~ for ml an integer (4.21)

So the angular momentum in a given direction cannot just take on any value:
it must be a whole multiple ml, (possibly negative), of Planck’s constant ~.

Compare that with the linear momentum component pz which can take on
any value, within the accuracy that the uncertainty principle allows. Lz can
only take discrete values, but they will be precise. And since the z-axis was
arbitrary, this is true in any direction you choose.

It is important to keep in mind that if the surroundings of the particle has no
preferred direction, the angular momentum in the arbitrarily chosen z-direction
is physically irrelevant. For example, for the motion of the electron in an isolated
hydrogen atom, no preferred direction of space can be identified. Therefore, the
energy of the electron will only depend on its total angular momentum, not on
the angular momentum in whatever is completely arbitrarily chosen to be the
z-direction. In terms of quantum mechanics, that means that the value of m
does not affect the energy. (Actually, this is not exactly true, although it is
true to very high accuracy. The electron and nucleus have magnetic fields that
give them inherent directionality. It remains true that the z-component of net
angular momentum of the complete atom is not relevant. However, the space in
which the electron moves has a preferred direction due to the magnetic field of
the nucleus and vice-versa. It affects energy very slightly. Therefore the electron
and nucleus must coordinate their angular momentum components, addendum
{A.39}.)

Key Points

0 Even if the physics that you want to describe has no preferred di-
rection, you usually need to select some arbitrary z-axis to do the
mathematics of quantum mechanics.

0 Spherical coordinates based on the chosen z-axis are needed in this
and subsequent analysis. They are defined in figure 4.7.

0 The operator for the z-component of angular momentum is (4.19),
where φ is the angle around the z-axis.

0 The eigenvalues, or measurable values, of angular momentum in any
arbitrary direction are whole multiples m, possibly negative, of ~.

0 The whole multiple m is called the magnetic quantum number.

4.2.2 Review Questions

1. If the angular momentum in a given direction is a multiple of ~ =
1.054 57 10−34 J s, then ~ should have units of angular momentum. Verify
that.
Solution angub-a

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/angub-a.html
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2. What is the magnetic quantum number of a macroscopic, 1 kg, particle
that is encircling the z-axis at a distance of 1 m at a speed of 1 m/s?
Write out as an integer, and show digits you are not sure about as a
question mark.
Solution angub-b

3. Actually, based on the derived eigenfunction, C(r, θ)eimφ, would any
macroscopic particle ever be at a single magnetic quantum number in
the first place? In particular, what can you say about where the particle
can be found in an eigenstate?
Solution angub-c

4.2.3 Square angular momentum

Besides the angular momentum in an arbitrary direction, the other quantity of
primary importance is the magnitude of the angular momentum. This is the

length of the angular momentum vector,
√
~L · ~L. The square root is awkward,

though; it is easier to work with the square angular momentum:

L2 ≡ ~L · ~L

This subsection discusses the L̂2 operator and its eigenvalues.
Like the L̂z operator of the previous subsection, L̂2 can be written in terms

of spherical coordinates. To do so, note first that

~̂L · ~̂L =
~

i
(~r ×∇) · ~

i
(~r ×∇) = −~2~r · (∇× (~r ×∇))

(That is the basic vector identity (D.2) with vectors ~r, ∇, and ~r × ∇.) Next
look up the gradient and the curl in [41, pp. 124-126]. The result is:

L̂2 ≡ − ~
2

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− ~

2

sin2 θ

∂2

∂φ2
(4.22)

Obviously, this result is not as intuitive as the L̂z operator of the previous
subsection, but once again, it only involves the spherical coordinate angles.
The measurable values of square angular momentum will be the eigenvalues of
this operator. However, that eigenvalue problem is not easy to solve. In fact
the solution is not even unique.

The solution to the problem may be summarized as follows. First, the
nonuniqueness is removed by demanding that the eigenfunctions are also eigen-
functions of L̂z, the operator of angular momentum in the z-direction. This
makes the problem solvable, {D.14}, and the resulting eigenfunctions are called
the “spherical harmonics” Y m

l (θ, φ). The first few are given explicitly in table
4.2. In case you need more of them for some reason, there is a generic expression
(D.5) in derivation {D.14}.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/angub-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/angub-c.html
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Y 0
0 =

√
1

4π
Y 0
1 =

√
3

4π
cos(θ) Y 0

2 =

√
5

16π
(3 cos2 θ − 1)

Y 1
1 =−

√
3

8π
sin θ eiφ Y 1

2 =−
√

15

8π
sin θ cos θ eiφ

Y −11 =

√
3

8π
sin θ e−iφ Y −12 =

√
15

8π
sin θ cos θ e−iφ

Y 2
2 =

√
15

32π
sin2 θ e2iφ

Y −22 =

√
15

32π
sin2 θ e−2iφ

Table 4.2: The first few spherical harmonics.

These eigenfunctions can additionally be multiplied by any arbitrary func-
tion of the distance from the origin r. They are normalized to be orthonormal
integrated over the surface of the unit sphere:

∫ π

θ=0

∫ 2π

φ=0

Y m
l (θ, φ)∗Y m

l (θ, φ) sin θ dθdφ =

{
1 if l = l and m = m
0 otherwise

(4.23)

The spherical harmonics Y m
l are sometimes symbolically written in “ket nota-

tion” as |l m〉.
What to say about them, except that they are in general a mess? Well, at

least every one is proportional to eimφ, as an eigenfunction of L̂z should be. More
importantly, the very first one, Y 0

0 is independent of angular position compared
to the origin (it is the same for all θ and φ angular positions.) This eigenfunction
corresponds to the state in which there is no angular momentum around the
origin at all. If a particle has no angular momentum around the origin, it can
be found at all angular locations relative to it with equal probability.

There is a different way of looking at the angular momentum eigenfunctions.
It is shown in table 4.3. It shows that rlY m

l is always a polynomial in the
position component of degree l. Furthermore, you can check that ∇2rlY m

l =
0: the Laplacian of rlY m

l is always zero. This way of looking at the spherical
harmonics is often very helpful in understanding more advanced quantum topics.
These solutions may be indicated as

Yml ≡ rlY m
l (4.24)
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Y 0
0 =

√
1

4π
rY 0

1 =

√
3

4π
z r2Y 0

2 =

√
5

16π
(2z2 − x2 − y2)

rY 1
1 =−

√
3

8π
(x+ iy) r2Y 1

2 =−
√

15

8π
z(x+ iy)

rY −11 =

√
3

8π
(x− iy) r2Y −12 =

√
15

8π
z(x− iy)

r2Y 2
2 =

√
15

32π
(x+ iy)2

r2Y −22 =

√
15

32π
(x− iy)2

Table 4.3: The first few spherical harmonics rewritten.

and referred to as the “harmonic polynomials.” In general the term “harmonic”
indicates a function whose Laplacian ∇2 is zero.

Far more important than the details of the eigenfunctions themselves are
the eigenvalues that come rolling out of the analysis. A spherical harmonic Y m

l

has an angular momentum in the z-direction

Lz = m~ (4.25)

where the integer m is called the magnetic quantum number, as noted in the
previous subsection. That is no surprise, because the analysis demanded that
they take that form. The new result is that a spherical harmonic has a square
angular momentum

L2 = l(l + 1)~2 (4.26)

where l is also an integer, and is called the “azimuthal quantum number” for
reasons you do not want to know. It is maybe a weird result, (why not simply
l2~2?) but that is what square angular momentum turns out to be.

The azimuthal quantum number is at least as large as the magnitude of the
magnetic quantum number m:

l > |m| (4.27)

The reason is that L̂2 = L̂2
x + L̂2

y + L̂2
z must be at least as large as L̂2

z; in terms
of eigenvalues, l(l + 1)~2 must be at least as large as m2

~
2. As it is, with l >

|m|, either the angular momentum is completely zero, for l = m = 0, or L2 is
always greater than L2

z.
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Key Points

0 The operator for square angular momentum is (4.22).

0 The eigenfunctions of both square angular momentum and angular
momentum in the chosen z-direction are called the spherical harmon-
ics Y m

l .

0 If a particle has no angular momentum around the origin, it can be
found at all angular locations relative to it with equal probability.

0 The eigenvalues for square angular momentum take the counter-intu-
itive form L2 = l(l + 1)~2 where l is a nonnegative integer, one of 0,
1, 2, 3, . . . , and is called the azimuthal quantum number.

0 The azimuthal quantum number l is always at least as big as the
absolute value of the magnetic quantum number m.

4.2.3 Review Questions

1. The general wave function of a state with azimuthal quantum number l
and magnetic quantum number m is Ψ = R(r)Y m

l (θ, φ), where R(r) is
some further arbitrary function of r. Show that the condition for this
wave function to be normalized, so that the total probability of finding
the particle integrated over all possible positions is one, is that

∫ ∞

r=0
R(r)∗R(r)r2 dr = 1.

Solution anguc-a

2. Can you invert the statement about zero angular momentum and say: if
a particle can be found at all angular positions compared to the origin
with equal probability, it will have zero angular momentum?

Solution anguc-b

3. What is the minimum amount that the total square angular momentum
is larger than just the square angular momentum in the z-direction for a
given value of l?

Solution anguc-c

4.2.4 Angular momentum uncertainty

Rephrasing the final results of the previous subsection, if there is nonzero an-
gular momentum, the angular momentum in the z-direction is always less than
the total angular momentum. There is something funny going on here. The z-
direction can be chosen arbitrarily, and if you choose it in the same direction
as the angular momentum vector, then the z-component should be the entire
vector. So, how can it always be less?

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/anguc-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/anguc-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/anguc-c.html
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The answer of quantum mechanics is that the looked-for angular momentum
vector does not exist. No axis, however arbitrarily chosen, can align with a
nonexisting vector.

There is an uncertainty principle here, similar to the one of Heisenberg for
position and linear momentum. For angular momentum, it turns out that if
the component of angular momentum in a given direction, here taken to be z,
has a definite value, then the components in both the x and y directions will
be uncertain. (Details will be given in chapter 12.2). The wave function will be
in a state where Lx and Ly have a range of possible values m1~, m2~, . . . , each
with some probability. Without definite x and y components, there simply is
no angular momentum vector.

It is tempting to think of quantities that have not been measured, such as the
angular momentum vector in this example, as being merely “hidden.” However,
the impossibility for the z-axis to ever align with any angular momentum vector
shows that there is a fundamental difference between “being hidden” and “not
existing”.

Key Points

0 According to quantum mechanics, an exact nonzero angular momen-
tum vector will never exist. If one component of angular momentum
has a definite value, then the other two components will be uncertain.

4.3 The Hydrogen Atom

This section examines the critically important case of the hydrogen atom. The
hydrogen atom consists of a nucleus which is just a single proton, and an electron
encircling that nucleus. The nucleus, being much heavier than the electron, can
be assumed to be at rest, and only the motion of the electron is of concern.

The energy levels of the electron determine the photons that the atom will
absorb or emit, allowing the powerful scientific tool of spectral analysis. The
electronic structure is also essential for understanding the properties of the other
elements and of chemical bonds.

4.3.1 The Hamiltonian

The first step is to find the Hamiltonian of the electron. The electron experiences
an electrostatic Coulomb attraction to the oppositely charged nucleus. The
corresponding potential energy is

V = − e2

4πǫ0r
(4.28)
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with r the distance from the nucleus. The constant

e ≈ 1.602 176 6 10−19 C (4.29)

is the magnitude of the electric charges of the electron and proton, and the
constant

ǫ0 ≈ 8.854 187 817 10−12 C2/J m (4.30)

is called the “permittivity of space.”

Unlike for the harmonic oscillator discussed earlier, this potential energy
cannot be split into separate parts for Cartesian coordinates x, y, and z. To
do the analysis for the hydrogen atom, you must put the nucleus at the origin
of the coordinate system and use spherical coordinates r (the distance from the
nucleus), θ (the angle from an arbitrarily chosen z-axis), and φ (the angle around
the z-axis); see figure 4.7. In terms of spherical coordinates, the potential energy
above depends on just the single coordinate r.

To get the Hamiltonian, you need to add to this potential energy the kinetic
energy operator T̂ . Chapter 3.3 gave this operator as

T̂ = − ~
2

2m
∇2

where ∇2 is the Laplacian. The Laplacian in spherical coordinates is given in
the notations, (N.5). Then the Hamiltonian is found to be:

H = − ~
2

2mer2

{
∂

∂r

(
r2
∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

}
− e2

4πǫ0

1

r
(4.31)

where

me ≈ 9.109 10−31 kg (4.32)

is the mass of the electron.

It may be noted that the small proton motion can be corrected for by slightly
adjusting the mass of the electron to be an effective 9.104 4 10−31 kg, {A.5}. This
makes the solution exact, except for extremely small errors due to relativistic
effects. (These are discussed in addendum {A.39}.)

Key Points

0 To analyze the hydrogen atom, you must use spherical coordinates.

0 The Hamiltonian in spherical coordinates has been written down. It
is (4.31).
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4.3.2 Solution using separation of variables

This subsection describes in general lines how the eigenvalue problem for the
electron of the hydrogen atom is solved. The basic ideas are like those used to
solve the particle in a pipe and the harmonic oscillator, but in this case, they
are used in spherical coordinates rather than Cartesian ones. Without getting
too much caught up in the mathematical details, do not miss the opportunity
of learning where the hydrogen energy eigenfunctions and eigenvalues come
from. This is the crown jewel of quantum mechanics; brilliant, almost flawless,
critically important; one of the greatest works of physical analysis ever.

The eigenvalue problem for the Hamiltonian, as formulated in the previous
subsection, can be solved by searching for solutions ψ that take the form of
a product of functions of each of the three coordinates: ψ = R(r)Θ(θ)Φ(φ).
More concisely, ψ = RΘΦ. The problem now is to find separate equations for
the individual functions R, Θ, and Φ from which they can then be identified.
The arguments are similar as for the harmonic oscillator, but messier, since
the coordinates are more entangled. First, substituting ψ = RΘΦ into the
Hamiltonian eigenvalue problem Hψ = Eψ, with the Hamiltonian H as given
in the previous subsection and E the energy eigenvalue, produces:
[
− ~

2

2mer2

{
∂

∂r

(
r2
∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

}
− e2

4πǫ0

1

r

]
RΘΦ

= ERΘΦ

To reduce this problem, premultiply by 2mer
2/RΘΦ and then separate the

various terms:

−~
2

R

∂

∂r

(
r2
∂R

∂r

)
+

1

ΘΦ

{
− ~

2

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− ~

2

sin2 θ

∂2

∂φ2

}
ΘΦ

−2mer
2e2

4πǫ0

1

r
= 2mer

2E

(4.33)
Next identify the terms involving the angular derivatives and name them Eθφ.
They are:

1

ΘΦ

[
− ~

2

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− ~

2

sin2 θ

∂2

∂φ2

]
ΘΦ = Eθφ

By this definition, Eθφ only depends on θ and φ, not r. But it cannot depend on θ
or φ either, since none of the other terms in the original equation (4.33) depends
on them. So Eθφ must be a constant, independent of all three coordinates.
Then multiplying the angular terms above by ΘΦ produces a reduced eigenvalue
problem involving ΘΦ only, with eigenvalue Eθφ:

[
− ~

2

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− ~

2

sin2 θ

∂2

∂φ2

]
ΘΦ = EθφΘΦ (4.34)
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Repeat the game with this reduced eigenvalue problem. Multiply by sin2 θ/ΘΦ,
and name the only φ-dependent term Eφ. It is:

− 1

Φ
~
2

(
∂2

∂φ2

)
Φ = Eφ

By definition Eφ only depends on φ, but since the other two terms in the equa-
tion it came from did not depend on φ, Eφ cannot either, so it must be another
constant. What is left is a simple eigenvalue problem just involving Φ:

−~2
(
∂2

∂φ2

)
Φ = EφΦ

And that is readily solvable.
In fact, the solution to this final problem has already been given, since the

operator involved is just the square of the angular momentum operator L̂z of
section 4.2.2:

−~2
(
∂2

∂φ2

)
Φ =

(
~

i

∂

∂φ

)2

Φ = L̂2
zΦ

So this equation must have the same eigenfunctions as the operator L̂z,

Φm = eimφ

and must have the square eigenvalues

Eφ = (m~)2

(each application of L̂z multiplies the eigenfunction by m~). It may be recalled
that the magnetic quantum number m must be an integer.

The eigenvalue problem (4.34) for ΘΦ is even easier; it is exactly the one for
the square angular momentum L2 of section 4.2.3. (So, no, there was not really
a need to solve for Φ separately.) Its eigenfunctions are therefore the spherical
harmonics,

ΘΦ = Y m
l (θ, φ)

and its eigenvalues are
Eθφ = l(l + 1)~2

It may be recalled that the azimuthal quantum number l must be an integer
greater than or equal to |m|.

Returning now to the solution of the original eigenvalue problem (4.33), re-
placement of the angular terms by Eθφ = l(l + 1)~2 turns it into an ordinary
differential equation problem for the radial factor R(r) in the energy eigenfunc-
tion. As usual, this problem is a pain to solve, so that is again shoved away in
a note, {D.15}.
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It turns out that the solutions of the radial problem can be numbered using
a third quantum number, n, called the “principal quantum number”. It is larger
than the azimuthal quantum number l, which in turn must be at least as large
as the absolute value of the magnetic quantum number:

n > l > |m| (4.35)

so the principal quantum number must be at least 1. And if n = 1, then l = m
= 0.

In terms of these three quantum numbers, the final energy eigenfunctions of
the hydrogen atom are of the general form:

ψnlm = Rnl(r)Y
m
l (θ, φ) (4.36)

where the spherical harmonics Y m
l were described in section 4.2.3. The brand

new radial wave functions Rnl can be found written out in table 4.4 for small
values of n and l, or in derivation {D.15}, (D.8), for any n and l. They are
usually written in terms of a scaled radial distance from the nucleus ρ = r/a0,
where the length a0 is called the “Bohr radius” and has the value

a0 =
4πǫ0~

2

mee2
≈ 0.529 177 10−10 m (4.37)

or about half an Ångstrom. The Bohr radius is a really good length scale to
describe atoms in terms of. The Ångstrom itself is a good choice too, it is 10−10

m, or one tenth of a nanometer.

R10 =
2√
a30
e−ρ R20 =

2− ρ
2
√

2a30
e−ρ/2 R30 =

54− 36ρ+ 4ρ2

81
√

3a30
e−ρ/3

R21 =
ρ

2
√

6a30
e−ρ/2 R31 =

24ρ− 4ρ2

81
√

6a30
e−ρ/3

R32 =
4ρ2

81
√

30a30
e−ρ/3

a0 =
4πǫ0~

2

mee2
ρ =

r

a0

Table 4.4: The first few radial wave functions for hydrogen.
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The energy eigenvalues are much simpler and more interesting than the
eigenfunctions; they are

En = − ~
2

2mea20

1

n2
=
E1

n2
n = 1, 2, 3, . . . E1 = −

~
2

2mea20
= −13.605 7 eV

(4.38)
where eV stands for electron volt, a unit of energy equal to 1.602 18 10−19 J. It is
the energy that an electron picks up during a 1 volt change in electric potential.

You may wonder why the energy only depends on the principal quantum
number n, and not also on the azimuthal quantum number l and the magnetic
quantum number m. Well, the choice of z-axis was arbitrary, so it should not
seem that strange that the physics would not depend on the angular momentum
in that direction. But that the energy does not depend on l is nontrivial: if you
solve the simpler problem of a particle stuck inside an impenetrable spherical
container, using procedures from {A.6}, the energy values depend on both n
and l. So, that is just the way it is. (It stops being true anyway if you include
relativistic effects in the Hamiltonian.)

Since the lowest possible value of the principal quantum number n is one,
the ground state of lowest energy E1 is eigenfunction ψ100.

Key Points

0 Skipping a lot of math, energy eigenfunctions ψnlm and their energy
eigenvalues En have been found.

0 There is one eigenfunction for each set of three integer quantum num-
bers n, l, and m satisfying n > l > |m|. The number n is called the
principal quantum number.

0 The typical length scale in the solution is called the Bohr radius a0,
which is about half an Ångstrom.

0 The derived eigenfunctions ψnlm are eigenfunctions of
• z angular momentum, with eigenvalue Lz = m~;
• square angular momentum, with eigenvalue L2 = l(l +

1)~2;
• energy, with eigenvalue En = −~2/2mea

2
0n

2.

0 The energy values only depend on the principal quantum number n.

0 The ground state is ψ100.

4.3.2 Review Questions

1. Use the tables for the radial wave functions and the spherical harmonics
to write down the wave function

ψnlm = Rnl(r)Y
m
l (θ, φ)
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for the case of the ground state ψ100.

Check that the state is normalized. Note:
∫∞
0 e−2uu2 du = 1

4 .

Solution hydb-a

2. Use the generic expression

ψnlm = − 2

n2

√
(n− l − 1)!

[(n+ l)!a0]3

(
2ρ

n

)l
L2l+1
n+l

(
2ρ

n

)
e−ρ/nY m

l (θ, φ)

with ρ = r/a0 and Y m
l from the spherical harmonics table to find the

ground state wave function ψ100. Note: the Laguerre polynomial L1(x)
= 1− x and for any p, Lp1 is just its p-th derivative.

Solution hydb-b

3. Plug numbers into the generic expression for the energy eigenvalues,

En = − ~
2

2mea20

1

n2
,

where a0 = 4πǫ0~
2/mee

2, to find the ground state energy. Express in eV,
where 1 eV equals 1.602 2 10−19 J. Values for the physical constants can
be found at the start of this section and in the notations section.

Solution hydb-c

4.3.3 Discussion of the eigenvalues

The only energy values that the electron in the hydrogen atom can have are the
“Bohr energies” derived in the previous subsection:

En = − ~
2

2mea20

1

n2
n = 1, 2, 3, . . .

This subsection discusses the physical consequences of this result.
To aid the discussion, the allowed energies are plotted in the form of an

energy spectrum in figure 4.8. To the right of the lowest three energy levels the
values of the quantum numbers that give rise to those energy levels are listed.

The first thing that the energy spectrum illustrates is that the energy lev-
els are all negative, unlike the ones of the harmonic oscillator, which were all
positive. However, that does not mean much; it results from defining the po-
tential energy of the harmonic oscillator to be zero at the nominal position of
the particle, while the hydrogen potential is instead defined to be zero at large
distance from the nucleus. (It will be shown later, chapter 7.2, that the average
potential energy is twice the value of the total energy, and the average kinetic
energy is minus the total energy, making the average kinetic energy positive as
it should be.)

A more profound difference is that the energy levels of the hydrogen atom
have a maximum value, namely zero, while those of the harmonic oscillator

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydb-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydb-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydb-c.html
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n = 3

{
l = 0 m = 0
l = 1 m = −1, 0, 1
l = 2 m = −2,−1, 0, 1, 2

n = 2
{
l = 0 m = 0
l = 1 m = −1, 0, 1

n = 1 l = 0 m = 0

E

0 eV

−13.6 eV

Balmer

Lyman

free electron (ionized)

Figure 4.8: Spectrum of the hydrogen atom.

went all the way to infinity. It means physically that while the particle can
never escape in a harmonic oscillator, in a hydrogen atom, the electron escapes
if its total energy is greater than zero. Such a loss of the electron is called
“ionization” of the atom.

There is again a ground state of lowest energy; it has total energy

E1 = −13.6 eV (4.39)

(an eV or “electron volt” is 1.6 10−19 J). The ground state is the state in which
the hydrogen atom will be at absolute zero temperature. In fact, it will still be
in the ground state at room temperature, since even then the energy of heat
motion is unlikely to raise the energy level of the electron to the next higher
one, E2.

The ionization energy of the hydrogen atom is 13.6 eV; this is the minimum
amount of energy that must be added to raise the electron from the ground
state to the state of a free electron.

If the electron is excited from the ground state to a higher but still bound
energy level, (maybe by passing a spark through hydrogen gas), it will in time
again transition back to a lower energy level. Discussion of the reasons and the
time evolution of this process will have to wait until chapter 7. For now, it can
be pointed out that different transitions are possible, as indicated by the arrows
in figure 4.8. They are named by their final energy level to be Lyman, Balmer,
or Paschen series transitions.
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The energy lost by the electron during a transition is emitted as a quantum
of electromagnetic radiation called a photon. The most energetic photons, in
the ultraviolet range, are emitted by Lyman transitions. Balmer transitions
emit visible light and Paschen ones infrared.

The photons emitted by isolated atoms at rest must have an energy very
precisely equal to the difference in energy eigenvalues; anything else would vi-
olate the requirement of the orthodox interpretation that only the eigenvalues
are observable. And according to the “Planck-Einstein relation,” the photon’s
energy equals the angular frequency ω of its electromagnetic vibration times ~:

En1 − En2 = ~ω.

Thus the spectrum of the light emitted by hydrogen atoms is very distinctive and
can be identified to great accuracy. Different elements have different spectra,
and so do molecules. It all allows atoms and molecules to be correctly recognized
in a lab or out in space.

(To be sure, the spectral frequencies are not truly mathematically exact
numbers. A slight “spectral broadening” is unavoidable because no atom is
truly isolated as assumed here; there is always some radiation that perturbs it
even in the most ideal empty space. In addition, thermal motion of the atom
causes Doppler shifts. In short, only the energy eigenvalues are observable, but
exactly what those eigenvalues are for a real-life atom can vary slightly.)

Atoms and molecules may also absorb electromagnetic energy of the same
frequencies that they can emit. That allows them to enter an excited state.
The excited state will eventually emit the absorbed energy again in a different
direction, and possibly at different frequencies by using different transitions.
In this way, in astronomy atoms can remove specific frequencies from light
that passes them on its way to earth, resulting in an absorption spectrum. Or
instead atoms may scatter specific frequencies of light in our direction that was
originally not headed to earth, producing an emission spectrum. Doppler shifts
can provide information about the thermal and average motion of the atoms.
Since hydrogen is so prevalent in the universe, its energy levels as derived here
are particularly important in astronomy. Chapter 7 will address the mechanisms
of emission and absorption in much greater detail.

Key Points

0 The energy levels of the electron in a hydrogen atom have a highest
value. This energy is by convention taken to be the zero level.

0 The ground state has a energy 13.6 eV below this zero level.

0 If the electron in the ground state is given an additional amount of
energy that exceeds the 13.6 eV, it has enough energy to escape from
the nucleus. This is called ionization of the atom.
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0 If the electron transitions from a bound energy state with a higher
principal quantum number n1 to a lower one n2, it emits radiation
with an angular frequency ω given by

~ω = En1 − En2

0 Similarly, atoms with energy En2 may absorb electromagnetic energy
of such a frequency.

4.3.3 Review Questions

1. If there are infinitely many energy levels E1, E2, E3, E4, E5, E6, . . . ,
where did they all go in the energy spectrum?

Solution hydc-a

2. What is the value of energy level E2? And E3?

Solution hydc-b

3. Based on the results of the previous question, what is the color of the
light emitted in a Balmer transition from energy E3 to E2? The Planck-
Einstein relation says that the angular frequency ω of the emitted photon
is its energy divided by ~, and the wave length of light is 2πc/ω where c
is the speed of light. Typical wave lengths of visible light are: violet 400
nm, indigo 445 nm, blue 475 nm, green 510 nm, yellow 570 nm, orange
590 nm, red 650 nm.

Solution hydc-c

4. What is the color of the light emitted in a Balmer transition from an
energy level En with a high value of n to E2?

Solution hydc-d

4.3.4 Discussion of the eigenfunctions

The appearance of the energy eigenstates will be of great interest in under-
standing the heavier elements and chemical bonds. This subsection describes
the most important of them.

It may be recalled from subsection 4.3.2 that there is one eigenfunction ψnlm
for each set of three integer quantum numbers. They are the principal quan-
tum number n (determining the energy of the state), the azimuthal quantum
number l (determining the square angular momentum), and the magnetic quan-
tum number m (determining the angular momentum in the chosen z-direction.)
They must satisfy the requirements that

n > l > |m|

For the ground state, with the lowest energy E1, n = 1 and hence accord-
ing to the conditions above both l and m must be zero. So the ground state
eigenfunction is ψ100; it is unique.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydc-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydc-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydc-c.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydc-d.html
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The expression for the wave function of the ground state is (from the results
of subsection 4.3.2):

ψ100(r) =
1√
πa30

e−r/a0 (4.40)

where a0 is called the “Bohr radius”,

a0 =
4πǫ0~

2

mee2
≈ 0.529 177 210 7 10−10 m (4.41)

The square magnitude of the energy states will again be displayed as grey
tones, darker regions corresponding to regions where the electron is more likely
to be found. The ground state is shown this way in figure 4.9; the electron may
be found within a blob size that is about three times the Bohr radius, or roughly
an Ångstrom, (10−10 m), in diameter.

Figure 4.9: Ground state wave function of the hydrogen atom.

It is the quantum mechanical refusal of electrons to restrict themselves to a
single location that gives atoms their size. If Planck’s constant ~ would have
been zero, so would have been the Bohr radius, and the electron would have
been in the nucleus. It would have been a very different world.

The ground state probability distribution is spherically symmetric: the prob-
ability of finding the electron at a point depends on the distance from the nu-
cleus, but not on the angular orientation relative to it.

The excited energy levels E2, E3, . . . are all degenerate; as the spectrum
figure 4.8 indicated, there is more than one eigenstate producing each level.
Let’s have a look at the states at energy level E2 now.

Figure 4.10 shows energy eigenfunction ψ200. Like ψ100, it is spherically
symmetric. In fact, all eigenfunctions ψn00 are spherically symmetric. However,
the wave function has blown up a lot, and now separates into a small, more or
less spherical region in the center, surrounded by a second region that forms a
spherical shell. Separating the two is a radius at which there is zero probability
of finding the electron.

The state ψ200 is commonly referred to as the “2s” state. The 2 indicates
that it is a state with energy E2. The “s” indicates that the azimuthal quantum
number is zero; just think “spherically symmetric.” Similarly, the ground state
ψ100 is commonly indicated as “1s”, having the lowest energy E1.

extrascale=3,notransparent
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Figure 4.10: Eigenfunction ψ200.

States which have azimuthal quantum number l = 1 are called “p” states, for
some historical reason. Historically, physicists have always loved confusing and
inconsistent notations. In particular, the ψ21m states are called “2p” states. As
first example of such a state, figure 4.11 shows ψ210. This wave function squeezes
itself close to the z-axis, which is plotted horizontally by convention. There is
zero probability of finding the electron at the vertical x, y symmetry plane, and
maximum probability at two symmetric points on the z-axis. Since the wave

Figure 4.11: Eigenfunction ψ210, or 2pz.

function squeezes close to the z-axis, this state is often more specifically referred
to as the “2pz” state. Think “points along the z-axis.”

Figure 4.12 shows the other two “2p” states, ψ211 and ψ21−1. These two
states look exactly the same as far as the probability density is concerned. It
is somewhat hard to see in the figure, but they really take the shape of a torus
around the left-to-right z-axis.

Eigenfunctions ψ200, ψ210, ψ211, and ψ21−1 are degenerate: they all four have
the same energy E2 = −3.4 eV. The consequence is that they are not unique.
Combinations of them can be formed that have the same energy. These combi-
nation states may be more important physically than the original eigenfunctions.

extrascale=3,notransparent
extrascale=3,notransparent
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Figure 4.12: Eigenfunction ψ211 (and ψ21−1).

In particular, the torus-shaped eigenfunctions ψ211 and ψ21−1 are often not
very useful for descriptions of heavier elements and chemical bonds. Two states
that are more likely to be relevant here are called 2px and 2py; they are the
combination states:

2px:
1√
2
(−ψ211 + ψ21−1) 2py:

i√
2
(ψ211 + ψ21−1) (4.42)

These two states are shown in figure 4.13; they look exactly like the “pointer”
state 2pz of figure 4.11, except that they squeeze along the x-axis, respectively
the y-axis, instead of along the z-axis. (Since the y-axis is pointing towards
you, 2py looks rotationally symmetric. Seen from the side, it would look like pz
in figure 4.11.)

Figure 4.13: Eigenfunctions 2px, left, and 2py, right.

Note that unlike the two original states ψ211 and ψ21−1, the states 2px and
2py do not have a definite value of the z-component of angular momentum; the
z-component has a 50/50 uncertainty of being either +~ or −~. But that is

extrascale=3,notransparent
extrascale=3,notransparent
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not important in most circumstances. What is important is that when multiple
electrons occupy the p states, mutual repulsion effects tend to push them into
the px, py, and pz states.

So, the four independent eigenfunctions at energy level E2 are best thought
of as consisting of one spherically symmetrical 2s state, and three directional
states, 2px, 2py, and 2pz, pointing along the three coordinate axes.

But even that is not always ideal; as discussed in chapter 5.11.4, for many
chemical bonds, especially those involving the important element carbon, still
different combination states called “hybrids” show up. They involve combina-
tions of the 2s and the 2p states and therefore have uncertain square angular
momentum as well.

Key Points

0 The typical size of eigenstates is given by the Bohr radius, making
the size of the atom of the order of an Å.

0 The ground state ψ100, or 1s state, is nondegenerate: no other set of
quantum numbers n, l,m produces energy E1.

0 All higher energy levels are degenerate, there is more than one eigen-
state producing that energy.

0 All states of the form ψn00, including the ground state, are spherically
symmetric, and are called s states. The ground state ψ100 is the 1s
state, ψ200 is the 2s state, etcetera.

0 States of the form ψn1m are called p states. The basic 2p states are
ψ21−1, ψ210, and ψ211.

0 The state ψ210 is also called the 2pz state, since it squeezes itself
around the z-axis.

0 There are similar 2px and 2py states that squeeze around the x and
y axes. Each is a combination of ψ21−1 and ψ211.

0 The four spatial states at the E2 energy level can therefore be thought
of as one spherically symmetric 2s state and three 2p pointer states
along the axes.

0 However, since the E2 energy level is degenerate, eigenstates of still
different shapes are likely to show up in applications.

4.3.4 Review Questions

1. At what distance r from the nucleus does the square of the ground state
wave function become less than one percent of its value at the nucleus?
Express it both as a multiple of the Bohr radius a0 and in Å.

Solution hydd-a

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydd-a.html
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2. Check from the conditions

n > l > |m|

that ψ200, ψ211, ψ210, and ψ21−1 are the only states of the form ψnlm
that have energy E2. (Of course, all their combinations, like 2px and
2py, have energy E2 too, but they are not simply of the form ψnlm, but
combinations of the “basic” solutions ψ200, ψ211, ψ210, and ψ21−1.)
Solution hydd-b

3. Check that the states

2px =
1√
2
(−ψ211 + ψ21−1) 2py =

i√
2
(ψ211 + ψ21−1)

are properly normalized.
Solution hydd-c

4.4 Expectation Value and Standard Deviation

It is a striking consequence of quantum mechanics that physical quantities may
not have a value. This occurs whenever the wave function is not an eigenfunction
of the quantity of interest. For example, the ground state of the hydrogen atom
is not an eigenfunction of the position operator x̂, so the x-position of the
electron does not have a value. According to the orthodox interpretation, it
cannot be predicted with certainty what a measurement of such a quantity will
produce.

However, it is possible to say something if the same measurement is done
on a large number of systems that are all the same before the measurement.
An example would be x-position measurements on a large number of hydrogen
atoms that are all in the ground state before the measurement. In that case, it
is relatively straightforward to predict what the average, or “expectation value,”
of all the measurements will be.

The expectation value is certainly not a replacement for the classical value
of physical quantities. For example, for the hydrogen atom in the ground state,
the expectation position of the electron is in the nucleus by symmetry. Yet
because the nucleus is so small, measurements will never find it there! (The
typical measurement will find it a distance comparable to the Bohr radius away.)
Actually, that is good news, because if the electron would be in the nucleus as
a classical particle, its potential energy would be almost minus infinity instead
of the correct value of about -27 eV. It would be a very different universe. Still,
having an expectation value is of course better than having no information at
all.

The average discrepancy between the expectation value and the actual mea-
surements is called the “standard deviation.”. In the hydrogen atom example,
where typically the electron is found a distance comparable to the Bohr radius

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydd-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hydd-c.html
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away from the nucleus, the standard deviation in the x-position turns out to be
exactly one Bohr radius. (The same of course for the standard deviations in the
y and z positions away from the nucleus.)

In general, the standard deviation is the quantitative measure for how much
uncertainty there is in a physical value. If the standard deviation is very small
compared to what you are interested in, it is probably OK to use the expectation
value as a classical value. It is perfectly fine to say that the electron of the
hydrogen atom that you are measuring is in your lab but it is not OK to say
that it has countless electron volts of negative potential energy because it is in
the nucleus.

This section discusses how to find expectation values and standard deviations
after a brief introduction to the underlying ideas of statistics.

Key Points

0 The expectation value is the average value obtained when doing mea-
surements on a large number of initially identical systems. It is as
close as quantum mechanics can come to having classical values for
uncertain physical quantities.

0 The standard deviation is how far the individual measurements on
average deviate from the expectation value. It is the quantitative
measure of uncertainty in quantum mechanics.

4.4.1 Statistics of a die

Since it seems to us humans as if, in Einstein’s words, God is playing dice with
the universe, it may be a worthwhile idea to examine the statistics of a die first.

For a fair die, each of the six numbers will, on average, show up a fraction
1/6 of the number of throws. In other words, each face has a probability of 1/6.

The average value of a large number of throws is called the expectation value.
For a fair die, the expectation value is 3.5. After all, number 1 will show up in
about 1/6 of the throws, as will numbers 2 through 6, so the average is

(number of throws)× (1
6
1 + 1

6
2 + 1

6
3 + 1

6
4 + 1

6
5 + 1

6
6)

number of throws
= 3.5

The general rule to get the expectation value is to sum the probability for each
value times the value. In this example:

1
6
1 + 1

6
2 + 1

6
3 + 1

6
4 + 1

6
5 + 1

6
6 = 3.5

Note that the name “expectation value” is very poorly chosen. Even though
the average value of a lot of throws will be 3.5, you would surely not expect to
throw 3.5. But it is probably too late to change the name now.
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The maximum possible deviation from the expectation value does of course
occur when you throw a 1 or a 6; the absolute deviation is then |1 − 3.5| =
|6 − 3.5| = 2.5. It means that the possible values produced by a throw can
deviate as much as 2.5 from the expectation value.

However, the maximum possible deviation from the average is not a useful
concept for quantities like position, or for the energy levels of the harmonic
oscillator, where the possible values extend all the way to infinity. So, instead
of the maximum deviation from the expectation value, some average deviation
is better. The most useful of those is called the “standard deviation”, denoted
by σ. It is found in two steps: first the average square deviation from the
expectation value is computed, and then a square root is taken of that. For the
die that works out to be:

σ = [1
6
(1− 3.5)2 + 1

6
(2− 3.5)2 + 1

6
(3− 3.5)2 +

1
6
(4− 3.5)2 + 1

6
(5− 3.5)2 + 1

6
(6− 3.5)2]1/2

= 1.71

On average then, the throws are 1.71 points off from 3.5.

Key Points

0 The expectation value is obtained by summing the possible values
times their probabilities.

0 To get the standard deviation, first find the average square deviation
from the expectation value, then take a square root of that.

4.4.1 Review Questions

1. Suppose you toss a coin a large number of times, and count heads as one,
tails as two. What will be the expectation value?
Solution esda-a

2. Continuing this example, what will be the maximum deviation?
Solution esda-b

3. Continuing this example, what will be the standard deviation?
Solution esda-c

4. Have I got a die for you! By means of a small piece of lead integrated
into its light-weight structure, it does away with that old-fashioned un-
certainty. It comes up six every time! What will be the expectation value
of your throws? What will be the standard deviation?
Solution esda-d

4.4.2 Statistics of quantum operators

The expectation values of the operators of quantum mechanics are defined in
the same way as those for the die.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esda-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esda-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esda-c.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esda-d.html
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Consider an arbitrary physical quantity, call it a, and assume it has an
associated operator A. For example, if the physical quantity a is the total
energy E, A will be the Hamiltonian H.

The equivalent of the face values of the die are the values that the quantity a
can take, and according to the orthodox interpretation, that are the eigenvalues

a1, a2, a3, . . .

of the operator A.
Next, the probabilities of getting those values are according to quantum

mechanics the square magnitudes of the coefficients when the wave function is
written in terms of the eigenfunctions of A. In other words, if α1, α2, α3, . . . are
the eigenfunctions of operator A, and the wave function is

Ψ = c1α1 + c2α2 + c3α3 + . . .

then |c1|2 is the probability of value a1, |c2|2 the probability of value a2, etcetera.
The expectation value is written as 〈a〉, or as 〈A〉, whatever is more appeal-

ing. Like for the die, it is found as the sum of the probability of each value
times the value:

〈a〉 = |c1|2a1 + |c2|2a2 + |c3|2a3 + . . .

Of course, the eigenfunctions might be numbered using multiple indices;
that does not really make a difference. For example, the eigenfunctions ψnlm of
the hydrogen atom are numbered with three indices. In that case, if the wave
function of the hydrogen atom is

Ψ = c100ψ100 + c200ψ200 + c210ψ210 + c211ψ211 + c21−1ψ21−1 + c300ψ300 + . . .

then the expectation value for energy will be, noting that E1 = −13.6 eV, E2

= −3.4 eV, ...:

〈E〉 = −|c100|213.6 eV− |c200|23.4 eV− |c210|23.4 eV− |c211|23.4 eV− . . .

Also, the expectation value of the square angular momentum will be, recalling
that its eigenvalues are l(l + 1)~2,

〈L2〉 = |c100|20 + |c200|20 + |c210|22~2 + |c211|22~2 + |c21−1|22~2 + |c300|20 + . . .

Also, the expectation value of the z-component of angular momentum will be,
recalling that its eigenvalues are m~,

〈Lz〉 = |c100|20 + |c200|20 + |c210|20 + |c211|2~− |c21−1|2~+ |c300|20 + . . .

Key Points

0 The expectation value of a physical quantity is found by summing its
eigenvalues times the probability of measuring that eigenvalue.
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0 To find the probabilities of the eigenvalues, the wave function Ψ can
be written in terms of the eigenfunctions of the physical quantity.
The probabilities will be the square magnitudes of the coefficients of
the eigenfunctions.

4.4.2 Review Questions

1. The 2px pointer state of the hydrogen atom was defined as

1√
2
(−ψ211 + ψ21−1) .

What are the expectation values of energy, square angular momentum,
and z angular momentum for this state?
Solution esdb-a

2. Continuing the previous question, what are the standard deviations in
energy, square angular momentum, and z angular momentum?
Solution esdb-b

4.4.3 Simplified expressions

The procedure described in the previous section to find the expectation value
of a quantity is unwieldy: it requires that first the eigenfunctions of the quan-
tity are found, and next that the wave function is written in terms of those
eigenfunctions. There is a quicker way.

Assume that you want to find the expectation value, 〈a〉 or 〈A〉, of some
quantity a with associated operator A. The simpler way to do it is as an inner
product:

〈A〉 = 〈Ψ|A|Ψ〉. (4.43)

(Recall that 〈Ψ|A|Ψ〉 is just the inner product 〈Ψ|AΨ〉; the additional separating
bar is often visually convenient, though.) This formula for the expectation
value is easily remembered as “leaving out Ψ” from the inner product bracket.
The reason that 〈Ψ|A|Ψ〉 works for getting the expectation value is given in
derivation {D.17}.

The simplified expression for the expectation value can also be used to find
the standard deviation, σA or σa:

σA =
√
〈(A− 〈A〉)2〉 (4.44)

where 〈(A− 〈A〉)2〉 is the inner product 〈Ψ|(A− 〈A〉)2Ψ〉.

Key Points

0 The expectation value of a quantity a with operator A can be found
as 〈A〉 = 〈Ψ|AΨ〉.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esdb-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esdb-b.html
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0 Similarly, the standard deviation can be found using the expression
σA =

√
〈(A− 〈A〉)2〉.

4.4.3 Review Questions

1. The 2px pointer state of the hydrogen atom was defined as

1√
2
(−ψ211 + ψ21−1) .

where both ψ211 and ψ21−1 are eigenfunctions of the total energy Hamil-
tonian H with eigenvalue E2 and of square angular momentum L̂2 with
eigenvalue 2~2; however, ψ211 is an eigenfunction of z angular momentum
L̂z with eigenvalue ~, while ψ21−1 is one with eigenvalue −~. Evaluate
the expectation values of energy, square angular momentum, and z an-
gular momentum in the 2px state using inner products. (Of course, since
2px is already written out in terms of the eigenfunctions, there is no
simplification in this case.)

Solution esdb2-a

2. Continuing the previous question, evaluate the standard deviations in
energy, square angular momentum, and z angular momentum in the 2px
state using inner products.

Solution esdb2-b

4.4.4 Some examples

This section gives some examples of expectation values and standard deviations
for known wave functions.

First consider the expectation value of the energy of the hydrogen atom in
its ground state ψ100. The ground state is an energy eigenfunction with the
lowest possible energy level E1 = −13.6 eV as eigenvalue. So, according to
the orthodox interpretation, energy measurements of the ground state can only
return the value E1, with 100% certainty.

Clearly, if all measurements return the value E1, then the average value must
be that value too. So the expectation value 〈E〉 should be E1. In addition, the
measurements will never deviate from the value E1, so the standard deviation
σE should be zero.

It is instructive to check those conclusions using the simplified expressions
for expectation values and standard deviations from the previous subsection.
The expectation value can be found as:

〈E〉 = 〈H〉 = 〈Ψ|H|Ψ〉

In the ground state

Ψ = c100ψ100

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esdb2-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/esdb2-b.html
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where c100 is a constant of magnitude one, and ψ100 is the ground state eigen-
function of the Hamiltonian H with the lowest eigenvalue E1. Substituting this
Ψ, the expectation value of the energy becomes

〈E〉 = 〈c100ψ100|Hc100ψ100〉 = c∗100c100〈ψ100|E1ψ100〉 = c∗100c100E1〈ψ100|ψ100〉

since Hψ100 = E1ψ100 by the definition of eigenfunction. Note that constants
come out of the inner product bra as their complex conjugate, but unchanged
out of the ket. The final expression shows that 〈E〉 = E1 as it should, since
c100 has magnitude one, while 〈ψ100|ψ100〉 = 1 because proper eigenfunctions are
normalized to one. So the expectation value checks out OK.

The standard deviation

σE =
√
〈(H − 〈E〉)2〉

checks out OK too:
σE =

√
〈ψ100|(H − E1)2ψ100〉

and since Hψ100 = E1ψ100, you have that (H −E1)ψ100 is zero, so σE is zero as
it should be.

In general,

If the wave function is an eigenfunction of the measured variable, the
expectation value will be the eigenvalue, and the standard deviation
will be zero.

To get uncertainty, in other words, a nonzero standard deviation, the wave
function should not be an eigenfunction of the quantity being measured.

For example, the ground state of the hydrogen atom is an energy eigenfunc-
tion, but not an eigenfunction of the position operators. The expectation value
for the position coordinate x can still be found as an inner product:

〈x〉 = 〈ψ100|x̂ψ100〉 =
∫∫∫

x|ψ100|2 dxdydz.

This integral is zero. The reason is that |ψ100|2, shown as grey scale in figure
4.9, is symmetric around x = 0; it has the same value at a negative value of x as
at the corresponding positive value. Since the factor x in the integrand changes
sign, integration values at negative x cancel out against those at positive x. So
〈x〉 = 0.

The position coordinates y and z go the same way, and it follows that the
expectation value of position is at (x, y, z) = (0,0,0); the expectation position
of the electron is in nucleus.

In fact, all basic energy eigenfunctions ψnlm of the hydrogen atom, like figures
4.9, 4.10, 4.11, 4.12, as well as the combination states 2px and 2py of figure 4.13,
have a symmetric probability distribution, and all have the expectation value of
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position in the nucleus. (For the hybrid states discussed later, that is no longer
true.)

But don’t really expect to ever find the electron in the negligible small
nucleus! You will find it at locations that are on average one standard deviation
away from it. For example, in the ground state

σx =
√
〈(x− 〈x〉)2〉 =

√
〈x2〉 =

√∫∫∫
x2|ψ100(x, y, z)|2 dxdydz

which is positive since the integrand is everywhere positive. So, the results of
x-position measurements are uncertain, even though they average out to the
nominal position x = 0. The negative experimental results for x average away
against the positive ones. The same is true in the y and z directions. Thus the
expectation position becomes the nucleus even though the electron will really
never be found there.

If you actually do the integral above, (it is not difficult in spherical coordi-
nates,) you find that the standard deviation in x equals the Bohr radius. So on
average, the electron will be found at an x-distance equal to the Bohr radius
away from the nucleus. Similar deviations will occur in the y and z directions.

The expectation value of linear momentum in the ground state can be found
from the linear momentum operator p̂x = ~∂/i∂x:

〈px〉 = 〈ψ100|p̂xψ100〉 =
∫∫∫

ψ100
~

i

∂ψ100

∂x
dxdydz =

~

i

∫∫∫
∂ 1

2
ψ2
100

∂x
dxdydz

This is again zero, since differentiation turns a symmetric function into an an-
tisymmetric one, one which changes sign between negative and corresponding
positive positions. Alternatively, just perform integration with respect to x,
noting that the wave function is zero at infinity.

More generally, the expectation value for linear momentum is zero for all
the energy eigenfunctions; that is a consequence of Ehrenfest’s theorem covered
in chapter 7.2.1. The standard deviations are again nonzero, so that linear
momentum is uncertain like position is.

All these observations carry over in the same way to the eigenfunctions
ψnxnynz

of the harmonic oscillator. They too all have the expectation values of
position at the origin, in other words in the nucleus, and the expectation linear
momenta equal to zero.

If combinations of energy eigenfunctions are considered, it changes. Such
combinations may have nontrivial expectation positions and linear momenta.
A discussion will have to wait until chapter 7.

Key Points

0 Examples of definite and uncertain quantities were given for example
wave functions.
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0 A quantity has a definite value when the wave function is an eigen-
function of the operator corresponding to that quantity.

4.5 The Commutator

As the previous section discussed, the standard deviation σ is a measure of
the uncertainty of a property of a quantum system. The larger the standard
deviation, the farther typical measurements stray from the expected average
value. Quantum mechanics often requires a minimum amount of uncertainty
when more than one quantity is involved, like position and linear momentum
in Heisenberg’s uncertainty principle. In general, this amount of uncertainty is
related to an important mathematical object called the “commutator”, to be
discussed in this section.

4.5.1 Commuting operators

First, note that there is no fundamental reason why several quantities cannot
have a definite value at the same time. For example, if the electron of the
hydrogen atom is in a ψnlm eigenstate, its total energy, square angular momen-
tum, and z-component of angular momentum all have definite values, with zero
uncertainty.

More generally, two different quantities with operators A and B have definite
values if the wave function is an eigenfunction of both A and B. So, the question
whether two quantities can be definite at the same time is really whether their
operators A and B have common eigenfunctions. And it turns out that the
answer has to do with whether these operators “commute”, in other words, on
whether their order can be reversed as in AB = BA.

In particular, {D.18}:

Iff two Hermitian operators commute, there is a complete set of
eigenfunctions that is common to them both.

(For more than two operators, each operator has to commute with all others.)
For example, the operators Hx and Hy of the harmonic oscillator of chapter

4.1.2 commute:

HxHyΨ =

[
− ~

2

2m

∂2

∂x2
+ 1

2
cx2
] [
− ~

2

2m

∂2

∂y2
+ 1

2
cy2
]
Ψ

=

(
~
2

2m

)2
∂4Ψ

∂x2∂y2
− ~

2

2m

∂2 1
2
cy2Ψ

∂x2
− 1

2
cx2

~
2

2m

∂2Ψ

∂y2
+ 1

2
cx2 1

2
cy2Ψ

= HyHxΨ
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This is true since it makes no difference whether you differentiate Ψ first with
respect to x and then with respect to y or vice versa, and since the 1

2
cy2 can be

pulled in front of the x-differentiations and the 1
2
cx2 can be pushed inside the

y-differentiations, and since multiplications can always be done in any order.
The same way, Hz commutes with Hx and Hy, and that means that H com-

mutes with them all, since H is just their sum. So, these four operators should
have a common set of eigenfunctions, and they do: it is the set of eigenfunctions
ψnxnynz

derived in chapter 4.1.2.
Similarly, for the hydrogen atom, the total energy HamiltonianH, the square

angular momentum operator L̂2 and the z-component of angular momentum L̂z
all commute, and they have the common set of eigenfunctions ψnlm.

Note that such eigenfunctions are not necessarily the only game in town.
As a counter-example, for the hydrogen atom H, L̂2, and the x-component of
angular momentum L̂x also all commute, and they too have a common set of
eigenfunctions. But that will not be the ψnlm, since L̂x and L̂z do not commute.
(It will however be the ψnlm after you rotate them all 90 degrees around the y-
axis.) It would certainly be simpler mathematically if each operator had just
one unique set of eigenfunctions, but nature does not cooperate.

Key Points

0 Operators commute if you can change their order, as in AB = BA.

0 For commuting operators, a common set of eigenfunctions exists.

0 For those eigenfunctions, the physical quantities corresponding to the
commuting operators all have definite values at the same time.

4.5.1 Review Questions

1. The pointer state

2px =
1√
2
(−ψ211 + ψ21−1) .

is one of the eigenstates that H, L̂2, and L̂x have in common. Check that
it is not an eigenstate that H, L̂2, and L̂z have in common.

Solution commutea-a

4.5.2 Noncommuting operators and their commutator

Two quantities with operators that do not commute cannot in general have
definite values at the same time. If one has a definite value, the other is in
general uncertain.

The qualification “in general” is needed because there may be exceptions.
The angular momentum operators do not commute, but it is still possible for
the angular momentum to be zero in all three directions. But as soon as the

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/commutea-a.html


124 CHAPTER 4. SINGLE-PARTICLE SYSTEMS

angular momentum in any direction is nonzero, only one component of angular
momentum can have a definite value.

A measure for the amount to which two operators A andB do not commute is
the difference between AB and BA; this difference is called their “commutator”
[A,B]:

[A,B] ≡ AB − BA (4.45)

A nonzero commutator [A,B] demands a minimum amount of uncertainty
in the corresponding quantities a and b. It can be shown, {D.19}, that the
uncertainties, or standard deviations, σa in a and σb in b are at least so large
that:

σaσb >
1
2
|〈[A,B]〉| (4.46)

This equation is called the “generalized uncertainty relationship”.

Key Points

0 The commutator of two operators A and B equals AB − BA and is
written as [A,B].

0 The product of the uncertainties in two quantities is at least one half
the magnitude of the expectation value of their commutator.

4.5.3 The Heisenberg uncertainty relationship

This section will work out the uncertainty relationship (4.46) of the previous
subsection for the position and linear momentum in an arbitrary direction. The
result will be a precise mathematical statement of the Heisenberg uncertainty
principle.

To be specific, the arbitrary direction will be taken as the x-axis, so the
position operator will be x̂, and the linear momentum operator p̂x = ~∂/i∂x.
These two operators do not commute, p̂xx̂Ψ is simply not the same as x̂p̂xΨ:
p̂xx̂Ψ means multiply function Ψ by x to get the product function xΨ and then
apply p̂x on that product, while x̂p̂xΨ means apply p̂x on Ψ and then multiply
the resulting function by x. The difference is found from writing it out:

p̂xx̂Ψ =
~

i

∂xΨ

∂x
=

~

i
Ψ +

~

i
x
∂Ψ

∂x
= −i~Ψ+ x̂p̂xΨ

the second equality resulting from differentiating out the product.
Comparing start and end shows that the difference between x̂p̂x and p̂xx̂ is

not zero, but i~. By definition, this difference is their commutator:

[x̂, p̂x] = i~ (4.47)
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This important result is called the “canonical commutation relation.” The com-
mutator of position and linear momentum in the same direction is the nonzero
constant i~.

Because the commutator is nonzero, there must be nonzero uncertainty in-
volved. Indeed, the generalized uncertainty relationship of the previous subsec-
tion becomes in this case:

σxσpx >
1
2
~ (4.48)

This is the uncertainty relationship as first formulated by Heisenberg.
It implies that when the uncertainty in position σx is narrowed down to zero,

the uncertainty in momentum σpx must become infinite to keep their product
nonzero, and vice versa. More generally, you can narrow down the position of
a particle and you can narrow down its momentum. But you can never reduce
the product of the uncertainties σx and σpx below 1

2
~, whatever you do.

It should be noted that the uncertainty relationship is often written as
∆px∆x >

1
2
~ or even as ∆px∆x ≈ ~ where ∆p and ∆x are taken to be vaguely

described “uncertainties” in momentum and position, rather than rigorously
defined standard deviations. And people write a corresponding uncertainty re-
lationship for time, ∆E∆t > 1

2
~, because relativity suggests that time should

be treated just like space. But note that unlike the linear momentum operator,
the Hamiltonian is not at all universal. So, you might guess that the definition
of the “uncertainty” ∆t in time would not be universal either, and you would
be right, chapter 7.2.2.

Key Points

0 The canonical commutator [x̂, p̂x] equals i~.

0 If either the uncertainty in position in a given direction or the un-
certainty in linear momentum in that direction is narrowed down to
zero, the other uncertainty blows up.

0 The product of the two uncertainties is at least the constant 1
2~.

4.5.3 Review Questions

1. This sounds serious! If I am driving my car, the police requires me to
know my speed (linear momentum). Also, I would like to know where I
am. But neither is possible according to quantum mechanics.
Solution commutec-a

4.5.4 Commutator reference

It is a fact of life in quantum mechanics that commutators pop up all over the
place. Not just in uncertainty relations, but also in the time evolution of expec-
tation values, in angular momentum, and in quantum field theory, the advanced

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/commutec-a.html
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theory of quantum mechanics used in solids and relativistic applications. This
section can make your life easier dealing with them. Browse through it to see
what is there. Then come back when you need it.

Recall the definition of the commutator [A,B] of any two operators A and
B:

[A,B] = AB − BA (4.49)

By this very definition , the commutator is zero for any two operators A1 and
A2 that commute, (whose order can be interchanged):

[A1, A2] = 0 if A1 and A2 commute; A1A2 = A2A1. (4.50)

If operators all commute, all their products commute too:

[A1A2 . . . Ak, Ak+1 . . . An] = 0 if A1, A2, . . . , Ak, Ak+1, . . . , An all commute.
(4.51)

Everything commutes with itself, of course:

[A,A] = 0, (4.52)

and everything commutes with a numerical constant; if A is an operator and a
is some number, then:

[A, a] = [a,A] = 0. (4.53)

The commutator is “antisymmetric”; or in simpler words, if you interchange
the sides; it will change the sign, {D.20}:

[B,A] = −[A,B]. (4.54)

For the rest however, linear combinations multiply out just like you would ex-
pect:

[aA+ bB, cC + dD] = ac[A,C] + ad[A,D] + bc[B,C] + bd[B,D], (4.55)

(in which it is assumed that A, B, C, and D are operators, and a, b, c, and d
numerical constants.)

To deal with commutators that involve products of operators, the rule to
remember is: “the first factor comes out at the front of the commutator, the
second at the back”. More precisely:

✛ ✲
[AB, . . .] = A[B, . . .] + [A, . . .]B,

✛ ✲
[. . . , AB] = A[. . . , B] + [. . . , A]B.

(4.56)
So, if A or B commutes with the other side of the operator, it can simply be
taken out at at its side; (the second commutator will be zero.) For example,

[A1B,A2] = A1[B,A2], [BA1, A2] = [B,A2]A1
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if A1 and A2 commute.
Now from the general to the specific. Because changing sides in a commu-

tator merely changes its sign, from here on only one of the two possibilities will
be shown. First the position operators all mutually commute:

[x̂, ŷ] = [ŷ, ẑ] = [ẑ, x̂] = 0 (4.57)

as do position-dependent operators such as a potential energy V (x, y, z):

[x̂, V (x, y, z)] = [ŷ, V (x, y, z)] = [ẑ, V (x, y, z)] = 0 (4.58)

This illustrates that if a set of operators all commute, then all combinations of
those operators commute too.

The linear momentum operators all mutually commute:

[p̂x, p̂y] = [p̂y, p̂z] = [p̂z, p̂x] = 0 (4.59)

However, position operators and linear momentum operators in the same direc-
tion do not commute; instead:

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i~ (4.60)

As seen in the previous subsection, this lack of commutation causes the Heisen-
berg uncertainty principle. Position and linear momentum operators in different
directions do commute:

[x̂, p̂y] = [x̂, p̂z] = [ŷ, p̂z] = [ŷ, p̂x] = [ẑ, p̂x] = [ẑ, p̂y] = 0 (4.61)

A generalization that is frequently very helpful is:

[f, p̂x] = i~
∂f

∂x
[f, p̂y] = i~

∂f

∂y
[f, p̂z] = i~

∂f

∂z
(4.62)

where f is any function of x, y, and z.
Unlike linear momentum operators, angular momentum operators do not

mutually commute. The commutators are given by the so-called “ fundamental
commutation relations:”

[L̂x, L̂y] = i~L̂z [L̂y, L̂z] = i~L̂x [L̂z, L̂x] = i~L̂y (4.63)

Note the . . . xyzxyz . . . order of the indices that produces positive signs; a re-
versed . . . zyxzy . . . order adds a minus sign. For example [L̂z, L̂y] = −i~L̂x
because y following z is in reversed order.

The angular momentum components do all commute with the square angular
momentum operator:

[L̂x, L̂
2] = [L̂y, L̂

2] = [L̂z, L̂
2] = 0 where L̂2 = L̂2

x + L̂2
y + L̂2

z (4.64)
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Just the opposite of the situation for linear momentum, position and angular
momentum operators in the same direction commute,

[x̂, L̂x] = [ŷ, L̂y] = [ẑ, L̂z] = 0 (4.65)

but those in different directions do not:

[x̂, L̂y] = [L̂x, ŷ] = i~ẑ [ŷ, L̂z] = [L̂y, ẑ] = i~x̂ [ẑ, L̂x] = [L̂z, x̂] = i~ŷ (4.66)

Square position commutes with all components of angular momentum,

[r̂2, L̂x] = [r̂2, L̂y] = [r̂2, L̂z] = [r̂2, L̂2] = 0 (4.67)

The commutator between position and square angular momentum is, using vec-
tor notation for conciseness,

[~̂r, L̂2] = −2~2~̂r − 2i~~̂r × ~̂L = −2~2~̂r + 2i~(~̂r · ~̂r)~̂p− 2i~~̂r(~̂r · ~̂p) (4.68)

The commutators between linear and angular momentum are very similar
to the ones between position and angular momentum:

[p̂x, L̂x] = [p̂y, L̂y] = [p̂z, L̂z] = 0 (4.69)

[p̂x, L̂y] = [L̂x, p̂y] = i~p̂z [p̂y, L̂z] = [L̂y, p̂z] = i~p̂x [p̂z, L̂x] = [L̂z, p̂x] = i~p̂y
(4.70)

[p̂2, L̂x] = [p̂2, L̂y] = [p̂2, L̂z] = [p̂2, L̂2] = 0 (4.71)

[~̂p, L̂2] = −2~2~̂p− 2i~~̂p× ~̂L = 2~2~̂p+ 2i~(~̂r · ~̂p)~̂p− 2i~~̂r(~̂p · ~̂p) (4.72)

The following commutators are also useful:

[~r × ~̂L, L̂2] = 2i~~rL̂2 [[~r, L̂2], L̂2] = 2~2(~rL̂2 + L̂2~r) (4.73)

Commutators involving spin are discussed in a later chapter, 5.5.3.

Key Points

0 Rules for evaluating commutators were given.

0 Return to this subsection if you need to figure out some commutator
or the other.
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4.6 The Hydrogen Molecular Ion

The hydrogen atom studied earlier is where full theoretical analysis stops.
Larger systems are just too difficult to solve analytically. Yet, it is often quite
possible to understand the solution of such systems using approximate argu-
ments. As an example, this section considers the H+

2 -ion. This ion consists of
two protons and a single electron circling them. It will be shown that a chemical
bond forms that holds the ion together. The bond is a “covalent” one, in which
the protons share the electron.

The general approach will be to compute the energy of the ion, and to show
that the energy is less when the protons are sharing the electron as a molecule
than when they are far apart. This must mean that the molecule is stable:
energy must be expended to take the protons apart.

The approximate technique to be used to find the state of lowest energy is
a basic example of what is called a “variational method.”

4.6.1 The Hamiltonian

First the Hamiltonian is needed. Since the protons are so much heavier than
the electron, to good approximation they can be considered fixed points in the
energy computation. That is called the “Born-Oppenheimer approximation”.
In this approximation, only the Hamiltonian of the electron is needed. It makes
things a lot simpler, which is why the Born-Oppenheimer approximation is a
common assumption in applications of quantum mechanics.

Compared to the Hamiltonian of the hydrogen atom of section 4.3.1, there
are now two terms to the potential energy, the electron experiencing attraction
to both protons:

H = − ~
2

2me

∇2 − e2

4πǫ0

1

rl
− e2

4πǫ0

1

rr
(4.74)

where rl and rr are the distances from the electron to the left and right protons,

rl ≡ |~r −~rlp| rr ≡ |~r −~rrp| (4.75)

with ~rlp the position of the left proton and ~rrp that of the right one.
The hydrogen ion in the Born-Oppenheimer approximation can be solved

analytically using “prolate spheroidal coordinates.” However, approximations
will be used here. For one thing, you learn more about the physics that way.

Key Points

0 In the Born-Oppenheimer approximation, the electronic structure is
computed assuming that the nuclei are at fixed positions.

0 The Hamiltonian in the Born-Oppenheimer approximation has been
found. It is above.
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4.6.2 Energy when fully dissociated

The fully dissociated state is when the protons are very far apart and there is
no coherent molecule, as in figure 4.14. The best the electron can do under
those circumstances is to combine with either proton, say the left one, and form
a hydrogen atom in the ground state of lowest energy. In that case the right
proton will be alone. According to the solution for the hydrogen atom, the

Figure 4.14: Hydrogen atom plus free proton far apart.

electron loses 13.6 eV of energy by going in the ground state around the left
proton. Of course, it would lose the same energy going into the ground state
around the right proton, but for now, assume that it is around the left proton.

The wave function describing this state is just the ground state ψ100 derived
for the hydrogen atom, equation (4.40), but the distance should be measured
from the position ~rlp of the left proton instead of from the origin:

ψ = ψ100(|~r −~rlp|)

To shorten the notations, this wave function will be denoted by ψl:

ψl(~r) ≡ ψ100(|~r −~rlp|) (4.76)

Similarly the wave function that would describe the electron as being in the
ground state around the right proton will be denoted as ψr, with

ψr(~r) ≡ ψ100(|~r −~rrp|) (4.77)

Key Points

0 When the protons are far apart, there are two lowest energy states,
ψl and ψr, in which the electron is in the ground state around the
left, respectively right, proton. In either case there is an hydrogen
atom plus a free proton.

extrascale=3,notransparent


4.6. THE HYDROGEN MOLECULAR ION 131

Figure 4.15: Hydrogen atom plus free proton closer together.

4.6.3 Energy when closer together

When the protons get a bit closer to each other, but still well apart, the distance
rr between the electron orbiting the left proton and the right proton decreases,
as sketched in figure 4.15. The potential that the electron sees is now not just
that of the left proton; the distance rr is no longer so large that the −e2/4πǫ0rr
potential can be completely neglected.

However, assuming that the right proton stays sufficiently clear of the elec-
tron wave function, the distance rr between electron and right proton can still
be averaged out as being the same as the distance d between the two protons.
Within that approximation, it simply adds the constant−e2/4πǫ0d to the Hamil-
tonian of the electron. And adding a constant to a Hamiltonian does not change
the eigenfunction; it only changes the eigenvalue, the energy, by that constant.
So the ground state ψl of the left proton remains a good approximation to the
lowest energy wave function.

Moreover, the decrease in energy due to the electron/right proton attraction
is balanced by an increase in energy of the protons by their mutual repulsion, so
the total energy of the ion remains the same. In other words, the right proton
is to first approximation neither attracted nor repelled by the neutral hydrogen
atom on the left. To second approximation the right proton does change the
wave function of the electron a bit, resulting in some attraction, but this effect
will be ignored.

So far, it has been assumed that the electron is circling the left proton. But
the case that the electron is circling the right proton is of course physically
equivalent. In particular the energy must be exactly the same by symmetry.

Key Points

0 To first approximation, there is no attraction between the free proton
and the neutral hydrogen atom, even somewhat closer together.

extrascale=3,notransparent
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4.6.4 States that share the electron

The approximate energy eigenfunction ψl that describes the electron as being
around the left proton has the same energy as the eigenfunction ψr that describes
the electron as being around the right one. Therefore any linear combination of
the two,

ψ = aψl + bψr (4.78)

is also an eigenfunction with the same energy. In such combinations, the electron
is shared by the protons, in ways that depend on the chosen values of a and b.

Note that the constants a and b are not independent: the wave function
should be normalized, 〈ψ|ψ〉 = 1. Since ψl and ψr are already normalized, and
assuming that a and b are real, this works out to

〈aψl + bψr|aψl + bψr〉 = a2 + b2 + 2ab〈ψl|ψr〉 = 1 (4.79)

As a consequence, only the ratio the coefficients a/b can be chosen freely.
A particularly interesting case is the “antisymmetric” one, b = −a. As figure

4.16 shows, in this state there is zero probability of finding the electron at the
symmetry plane midway in between the protons. The reason is that ψl and ψr

Figure 4.16: The electron being antisymmetrically shared.

are equal at the symmetry plane, making their difference zero.
This is actually a quite weird result. You combine two states, in both of

which the electron has some probability of being at the symmetry plane, and in
the combination the electron has zero probability of being there. The probability
of finding the electron at any position, including the symmetry plane, in the first
state is given by |ψl|2. Similarly, the probability of finding the electron in the
second state is given by |ψr|2. But for the combined state nature does not
do the logical thing of adding the two probabilities together to come up with
1
2
|ψl|2 + 1

2
|ψr|2.

Instead of adding physically observable probabilities, nature squares the un-
observable wave function aψl−aψr to find the new probability distribution. The
squaring adds a cross term, −2a2ψlψr, that simply adding probabilities does not
have. This term has the physical effect of preventing the electron to be at the
symmetry plane, but it does not have a normal physical explanation. There is

extrascale=3,notransparent
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no force repelling the electrons from the symmetry plane or anything like that.
Yet it looks as if there is one in this state.

The most important combination of ψl and ψr is the “symmetric” one, b =
a. The approximate wave function then takes the form a(ψl +ψr). That can be
written out fully in terms of the hydrogen ground state wave function as:

Ψ ≈ a [ψ100(|~r −~rlp|) + ψ100(|~r −~rrp|)] ψ100(r) ≡
1√
πa30

e−r/a0 (4.80)

where a0 = 0.53 Å is the Bohr radius and ~r, ~rlp, and ~rrp are again the position
vectors of electron and protons. In this case, there is increased probability for
the electron to be at the symmetry plane, as shown in figure 4.17.

Figure 4.17: The electron being symmetrically shared.

A state in which the electron is shared is truly a case of the electron being
in two different places at the same time. For if instead of sharing the electron,
each proton would be given its own half electron, the expression for the Bohr
radius, a0 = 4πǫ0~

2/mee
2, shows that the eigenfunctions ψl and ψr would have

to blow up in radius by a factor four. (Because of me and e; the second factor
e is the proton charge.) The energy would then reduce by the same factor four.
That is simply not what happens. You get the physics of a complete electron
being present around each proton with 50% probability, not the physics of half
an electron being present for sure.

Key Points

0 This subsection brought home the physical weirdness arising from
the mathematics of the unobservable wave function.

0 In particular, within the approximations made, there exist states that
all have the same ground state energy, but whose physical properties
are dramatically different.

0 The protons may “share the electron.” In such states there is a
probability of finding the electron around either proton.

0 Even if the protons share the electron equally as far as the probability
distribution is concerned, different physical states are still possible.

extrascale=3,notransparent
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In the symmetric case that the wave functions around the protons
have the same sign, there is increased probability of the electron
being found in between the protons. In the antisymmetric case of
opposite sign, there is decreased probability of the electron being
found in between the protons.

4.6.5 Comparative energies of the states

The previous two subsections described states of the hydrogen molecular ion in
which the electron is around a single proton, as well as states in which it is shared
between protons. To the approximations made, all these states have the same
energy. Yet, if the expectation energy of the states is more accurately examined,
it turns out that increasingly large differences show up when the protons get
closer together. The symmetric state has the least energy, the antisymmetric
state the highest, and the states where the electron is around a single proton
have something in between.

It is not that easy to see physically why the symmetric state has the lowest
energy. An argument is often made that in the symmetric case, the electron
has increased probability of being in between the protons, where it is most
effective in pulling them together. However, actually the potential energy of the
symmetric state is higher than for the other states: putting the electron midway
in between the two protons means having to pull it away from one of them.

The Feynman lectures on physics, [22], argue instead that in the symmetric
case, the electron is somewhat less constrained in position. According to the
Heisenberg uncertainty relationship, that allows it to have less variation in mo-
mentum, hence less kinetic energy. Indeed the symmetric state does have less
kinetic energy, but this is almost totally achieved at the cost of a corresponding
increase in potential energy, rather than due to a larger area to move in at the
same potential energy. And the kinetic energy is not really directly related to
available area in any case. The argument is not incorrect, but in what sense it
explains, rather than just summarizes, the answer is debatable.

Key Points

0 The energies of the discussed states are not the same when examined
more closely.

0 The symmetric state has the lowest energy, the antisymmetric one
the highest.
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4.6.6 Variational approximation of the ground state

The objective of this subsection is to use the rough approximations of the pre-
vious subsections to get some very concrete data on the hydrogen molecular
ion.

The idea is simple but powerful: since the true ground state is the state
of lowest energy among all wave functions, the best among approximate wave
functions is the one with the lowest energy. In the previous subsections, ap-
proximations to the ground state were discussed that took the form aψl + bψr,
where ψl described the state where the electron was in the ground state around
the left proton, and ψr where it was around the right proton. The wave function
of this type with the lowest energy will produce the best possible data on the
true ground state, {N.6}.

Note that all that can be changed in the approximation aψl + bψr to the
wave function is the ratio of the coefficients a/b, and the distance between the
protons d. If the ratio a/b is fixed, a and b can be computed from it using the
normalization condition (4.79), so there is no freedom to chose them individually.
The basic idea is now to search through all possible values of a/b and d until
you find the values that give the lowest energy.

This sort of method is called a “variational method” because at the minimum
of energy, the derivatives of the energy must be zero. That in turn means that
the energy does not vary with infinitesimally small changes in the parameters
a/b and d.

To find the minimum energy is nothing that an engineering graduate student
could not do, but it does take some effort. You cannot find the best values of
a/b and d analytically; you have to have a computer find the energy at a lot
of values of d and a/b and search through them to find the lowest energy. Or
actually, simply having a computer print out a table of values of energy versus
d for a few typical values of a/b, including a/b = 1 and a/b = −1, and looking
at the print-out to see where the energy is most negative works fine too. That
is what the numbers below came from.

You do want to evaluate the energy of the approximate states accurately as
the expectation value. If you do not find the energy as the expectation value,
the results may be less dependable. Fortunately, finding the expectation energy
for the given approximate wave functions can be done exactly; the details are
in derivation {D.21}.

If you actually go through the steps, your print-out should show that the
minimum energy occurs when a = b, the symmetric state, and at a separation
distance between the protons equal to about 1.3 Å. This separation distance is
called the “bond length”. The minimum energy is found to be about 1.8 eV
below the energy of -13.6 eV when the protons are far apart. So it will take
at least 1.8 eV to take the ground state with the protons at a distance of 1.3
Å completely apart into well separated protons. For that reason, the 1.8 eV is
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called the “binding energy”.

Key Points

0 The best approximation to the ground state using approximate wave
functions is the one with the lowest energy.

0 Making such an approximation is called a variational method.

0 The energy should be evaluated as the expectation value of the
Hamiltonian.

0 Using combinations of ψl and ψr as approximate wave functions,
the approximate ground state turns out to be the one in which the
electron is symmetrically shared between the protons.

0 The binding energy is the energy required to take the molecule apart.

0 The bond length is the distance between the nuclei.

4.6.6 Review Questions

1. The solution for the hydrogen molecular ion requires elaborate evalua-
tions of inner product integrals and a computer evaluation of the state
of lowest energy. As a much simpler example, you can try out the vari-
ational method on the one-dimensional case of a particle stuck inside a
pipe, as discussed in chapter 3.5. Take the approximate wave function to
be:

ψ = ax(ℓ− x)
Find a from the normalization requirement that the total probability of
finding the particle integrated over all possible x positions is one. Then
evaluate the energy 〈E〉 as 〈ψ|H|ψ〉, where according to chapter 3.5.3,
the Hamiltonian is

H = − ~
2

2m

∂2

∂x2

Compare the ground state energy with the exact value,

E1 = ~
2π2/2mℓ2

(Hints:
∫ ℓ
0 x(ℓ− x) dx = ℓ3/6 and

∫ ℓ
0 x

2(ℓ− x)2 dx = ℓ5/30)
Solution hione-a

4.6.7 Comparison with the exact ground state

The variational solution derived in the previous subsection is only a crude ap-
proximation of the true ground state of the hydrogen molecular ion. In par-
ticular, the assumption that the molecular wave function can be approximated
using the individual atom ground states is only valid when the protons are far
apart, and is inaccurate if they are 1.3 Å apart, as the solution says they are.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hione-a.html
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Yet, for such a poor wave function, the main results are surprisingly good.
For one thing, it leaves no doubt that a bound state really exists. The reason is
that the true ground state must always have a lower energy than any approxi-
mate one. So, the binding energy must be at least the 1.8 eV predicted by the
approximation.

In fact, the experimental binding energy is 2.8 eV. The found approximate
value is only a third less, pretty good for such a simplistic assumption for the
wave function. It is really even better than that, since a fair comparison requires
the absolute energies to be compared, rather than just the binding energy; the
approximate solution has −15.4 eV, rather than −16.4. This high accuracy
for the energy using only marginal wave functions is one of the advantages of
variational methods {A.7}.

The estimated bond length is not too bad either; experimentally the protons
are 1.06 Å apart instead of 1.3 Å. (The analytical solution using spheroidal co-
ordinates mentioned earlier gives 2.79 eV and 1.06 Å, in good agreement with
the experimental values. But even that solution is not really exact: the electron
does not bind the nuclei together rigidly, but more like a spring force. As a re-
sult, the nuclei behave like a harmonic oscillator around their common center of
gravity. Even in the ground state, they will retain some uncertainty around the
1.06 Å position of minimal energy, and a corresponding small amount of addi-
tional molecular kinetic and potential energy. The improved Born-Oppenheimer
approximation of chapter 9.2.3 can be used to compute such effects.)

The qualitative properties of the approximate wave function are correct. For
example, it can be seen that the exact ground state wave function must be real
and positive {A.8}; the approximate wave function is real and positive too.

It can also be seen that the exact ground state must be symmetric around
the symmetry plane midway between the protons, and rotationally symmetric
around the line connecting the protons, {A.9}. The approximate wave function
has both those properties too.

Incidentally, the fact that the ground state wave function must be real and
positive is a much more solid reason that the protons must share the elec-
tron symmetrically than the physical arguments given in subsection 4.6.5, even
though it is more mathematical.

Key Points

0 The obtained approximate ground state is pretty good.

0 The protons really share the electron symmetrically in the ground
state.





Chapter 5

Multiple-Particle Systems

Abstract

So far, only wave functions for single particles have been discussed. This
chapter explains how the ideas generalize to more particles. The basic
idea is simple: you just keep adding more and more arguments to your
wave function.

That simple idea will immediately be used to derive a solution for the
hydrogen molecule. The chemical bond that keeps the molecule together
is a two-electron one. It involves sharing the two electrons in a very weird
way that can only be described in quantum terms.

Now it turns out that usually chemical bonds involve the sharing of two
electrons like in the hydrogen molecule, not just one as in the hydrogen
molecular ion. To understand the reason, simple approximate systems
will be examined that have no more than two different states. It will
then be seen that sharing lowers the energy due to “twilight” terms.
These are usually more effective for two-electron bonds than for single
electron-ones.

Before systems with more than two electrons can be discussed, a different
issue must be addressed first. Electrons, as well as most other quantum
particles, have intrinsic angular momentum called “spin”. It is quantized
much like orbital angular momentum. Electrons can either have spin
angular momentum 1

2~ or −1
2~ in a given direction. It is said that the

electron has spin 1/2. Photons can have angular momentum ~, 0, or −~
in a given direction and have spin 1. Particles with half-integer spin like
electrons are called fermions. Particles with integer spin like photons are
called bosons.

For quantum mechanics there are two consequences. First, it means that
spin must be added to the wave function as an uncertain quantity in ad-
dition to position. That can be done in various equivalent ways. Second,
it turns out that there are requirements on the wave function depending
on whether particles are bosons or fermions. In particular, wave func-
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tions must stay the same if two identical bosons, say two photons, are
interchanged. Wave functions must change sign when any two electrons,
or any other two identical fermions, are interchanged.

This so-called antisymmetrization requirement is usually not such a big
deal for two electron systems. Two electrons can satisfy the requirement
by assuming a suitable combined spin state. However, for more than two
electrons, the effects of the antisymmetrization requirement are dramatic.
They determine the very nature of the chemical elements beyond helium.
Without the antisymmetrization requirements on the electrons, chemistry
would be something completely different. And therefore, so would all of
nature be. Before that can be properly understood, first a better look
is needed at the ways in which the symmetrization requirements can
be satisfied. It is then seen that the requirement for fermions can be
formulated as the so-called Pauli exclusion principle. The principle says
that any number I of identical fermions must occupy I different quantum
states. Fermions are excluded from entering the same quantum state.

At that point, the atoms heavier than hydrogen can be properly discussed.
It can also be explained why atoms prevent each other from coming too
close. Finally, the derived quantum properties of the atoms are used to
describe the various types of chemical bonds.

5.1 Wave Function for Multiple Particles

While a single particle is described by a wave function Ψ(~r; t), a system of two
particles, call them 1 and 2, is described by a wave function

Ψ(~r1,~r2; t) (5.1)

depending on both particle positions. The value of |Ψ(~r1,~r2; t)|2 d3~r1 d
3~r2 gives

the probability of simultaneously finding particle 1 within a vicinity d3~r1 of ~r1
and particle 2 within a vicinity d3~r2 of ~r2.

The wave function must be normalized to express that the electrons must
be somewhere:

〈Ψ|Ψ〉6 =
∫∫
|Ψ(~r1,~r2; t)|2 d3~r1d

3~r2 = 1 (5.2)

where the subscript 6 of the inner product is just a reminder that the integration
is over all six scalar position coordinates of Ψ.

The underlying idea of increasing system size is “every possible combina-
tion:” allow for every possible combination of state for particle 1 and state for
particle 2. For example, in one dimension, all possible x positions of particle
1 geometrically form an x1-axis. Similarly all possible x positions of particle 2
form an x2-axis. If every possible position x1 is separately combined with every
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possible position x2, the result is an x1, x2-plane of possible positions of the
combined system.

Similarly, in three dimensions the three-dimensional space of positions ~r1
combines with the three-dimensional space of positions ~r2 into a six-dimension-
al space having all possible combinations of values for ~r1 with all possible values
for ~r2.

The increase in the number of dimensions when the system size increases
is a major practical problem for quantum mechanics. For example, a single
arsenic atom has 33 electrons, and each electron has 3 position coordinates. It
follows that the wave function is a function of 99 scalar variables. (Not even
counting the nucleus, spin, etcetera.) In a brute-force numerical solution of
the wave function, maybe you could restrict each position coordinate to only
ten computational values, if no very high accuracy is desired. Even then, Ψ
values at 1099 different combined positions must be stored, requiring maybe
1091 Gigabytes of storage. To do a single multiplication on each of those those
numbers within a few years would require a computer with a speed of 1082

gigaflops. No need to take any of that arsenic to be long dead before an answer
is obtained. (Imagine what it would take to compute a microgram of arsenic
instead of an atom.) Obviously, more clever numerical procedures are needed.

Sometimes the problem size can be reduced. In particular, the problem for
a two-particle system like the proton-electron hydrogen atom can be reduced to
that of a single particle using the concept of reduced mass. That is shown in
addendum {A.5}.

Key Points

0 To describe multiple-particle systems, just keep adding more inde-
pendent variables to the wave function.

0 Unfortunately, this makes many-particle problems impossible to solve
by brute force.

5.1 Review Questions

1. A simple form that a six-dimensional wave function can take is a product
of two three-dimensional ones, as in ψ(~r1,~r2) = ψ1(~r1)ψ2(~r2). Show that
if ψ1 and ψ2 are normalized, then so is ψ.

Solution complex-a

2. Show that for a simple product wave function as in the previous question,
the relative probabilities of finding particle 1 near a position ~ra versus
finding it near another position ~rb is the same regardless where particle
2 is. (Or rather, where particle 2 is likely to be found.)

Note: This is the reason that a simple product wave function is called
“uncorrelated.” For particles that interact with each other, an uncorre-
lated wave function is often not a good approximation. For example, two

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complex-a.html
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electrons repel each other. All else being the same, the electrons would
rather be at positions where the other electron is nowhere close. As a
result, it really makes a difference for electron 1 where electron 2 is likely
to be and vice-versa. To handle such situations, usually sums of product
wave functions are used. However, for some cases, like for the helium
atom, a single product wave function is a perfectly acceptable first ap-
proximation. Real-life electrons are crowded together around attracting
nuclei and learn to live with each other.
Solution complex-b

5.2 The Hydrogen Molecule

This section uses similar approximations as for the hydrogen molecular ion of
chapter 4.6 to examine the neutral H2 hydrogen molecule. This molecule has
two electrons circling two protons. It will turn out that in the ground state, the
protons share the two electrons, rather than each being assigned one. This is
typical of covalent bonds.

Of course, “share” is a vague term, but the discussion will show what it
really means in terms of the six-dimensional electron wave function.

5.2.1 The Hamiltonian

Just like for the hydrogen molecular ion of chapter 4.6, for the neutral molecule
the Born-Oppenheimer approximation will be made that the protons are at given
fixed points. So the problem simplifies to just finding the wave function of the
two electrons, Ψ(~r1,~r2), where ~r1 and ~r2 are the positions of the two electrons
1 and 2. In terms of scalar arguments, the wave function can be written out
further as Ψ(x1, y1, z1, x2, y2, z2).

In the Hamiltonian, following the Newtonian analogy the kinetic and poten-
tial energy operators simply add:

H = − ~
2

2me

(
∇2

1 +∇2
2

)
− e2

4πǫ0

(
1

r1l
+

1

r1r
+

1

r2l
+

1

r2r
− 1

|~r1 −~r2|

)
(5.3)

In this expression, the Laplacians of the first two, kinetic energy, terms are
with respect to the position coordinates of the two electrons:

∇2
1 =

∂2

∂x21
+

∂2

∂y21
+

∂2

∂z21
∇2

2 =
∂2

∂x22
+

∂2

∂y22
+

∂2

∂z2z
.

The next four terms in the Hamiltonian (5.3) are the attractive potentials be-
tween the electrons and the protons, with r1l, r2l, r1r, and r2r being the distances
between electrons 1 and 2 and the left, respectively right proton. The final term
represents the repulsive potential between the two electrons.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complex-b.html
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Key Points

0 The Hamiltonian for the 6-dimensional electron wave function has
been written down.

5.2.1 Review Questions

1. Verify that the repulsive potential between the electrons is infinitely large
when the electrons are at the same position.
Note: You might therefore think that the wave function needs to be

zero at the locations in six-dimensional space where ~r1 = ~r2. Some
authors refer to that as a “Coulomb hole.” But the truth is that in
quantum mechanics, electrons are smeared out due to uncertainty. That
causes electron 1 to “see electron 2 at all sides”, and vice-versa, and they
do therefore not encounter any unusually large potential when the wave
function is nonzero at ~r1 = ~r2. In general, it is just not worth the trouble
for the electrons to stay away from the same position: that would reduce
their uncertainty in position, increasing their uncertainty-demanded ki-
netic energy.
Solution hmola-a

2. Note that the total kinetic energy term is simply a multiple of the six-di-
mensional Laplacian operator. It treats all Cartesian position coordinates
exactly the same, regardless of which direction or which electron it is. Is
this still the case if other particles are involved?
Solution hmola-b

5.2.2 Initial approximation to the lowest energy state

The next step is to identify an approximate ground state for the hydrogen
molecule. Following the same approach as in chapter 4.6, it will first be assumed
that the protons are relatively far apart. One obvious approximate solution is
then that of two neutral atoms, say the one in which electron 1 is around the
left proton in its ground state and electron 2 is around the right one.

To formulate the wave function for that, the shorthand notation ψl will again
be used for the wave function of a single electron that in the ground state around
the left proton and ψr for one that is in the ground state around the right hand
one:

ψl(~r) ≡ ψ100(|~r −~rlp|) ψr(~r) ≡ ψ100(|~r −~rrp|)
where ψ100 is the hydrogen atom ground state (4.40), and ~rlp and ~rrp are the
positions of the left and right protons.

The wave function that describes that electron 1 is in the ground state around
the left proton and electron 2 around the right one will be approximated to be
the product of the single electron states:

ψ(~r1,~r2) = ψl(~r1)ψr(~r2)

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hmola-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hmola-b.html
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Taking the combined wave function as a product of single electron states
is really equivalent to an assumption that the two electrons are independent.
Indeed, for the product state, the probability of finding electron 1 at position
~r1 and electron 2 at ~r2 is:

|ψl(~r1)|2 d3~r1 × |ψr(~r2)|2 d3~r2

or in words:

[probability of finding 1 at ~r1 unaffected by where 2 is]
× [probability of finding 2 at ~r2 unaffected by where 1 is]

Such product probabilities are characteristic of statistically independent quan-
tities. As a simple example, the chances of getting a three in the first throw of
a die and a five in the second throw are 1

6
× 1

6
or 1 in 36. Throwing the three

does not affect the chances of getting a five in the second throw.

Key Points

0 When the protons are well apart, an approximate ground state is
that of two neutral atoms.

0 Single electron wave functions for that case are ψl and ψr.

0 The complete wave function for that case is ψl(~r1)ψr(~r2), assuming
that electron 1 is around the left proton and electron 2 around the
right one.

5.2.2 Review Questions

1. If electron 2 does not affect where electron 1 is likely to be, how would a
grey-scale picture of the probability of finding electron 1 look?

Solution hmolb-a

2. When the protons are close to each other, the electrons do affect each
other, and the wave function above is no longer valid. But suppose you
were given the true wave function, and you were once again asked to draw
the blob showing the probability of finding electron 1 (using a plotting
package, say). What would the big problem be?

Solution hmolb-b

5.2.3 The probability density

For multiple-particle systems like the electrons of the hydrogen molecule, show-
ing the magnitude of the wave function as grey tones no longer works since it is
a function in six-dimensional space. You cannot visualize six-dimensional space.
However, at every spatial position ~r in normal space, you can instead show the

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hmolb-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hmolb-b.html
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“probability density” n(~r), which is the probability per unit volume of finding
either electron in a vicinity d3~r of the point. This probability is found as

n(~r) =

∫
|Ψ(~r,~r2)|2 d3~r2 +

∫
|Ψ(~r1,~r)|2 d3~r1 (5.4)

since the first integral gives the probability of finding electron 1 at ~r regardless
of where electron 2 is, (i.e. integrated over all possible positions for electron 2),
and the second gives the probability of finding 2 at ~r regardless of where 1 is.
Since d3~r is vanishingly small, the chances of finding both particles in it at the
same time are zero.

The probability density n(~r) for state ψl(~r1)ψr(~r2) with electron 1 around the
left proton and electron 2 around the right one is shown in figure 5.1. Of course
the probability density for the state ψr(~r1)ψl(~r2) with the electrons exchanged
would look exactly the same.

Figure 5.1: State with two neutral atoms.

Key Points

0 The probability density is the probability per unit volume of finding
an electron, whichever one, near a given point.

5.2.3 Review Questions

1. Suppose, given the wave function ψl(~r1)ψr(~r2), that you found an electron
near the left proton. What electron would it probably be? Suppose you
found an electron at the point halfway in between the protons. What
electron would that likely be?
Solution hmolc-a

5.2.4 States that share the electrons

This section will examine the states where the protons share the two electrons.
The first thing is to shorten the notations a bit. So, the state ψl(~r1)ψr(~r2)

which describes that electron 1 is around the left proton and electron 2 around
the right one will be indicated by ψlψr, using the convention that the first factor

extrascale=3,notransparent
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hmolc-a.html
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refers to electron 1 and the second to electron 2. In this convention, the state
where electron 1 is around the right proton and electron 2 around the left one
is ψrψl, shorthand for ψr(~r1)ψl(~r2). It is of course physically the same thing as
ψlψr; the two electrons are identical.

The “every possible combination” idea of combining every possible state for
electron 1 with every possible state for electron 2 would suggest that the states
ψlψl and ψrψr should also be included. But these states have the electrons
around the same proton, and that is not going to be energetically favorable due
to the mutual repulsion of the electrons. So they are not useful for finding a
simple approximate ground state of lowest energy.

States where the electrons are no longer assigned to a particular proton can
be found as linear combinations of ψlψr and ψrψl:

ψ = aψlψr + bψrψl (5.5)

In such a combination each electron has a probability of being found about
either proton, but wherever it is found, the other electron will be around the
other proton.

The eigenfunction must be normalized, which noting that ψl and ψr are real
and normalized produces

〈ψ|ψ〉6 = 〈aψlψr + bψrψl|aψlψr + bψrψl〉 = a2 + b2 + 2ab〈ψl|ψr〉2 = 1 (5.6)

assuming that a and b are real. As a result, only the ratio a/b can be chosen
freely. The probability density of the combination can be found to be:

n = ψ2
l + ψ2

r + 2ab〈ψl|ψr〉
{
2ψlψr − 〈ψl|ψr〉(ψ2

l + ψ2
r )
}

(5.7)

The most important combination state is the one with b = a:

ψ(~r1,~r2) = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)] (5.8)

This state is called “symmetric with respect to exchanging electron 1 with elec-
tron 2,” or more precisely, with respect to replacing ~r1 by ~r2 and vice-versa.
Such an exchange does not change this wave function at all. If you change ~r1
into ~r2 and vice-versa, you still end up with the same wave function. In terms
of the hydrogen ground state wave function, it may be written out fully as

Ψ ≈ a [ψ100(|~r1 −~rlp|)ψ100(|~r2 −~rrp|) + ψ100(|~r1 −~rrp|)ψ100(|~r2 −~rlp|)] (5.9)

with ψ100(r) ≡ e−r/a0/
√
πa30, where a0 = 0.53 Å is the Bohr radius, and ~r1, ~r2,

~rlp, and ~rrp are again the position vectors of the electrons and protons.
The probability density of this wave function looks like figure 5.2. It has

increased likelihood for electrons to be found in between the protons, compared
to figure 5.1 in which each proton had its own electron.
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Figure 5.2: Symmetric sharing of the electrons.

The state with b = −a,

ψ(~r1,~r2) = a [ψl(~r1)ψr(~r2)− ψr(~r1)ψl(~r2)] (5.10)

is called “antisymmetric” with respect to exchanging electron 1 with electron 2:
swapping ~r1 and ~r2 changes the sign of wave function, but leaves it further un-
changed. As seen in figure 5.3, the antisymmetric state has decreased likelihood
for electrons to be found in between the protons.

Figure 5.3: Antisymmetric sharing of the electrons.

Key Points

0 In state ψlψr, the electron numbered 1 is around the left proton and
2 around the right one.

0 In state ψrψl, the electron numbered 1 is around the right proton
and 2 around the left one.

0 In the symmetric state a(ψlψr+ψrψl) the protons share the electrons
equally; each electron has an equal chance of being found around
either proton. In this state there is increased probability of finding
an electron somewhere in between the protons.

0 In the antisymmetric state a(ψlψr−ψrψl) the protons also share the
electrons equally; each electron has again an equal chance of being
found around either proton. But in this state there is decreased
probability of finding an electron somewhere in between the protons.

extrascale=3,notransparent
extrascale=3,notransparent
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0 So, like for the molecular ion, at large proton separations the weird
trick of shuffling unobservable wave functions around does again pro-
duce different physical states with pretty much the same energy.

5.2.4 Review Questions

1. Obviously, the visual difference between the various states is minor. It
may even seem counter-intuitive that there is any difference at all: the
states ψlψr and ψrψl are exactly the same physically, with one electron
around each proton. So why would their combinations be any different?
The quantum difference would be much more clear if you could see the

full six-dimensional wave function, but visualizing six-dimensional space
just does not work. However, if you restrict yourself to only looking on
the z-axis through the nuclei, you get a drawable z1, z2-plane describing
near what axial combinations of positions you are most likely to find the
two electrons. In other words: what would be the chances of finding
electron 1 near some axial position z1 and electron 2 at the same time
near some other axial position z2?
Try to guess these probabilities in the z1, z2-plane as grey tones, (darker

if more likely), and then compare with the answer.
Solution hmold-a

2. Based on the previous question, how would you think the probability
density n(z) would look on the axis through the nuclei, again ignoring
the existence of positions beyond the axis?
Solution hmold-b

5.2.5 Variational approximation of the ground state

The purpose of this section is to find an approximation to the ground state
of the hydrogen molecule using the rough approximation of the wave function
described in the previous subsections.

Like for the hydrogen molecular ion of chapter 4.6.6, the idea is that since
the true ground state is the state of lowest energy among all wave functions,
the best among approximate wave functions is the one with the lowest energy.
The approximate wave functions are here of the form aψlψr+bψrψl; in these the
protons share the electrons, but in such a way that when one electron is around
the left proton, the other is around the right one, and vice-versa.

A computer program is again needed to print out the expectation value of
the energy for various values of the ratio of coefficients a/b and proton-proton
distance d. And worse, the expectation value of energy for given a/b and d is a
six-dimensional integral, and parts of it cannot be done analytically; numerical
integration must be used. That makes it a much more messy problem, {D.23}.

You might just want to take it on faith that the binding energy, at the state
of lowest energy found, turns out to be 3.2 eV, at a proton to proton spacing of
0.87 Å, and that it occurs for the symmetric state a = b.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hmold-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/hmold-b.html
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Key Points

0 An approximate ground state can be found for the hydrogen molecule
using a variational method much like that for the molecular ion.

5.2.6 Comparison with the exact ground state

The solution for the ground state of the hydrogen molecule obtained in the
previous subsection is, like the one for the molecular ion, pretty good. The
approximate binding energy, 3.2 eV, is not too much different from the experi-
mental value of 4.52 eV. Similarly, the bond length of 0.87 Å is not too far from
the experimental value of 0.74 Å.

Qualitatively, the exact ground state wave function is real, positive and
symmetric with respect to reflection around the symmetry plane and to rotations
around the line connecting the protons, and so is the approximate one. The
reasons for these properties are similar as for the molecular ion; {A.8,A.9}.

One very important new symmetry for the neutral molecule is the effect of
exchanging the electrons, replacing ~r1 by ~r2 and vice-versa. The approximate
wave function is symmetric (unchanged) under such an exchange, and so is the
exact wave function. To understand why, note that the operation of exchanging
the electrons commutes with the Hamiltonian, (exchanging identical electrons
physically does not do anything). So energy eigenfunctions can be taken to
be also eigenfunctions of the “exchange operator.” Furthermore, the exchange
operator is a Hermitian one, (taking it to the other side in inner products is
equivalent to a simple name change of integration variables,) so it has real eigen-
values. And more specifically, the eigenvalues can only be plus or minus one,
since swapping electrons does not change the magnitude of the wave function.
So the energy eigenfunctions, including the ground state, must be symmetric
under electron exchange (eigenvalue one), or antisymmetric (eigenvalue minus
one.) Since the ground state must be everywhere positive, (or more precisely, of
a single sign), a sign change due to swapping electrons is not possible. So only
the symmetric possibility exists for the ground state.

One issue that does not occur for the molecular ion, but only for the neutral
molecule is the mutual repulsion between the two electrons. This repulsion is
reduced when the electron clouds start to merge, compared to what it would be
if the clouds were more compact. (A similar effect is that the gravity force of the
earth decreases when you go down below the surface. To be sure, the potential
energy keeps going down, or up for electron clouds, but not as much as it would
otherwise. Compare figure 13.7.) Since the nuclei are compact, it gives an
advantage to nucleus-electron attraction over electron-electron repulsion. This
increases the binding energy significantly; in the approximate model from about
1.8 eV to 3.2 eV. It also allows the protons to approach more closely; {D.23}.
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The question has been asked whether there should not be an “activation
energy” involved in creating the hydrogen molecule from the hydrogen atoms.
The answer is no, hydrogen atoms are radicals, not stable molecules that need
to be taken apart before recombining. In fact, the hydrogen atoms attract each
other even at large distances due to Van der Waals attraction, chapter 10.1, an
effect lost in the approximate wave functions used in this section. But hydrogen
atoms that fly into each other also have enough energy to fly apart again; some
of the excess energy must be absorbed elsewhere to form a stable molecule. Ac-
cording to web sources, hydrogen molecule formation in the universe is believed
to typically occur on dust specks.

Key Points

0 The approximate ground state is pretty good, considering its sim-
plicity.

5.3 Two-State Systems

Two-state systems are systems in which only two quantum states are of impor-
tance. That makes such systems the simplest nontrivial quantum systems. A
lot of qualitative understanding can be obtained from them. Among others, this
section will shed some light on the reason why chemical bonds tend to involve
pairs of electrons.

As seen in chapter 4.6, the protons in the H+
2 hydrogen molecular ion are

held together by a single shared electron. However, in the H2 neutral hydrogen
molecule of the previous section, they are held together by a shared pair of
electrons. In both cases a stable bond was formed. So why are chemical bonds
involving a single electron relatively rare, while bonds involving pairs of shared
electrons are common?

The unifying concept relating the two bonds is that of two-state systems.
Such systems involve two intuitive basic states ψ1 and ψ2.

For the hydrogen molecular ion, one state, ψ1 = ψl, described that the
electron was in the ground state around the left proton. A physically equivalent
state, ψ2 = ψr, had the electron in the ground state around the right proton.
For the hydrogen molecule, ψ1 = ψlψr had electron 1 around the left proton and
electron 2 around the right one. The other state ψ2 = ψrψl was physically the
same, but it had the electrons reversed.

There are many other physical situations that may be described as two state
systems. Covalent chemical bonds involving atoms other than hydrogen would
be an obvious example. Just substitute a positive ion for one or both protons.

As another example of a two-state system, consider the C6H6 “benzene
molecular ring.” This molecule consists of a hexagon of 6 carbon atoms that
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are held together by 9 covalent bonds. The logical way that 9 bonds can be
arranged between the atoms of a 6 atom ring is to make every second bond
a double one. However, that still leaves two possibilities; the locations of the
single and double bonds can be swapped. So there are once again two different
but equivalent states ψ1 and ψ2.

The NH3 “ammonia molecule” consists of an nitrogen atom bonded to three
hydrogen atoms. By symmetry, the logical place for the nitrogen atom to sit
would surely be in the center of the triangle formed by the three hydrogen atoms.
But it does not sit there. If it was in the center of the triangle, the angles between
the hydrogen atoms, measured from the nitrogen nucleus, should be 120◦ each.
However, as discussed later in chapter 5.11.3, valence bond theory requires that
the angles should be about 90◦, not 120◦. (The actual angles are about 108◦

because of reasons similar to those for water as discussed in chapter 5.11.3.)
The key point here is that the nitrogen must sit to the side of the triangle, and
there are two sides, producing once again two different but equivalent physical
states ψ1 and ψ2.

In each case described above, there are two intuitive physical states ψ1 and
ψ2. The peculiarities of the quantum mechanics of two-state systems arise from
states that are combinations of these two states, as in

ψ = c1ψ1 + c2ψ2

Note that according to the ideas of quantum mechanics, the square magni-
tude of the first coefficient of the combined state, |c1|2, represents the probability
of being in state ψ1 and |c2|2 the probability of being in state ψ2. Of course,
the total probability of being in one of the states should be one:

|c1|2 + |c2|2 = 1

(This is only true if the ψ1 and ψ2 states are orthonormal. In the hydrogen
molecule cases, orthonormalizing the basic states would change them a bit, but
their physical nature would remain much the same, especially if the protons are
not too close.)

The key question is now what combination of states has the lowest energy.
That will be the ground state ψgs of the two-state system. The expectation
value of energy is

〈E〉 = 〈c1ψ1 + c2ψ2|H|c1ψ1 + c2ψ2〉
This can be multiplied out, taking into account that numerical factors come out
of the left of an inner product as complex conjugates. The result is

〈E〉 = |c1|2〈E1〉+ c∗1c2H12 + c∗2c1H21 + |c2|2〈E2〉

using the shorthand notation

〈E1〉 = 〈ψ1|Hψ1〉, H12 = 〈ψ1|Hψ2〉, H21 = 〈ψ2|Hψ1〉, 〈E2〉 = 〈ψ2|Hψ2〉
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Note that 〈E1〉 and 〈E2〉 are real, (2.16). They are the expectation energies
of the states ψ1 and ψ2. The states will be ordered so that 〈E1〉 is less or equal
to 〈E2〉. (In all the examples mentioned so far, 〈E1〉 and 〈E2〉 are equal because
the two states are physically equivalent.) Normally, H12 and H21 are not real
but complex conjugates, (2.16). However, you can always change the definition
of, say, ψ1 by a complex factor of magnitude one to make H12 equal to a real
and negative number, and then H21 will be that same negative number.

The above expression for the expectation energy consists of two kinds of
terms, which will be called:

the averaged energy: |c1|2〈E1〉+ |c2|2〈E2〉 (5.11)

the twilight terms: (c∗1c2 + c∗2c1)H12 (5.12)

Each of those contributions will be discussed in turn.
The averaged energy is the energy that you would intuitively expect the

combined wave function to have. It is a straightforward sum of the expectation
energies of the two component states ψ1 and ψ2 times the probabilities of being
in those states. In particular, in the important case that the two states have
the same energy, the averaged energy is that energy. What is more logical than
that any mixture of two states with the same energy would have that energy
too?

But the twilight terms throw a monkey wrench in this simplistic thinking.
It can be seen that they will always make the ground state energy Egs lower
than the lowest energy of the component states 〈E1〉. (To see that, just take
c1 and c2 positive real numbers and c2 small enough that c22 can be neglected.)
This lowering of the energy below the lowest component state comes out of the
mathematics of combining states; absolutely no new physical forces are added
to produce it. But if you try to describe it in terms of classical physics, it really
looks like a mysterious new “twilight force” is in operation here. It is no new
force; it is the weird mathematics of quantum mechanics.

So, what are these twilight terms physically? If you mean, what are they in
terms of classical physics, there is simply no answer. But if you mean, what are
they in terms of normal language, rather than formulae, it is easy. Just have
another look at the definition of the twilight terms; they are a measure of the
inner product 〈ψ1|Hψ2〉. That is the energy you would get if nature was in state
ψ1 if nature was in state ψ2. On quantum scales, nature can get really, really
ethereal, where it moves beyond being describable by classical physics, and the
result is very concrete, but weird, interactions. For, at these scales twilight is
real, and classical physics is not.

For the twilight terms to be nonzero, there must be a region where the two
states overlap, i.e. there must be a region where both ψ1 and ψ2 are nonzero.
In the simplest case of the hydrogen molecular ion, if the atoms are far apart,
the left and right wave functions do not overlap and the twilight terms will be
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zero. For the hydrogen molecule, it gets a bit less intuitive, since the overlap
should really be visualized in the six-dimensional space of those functions. But
still, the terms are zero when the atoms are far apart.

The twilight terms are customarily referred to as “exchange terms,” but
everybody seems to have a different idea of what that is supposed to mean.
The reason may be that these terms pop up all over the place, in all sorts of
very different settings. This book prefers to call them twilight terms, since that
most clearly expresses what they really are. Nature is in a twilight zone of
ambiguity.

The lowering of the energy by the twilight terms produces more stable chem-
ical bonds than you would expect. Typically, the effect of the terms is greatest if
the two basic states ψ1 and ψ2 are physically equivalent, like for the mentioned
examples. Then the two states have the same expectation energy, call it 〈E〉1,2.
For such symmetric systems, the ground state will occur for an equal mixture

of the two states, c1 = c2 =
√

1
2
, because then the twilight terms are most neg-

ative. (Complex coefficients do not really make a physical difference, so c1 and
c2 can be assumed to be real numbers for convenience.) In the ground state,
the lowest energy is then an amount |H12| below the energy of the component
states:

Symmetric 2-state systems: ψgs =
ψ1 + ψ2√

2
Egs = 〈E〉1,2 − |H12| (5.13)

On the other hand, if the lower energy state ψ1 has significantly less energy
than state ψ2, then the minimum energy will occur near the lower energy state.
That means that |c1| ≈ 1 and |c2| ≈ 0. (This assumes that the twilight terms
are not big enough to dominate the energy.) In that case c1c2 ≈ 0 in the twilight
terms (5.12), which pretty much takes the terms out of the picture completely.

This happens for the single-electron bond of the hydrogen molecular ion if
the second proton is replaced by another ion, say a lithium ion. The energy in
state ψ1, where the electron is around the proton, will now be significantly less
than that of state ψ2, where it is around the lithium ion. For such asymmetrical
single-electron bonds, the twilight terms are not likely to help much in forging a
strong bond. While it turns out that the LiH+ ion is stable, the binding energy
is only 0.14 eV or so, compared to 2.8 eV for the H+

2 ion. Also, the LiH+ bond
seems to be best described as a Van der Waals attraction, rather than a true
chemical bond.

In contrast, for the two-electron bond of the neutral hydrogen molecule, if
the second proton is replaced by a lithium ion, states ψ1 and ψ2 will still be the
same: both states will have one electron around the proton and one around the
lithium ion. The two states do have the electrons reversed, but the electrons are
identical. Thus the twilight terms are still likely to be effective. Indeed neutral
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LiH lithium hydride exists as a stable molecule with a binding energy of about
2.5 eV at low pressures.

(It should be noted that the LiH bond is very ionic, with the “shared” elec-
trons mostly at the hydrogen side, so the actual ground state is quite different
from the covalent hydrogen model. But the model should be better when the
nuclei are farther apart, so the analysis can at least justify the existence of a
significant bond.)

For the ammonia molecule, the two states ψ1 and ψ2 differ only in the side
of the hydrogen triangle that the nitrogen atom is at. Since these two states are
physically equivalent, there is again a significant lowering of the energy Egs for
the symmetric combination c1 = c2. Similarly, there is a significant raising of the
energy Eas for the antisymmetric combination c1 = −c2. Transitions between
these two energy states produce photons of a single energy in the microwave
range. It allows a maser (microwave-range laser) to be constructed. The first
maser was in fact an ammonia one. It gave rise to the subsequent development
of optical-range versions. These were initially called “optical masers,” but are
now known as “lasers.” Masers are important for providing a single frequency
reference, like in some atomic clocks. See chapter 7.7 for the operating principle
of masers and lasers.

The ammonia molecule may well be the best example of how weird these
twilight effects are. Consider, there are two common-sense states in which the
nitrogen is at one side of the hydrogen triangle. What physical reason could
there possibly be that there is a state of lower energy in which the atom is at
both sides at the same time with a 50/50 probability? Before you answer that,
recall that it only works if you do the 50/50 case right. If you do it wrong, you
end up raising the energy. And the only way to figure out whether you do it
right is to look at the behavior of the sign of a physically unobservable wave
function.

It may finally be noted that in the context of chemical bonds, the raised-
energy antisymmetric state is often called an “antibonding” state.

Key Points

0 In quantum mechanics, the energy of different but physically equiv-
alent states can be lowered by mixing them together.

0 This lowering of energy does not come from new physical forces, but
from the weird mathematics of the wave function.

0 The effect tends to be much less when the original states are physi-
cally very different.

0 One important place where states are indeed physically the same is
in chemical bonds involving pairs of electrons. Here the equivalent
states merely have the identical electrons interchanged.
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5.3 Review Questions

1. The effectiveness of mixing states was already shown by the hydrogen
molecule and molecular ion examples. But the generalized story above
restricts the “basis” states to be orthogonal, and the states used in the
hydrogen examples were not.

Show that if ψ1 and ψ2 are not orthogonal states, but are normalized
and produce a real and positive value for 〈ψ1|ψ2〉, like in the hydrogen
examples, then orthogonal states can be found in the form

ψ̄1 = α (ψ1 − εψ2) ψ̄2 = α (ψ2 − εψ1) .

For normalized ψ1 and ψ2 the Cauchy-Schwartz inequality implies that
〈ψ1|ψ2〉 will be less than one. If the states do not overlap much, it will
be much less than one and ε will be small.

(If ψ1 and ψ2 do not meet the stated requirements, you can always
redefine them by factors aeic and be−ic, with a, b, and c real, to get states
that do.)

Solution 2state-a

2. Show that it does not have an effect on the solution whether or not the
basic states ψ1 and ψ2 are normalized, like in the previous question, before
the state of lowest energy is found.

This requires no detailed analysis; just check that the same solution
can be described using the nonorthogonal and orthogonal basis states.
It is however an important observation for various numerical solution
procedures: your set of basis functions can be cleaned up and simplified
without affecting the solution you get.

Solution 2state-b

5.4 Spin

At this stage, it becomes necessary to look somewhat closer at the various
particles involved in quantum mechanics themselves. The analysis so far already
used the fact that particles have a property called mass, a quantity that special
relativity has identified as being an internal amount of energy. It turns out that
in addition particles have a fixed amount of “build-in” angular momentum,
called “spin.” Spin reflects itself, for example, in how a charged particle such
as an electron interacts with a magnetic field.

To keep it apart from spin, from now on the angular momentum of a particle
due to its motion will on be referred to as “orbital” angular momentum. As was
discussed in chapter 4.2, the square orbital angular momentum of a particle is
given by

L2 = l(l + 1)~2

where the azimuthal quantum number l is a nonnegative integer.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/2state-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/2state-b.html
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The square spin angular momentum of a particle is given by a similar ex-
pression:

S2 = s(s+ 1)~2 (5.14)

but the “spin s” is a fixed number for a given type of particle. And while l can
only be an integer, the spin s can be any multiple of one half.

Particles with half integer spin are called “fermions.” For example, electrons,
protons, and neutrons all three have spin s = 1

2
and are fermions.

Particles with integer spin are called “bosons.” For example, photons have
spin s = 1. The π-mesons have spin s = 0 and gravitons, unobserved at the
time of writing, should have spin s = 2.

The spin angular momentum in an arbitrarily chosen z-direction is

Sz = m~ (5.15)

the same formula as for orbital angular momentum, and the values of m range
again from −s to +s in integer steps. For example, photons can have spin in
a given direction that is ~, 0, or −~. (The photon, a relativistic particle with
zero rest mass, has only two spin states along the direction of propagation; the
zero value does not occur in this case. But photons radiated by atoms can still
come off with zero angular momentum in a direction normal to the direction of
propagation. A derivation is in addendum {A.21.6} and {A.21.7}.)

The common particles, (electrons, protons, neutrons), can only have spin
angular momentum 1

2
~ or −1

2
~ in any given direction. The positive sign state

is called “spin up”, the negative one “spin down”.
It may be noted that the proton and neutron are not elementary particles,

but are baryons, consisting of three quarks. Similarly, mesons consist of a quark
and an anti-quark. Quarks have spin 1/2, which allows baryons to have spin 3/2 or
1/2. (It is not self-evident, but spin values can be additive or subtractive within
the confines of their discrete allowable values; see chapter 12.) The same way,
mesons can have spin 1 or 0.

Spin states are commonly shown in “ket notation” as |s m〉. For example,
the spin-up state for an electron is indicated by |1/2 1/2〉 and the spin-down state
as |1/2 1/2〉. More informally, ↑ and ↓ are often used.

Key Points

0 Most particles have internal angular momentum called spin.

0 The square spin angular momentum and its quantum number s are
always the same for a given particle.

0 Electrons, protons and neutrons all have spin 1/2. Their spin angular
momentum in a given direction is either 1

2~ or −1
2~.

0 Photons have spin one. Possible values for their angular momentum
in a given direction are ~, zero, or −~, though zero does not occur
in the direction of propagation.
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0 Particles with integer spin, like photons, are called bosons. Parti-
cles with half-integer spin, like electrons, protons, and neutrons, are
called fermions.

0 The spin-up state of a spin one-half particle like an electron is usually
indicated by |1/2 1/2〉 or ↑. Similarly, the spin-down state is indicated
by |1/2 1/2〉 or ↓.

5.4 Review Questions

1. Delta particles have spin 3/2. What values can their spin angular momen-
tum in a given direction have?

Solution spin-a

2. Delta particles have spin 3/2. What is their square spin angular momen-
tum?

Solution spin-b

5.5 Multiple-Particle Systems Including Spin

Spin will turn out to have a major effect on how quantum particles behave.
Therefore, quantum mechanics as discussed so far must be generalized to include
spin. Just like there is a probability that a particle is at some position ~r,
there is the additional probability that it has spin angular momentum Sz in an
arbitrarily chosen z-direction and this must be included in the wave function.
This section discusses how.

5.5.1 Wave function for a single particle with spin

The first question is how spin should be included in the wave function of a
single particle. If spin is ignored, a single particle has a wave function Ψ(~r; t),
depending on position ~r and on time t. Now, the spin Sz is just some other
scalar variable that describes the particle, in that respect no different from say
the x-position of the particle. The “every possible combination” idea of allowing
every possible combination of states to have its own probability indicates that
Sz needs to be added to the list of variables. So the complete wave function Ψ
of the particle can be written out fully as:

Ψ ≡ Ψ(~r, Sz; t) (5.16)

The value of |Ψ(~r, Sz; t)|2 d3~r gives the probability of finding the particle within
a vicinity d3~r of ~r and with spin angular momentum in the z-direction Sz.

But note that there is a big difference between the spin “coordinate” and
the position coordinates: while the position variables can take on any value,
the values of Sz are highly limited. In particular, for the electron, proton, and

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/spin-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/spin-b.html
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neutron, Sz can only be 1
2
~ or −1

2
~, nothing else. You do not really have a full

Sz “axis”, just two points.
As a result, there are other meaningful ways of writing the wave function.

The full wave function Ψ(~r, Sz; t) can be thought of as consisting of two parts
Ψ+ and Ψ− that only depend on position:

Ψ+(~r; t) ≡ Ψ(~r, 1
2
~; t) and Ψ−(~r; t) ≡ Ψ(~r,−1

2
~; t) (5.17)

These two parts can in turn be thought of as being the components of a two-
dimensional vector that only depends on position:

~Ψ(~r; t) ≡
(

Ψ+(~r; t)
Ψ−(~r; t)

)

Remarkably, Dirac found that the wave function for particles like electrons has
to be a vector, if it is assumed that the relativistic equations take a guessed
simple and beautiful form, like the Schrödinger and all other basic equations
of physics are simple and beautiful. Just like relativity reveals that particles
should have build-in energy, it also reveals that particles like electrons have
build-in angular momentum. A description of the Dirac equation is in chapter
12.12 if you are curious.

The two-dimensional vector is called a “spinor” to indicate that its compo-
nents do not change like those of ordinary physical vectors when the coordinate
system is rotated. (How they do change is of no importance here, but will even-
tually be described in derivation {D.68}.) The spinor can also be written in
terms of a magnitude times a unit vector:

~Ψ(~r; t) = Ψm(~r; t)

(
χ1(~r; t)
χ2(~r; t)

)
.

This book will just use the scalar wave function Ψ(~r, Sz; t); not a vector one.
But it is often convenient to write the scalar wave function in a form equivalent
to the vector one:

Ψ(~r, Sz; t) = Ψ+(~r; t)↑(Sz) + Ψ−(~r; t)↓(Sz). (5.18)

The square magnitude of function Ψ+ gives the probability of finding the particle
near a position with spin-up. That of Ψ− gives the probability of finding it with
spin-down. The “spin-up” function ↑(Sz) and the “spin-down” function ↓(Sz)
are in some sense the equivalent of the unit vectors ı̂ and ̂ in normal vector
analysis; they have by definition the following values:

↑(1
2
~) = 1 ↑(−1

2
~) = 0 ↓(1

2
~) = 0 ↓(−1

2
~) = 1.

The function arguments will usually be left away for conciseness, so that

Ψ = Ψ+↑+Ψ−↓
is the way the wave function of, say, an electron will normally be written out.



5.5. MULTIPLE-PARTICLE SYSTEMS INCLUDING SPIN 159

Key Points

0 Spin must be included as an independent variable in the wave func-
tion of a particle with spin.

0 Usually, the wave function Ψ(~r, Sz; t) of a single particle with spin
1/2 will be written as

Ψ = Ψ+↑+Ψ−↓
where Ψ+(~r; t) determines the probability of finding the particle near
a given location ~r with spin up, and Ψ−(~r; t) the one for finding it
spin down.

0 The functions ↑(Sz) and ↓(Sz) have the values

↑(12~) = 1 ↑(−1
2~) = 0 ↓(12~) = 0 ↓(−1

2~) = 1

and represent the pure spin-up, respectively spin-down states.

5.5.1 Review Questions

1. What is the normalization requirement of the wave function of a spin 1/2
particle in terms of Ψ+ and Ψ−?
Solution complexsa-a

5.5.2 Inner products including spin

Inner products are important: they are needed for finding normalization fac-
tors, expectation values, uncertainty, approximate ground states, etcetera. The
additional spin coordinates add a new twist, since there is no way to integrate
over the few discrete points on the spin “axis”. Instead, you must sum over
these points.

As an example, the inner product of two arbitrary electron wave functions
Ψ1(~r, Sz; t) and Ψ2(~r, Sz; t) is

〈Ψ1|Ψ2〉 =
∑

Sz=± 1
2
~

∫

all ~r

Ψ∗1(~r, Sz; t)Ψ2(~r, Sz; t) d
3~r

or writing out the two-term sum,

〈Ψ1|Ψ2〉 =
∫

all ~r

Ψ∗1(~r,
1
2
~; t)Ψ2(~r,

1
2
~; t) d3~r+

∫

all ~r

Ψ∗1(~r,−1
2
~; t)Ψ2(~r,−1

2
~; t) d3~r

The individual factors in the integrals are by definition the spin-up components
Ψ1+ and Ψ2+ and the spin down components Ψ1− and Ψ2− of the wave functions,
so:

〈Ψ1|Ψ2〉 =
∫

all ~r

Ψ∗1+(~r; t)Ψ2+(~r; t) d
3~r +

∫

all ~r

Ψ∗1−(~r; t)Ψ2−(~r; t) d
3~r

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexsa-a.html
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In other words, the inner product with spin evaluates as

〈Ψ1+↑+Ψ1−↓|Ψ2+↑+Ψ2−↓〉 = 〈Ψ1+|Ψ2+〉+ 〈Ψ1−|Ψ2−〉 (5.19)

It is spin-up components together and spin-down components together.
Another way of looking at this, or maybe remembering it, is to note that

the spin states are an orthonormal pair,

〈↑|↑〉 = 1 〈↑|↓〉 = 〈↓|↑〉 = 0 〈↓|↓〉 = 1 (5.20)

as can be verified directly from the definitions of those functions as given in
the previous subsection. Then you can think of an inner product with spin as
multiplying out as:

〈Ψ1+↑+Ψ1−↓|Ψ2+↑+Ψ2−↓〉

= 〈Ψ1+|Ψ2+〉〈↑|↑〉+ 〈Ψ1+|Ψ2−〉〈↑|↓〉+ 〈Ψ1−|Ψ2+〉〈↓|↑〉+ 〈Ψ1−|Ψ2−〉〈↓|↓〉

= 〈Ψ1+|Ψ2+〉+ 〈Ψ1−|Ψ2−〉

Key Points

0 In inner products, you must sum over the spin states.

0 For spin 1/2 particles:

〈Ψ1+↑+Ψ1−↓|Ψ2+↑+Ψ2−↓〉 = 〈Ψ1+|Ψ2+〉+ 〈Ψ1−|Ψ2−〉

which is spin-up components together plus spin-down components
together.

0 The spin-up and spin-down states ↑ and ↓ are an orthonormal pair.

5.5.2 Review Questions

1. Show that the normalization requirement for the wave function of a spin
1/2 particle in terms of Ψ+ and Ψ− requires its norm

√
〈Ψ|Ψ〉 to be one.

Solution complexsai-a

2. Assume that ψl and ψr are normalized spatial wave functions. Now show
that a combination of the two like (ψl↑+ ψr↓)/

√
2 is a normalized wave

function with spin.
Solution complexsai-b

5.5.3 Commutators including spin

There is no known “internal physical mechanism” that gives rise to spin like
there is for orbital angular momentum. Fortunately, this lack of detailed in-
formation about spin is to a considerable amount made less of an issue by
knowledge about its commutators.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexsai-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexsai-b.html
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In particular, physicists have concluded that spin components satisfy the
same commutation relations as the components of orbital angular momentum:

[Ŝx, Ŝy] = i~Ŝz [Ŝy, Ŝz] = i~Ŝx [Ŝz, Ŝx] = i~Ŝy (5.21)

These equations are called the “fundamental commutation relations.” As will
be shown in chapter 12, a large amount of information about spin can be teased
from them.

Further, spin operators commute with all functions of the spatial coordi-
nates and with all spatial operators, including position, linear momentum, and
orbital angular momentum. The reason why can be understood from the given
description of the wave function with spin. First of all, the square spin opera-
tor Ŝ2 just multiplies the entire wave function by the constant ~2s(s + 1), and

everything commutes with a constant. And the operator Ŝz of spin in an ar-
bitrary z-direction commutes with spatial functions and operators in much the
same way that an operator like ∂/∂x commutes with functions depending on y
and with ∂/∂y. The z-component of spin corresponds to an additional “axis”

separate from the x, y, and z ones, and Ŝz only affects the variation in this ad-
ditional direction. For example, for a particle with spin one half, Ŝz multiplies
the spin-up part of the wave function Ψ+ by the constant 1

2
~ and Ψ− by −1

2
~.

Spatial functions and operators commute with these constants for both Ψ+ and
Ψ− hence commute with Ŝz for the entire wave function. Since the z-direction
is arbitrary, this commutation applies for any spin component.

Key Points

0 While a detailed mechanism of spin is missing, commutators with
spin can be evaluated.

0 The components of spin satisfy the same mutual commutation rela-
tions as the components of orbital angular momentum.

0 Spin commutes with spatial functions and operators.

5.5.3 Review Questions

1. Are not some commutators missing from the fundamental commutation
relationship? For example, what is the commutator [Ŝy, Ŝx]?

Solution complexsac-a

5.5.4 Wave function for multiple particles with spin

The extension of the ideas of the previous subsections towards multiple particles
is straightforward. For two particles, such as the two electrons of the hydrogen

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexsac-a.html
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molecule, the full wave function follows from the “every possible combination”
idea as

Ψ = Ψ(~r1, Sz1,~r2, Sz2; t) (5.22)

The value of |Ψ(~r1, Sz1,~r2, Sz2; t)|2 d3~r1d
3~r2 gives the probability of simultane-

ously finding particle 1 within a vicinity d3~r1 of ~r1 with spin angular momentum
in the z-direction Sz1, and particle 2 within a vicinity d3~r2 of ~r2 with spin an-
gular momentum in the z-direction Sz2.

Restricting the attention again to spin 1/2 particles like electrons, protons
and neutrons, there are now four possible spin states at any given point, with
corresponding spatial wave functions

Ψ++(~r1,~r2; t) ≡ Ψ(~r1,+
1
2
~,~r2,+

1
2
~; t)

Ψ+−(~r1,~r2; t) ≡ Ψ(~r1,+
1
2
~,~r2,−1

2
~; t)

Ψ−+(~r1,~r2; t) ≡ Ψ(~r1,−1
2
~,~r2,+

1
2
~; t)

Ψ−−(~r1,~r2; t) ≡ Ψ(~r1,−1
2
~,~r2,−1

2
~; t)

(5.23)

For example, |Ψ+−(~r1,~r2; t)|2 d3~r1 d
3~r2 gives the probability of finding particle

1 within a vicinity d3~r1 of ~r1 with spin up, and particle 2 within a vicinity d3~r2
of ~r2 with spin down.

The wave function can be written using purely spatial functions and purely
spin functions as

Ψ(~r1, Sz1,~r2, Sz2; t) = Ψ++(~r1,~r2; t)↑(Sz1)↑(Sz2) + Ψ+−(~r1,~r2; t)↑(Sz1)↓(Sz2)

+ Ψ−+(~r1,~r2; t)↓(Sz1)↑(Sz2) + Ψ−−(~r1,~r2; t)↓(Sz1)↓(Sz2)
As you might guess from this multi-line display, usually this will be written
more concisely as

Ψ = Ψ++↑↑+Ψ+−↑↓+Ψ−+↓↑+Ψ−−↓↓
by leaving out the arguments of the spatial and spin functions. The understand-
ing is that the first of each pair of arrows refers to particle 1 and the second to
particle 2.

The inner product now evaluates as

〈Ψ1|Ψ2〉 =
∑

Sz1=± 1
2
~

∑

Sz2=± 1
2
~

∫

all ~r1

∫

all ~r2

Ψ∗1(~r1, Sz1,~r2, Sz2; t)Ψ2(~r1, Sz1,~r2, Sz2; t) d
3~r1 d

3~r2

This can be written in terms of the purely spatial components as

〈Ψ1|Ψ2〉 = 〈Ψ1++|Ψ2++〉+ 〈Ψ1+−|Ψ2+−〉+ 〈Ψ1−+|Ψ2−+〉+ 〈Ψ1−−|Ψ2−−〉
(5.24)
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It reflects the fact that the four spin basis states ↑↑, ↑↓, ↓↑, and ↓↓ are an
orthonormal quartet.

Key Points

0 The wave function of a single particle with spin generalizes in a
straightforward way to multiple particles with spin.

0 The wave function of two spin 1/2 particles can be written in terms
of spatial components multiplying pure spin states as

Ψ = Ψ++↑↑+Ψ+−↑↓+Ψ−+↓↑+Ψ−−↓↓
where the first arrow of each pair refers to particle 1 and the second
to particle 2.

0 In terms of spatial components, the inner product 〈Ψ1|Ψ2〉 evaluates
as inner products of matching spin components:

〈Ψ1++|Ψ2++〉+ 〈Ψ1+−|Ψ2+−〉+ 〈Ψ1−+|Ψ2−+〉+ 〈Ψ1−−|Ψ2−−〉
0 The four spin basis states ↑↑, ↑↓, ↓↑, and ↓↓ are an orthonormal

quartet.

5.5.4 Review Questions

1. As an example of the orthonormality of the two-particle spin states, verify
that 〈↑↑|↓↑〉 is zero, so that ↑↑ and ↓↑ are indeed orthogonal. Do so by
explicitly writing out the sums over Sz1 and Sz2.
Solution complexsb-a

2. A more concise way of understanding the orthonormality of the two-
particle spin states is to note that an inner product like 〈↑↑|↓↑〉 equals
〈↑|↓〉〈↑|↑〉, where the first inner product refers to the spin states of particle
1 and the second to those of particle 2. The first inner product is zero
because of the orthogonality of ↑ and ↓, making 〈↑↑|↓↑〉 zero too.
To check this argument, write out the sums over Sz1 and Sz2 for
〈↑|↓〉〈↑|↑〉 and verify that it is indeed the same as the written out sum
for 〈↑↑|↓↑〉 given in the answer for the previous question.
The underlying mathematical principle is that sums of products can

be factored into separate sums as in:

∑

all Sz1

∑

all Sz2

f(Sz1)g(Sz2) =


 ∑

all Sz1

f(Sz1)




 ∑

all Sz2

g(Sz2)




This is similar to the observation in calculus that integrals of products
can be factored into separate integrals:

∫

all ~r1

∫

all ~r2

f(~r1)g(~r2) d
3~r1 d

3~r2 =

[∫

all ~r1

f(~r1) d
3~r1

] [∫

all ~r2

g(~r2) d
3~r2

]

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexsb-a.html
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Solution complexsb-b

5.5.5 Example: the hydrogen molecule

As an example, this section considers the ground state of the hydrogen molecule.
It was found in section 5.2 that the ground state electron wave function must
be of the approximate form

ψgs,0 = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)]

where ψl was the electron ground state of the left hydrogen atom, and ψr the one
of the right one; a was just a normalization constant. This solution excluded
all consideration of spin.

Including spin, the ground state wave function must be of the general form

ψgs = ψ++↑↑+ ψ+−↑↓+ ψ−+↓↑+ ψ−−↓↓.

As you might guess, in the ground state, each of the four spatial functions ψ++,
ψ+−, ψ−+, and ψ−− must be proportional to the no-spin solution ψgs,0 above.
Anything else would have more than the lowest possible energy, {D.24}.

So the approximate ground state including spin must take the form

ψgs = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)] [a++↑↑+ a+−↑↓+ a−+↓↑+ a−−↓↓] (5.25)

where a++, a+−, a−+, and a−− are constants.

Key Points

0 The electron wave function ψgs,0 for the hydrogen molecule derived
previously ignored spin.

0 In the full electron wave function, each spatial component must sep-
arately be proportional to a(ψlψr + ψrψl).

5.5.5 Review Questions

1. Show that the normalization requirement for ψgs means that

|a++|2 + |a+−|2 + |a−+|2 + |a−−|2 = 1

Solution complexsc-a

5.5.6 Triplet and singlet states

In the case of two particles with spin 1/2, it is often more convenient to use
slightly different basis states to describe the spin states than the four arrow

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexsb-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexsc-a.html
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combinations ↑↑, ↑↓, ↓↑, and ↓↓. The more convenient basis states can be
written in |s m〉 ket notation, and they are:

|1 1〉 = ↑↑ |1 0〉 = 1√
2
(↑↓+ ↓↑) |1 1〉 = ↓↓

︸ ︷︷ ︸
the triplet states

|0 0〉 = 1√
2
(↑↓ − ↓↑)

︸ ︷︷ ︸
the singlet state

(5.26)
A state |s m〉 has net spin s, giving a net square angular momentum s(s+1)~2,
and has net angular momentum in the z-direction m~. For example, if the two
particles are in the state |1 1〉, the net square angular momentum is 2~2, and
their net angular momentum in the z-direction is ~.

The ↑↓ and ↓↑ states can be written as

↑↓ = 1√
2
(|1 0〉+ |0 0〉) ↓↑ = 1√

2
(|1 0〉 − |0 0〉)

This shows that while they have zero angular momentum in the z-direction;
they do not have a value for the net spin: they have a 50/50 probability of net
spin 1 and net spin 0. A consequence is that ↑↓ and ↓↑ cannot be written in
|s m〉 ket notation; there is no value for s. (Related to that, these states also
do not have a definite value for the dot product of the two spins, {A.10}.

Incidentally, note that z components of angular momentum simply add up,
as the Newtonian analogy suggests. For example, for ↑↓, the 1

2
~ spin angular

momentum of the first electron adds to the −1
2
~ of the second electron to pro-

duce zero. But Newtonian analysis does not allow square angular momenta to
be added together, and neither does quantum mechanics. In fact, it is quite a
messy exercise to actually prove that the triplet and singlet states have the net
spin values claimed above. (See chapter 12 if you want to see how it is done.)

The spin states ↑ = |1/2 1/2〉 and ↓ = |1/2 1/2〉 that apply for a single spin-1
2

particle are often referred to as the “doublet” states, since there are two of them.

Key Points

0 The set of spin states ↑↑, ↑↓, ↓↑, and ↓↓ are often better replaced by
the triplet and singlet states |1 1〉, |1 0〉, |1 1〉, and |0 0〉.

0 The triplet and singlet states have definite values for the net square
spin.

5.5.6 Review Questions

1. Like the states ↑↑, ↑↓, ↓↑, and ↓↓; the triplet and singlet states are an
orthonormal quartet. For example, check that the inner product of |1 0〉
and |0 0〉 is zero.
Solution complexse-a

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/complexse-a.html
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5.6 Identical Particles

A number of the counter-intuitive features of quantum mechanics have already
been discussed: Electrons being neither on Mars or on Venus until they pop up
at either place. Superluminal interactions. The fundamental impossibility of
improving the accuracy of both position and momentum beyond a given limit.
Collapse of the wave function. A hidden random number generator. Quantized
energies and angular momenta. Nonexisting angular momentum vectors. In-
trinsic angular momentum. But nature has one more trick on its sleeve, and it
is a big one.

Nature entangles all identical particles with each other. Specifically, it re-
quires that the wave function remains unchanged if any two identical bosons
are exchanged. If particles i and j are identical bosons, then:

Ψ (~r1, Sz1, . . . ,~ri, Szi, . . . ,~rj, Szj , . . .) = Ψ (~r1, Sz1, . . . ,~rj, Szj , . . . ,~ri, Szi, . . .)
(5.27)

On the other hand, nature requires that the wave function changes sign if
any two identical fermions are exchanged. If particles i and j are identical
fermions, (say, both electrons), then:

Ψ (~r1, Sz1, . . . ,~ri, Szi, . . . ,~rj, Szj , . . .) = −Ψ(~r1, Sz1, . . . ,~rj, Szj , . . . ,~ri, Szi, . . .)
(5.28)

In other words, the wave function must be symmetric with respect to ex-
change of identical bosons, and antisymmetric with respect to exchange of iden-
tical fermions. This greatly restricts what wave functions can be.

For example, consider what this means for the electron structure of the
hydrogen molecule. The approximate ground state of lowest energy was in the
previous section found to be

ψgs = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)] [a++↑↑+ a+−↑↓+ a−+↓↑+ a−−↓↓] (5.29)

were ψl was the ground state of the left hydrogen atom, ψr the one of the right
one, first arrows indicate the spin of electron 1 and second arrows the one of
electron 2, and a and the a±± are constants.

But since the two electrons are identical fermions, this wave function must
turn into its negative under exchange of the two electrons. Exchanging the two
electrons produces

−ψgs = a [ψl(~r2)ψr(~r1) + ψr(~r2)ψl(~r1)] [a++↑↑+ a+−↓↑+ a−+↑↓+ a−−↓↓] ;

note in particular that since the first arrow of each pair is taken to refer to
electron 1, exchanging the electrons means that the order of each pair of arrows
must be inverted. To compare the above wave function with the nonexchanged
version (5.29), reorder the terms back to the same order:

−ψgs = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)] [a++↑↑+ a−+↑↓+ a+−↓↑+ a−−↓↓]
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The spatial factor is seen to be the same as the nonexchanged version in (5.29);
the spatial part is symmetric under particle exchange. The sign change will
have to come from the spin part.

Since each of the four spin states is independent from the others, the co-
efficient of each of these states will have to be the negative of the one of the
nonexchanged version. For example, the coefficient a++ of ↑↑ must be the neg-
ative of the coefficient a++ of ↑↑ in the nonexchanged version, otherwise there
is a conflict at Sz1 =

1
2
~ and Sz2 =

1
2
~, where only the spin state ↑↑ is nonzero.

Something can only be the negative of itself if it is zero, so a++ must be zero to
satisfy the antisymmetry requirement. The same way, a−− = −a−−, requiring
a−− to be zero too. The remaining two spin states both require that a+− =
−a−+, but this can be nonzero.

So, due to the antisymmetrization requirement, the full wave function of the
ground state must be,

ψgs = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)] a+− [↑↓ − ↓↑]

or after normalization, noting that a factor of magnitude one is always arbitrary,

ψgs = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)]
↑↓ − ↓↑√

2

It is seen that the antisymmetrization requirement restricts the spin state to be
the “singlet” one, as defined in the previous section. It is the singlet spin state
that achieves the sign change when the two electrons are exchanged; the spatial
part remains the same.

If the electrons would have been bosons, the spin state could have been any
combination of the three triplet states. The symmetrization requirement for
fermions is much more restrictive than the one for bosons.

Since there are a lot more electrons in the universe than just these two, you
might rightly ask where antisymmetrization stops. The answer given in chapter
8.3 is: nowhere. But don’t worry about it. The existence of electrons that are
too far away to affect the system being studied can be ignored.

Key Points

0 The wave function must be symmetric (must stay the same) under
exchange of identical bosons.

0 The wave function must be antisymmetric (must turn into its nega-
tive) under exchange of identical fermions (e.g., electrons.)

0 Especially the antisymmetrization requirement greatly restricts what
wave functions can be.

0 The antisymmetrization requirement forces the electrons in the hy-
drogen molecule ground state to assume the singlet spin state.
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5.6 Review Questions

1. Check that indeed any linear combination of the triplet states is un-
changed under particle exchange.
Solution ident-a

2. Suppose the electrons of the hydrogen molecule are in the excited anti-
symmetric spatial state

a [ψl(~r1)ψr(~r2)− ψr(~r1)ψl(~r2)] .

In that case what can you say about the spin state?
Yes, in this case the spin would be less restricted if the electrons were

bosons. But antisymmetric spatial states themselves are pretty restrictive
in general. The precise sense in which the antisymmetrization require-
ment is more restrictive than the symmetrization requirement will be
explored in the next section.
Solution ident-b

5.7 Ways to Symmetrize the Wave Function

This section discusses ways in which the symmetrization requirements for wave
functions of systems of identical particles can be achieved in general. This is a
key issue in the numerical solution of any nontrivial quantum system, so this
section will examine it in some detail.

It will be assumed that the approximate description of the wave function is
done using a set of chosen single-particle functions, or “states”,

ψp
1 (~r, Sz), ψ

p
2 (~r, Sz), . . .

An example is provided by the approximate ground state of the hydrogen
molecule from the previous section,

a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)]
↑↓ − ↓↑√

2
.

This can be multiplied out to be

a√
2

[
ψl(~r1)↑(Sz1)ψr(~r2)↓(Sz2) + ψr(~r1)↑(Sz1)ψl(~r2)↓(Sz2)

−ψl(~r1)↓(Sz1)ψr(~r2)↑(Sz2)− ψr(~r1)↓(Sz1)ψl(~r2)↑(Sz2)
]

and consists of four single-particle functions:

ψp
1 (~r, Sz) = ψl(~r)↑(Sz) ψp

2 (~r, Sz) = ψl(~r)↓(Sz)

ψp
3 (~r, Sz) = ψr(~r)↑(Sz) ψp

4 (~r, Sz) = ψr(~r)↓(Sz).

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/ident-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/ident-b.html
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The first of the four functions represents a single electron in the ground state
around the left proton with spin up, the second a single electron in the same
spatial state with spin down, etcetera. For better accuracy, more single-particle
functions could be included, say excited atomic states in addition to the ground
states. In terms of the above four functions, the expression for the hydrogen
molecule ground state is

a√
2
ψp
1 (~r1, Sz1)ψ

p
4 (~r2, Sz2) +

a√
2
ψp
3 (~r1, Sz1)ψ

p
2 (~r2, Sz2)

− a√
2
ψp
2 (~r1, Sz1)ψ

p
3 (~r2, Sz2)−

a√
2
ψp
4 (~r1, Sz1)ψ

p
1 (~r2, Sz2)

The issue in this section is that the above hydrogen ground state is just one
special case of the most general wave function for the two particles that can be
formed from four single-particle states:

Ψ(~r1, Sz1,~r2, Sz2; t) =

a11ψ
p
1 (~r1, Sz1)ψ

p
1 (~r2, Sz2) + a12ψ

p
1 (~r1, Sz1)ψ

p
2 (~r2, Sz2) +

a13ψ
p
1 (~r1, Sz1)ψ

p
3 (~r2, Sz2) + a14ψ

p
1 (~r1, Sz1)ψ

p
4 (~r2, Sz2) +

a21ψ
p
2 (~r1, Sz1)ψ

p
1 (~r2, Sz2) + a22ψ

p
2 (~r1, Sz1)ψ

p
2 (~r2, Sz2) +

a23ψ
p
2 (~r1, Sz1)ψ

p
3 (~r2, Sz2) + a24ψ

p
2 (~r1, Sz1)ψ

p
4 (~r2, Sz2) +

a31ψ
p
3 (~r1, Sz1)ψ

p
1 (~r2, Sz2) + a32ψ

p
3 (~r1, Sz1)ψ

p
2 (~r2, Sz2) +

a33ψ
p
3 (~r1, Sz1)ψ

p
3 (~r2, Sz2) + a34ψ

p
3 (~r1, Sz1)ψ

p
4 (~r2, Sz2) +

a41ψ
p
4 (~r1, Sz1)ψ

p
1 (~r2, Sz2) + a42ψ

p
4 (~r1, Sz1)ψ

p
2 (~r2, Sz2) +

a43ψ
p
4 (~r1, Sz1)ψ

p
3 (~r2, Sz2) + a44ψ

p
4 (~r1, Sz1)ψ

p
4 (~r2, Sz2)

This can be written much more concisely using summation indices as

Ψ(~r1, Sz1,~r2, Sz2; t) =
4∑

n1=1

4∑

n2=1

an1n2ψ
p
n1
(~r1, Sz1)ψ

p
n2
(~r2, Sz2)

However, the individual terms will be fully written out for now to reduce the
mathematical abstraction. The individual terms are sometimes called “Hartree
products.”

The antisymmetrization requirement says that the wave function must be
antisymmetric under exchange of the two electrons. More concretely, it must
turn into its negative when the arguments ~r1, Sz1 and ~r2, Sz2 are swapped. To
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understand what that means, the various terms need to be arranged in groups:

I : a11ψ
p
1 (~r1, Sz1)ψ

p
1 (~r2, Sz2)

II : a22ψ
p
2 (~r1, Sz1)ψ

p
2 (~r2, Sz2)

III : a33ψ
p
3 (~r1, Sz1)ψ

p
3 (~r2, Sz2)

IV : a44ψ
p
4 (~r1, Sz1)ψ

p
4 (~r2, Sz2)

V : a12ψ
p
1 (~r1, Sz1)ψ

p
2 (~r2, Sz2) + a21ψ

p
2 (~r1, Sz1)ψ

p
1 (~r2, Sz2)

VI : a13ψ
p
1 (~r1, Sz1)ψ

p
3 (~r2, Sz2) + a31ψ

p
3 (~r1, Sz1)ψ

p
1 (~r2, Sz2)

VII : a14ψ
p
1 (~r1, Sz1)ψ

p
4 (~r2, Sz2) + a41ψ

p
4 (~r1, Sz1)ψ

p
1 (~r2, Sz2)

VIII : a23ψ
p
2 (~r1, Sz1)ψ

p
3 (~r2, Sz2) + a32ψ

p
3 (~r1, Sz1)ψ

p
2 (~r2, Sz2)

IX : a24ψ
p
2 (~r1, Sz1)ψ

p
4 (~r2, Sz2) + a42ψ

p
4 (~r1, Sz1)ψ

p
2 (~r2, Sz2)

X : a34ψ
p
3 (~r1, Sz1)ψ

p
4 (~r2, Sz2) + a43ψ

p
4 (~r1, Sz1)ψ

p
3 (~r2, Sz2)

Within each group, all terms involve the same combination of functions, but in
a different order. Different groups have a different combination of functions.

Now if the electrons are exchanged, it turns the terms in groups I through IV
back into themselves. Since the wave function must change sign in the exchange,
and something can only be its own negative if it is zero, the antisymmetrization
requirement requires that the coefficients a11, a22, a33, and a44 must all be zero.
Four coefficients have been eliminated from the list of unknown quantities.

Further, in each of the groups V through X with two different states, ex-
change of the two electrons turn the terms into each other, except for their
coefficients. If that is to achieve a change of sign, the coefficients must be each
other’s negatives; a21 = −a12, a31 = −a13, . . . So only six coefficients a12,
a13, . . . still need to be found from other physical requirements, such as energy
minimization for a ground state. Less than half of the original sixteen unknowns
survive the antisymmetrization requirement, significantly reducing the problem
size.

There is a very neat way of writing the antisymmetrized wave function of
systems of fermions, which is especially convenient for larger numbers of parti-
cles. It is done using determinants. The antisymmetric wave function for the
above example is:

Ψ = a12

∣∣∣∣
ψp
1 (~r1, Sz1) ψp

2 (~r1, Sz1)
ψp
1 (~r2, Sz2) ψp

2 (~r2, Sz2)

∣∣∣∣+ a13

∣∣∣∣
ψp
1 (~r1, Sz1) ψp

3 (~r1, Sz1)
ψp
1 (~r2, Sz2) ψp

3 (~r2, Sz2)

∣∣∣∣+

a14

∣∣∣∣
ψp
1 (~r1, Sz1) ψp

4 (~r1, Sz1)
ψp
1 (~r2, Sz2) ψp

4 (~r2, Sz2)

∣∣∣∣+ a23

∣∣∣∣
ψp
2 (~r1, Sz1) ψp

3 (~r1, Sz1)
ψp
2 (~r2, Sz2) ψp

3 (~r2, Sz2)

∣∣∣∣+

a24

∣∣∣∣
ψp
2 (~r1, Sz1) ψp

4 (~r1, Sz1)
ψp
2 (~r2, Sz2) ψp

4 (~r2, Sz2)

∣∣∣∣+ a34

∣∣∣∣
ψp
3 (~r1, Sz1) ψp

4 (~r1, Sz1)
ψp
3 (~r2, Sz2) ψp

4 (~r2, Sz2)

∣∣∣∣

These determinants are called “Slater determinants”.
To find the actual hydrogen molecule ground state from the above expres-

sion, additional physical requirements have to be imposed. For example, the
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coefficients a12 and a34 can reasonably be ignored for the ground state, because
according to the given definition of the states, their Slater determinants have
the electrons around the same nucleus, and that produces elevated energy due
to the mutual repulsion of the electrons. Also, following the arguments of sec-
tion 5.2, the coefficients a13 and a24 must be zero since their Slater determinants
produce the excited antisymmetric spatial state ψlψr−ψrψl times the ↑↑, respec-
tively ↓↓ spin states. Finally, the coefficients a14 and a23 must be opposite in
order that their Slater determinants combine into the lowest-energy symmetric
spatial state ψlψr +ψrψl times the ↑↓ and ↓↑ spin states. That leaves the single
coefficient a14 that can be found from the normalization requirement, taking it
real and positive for convenience.

But the issue in this section is what the symmetrization requirements say
about wave functions in general, whether they are some ground state or not.
And for four single-particle states for two identical fermions, the conclusion is
that the wave function must be some combination of the six Slater determinants,
regardless of what other physics may be relevant.

The next question is how that conclusion changes if the two particles involved
are not fermions, but identical bosons. The symmetrization requirement is then
that exchanging the particles must leave the wave function unchanged. Since
the terms in groups I through IV do remain the same under particle exchange,
their coefficients a11 through a44 can have any nonzero value. This is the sense in
which the antisymmetrization requirement for fermions is much more restrictive
than the one for bosons: groups involving a duplicated state must be zero for
fermions, but not for bosons.

In groups V through X, where particle exchange turns each of the two terms
into the other one, the coefficients must now be equal instead of negatives; a21
= a12, a31 = a13, . . . That eliminates six coefficients from the original sixteen
unknowns, leaving ten coefficients that must be determined by other physical
requirements on the wave function.

(The equivalent of Slater determinants for bosons are “permanents,” basi-
cally determinants with all minus signs in their definition replaced by plus signs.
Unfortunately, many of the helpful properties of determinants do not apply to
permanents.)

All of the above arguments can be extended to the general case that N ,
instead of 4, single-particle functions ψp

1 (~r, Sz), ψ
p
2 (~r, Sz), . . . , ψp

N(~r, Sz) are
used to describe I, instead of 2, particles. Then the most general possible wave
function assumes the form:

Ψ =
N∑

n1=1

N∑

n2=1

. . .

N∑

nI=1

an1n2...nI
ψp
n1
(~r1, Sz1)ψ

p
n2
(~r2, Sz2) . . . ψ

p
nI
(~rI , SzI) (5.30)

where the an1n2...nI
are numerical coefficients that are to be chosen to satisfy the

physical constraints on the wave function, including the (anti) symmetrization
requirements.
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This summation is again the “every possible combination” idea of combin-
ing every possible state for particle 1 with every possible state for particle 2,
etcetera. So the total sum above contains N I terms: there are N possibilities
for the function number n1 of particle 1, times N possibilities for the function
number n2 of particle 2, ... In general then, a corresponding total of N I un-
known coefficients an1n2...nI

must be determined to find out the precise wave
function.

But for identical particles, the number that must be determined is much
less. That number can again be determined by dividing the terms into groups in
which the terms all involve the same combination of I single-particle functions,
just in a different order. The simplest groups are those that involve just a
single single-particle function, generalizing the groups I through IV in the earlier
example. Such groups consist of only a single term; for example, the group that
only involves ψp

1 consists of the single term

a11...1ψ
p
1 (~r1, Sz1)ψ

p
1 (~r2, Sz2) . . . ψ

p
1 (~rI , SzI).

At the other extreme, groups in which every single-particle function is different
have as many as I! terms, since I! is the number of ways that I different items
can be ordered. In the earlier example, that were groups V through X, each
having 2! = 2 terms. If there are more than two particles, there will also be
groups in which some states are the same and some are different.

For identical bosons, the symmetrization requirement says that all the co-
efficients within a group must be equal. Any term in a group can be turned
into any other by particle exchanges; so, if they would not all have the same
coefficients, the wave function could be changed by particle exchanges. As a
result, for identical bosons the number of unknown coefficients reduces to the
number of groups.

For identical fermions, only groups in which all single-particle functions are
different can be nonzero. That follows because if a term has a duplicated single-
particle function, it turns into itself without the required sign change under an
exchange of the particles of the duplicated function.

So there is no way to describe a system of I identical fermions with anything
less than I different single-particle functions ψp

n. This critically important ob-
servation is known as the “Pauli exclusion principle:” I − 1 fermions occupying
I − 1 single-particle functions exclude a I-th fermion from simply entering the
same I − 1 functions; a new function must be added to the mix for each ad-
ditional fermion. The more identical fermions there are in a system, the more
different single-particle functions are required to describe it.

Each group involving I different single-particle functions ψp
n1
, ψp

n2
, . . .ψp

nI
re-

duces under the antisymmetrization requirement to a single Slater determinant
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of the form

1√
I!

∣∣∣∣∣∣∣∣∣∣∣

ψp
n1
(~r1, Sz1) ψp

n2
(~r1, Sz1) ψp

n3
(~r1, Sz1) · · · ψp

nI
(~r1, Sz1)

ψp
n1
(~r2, Sz2) ψp

n2
(~r2, Sz2) ψp

n3
(~r2, Sz2) · · · ψp

nI
(~r2, Sz2)

ψp
n1
(~r3, Sz3) ψp

n2
(~r3, Sz3) ψp

n3
(~r3, Sz3) · · · ψp

nI
(~r3, Sz3)

...
...

...
. . .

...
ψp
n1
(~rI , SzI) ψp

n2
(~rI , SzI) ψp

n3
(~rI , SzI) · · · ψp

nI
(~rI , SzI)

∣∣∣∣∣∣∣∣∣∣∣

(5.31)

multiplied by a single unknown coefficient. The normalization factor 1/
√
I! has

been thrown in merely to ensure that if the functions ψp
n are orthonormal, then

so are the Slater determinants. Using Slater determinants ensures the required
sign changes of fermion systems automatically, because determinants change
sign if two rows are exchanged.

In the case that the bare minimum of I functions is used to describe I
identical fermions, only one Slater determinant can be formed. Then the an-
tisymmetrization requirement reduces the II unknown coefficients an1n2...nI

to
just one, a12...I ; obviously a tremendous reduction.

At the other extreme, when the number of functions N is very large, much
larger than I2 to be precise, most terms have all indices different and the re-
duction is “only” from N I to about N I/I! terms. The latter would also be true
for identical bosons.

The functions better be chosen to produce a good approximation to the wave
function with a small number of terms. As an arbitrary example to focus the
thoughts, if N = 100 functions are used to describe an arsenic atom, with I =
33 electrons, there would be a prohibitive 1066 terms in the sum (5.30). Even
after reduction to Slater determinants, there would still be a prohibitive 3 1026

or so unknown coefficients left. The precise expression for the number of Slater
determinants is called “N choose I;” it is given by

(
N
I

)
=

N !

(N − I)!I! =
N(N − 1)(N − 2) . . . (N − I + 1)

I!
,

since the top gives the total number of terms that have all functions different, (N
possible functions for particle 1, times N − 1 possible functions left for particle
2, etcetera,) and the bottom reflects that it takes I! of them to form a single
Slater determinant. {D.25}.

The basic “Hartree-Fock” approach, discussed in chapter 9.3, goes to the
extreme in reducing the number of functions: it uses the very minimum of I
single-particle functions. However, rather than choosing these functions a priori,
they are adjusted to give the best approximation that is possible with a single
Slater determinant. Unfortunately, if a single determinant still turns out to
be not accurate enough, adding a few more functions quickly blows up in your
face. Adding just one more function gives I more determinants; adding another
function gives another I(I + 1)/2 more determinants, etcetera.
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Key Points

0 Wave functions for multiple-particle systems can be formed using
sums of products of single-particle wave functions.

0 The coefficients of these products are constrained by the symmetriza-
tion requirements.

0 In particular, for identical fermions such as electrons, the single-
particle wave functions must combine into Slater determinants.

0 Systems of identical fermions require at least as many single-particle
states as there are particles. This is known as the Pauli exclusion
principle.

0 If more single-particle states are used to describe a system, the prob-
lem size increases rapidly.

5.7 Review Questions

1. How many single-particle states would a basic Hartree-Fock approxima-
tion use to compute the electron structure of an arsenic atom? How many
Slater determinants would that involve?

Solution symways-a

2. If two more single-particle states would be used to improve the accuracy
for the arsenic atom, (one more normally does not help), how many Slater
determinants could be formed with those states?

Solution symways-b

5.8 Matrix Formulation

When the number of unknowns in a quantum mechanical problem has been
reduced to a finite number, the problem can be reduced to a linear algebra
one. This allows the problem to be solved using standard analytical or numer-
ical techniques. This section describes how the linear algebra problem can be
obtained.

Typically, quantum mechanical problems can be reduced to a finite number
of unknowns using some finite set of chosen wave functions, as in the previous
section. There are other ways to make the problems finite, it does not really
make a difference here. But in general some simplification will still be needed
afterwards. A multiple sum like equation (5.30) for distinguishable particles
is awkward to work with, and when various coefficients drop out for identical
particles, its gets even messier. So as a first step, it is best to order the terms
involved in some way; any ordering will in principle do. Ordering allows each
term to be indexed by a single counter q, being the place of the term in the
ordering.

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/symways-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/symways-b.html
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Using an ordering, the wave function for a total of I particles can be written
more simply as

Ψ = a1ψ
S
1 (~r1, Sz1,~r2, Sz2, . . . ,~rI , SzI) + a2ψ

S
2 (~r1, Sz1,~r2, Sz2, . . . ,~rI , SzI) + . . .

or in index notation:

Ψ =

Q∑

q=1

aqψ
S
q (~r1, Sz1,~r2, Sz2, . . . ,~rI , SzI). (5.32)

where Q is the total count of the chosen I-particle wave functions and the single
counter q in aq replaces a set of I indices in the description used in the previous
section. The I-particle functions ψS

q are allowed to be anything; individual
(Hartree) products of single-particle wave functions for distinguishable particles
as in (5.30), Slater determinants for identical fermions, permanents for identical
bosons, or whatever. The only thing that will be assumed is that they are
mutually orthonormal. (Which means that any underlying set of single-particle
functions ψp

n(~r) as described in the previous section should be orthonormal. If
they are not, there are procedures like Gram-Schmidt to make them so. Or you
can just put in some correction terms.)

Under those conditions, the energy eigenvalue problem Hψ = Eψ takes the
form:

Q∑

q=1

Haqψ
S
q =

Q∑

q=1

Eaqψ
S
q

The trick is now to take the inner product of both sides of this equation with
each function ψS

q in the set of wave functions in turn. In other words, take an

inner product with 〈ψS
1 | to get one equation, then take an inner product with

〈ψS
2 | to get a second equation, and so on. This produces, using the fact that the

functions are orthonormal to clean up the right-hand side,

H11a1 + H12a2 + . . . + H1QaQ = Ea1
H21a1 + H22a2 + . . . + H2QaQ = Ea2

...
...

...
...

...
...

...
Hq1a1 + Hq2a2 + . . . + HqQaQ = Eaq

...
...

...
...

...
...

...
HQ1a1 + HQ2a2 + . . . + HQQaQ = EaQ

where

H11 = 〈ψS
1 |HψS

1〉, H12 = 〈ψS
1 |HψS

2〉, . . . , HQQ = 〈ψS
Q|HψS

Q〉.

are the matrix coefficients, or Hamiltonian coefficients.
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This can again be written more compactly in index notation:

Q∑

q=1

Hqqaq = Eaq for q = 1, 2, . . . , Q with Hqq = 〈ψS
q |HψS

q 〉 (5.33)

which is just a finite-size matrix eigenvalue problem.

Since the functions ψS
q are known, chosen, functions, and the Hamiltonian H

is also known, the matrix coefficients Hqq can be determined. The eigenvalues
E and corresponding eigenvectors (a1, a2, . . .) can then be found using linear
algebra procedures. Each eigenvector produces a corresponding approximate
eigenfunction a1ψ

S
1 + a2ψ

S
2 + . . . with an energy equal to the eigenvalue E.

Key Points

0 Operator eigenvalue problems can be approximated by the matrix
eigenvalue problems of linear algebra.

0 That allows standard analytical or numerical techniques to be used
in their solution.

5.8 Review Questions

1. As a relatively simple example, work out the above ideas for the Q = 2
hydrogen molecule spatial states ψS

1 = ψlψr and ψS
2 = ψlψr. Write the

matrix eigenvalue problem and identify the two eigenvalues and eigenvec-
tors. Compare with the results of section 5.3.

Assume that ψl and ψr have been slightly adjusted to be orthonormal.
Then so are ψS

1 and ψS
2 orthonormal, since the various six-dimensional

inner product integrals, like

〈ψS
1 |ψS

2 〉 ≡ 〈ψlψr|ψrψl〉 ≡
∫

all ~r1

∫

all ~r2

ψl(~r1)ψr(~r2) ψr(~r1)ψl(~r2) d
3~r1 d

3~r2

can according to the rules of calculus be factored into three-dimensional
integrals as

〈ψS
1 |ψS

2 〉

=

[∫

all ~r1

ψl(~r1) ψr(~r1) d
3~r1

] [∫

all ~r2

ψr(~r2) ψl(~r2) d
3~r2

]

= 〈ψl|ψr〉〈ψr|ψl〉

which is zero if ψl and ψr are orthonormal.
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Also, do not try to find actual values for H11, H12, H21, and H22. As
section 5.2 noted, that can only be done numerically. Instead just refer
to H11 as J and to H12 as −L:

H11 ≡ 〈ψS
1 |HψS

1 〉 ≡ 〈ψlψr|Hψlψr〉 ≡ J

H12 ≡ 〈ψS
1 |HψS

2 〉 ≡ 〈ψlψr|Hψrψl〉 ≡ −L.

Next note that you also have

H22 ≡ 〈ψS
2 |HψS

2 〉 ≡ 〈ψrψl|Hψrψl〉 = J

H21 ≡ 〈ψS
2 |HψS

1 〉 ≡ 〈ψrψl|Hψlψr〉 = −L

because they are the exact same inner product integrals; the difference
is just which electron you number 1 and which one you number 2 that
determines whether the wave functions are listed as ψlψr or ψrψl.
Solution matfor-a

2. Find the eigenstates for the same problem, but now including spin.
As section 5.7 showed, the antisymmetric wave function with spin con-

sists of a sum of six Slater determinants. Ignoring the highly excited first
and sixth determinants that have the electrons around the same nucleus,
the remaining C = 4 Slater determinants can be written out explicitly to
give the two-particle states

ψS
1 =

ψlψr↑↑ − ψrψl↑↑√
2

ψS
2 =

ψlψr↑↓ − ψrψl↓↑√
2

ψS
3 =

ψlψr↓↑ − ψrψl↑↓√
2

ψS
4 =

ψlψr↓↓ − ψrψl↓↓√
2

Note that the Hamiltonian does not involve spin, to the approximation
used in most of this book, so that, following the techniques of section 5.5,
an inner product like H23 = 〈ψS

2 |HψS
3 〉 can be written out like

H23 =
1

2
〈ψlψr↑↓ − ψrψl↓↑|H(ψlψr↓↑ − ψrψl↑↓)〉

=
1

2
〈ψlψr↑↓ − ψrψl↓↑|(Hψlψr)↓↑ − (Hψrψl)↑↓〉

and then multiplied out into inner products of matching spin components
to give

H23 = −
1

2
〈ψlψr|Hψrψl〉 −

1

2
〈ψrψl|Hψlψr〉 = L.

The other 15 matrix coefficients can be found similarly, and most will be
zero.
If you do not have experience with linear algebra, you may want to skip

this question, or better, just read the solution. However, the four eigen-
vectors are not that hard to guess; maybe easier to guess than correctly
derive.
Solution matfor-b

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/matfor-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/matfor-b.html
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5.9 Heavier Atoms

This section solves the ground state electron configuration of the atoms of ele-
ments heavier than hydrogen. The atoms of the elements are distinguished by
their “atomic number” Z, which is the number of protons in the nucleus. For
the neutral atoms considered in this section, Z is also the number of electrons
circling the nucleus.

A crude approximation will be made to deal with the mutual interactions
between the electrons. Still, many properties of the elements can be understood
using this crude model, such as their geometry and chemical properties, and
how the Pauli exclusion principle raises the energy of the electrons.

This is a descriptive section, in which no new analytical procedures are
taught. However, it is a very important section to read, and reread, because
much of our qualitative understanding of nature is based on the ideas in this
section.

5.9.1 The Hamiltonian eigenvalue problem

The procedure to find the ground state of the heavier atoms is similar to the
one for the hydrogen atom of chapter 4.3. The total energy Hamiltonian for the
electrons of an element with atomic number Z with is:

H =
Z∑

i=1

[
− ~

2

2me

∇2
i −

e2

4πǫ0

Z

ri
+ 1

2

Z∑

i=1
i 6=i

e2

4πǫ0

1

|~ri −~ri|

]
(5.34)

Within the brackets, the first term represents the kinetic energy of electron
number i out of Z, the second the attractive potential due to the nuclear charge
Ze, and the final term is the repulsion by all the other electrons. In the Hamil-
tonian as written, it is assumed that half of the energy of a repulsion is credited
to each of the two electrons involved, accounting for the factor 1

2
.

The Hamiltonian eigenvalue problem for the energy states takes the form:

Hψ(~r1, Sz1,~r2, Sz2, . . . ,~rZ , SzZ) = Eψ(~r1, Sz1,~r2, Sz2, . . . ,~rZ , SzZ)

Key Points

0 The Hamiltonian for the electron structure has been written down.

5.9.2 Approximate solution using separation of variables

The Hamiltonian eigenvalue problem of the previous subsection cannot be solved
exactly. The repulsive interactions between the electrons, given by the last term
in the Hamiltonian are too complex.
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More can be said under the, really poor, approximation that each electron
“sees” a repulsion by the other Z − 1 electrons that averages out as if the other
electrons are located in the nucleus. The other Z − 1 electrons then reduce the
net charge of the nucleus from Ze to e. An other way of saying this is that each
of the Z − 1 other electrons “shields” one proton in the nucleus, allowing only
a single remaining proton charge to filter through.

In this crude approximation, the electrons do not notice each other at all;
they see only a single charge hydrogen nucleus. Obviously then, the wave func-
tion solutions for each electron should be the ψnlm eigenfunctions of the hydrogen
atom, which were found in chapter 4.3.

To verify this explicitly, the approximate Hamiltonian is

H =
Z∑

i=1

{
− ~

2

2m
∇2
i −

e2

4πǫ0

1

ri

}

since this represents a system of noninteracting electrons in which each experi-
ences an hydrogen nucleus potential. This can be written more concisely as

H =
Z∑

i=1

hi

where hi is the hydrogen-atom Hamiltonian for electron number i,

hi = −
~
2

2m
∇2
i −

e2

4πǫ0

1

ri
.

The approximate Hamiltonian eigenvalue problem can now be solved using
a method of separation of variables in which solutions are sought that take the
form of products of single-electron wave functions:

ψZ = ψp
1 (~r1, Sz1)ψ

p
2 (~r2, Sz2) . . . ψ

p
Z(~rZ , SzZ).

Substitution of this assumption into the eigenvalue problem
∑

i hiψ
Z = EψZ

and dividing by ψZ produces

1

ψp
1 (~r1, Sz1)

h1ψ
p
1 (~r1, Sz1) +

1

ψp
2 (~r2, Sz2)

h2ψ
p
2 (~r2, Sz2) + . . . = E

since h1 only does anything to the factor ψp
1 (~r1, Sz1), h2 only does anything to

the factor ψp
2 (~r2, Sz2), etcetera.

The first term in the equation above must be some constant ǫ1; it cannot
vary with ~r1 or Sz1 as ψp

1 (~r1, Sz1) itself does, since none of the other terms in
the equation varies with those variables. That means that

h1ψ
p
1 (~r1, Sz1) = ǫ1ψ

p
1 (~r1, Sz1),
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which is an hydrogen atom eigenvalue problem for the single-electron wave func-
tion of electron 1. So, the single-electron wave function of electron 1 can be any
one of the hydrogen atom wave functions from chapter 4.3; allowing for spin,
the possible solutions are,

ψ100(~r1)↑(Sz1), ψ100(~r1)↓(Sz1), ψ200(~r1)↑(Sz1), ψ200(~r1)↓(Sz1), . . .
The energy ǫ1 is the corresponding hydrogen atom energy level, E1 for ψ100↑
or ψ100↓, E2 for any of the eight states ψ200↑, ψ200↓, ψ211↑, ψ211↓, ψ210↑, ψ210↓,
ψ21−1↑, ψ21−1↓, etcetera.

The same observations hold for the other electrons; their single-electron
eigenfunctions are ψnlml hydrogen atom ones, (where l can be either ↑ or ↓.)
Their individual energies must be the corresponding hydrogen atom energy lev-
els.

The final wave functions for all Z electrons are then each a product of Z
hydrogen-atom wave functions,

ψn1l1m1(~r1)l(Sz1)ψn2l2m2(~r2)l(Sz2) . . . ψnZ lZmZ
(~rZ)l(SzZ)

and the total energy is the sum of all the corresponding hydrogen atom energy
levels,

En1 + En2 + . . .+ EnZ
.

This solves the Hamiltonian eigenvalue problem under the shielding approx-
imation. The bottom line is: just multiply Z hydrogen energy eigenfunctions
together to get an energy eigenfunction for an heavier atom. The energy is
the sum of the Z hydrogen energy levels. However, the electrons are identical
fermions, so different eigenfunctions must still be combined together in Slater
determinants to satisfy the antisymmetrization requirements for electron ex-
change, as discussed in section 5.7. That will be done during the discussion of
the different atoms that is next.

Key Points

0 The Hamiltonian eigenvalue problem is too difficult to solve analyt-
ically.

0 To simplify the problem, the detailed interactions between electrons
are ignored. For each electron, it is assumed that the only effect of
the other electrons is to cancel, or “shield,” that many protons in
the nucleus, leaving only a hydrogen nucleus strength.

0 This is a very crude approximation.

0 It implies that the Z-electron wave functions are products of the
single-electron hydrogen atom wave functions. Their energy is the
sum of the corresponding single-electron hydrogen energy levels.

0 These wave functions must still be combined together to satisfy the
antisymmetrization requirement (Pauli exclusion principle).
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5.9.3 Hydrogen and helium

This subsection starts off the discussion of the approximate ground states of the
elements. Atomic number Z = 1 corresponds to hydrogen, which was already
discussed in chapter 4.3. The lowest energy state, or ground state, is ψ100,
(4.40), also called the “1s” state, and the single electron can be in the spin-up
or spin-down versions of that state, or in any combination of the two. The most
general ground state wave function is therefore:

Ψ(~r1, Sz1) = a1ψ100(~r1)↑(Sz1) + a2ψ100(~r1)↓(Sz1)

= ψ100(~r1)
(
a1↑(Sz1) + a2↓(Sz1)

)

The “ionization energy” that would be needed to remove the electron from the
atom is the absolute value of the energy eigenvalue E1, or 13.6 eV, as derived
in chapter 4.3.

For helium, with Z = 2, in the ground state both electrons are in the low-
est possible energy state ψ100. But since electrons are identical fermions, the
antisymmetrization requirement now rears its head. It requires that the two
states ψ100(~r)↑(Sz) and ψ100(~r)↓(Sz) appear together in the form of a Slater
determinant (chapter 5.7):

Ψ(~r1, Sz1,~r2, Sz2; t) =
a√
2

∣∣∣∣
ψ100(~r1)↑(Sz1) ψ100(~r1)↓(Sz1)
ψ100(~r2)↑(Sz2) ψ100(~r2)↓(Sz2)

∣∣∣∣ (5.35)

or, writing out the Slater determinant:

aψ100(~r1)ψ100(~r2)
↑(Sz1)↓(Sz2)− ↓(Sz1)↑(Sz2)√

2
.

The spatial part is symmetric with respect to exchange of the two electrons.
The spin state is antisymmetric; it is the singlet configuration with zero net
spin of section 5.5.6.

Figure 5.4 shows the approximate probability density for the first two ele-
ments, indicating where electrons are most likely to be found. In reality, the
shielding approximation underestimates the nuclear attraction and the shown
helium atom is much too big.

It is good to remember that the ψ100↑ and ψ100↓ states are commonly indi-
cated as the “K shell” after the first initial of the airline of the Netherlands.

The analysis predicts that the ionization energy to remove one electron from
helium would be 13.6 eV, the same as for the hydrogen atom. This is a very
bad approximation indeed; the truth is almost double, 24.6 eV.

The problem is the made assumption that the repulsion by the other elec-
tron “shields” one of the two protons in the helium nucleus, so that only a
single-proton hydrogen nucleus is seen. When electron wave functions overlap
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Figure 5.4: Approximate solutions for the hydrogen (left) and helium (right)
atoms.

significantly as they do here, their mutual repulsion is a lot less than you would
naively expect, (compare figure 13.7). As a result, the second proton is only
partly shielded, and the electron is held much more tightly than the analysis
predicts. See addendum {A.38.2} for better estimates of the helium atom size
and ionization energy.

However, despite the inaccuracy of the approximation chosen, it is probably
best to stay consistent, and not fool around at random. It must just be accepted
that the theoretical energy levels will be too small in magnitude {N.7}.

The large ionization energy of helium is one reason that it is chemically inert.
Helium is called a “noble” gas, presumably because nobody expects nobility to
do anything.

Key Points

0 The ground states of the atoms of the elements are to be discussed.

0 Element one is hydrogen, solved before. Its ground state is ψ100 with
arbitrary spin. Its ionization energy is 13.6 eV.

0 Element two is helium. Its ground state has both electrons in the
lowest-energy spatial state ψ100, and locked into the singlet spin state.
Its ionization energy is 24.6 eV.

0 The large ionization energy of helium means it holds onto its two
electrons tightly. Helium is an inert noble gas.

0 The two “1s” states ψ100↑ and ψ100↓ are called the “K shell.”

5.9.4 Lithium to neon

The next element is lithium, with three electrons. This is the first element for
which the antisymmetrization requirement forces the theoretical energy to go
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above the hydrogen ground state level E1. The reason is that there is no way
to create an antisymmetric wave function for three electrons using only the two
lowest energy states ψ100↑ and ψ100↓. A Slater determinant for three electrons
must have three different states. One of the eight ψ2lml states with energy E2

will have to be thrown into the mix.
This effect of the antisymmetrization requirement, that a new state must

become “occupied” every time an electron is added is known as the Pauli ex-
clusion principle. It causes the energy values to become larger and larger as the
supply of low energy states runs out.

The transition to the higher energy level E2 is reflected in the fact that in
the so-called “periodic table” of the elements, figure 5.5, lithium starts a new
row.
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Figure 5.5: Abbreviated periodic table of the elements. Boxes below the element
names indicate the quantum states being filled with electrons in that row. Cell
color indicates ionization energy. The length of a bar below an atomic number
indicates electronegativity. A dot pattern indicates that the element is a gas
under normal conditions and wavy lines a liquid.

For the third electron of the lithium atom, the available states with theoret-
ical energy E2 are the ψ200l “2s” states and the ψ211l, ψ210l, and ψ21−1l “2p”
states, a total of eight possible states. These states are, of course, commonly
called the “L shell.”

Within the crude nuclear shielding approximation made, all eight states have
the same energy. However, on closer examination, the spherically symmetric 2s
states really have less energy than the 2p ones. Very close to the nucleus,
shielding is not a factor and the full attractive nuclear force is felt. So a state
in which the electron is more likely to be close to the nucleus has less energy.
Those are the 2s states; in the 2p states, which have nonzero orbital angular
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momentum, the electron tends to stay away from the immediate vicinity of the
nucleus {N.8}.

Within the assumptions made, there is no preference with regard to the spin
direction of the 2s state, allowing two Slater determinants to be formed.

a1√
6

∣∣∣∣∣∣

ψ100(~r1)↑(Sz1) ψ100(~r1)↓(Sz1) ψ200(~r1)↑(Sz1)
ψ100(~r2)↑(Sz2) ψ100(~r2)↓(Sz2) ψ200(~r2)↑(Sz2)
ψ100(~r3)↑(Sz3) ψ100(~r3)↓(Sz3) ψ200(~r3)↑(Sz3)

∣∣∣∣∣∣

+
a2√
6

∣∣∣∣∣∣

ψ100(~r1)↑(Sz1) ψ100(~r1)↓(Sz1) ψ200(~r1)↓(Sz1)
ψ100(~r2)↑(Sz2) ψ100(~r2)↓(Sz2) ψ200(~r2)↓(Sz2)
ψ100(~r3)↑(Sz3) ψ100(~r3)↓(Sz3) ψ200(~r3)↓(Sz3)

∣∣∣∣∣∣
(5.36)

Figure 5.6: Approximate solutions for lithium (left) and beryllium (right).

It is common to say that the “third electron goes into a ψ200” state. Of
course that is not quite precise; the Slater determinants above have the first
two electrons in ψ200 states too. But the third electron adds the third state
to the mix, so in that sense it more or less “owns” the state. For the same
reason, the Pauli exclusion principle is commonly phrased as “no two electrons
may occupy the same state”, even though the Slater determinants imply that
all electrons share all states equally.

Since the third electron is bound with the much lower energy |E2| instead
of |E1|, it is rather easily given up. Despite the fact that the lithium ion has a
nucleus that is 50% stronger than the one of helium, it only takes a ionization
energy of 5.4 eV to remove an electron from lithium, versus 24.6 eV for helium.
The theory would predict a ionization energy |E2| = 3.4 eV for lithium, which
is close, so it appears that the two 1s electrons shield their protons quite well
from the 2s one. This is in fact what one would expect, since the 1s electrons
are quite close to the nucleus compared to the large radial extent of the 2s state.

Lithium will readily give up its loosely bound third electron in chemical
reactions. Conversely, helium would have even less hold on a third electron

extrascale=3,notransparent


5.9. HEAVIER ATOMS 185

than lithium, because it has only two protons in its nucleus. Helium simply
does not have what it takes to seduce an electron away from another atom.
This is the second part of the reason that helium is chemically inert: it neither
will give up its electrons nor take on additional ones.

Thus the Pauli exclusion principle causes different elements to behave chem-
ically in very different ways. Even elements that are just one unit apart in
atomic number such as helium (inert) and lithium (very active).

For beryllium, with four electrons, the same four states as for lithium com-
bine in a single 4× 4 Slater determinant;

a√
24

∣∣∣∣∣∣∣∣

ψ100(~r1)↑(Sz1) ψ100(~r1)↓(Sz1) ψ200(~r1)↑(Sz1) ψ200(~r1)↓(Sz1)
ψ100(~r2)↑(Sz2) ψ100(~r2)↓(Sz2) ψ200(~r2)↑(Sz2) ψ200(~r2)↓(Sz2)
ψ100(~r3)↑(Sz3) ψ100(~r3)↓(Sz3) ψ200(~r3)↑(Sz3) ψ200(~r3)↓(Sz3)
ψ100(~r4)↑(Sz4) ψ100(~r4)↓(Sz4) ψ200(~r4)↑(Sz4) ψ200(~r4)↓(Sz4)

∣∣∣∣∣∣∣∣
(5.37)

The ionization energy jumps up to 9.3 eV, due to the increased nuclear strength
and the fact that the fellow 2s electron does not shield its proton as well as the
two 1s electrons do theirs.

For boron, one of the ψ21m “2p” states will need to be occupied. Within
the approximations made, there is no preference for any particular state. As an
example, figure 5.7 shows the approximate solution in which the ψ210, or “2pz”
state is occupied. It may be recalled from figure 4.11 that this state remains
close to the z-axis (which is horizontal in the figure.) As a result, the wave
function becomes directional. The ionization energy decreases a bit to 8.3 eV,

Figure 5.7: Example approximate solution for boron.

indicating that indeed the 2p states have higher energy than the 2s ones.
For carbon, a second ψ21m state needs to be occupied. Within the made ap-

proximations, the second 2p electron could also go into the 2pz state. However,
in reality, repulsion by the electron already in the 2pz state makes it preferable
for the new electron to stay away from the z-axis, which it can do by going
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into say the 2px state. This state is around the vertical x-axis instead of the
horizontal z-axis. As noted in chapter 4.3, 2px is a ψ21m combination state.

For nitrogen, the third 2p electron can go into the 2py state, which is around
the y-axis. There are now three 2p electrons, each in a different spatial state.

However, for oxygen the game is up. There are no more free spatial states in
the L shell. The new electron will have to go, say, into the py state, pairing up
with the electron already there in an opposite-spin singlet state. The repulsion
by the fellow electron in the same state reflects in an decrease in ionization
energy compared to nitrogen.

For fluorine, the next electron goes into the 2px state, leaving only the 2pz
state unpaired.

For neon, all 2p electrons are paired, and the L shell is full. This makes neon
an inert noble gas like helium: it cannot accommodate any more electrons at
the E2 energy level, and, with the strongest nucleus among the L-shell elements,
it holds tightly onto the electrons it has.

On the other hand, the previous element, fluorine, has a nucleus that is al-
most as strong, and it can accommodate an additional electron in its unpaired
2pz state. So fluorine is very willing to steal an electron if it can get away with
it. The capability to draw electrons from other elements is called “electronega-
tivity,” and fluorine is the most electronegative of them all.

Neighboring elements oxygen and nitrogen are less electronegative, but oxy-
gen can accommodate two additional electrons rather than one, and nitrogen
will even accommodate three.

Key Points

0 The Pauli exclusion principle forces states of higher energy to become
occupied when the number of electrons increases. This raises the
energy levels greatly above what they would be otherwise.

0 With the third element, lithium, one of the ψ200l “2s” states becomes
occupied. Because of the higher energy of those states, the third
electron is readily given up; the ionization energy is only 5.4 eV.

0 Conversely, helium will not take on a third electron.

0 The fourth element is beryllium, with both 2s states occupied.

0 For boron, carbon, nitrogen, oxygen, fluorine, and neon, the succes-
sive ψ21m “2p” states become occupied.

0 Neon is a noble gas like helium: it holds onto its electrons tightly,
and will not accommodate any additional electrons since they would
have to enter the E3 energy level states.

0 Fluorine, oxygen, and nitrogen, however, are very willing to accom-
modate additional electrons in their vacant 2p states.

0 The eight states ψ2lml are called the “L shell.”
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5.9.5 Sodium to argon

Starting with sodium (natrium), the E3, or “M shell” begins to be filled. Sodium
has a single 3s electron in the outermost shell, which makes it much like lithium,
with a single 2s electron in its outermost shell. Since the outermost electrons are
the critical ones in chemical behavior, sodium is chemically much like lithium.
Both are metals with a “valence” of one; they are willing to sacrifice one electron.

Similarly, the elements following sodium in the third row of the periodic
figure 5.5 mirror the corresponding elements in the previous row. Near the end
of the row, the elements are again eager to accept additional electrons in the
still vacant 3p states.

Finally argon, with no 3s and 3p vacancies left, is again inert. This is actually
somewhat of a surprise, because the E3 M-shell also includes 10 ψ32ml states.
These states of increased angular momentum are called the “3d” states. (What
else?) According to the approximations made, the 3s, 3p, and 3d states would
all have the same energy. So it might seem that argon could accept additional
electrons into the 3d states.

But it was already noted that the p states in reality have more energy than
the s states at the same theoretical energy level, and the d states have even
more. The reason is the same: the d states stay even further away from the
nucleus than the p states. Because of the higher energy of the d states, argon
is really not willing to accept additional electrons.

Key Points

0 The next eight elements mirror the properties of the previous eight,
from the metal sodium to the highly electronegative chlorine and the
noble gas argon.

0 The states ψ3lml are called the “M shell.”

5.9.6 Potassium to krypton

The logical continuation of the story so far would be that the potassium (kalium)
atom would be the first one to put an electron into a 3d state. However, by now
the shielding approximation starts to fail not just quantitatively, but qualita-
tively. The 3d states actually have so much more energy than the 3s states that
they even exceed the energy of the 4s states. Potassium puts its last electron
into a 4s state, not a 3d one. This makes its outer shell much like the ones of
lithium and sodium, so it starts a new row in the periodic table.

The next element, calcium, fills the 4s shell, putting an end to that game.
Since the six 4p states have more energy, the next ten elements now start filling
the skipped 3d states with electrons, leaving the N-shell with 2 electrons in it.
(Actually, this is not quite precise; the 3d and 4s energies are closely together,
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and for chromium and copper one of the two 4s electrons turns out to switch
to a 3d state.) In any case, it takes until gallium until the six 4p states start
filling, which is fully accomplished at krypton. Krypton is again a noble gas,
though it can form a weak bond with chlorine.

Continuing to still heavier elements, the energy levels get even more con-
fused. This discussion will stop while it is still ahead.

Key Points

0 Unlike what the approximate theory says, in real life the 4s states
ψ400l have less energy than the ψ32ml 3d states, and are filled first.

0 After that, the transition metals fill the skipped 3d states before the
old logic resumes.

0 The states ψ4lml are called the “N shell.” It all spells KLM Nether-
lands.

0 The substates are of course called “s,” “p,” “d,” “f,” . . .

5.9.7 Full periodic table

A complete periodic table of the elements is shown in figure 5.8. The number
in the top left corner of each cell is the atomic number Z of the element. The
numbers to the left of the table indicate the periods. The length of the periods
expands from 2 to 8 elements in period 2 when l = 2, p, states must be filled
with electrons. Then in period 4, a delayed filling of l = 2, d, states expands
the periods by another 10 elements. Finally, in period 6, a delayed filling of l =
3, f, states adds another 14 elements per period.

The top part of the shown table is called the main group. For some reason
however, hydrogen is not included in this term. Note that compared to the
previous abbreviated periodic table, hydrogen and helium have been moved to
the final columns. The idea is to combine elements with similar properties
together into the same columns. Helium is a noble gas like the group VIII
elements with filled electron shells. Helium has absolutely nothing in common
with the group II alkaline metals that have two electrons in an otherwise empty
shell. Similarly, hydrogen behaves much more like a halogen with 1 electron
missing from a filled shell than like an alkali metal with 1 electron in an otherwise
empty shell. However, hydrogen is still sufficiently different that it should not
be considered an actual halogen.

The elements in the periodic table are classified as metals, metalloids, and
nonmetals. Metalloids have chemical properties intermediate between metals
and nonmetals. The band of metalloids is indicated by dark red cell boundaries
in figure 5.8. It extends from boron to polonium. The metals are found to the
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Figure 5.8: Periodic table of the elements. Cell color indicates ionization energy.
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left of this band and the nonmetals to the right. Hydrogen and helium are most
definitely nonmetals and their shown position in the table reflects that.

The color of each cell indicates the ionization energy, increasing from bluish
to reddish. The length of the bar below the atomic number gives the electroneg-
ativity. In the top right corner wavy lines indicate that the element is a liquid
under normal conditions, and dots that it is a gas. A dagger indicates that the
atomic nucleus is radioactive (for every isotope, chapter 14). If the dagger is
followed by an exclamation mark, the radioactivity causes the nucleus to decay
fast enough that there are no usable quantities of the element found in nature.
These elements must be artificially prepared in a lab.

The boxes below the element names indicate the s, p, d, and f shells being
filled in that period of the table. The shells already filled in the noble gas at
the end of the previous period remain filled and are not shown. Note that the
filling of nd states is delayed one period, to period n + 1, and the filing of nf
states is delayed two periods, to period n+ 2.

Besides element name, symbol, and radioactivity, periodic table figure 5.8
limits itself to data for which the periodic table arrangement is meaningful.
Many other periodic tables also list the average atomic mass for the isotopic
composition found on earth. However, for purposes of understanding atomic
masses physically, graphs in chapter 14 on nuclei, like figures 14.2 and 14.4, are
much more useful.

It should be noted that periodic table figure 5.8 deviates in a number of
aspects from the normal conventions. Figure 5.8 is what seems the simplest and
most logical. If you put historical oddities and a few committees in charge, you
get something different.

Most prominently, most periodic tables leave hydrogen in group I instead of
moving it to the top of group VII. But if you move helium to group VIII because
of its similarity with the other noble gases in that group, then it is ludicrous to
leave hydrogen in group I. Hydrogen has virtually nothing in common with the
alkali metals in group I. Like the light halogens, it is a diatomic gas under normal
conditions, not a solid metal. Even at the extremely low temperatures at which
hydrogen solidifies, it is a nonconducting molecular solid, not a metal. The
melting, boiling, and critical points of hydrogen form a logical sequence with
those of the halogens. They are totally inconsistent with those of the alkali
metals. Hydrogen has the ionization energy of oxygen and the electronegativity
of phosphorus. A ionic compound like NaH is a direct equivalent of NaCl, salt,
with the hydrogen as the negative ion.

It is true that hydrogen can also form positive ions in chemical reactions,
more or less, something that the halogens simply do not do. But do not actually
expect to find bare protons when other atoms are around. Also the ionization
energy and electronegativity of hydrogen are quite a bit out of line with those of
the other halogens. Hydrogen is certainly not a true halogen. But if you order
the elements by properties, there is no doubt that hydrogen belongs in group
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VII, not I. If you want to refer to the quantum-mechanical shell structure, the
term “s block” can still be used to indicate the alkali and alkaline metals along
with hydrogen and helium. The remainder of the main group is the “p block.”
These names indicate the quantum states being filled.

The term transition metals may not include the elements in group IIB of
the d-block, for reason related to the fact that their s and d shells have been
completely filled. The f-block elements are sometimes referred to as the inner
transition metals.

Further, according to the 2005 IUPAC Red Book the lanthanides and ac-
tinides should be more properly called the lanthanoids and actinoids, since “ide”
usually means negative ion. Since “oid” means “-like,” according to IUPAC the
lanthanoids should not really include lanthanum, and the actinoids should not
include actinium. However, the IUPAC does include them because of common
usage. A rare triumph of scientific common sense over lousy terminology. If lan-
thanum and actinium are to be included, the lanthanides and actinides should
of course simply have been renamed the lanthanum and actinium groups, or
equivalent, not lanthanoids and actinoids.

More significantly, unlike figure 5.8 suggests, lutetium is included in the lan-
thanoids and lawrencium in the actinoids. The term rare-earth metals include
the lanthanoids, as well as scandium and yttrium as found immediately above
lutetium.

Also, both lutetium and lawrencium are according to IUPAC included in the
f-block. That makes the f-block 15 columns wide instead of the 14 column block
shown at the bottom of figure 5.8. Of course, that does not make any sense at
all. The name f-block supposedly indicates that an f-shell is being filled. An
f-shell holds 14 electrons, not 15. For lutetium, the f-shell is full and other shells
have begun to fill. The same is, at the time of writing, believed to be true for
lawrencium. And while the first f-shell electrons for lanthanum and actinium
get temporarily bumped to the d-shell, that is obviously a minor error in the
overall logic of filling the f-shell. (Apparently, there is a long-standing contro-
versy whether lanthanum and actinium or lutetium and lawrencium should be
included in the f-block. By compromising and putting both in the f-block of
their 2007 periodic table, the IUPAC got the worst of both worlds.)

A nice recent example of a more conventional periodic table by an author-
itative source is from NIST1. This also includes the latest updates on various
data, unlike the periodic table in this book. An earlier version can be found at
the web location2 of this document. The hieroglyphs found in the NIST table
are explained in chapter 10.7.1.

Periodic table figure 5.8 was based on data from various sources. Shell fillings
and ionization energies agree with the NIST listing and table. The uncertain

1https://www.nist.gov/pml/periodic-table-elements
2http://www.eng.famu.fsu.edu/~dommelen/quansup/periodic-table.pdf

https://www.nist.gov/pml/periodic-table-elements
../../quansup/periodic-table.pdf
https://www.nist.gov/pml/periodic-table-elements
http://www.eng.famu.fsu.edu/~dommelen/quansup/periodic-table.pdf
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shell fillings at atomic numbers 103 and 104 were left out. The classification
whether the elements must be artificially prepared was taken from the NIST
periodic table. The electronegativities are based on the Pauling scale. They were
taken from Wikipedia “use” values, that were in turn taken from WebElements,
and are mostly the same as those in the 2003 CRC Handbook of Chemistry and
Physics, and the 1999 Lange’s Handbook of Chemistry. Discrepancies between
these sources of more than 10% occur for atomic numbers 71, 74, 82, and 92.

5.10 Pauli Repulsion

Before proceeding to a description of chemical bonds, one important point must
first be made. While the earlier descriptions of the hydrogen molecular ion
and hydrogen molecule produced many important observations about chemical
bonds, they are highly misleading in one aspect.

In the hydrogen molecule cases, the repulsive force that eventually stops the
atoms from getting together any closer than they do is the electrostatic repulsion
between the nuclei. It is important to recognize that this is the exception,
rather than the norm. Normally, the main repulsion between atoms is not
due to repulsion between the nuclei, but due to the Pauli exclusion principle
for their electrons. Such repulsion is called “exclusion-principle repulsion” or
“Pauli repulsion.”

To understand why the repulsion arises, consider two helium ions, and as-
sume that you put them right on top of each other. Of course, with the nuclei
right on top of each other, the nuclear repulsion will be infinite, but ignore that
for now. There is another effect, and that is the interesting one here. There are
now 4 electrons in the 1s shell.

Without the Pauli exclusion principle, that would not be a big deal. The
repulsion between the electrons would go up, but so would the combined nuclear
strength double. However, Pauli says that only two electrons may go into the
1s shell. The other two 1s electrons will have to divert to the 2s shell, and that
requires a lot of energy.

Next consider what happens when two helium atoms are not on top of each
other, but are merely starting to intrude on each other’s 1s shell space. Re-
call that the Pauli principle is just the antisymmetrization requirement of the
electron wave function applied to a description in terms of given energy states.
When the atoms get closer together, the energy states get confused, but the
antisymmetrization requirement stays in full force. When the filled shells start
to intrude on each other’s space, the electrons start to divert to increasingly
higher energy to continue to satisfy the antisymmetrization requirement. This
process ramps up much more quickly than the nuclear repulsions and dominates
the net repulsion in almost all circumstances.
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In everyday terms, the standard example of repulsion forces that ramp up
very quickly is billiard balls. If billiard balls are a millimeter away from touching,
there is no repulsion between them, but move them closer a millimeter, and
suddenly there is this big repulsive force. The repulsion between filled atom
shells does not ramp up that quickly in relative terms, of course, but it does
ramp up quickly. So describing atoms with closed shells as billiard balls is quite
reasonable if you are just looking for a general idea.

Key Points

0 If electron wave functions intrude on each others space, it can cause
repulsion due to the antisymmetrization requirement.

0 This is called Pauli repulsion or exclusion principle repulsion.

0 It is the dominant repulsion in almost all cases.

5.11 Chemical Bonds

The electron states, or “atomic orbitals”, of the elements discussed in section
5.9 form the basis for the “valence bond” description of chemical bonds. This
section summarizes some of the basic ideas involved.

5.11.1 Covalent sigma bonds

As pointed out in section 5.9, helium is chemically inert: its outermost, and
only, shell can hold two electrons, and it is full. But hydrogen has only one
electron, leaving a vacant position for another 1s electron. As discussed earlier
in chapter 5.2, two hydrogen atoms are willing to share their electrons. This
gives each atom in some sense two electrons in its shell, filling it up. The shared
state has lower energy than the two separate atoms, so the H2 molecule stays
together. A sketch of the shared 1s electrons was given in figure 5.2.

Fluorine has one vacant spot for an electron in its outer shell just like hydro-
gen; its outer shell can contain 8 electrons and fluorine has only seven. One of
its 2p states, assume it is the horizontal axial state 2pz, has only one electron in
it instead of two. Two fluorine atoms can share their unpaired electrons much
like hydrogen atoms do and form an F2 molecule. This gives each of the two
atoms a filled shell. The fluorine molecular bond is sketched in figure 5.9 (all
other electrons have been omitted.) This bond between p electrons looks quite
different from the H2 bond between s electrons in figure 5.2, but it is again a
covalent one, in which the electrons are shared. In addition, both bonds are
called “sigma” bonds: if you look at either bond from the side, it looks rota-
tionally symmetric, just like an s state. (Sigma is the Greek equivalent of the
letter s; it is written as σ.)
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Figure 5.9: Covalent sigma bond consisting of two 2pz states.

Key Points

0 Two fluorine or similar atoms can share their unpaired 2p electrons
in much the same way that two hydrogen atoms can share their
unpaired 2s electrons.

0 Since such bonds look like s states when seen from the side, they are
called sigma or σ bonds.

5.11.2 Covalent pi bonds

The N2 nitrogen molecule is another case of covalent bonding. Nitrogen atoms
have a total of three unpaired electrons, which can be thought of as one each in
the 2px, 2py, and 2pz states. Two nitrogen atoms can share their unpaired 2pz
electrons in a sigma bond the same way that fluorine does, longitudinally.

However, the 2px and 2py states are normal to the line through the nuclei;
these states must be matched up sideways. Figure 5.10 illustrates this for the
bond between the two vertical 2px states. This covalent bond, and the corre-
sponding one between the 2py states, looks like a p state when seen from the
side, and it is called a “pi” or π bond.

So, the N2 nitrogen molecule is held together by two pi bonds in addition to
a sigma bond, making a triple bond. It is a relatively inert molecule.

Key Points

0 Unpaired p states can match up sideways in what are called pi or π
bonds.

5.11.3 Polar covalent bonds and hydrogen bonds

Oxygen, located in between fluorine and nitrogen in the periodic table, has two
unpaired electrons. It can share these electrons with another oxygen atom to

extrascale=3,notransparent
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Figure 5.10: Covalent pi bond consisting of two 2px states.

form O2, the molecular oxygen we breath. However, it can instead bind with
two hydrogen atoms to form H2O, the water we drink.

In the water molecule, the lone 2pz electron of oxygen is paired with the 1s
electron of one hydrogen atom, as shown in figure 5.11. Similarly, the lone 2py

Figure 5.11: Covalent sigma bond consisting of a 2pz and a 1s state.

electron is paired with the 1s electron of the other hydrogen atom. Both bonds
are sigma bonds: they are located on the connecting line between the nuclei.
But in this case each bond consists of a 1s and a 2p state, rather than two states
of the same type.

Since the x and y axes are orthogonal, the two hydrogen atoms in water
should be at a 90 degree angle from each other, relative to the oxygen nucleus.
(Without valence bond theory, the most logical guess would surely have been
that they would be at opposite sides of the oxygen atom.) The predicted 90
degree angle is in fair approximation to the experimental value of 105 degrees.

extrascale=3,notransparent
extrascale=3,notransparent
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The reason that the actual angle is a bit more may be understood from the
fact that the oxygen atom has a higher attraction for the shared electrons, or
electronegativity, than the hydrogen atoms. It will pull the electrons partly away
from the hydrogen atoms, giving itself some negative charge, and the hydrogen
atoms a corresponding positive one. The positively charged hydrogen atoms
repel each other, increasing their angle a bit. If you go down one place in the
periodic table below oxygen, to the larger sulfur atom, H2S has its hydrogen
atoms under about 93 degrees, quite close to 90 degrees.

Bonds like the one in water, where the negative electron charge shifts towards
the more electronegative atom, are called “polar” covalent bonds.

It has significant consequences for water, since the positively charged hy-
drogen atoms can electrostatically attract the negatively charged oxygen atoms
on other molecules. This has the effect of creating bonds between different
molecules called “hydrogen bonds.” While much weaker than typical covalent
bonds, they are strong enough to affect the physical properties of water. For
example, they are the reason that water is normally a liquid instead of a gas,
quite a good idea if you are thirsty, and that ice floats on water instead of sink-
ing to the bottom of the oceans. Hydrogen is particularly efficient at creating
such bonds because it does not have any other electrons to shield its nucleus.

Key Points

0 The geometry of the quantum states reflects in the geometry of the
formed molecules.

0 When the sharing of electrons is unequal, a bond is called polar.

0 A special case is hydrogen, which is particularly effective in also
creating bonds between different molecules, hydrogen bonds, when
polarized.

0 Hydrogen bonds give water unusual properties that are critical for
life on earth.

5.11.4 Promotion and hybridization

While valence bond theory managed to explain a number of chemical bonds so
far, two important additional ingredients need to be added. Otherwise it will
not at all be able to explain organic chemistry, the chemistry of carbon critical
to life.

Carbon has two unpaired 2p electrons just like oxygen does; the difference
between the atoms is that oxygen has in addition two paired 2p electrons. With
two unpaired electrons, it might seem that carbon should form two bonds like
oxygen.
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But that is not what happens; normally carbon forms four bonds instead
of two. In chemical bonds, one of carbon’s paired 2s electrons moves to the
empty 2p state, leaving carbon with four unpaired electrons. It is said that the
2s electron is “promoted” to the 2p state. This requires energy, but the energy
gained by having four bonds more than makes up for it.

Promotion explains why a molecule such as CH4 forms. Including the 4
shared hydrogen electrons, the carbon atom has 8 electrons in its outer shell, so
its shell is full. It has made as many bonds as it can support.

However, promotion is still not enough to explain the molecule. If the CH4

molecule was merely a matter of promoting one of the 2s electrons into the
vacant 2py state, the molecule should have three hydrogen atoms under 90
degrees, sharing the 2px, 2py, and 2pz electrons respectively, and one hydrogen
atom elsewhere, sharing the remaining 2s electron. In reality, the CH4 molecule
is shaped like a regular tetrahedron, with angles of 109.5 degrees between all
four hydrogens.

The explanation is that, rather than using the 2px, 2py, 2pz, and 2s states
directly, the carbon atom forms new combinations of the four called “hybrid”
states. (This is not unlike how the torus-shaped ψ211 and ψ21−1 states were
recombined in chapter 4.3 to produce the equivalent 2px and 2py pointer states.)

In case of CH4, the carbon converts the 2s, 2px, 2py, and 2pz states into four
new states. These are called sp3 states, since they are formed from one s and
three p states. They are given by:

|sp3
a〉 = 1

2
(|2s〉+ |2px〉+ |2py〉+ |2pz〉)

|sp3
b〉 = 1

2
(|2s〉+ |2px〉 − |2py〉 − |2pz〉)

|sp3
c〉 = 1

2
(|2s〉 − |2px〉+ |2py〉 − |2pz〉)

|sp3
d〉 = 1

2
(|2s〉 − |2px〉 − |2py〉+ |2pz〉)

where the kets denote the wave functions of the indicated states.

All four sp3 hybrids have the same shape, shown in figure 5.12. The asym-
metrical shape can increase the overlap between the wave functions in the bond.
The four sp3 hybrids are under equal 109.5 degrees angles from each other, pro-
ducing the tetrahedral structure of the CH4 molecule. And of diamond, for that
matter. With the atoms bound together in all spatial directions, diamond is an
extremely hard material.

But carbon is a very versatile atom. In graphite, and carbon nanotubes,
carbon atoms arrange themselves in layers instead of three-dimensional struc-
tures. Carbon achieves this trick by leaving the 2p-state in the direction normal
to the plane, call it px, out of the hybridization. The two 2p states in the plane
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Figure 5.12: Shape of an sp3 hybrid state.

plus the 2s state can then be combined into three sp2 states:

|sp2
a〉 =

1√
3
|2s〉+ 2√

6
|2pz〉

|sp2
b〉 =

1√
3
|2s〉 − 1√

6
|2pz〉+

1√
2
|2py〉

|sp2
c〉 =

1√
3
|2s〉 − 1√

6
|2pz〉 −

1√
2
|2py〉

Each is shaped as shown in figure 5.13.

Figure 5.13: Shapes of the sp2 (left) and sp (right) hybrids.

These planar hybrids are under 120 degree angles from each other, giving
graphite its hexagonal structure. The left-out p electrons normal to the plane
can form pi bonds with each other. A planar molecule formed using sp2 hy-
bridization is ethylene (C2H4); it has all six nuclei in the same plane. The pi

extrascale=3,notransparent
extrascale=3,notransparent


5.11. CHEMICAL BONDS 199

bond normal to the plane prevents out-of-plane rotation of the nuclei around
the line connecting the carbons, keeping the plane rigid.

Finally, carbon can combine the 2s state with a single 2p state to form two
sp hybrids under 180 degrees from each other:

|spa〉 =
1√
2
(|2s〉+ |2pz〉)

|spb〉 =
1√
2
(|2s〉 − |2pz〉)

An example sp hybridization is acetylene, (C2H2), which has all its four nuclei
on a single line.

Key Points

0 The chemistry of carbon is critical for life as we know it.

0 It involves two additional ideas; one is promotion, where carbon kicks
one of its 2s electrons into a 2p state. This gives carbon one 2s and
three 2p electrons.

0 The second idea is hybridization, where carbon combines these four
states in creative new combinations called hybrids.

0 In sp3 hybridization, carbon creates four hybrids in a regular tetra-
hedron combination.

0 In sp2 hybridization, carbon creates three hybrids in a plane, spaced
at 120 degree intervals. That leaves a conventional 2p state in the
direction normal to the plane.

0 In sp hybridization, carbon creates two hybrids along a line, pointing
in opposite directions. That leaves two conventional 2p states normal
to the line of the hybrids and to each other.

5.11.5 Ionic bonds

Ionic bonds are the extreme polar bonds; they occur if there is a big difference
between the electronegativities of the atoms involved.

An example is kitchen salt, NaCl. The sodium atom has only one electron
in its outer shell, a loosely bound 3s one. The chlorine has seven electrons in its
outer shell and needs only one more to fill it. When the two react, the chlorine
does not just share the lone electron of the sodium atom, it simply takes it away.
It makes the chlorine a negatively charged ion. Similarly, it leaves the sodium
as a positively charged ion.

The charged ions are bound together by electrostatic forces. Since these
forces act in all directions, each ion does not just attract the opposite ion it
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exchanged the electron with, but all surrounding opposite ions. And since in
salt each sodium ion is surrounded by six chlorine ions and vice versa, the
number of bonds that exists is large.

Since so many bonds must be broken to take a ionic substance apart, their
properties are quite different from covalently bounded substances. For example,
salt is a solid with a high melting point, while the covalently bounded Cl2 chlo-
rine molecule is normally a gas, since the bonds between different molecules are
weak. Indeed, the covalently bound hydrogen molecule that has been discussed
much in this chapter remains a gas until especially low cryogenic temperatures.

Chapter 10.2 will give a more quantitative discussion of ionic molecules and
solids.

Key Points

0 When a bond is so polar that practically speaking one atom takes
the electron away from the other, the bond is called ionic.

0 Ionic substances like salt tend to form strong solids, unlike typical
purely covalently bound molecules like hydrogen that tend to form
gases.

5.11.6 Limitations of valence bond theory

Valence bond theory does a terrific job of describing chemical bonds, producing
a lot of essentially correct, and very nontrivial predictions, but it does have
limitations.

One place it fails is for the O2 oxygen molecule. In the molecule, the atoms
share their unpaired 2px and 2pz electrons. With all electrons symmetrically
paired in the spatial states, the electrons should all be in singlet spin states
having no net spin. However, it turns out that oxygen is strongly paramagnetic,
indicating that there is in fact net spin. The problem in valence bond theory
that causes this error is that it ignores the already paired-up electrons in the
2py states. In the molecule, the filled 2py states of the atoms are next to each
other and they do interact. In particular, one of the total of four 2py electrons
jumps over to the 2px states, where it only experiences repulsion by two other
electrons instead of by three. The spatial state of the electron that jumps over
is no longer equal to that of its twin, allowing them to have equal instead of
opposite spin.

Valence bond theory also has problems with single-electron bonds such as
the hydrogen molecular ion, or with benzene, in which the carbon atoms are
held together with what is essentially 1.5 bonds, or rather, bonds shared as in
a two state system. Excited states produce major difficulties. Various fixes and
improved theories exist.
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Key Points

0 Valence bond theory is extremely useful. It is conceptually simple
and explains much of the most important chemical bonds.

0 However, it does have definite limitations: some types of bonds are
not correctly or not at all described by it.

0 Little in life is ideal, isn’t it?





Chapter 6

Macroscopic Systems

Abstract

Macroscopic systems involve extremely large numbers of particles. Such
systems are very hard to analyze exactly in quantum mechanics. An
exception is a system of noninteracting particles stuck in a rectangular
box. This chapter therefore starts with an examination of that model.
For a model of this type, the system energy eigenfunctions are found to
be products of single-particle states.

One thing that becomes quickly obvious is that macroscopic system nor-
mally involve a gigantic number of single-particle states. It is unrealistic
to tabulate them each individually. Instead, average statistics about the
states are derived. The primary of these is the so-called density of states.
It is the number of single-particle states per unit energy range.

But knowing the number of states is not enough by itself. Information
is also needed on how many particles are in these states. Fortunately,
it turns out to be possible to derive the average number of particles
per state. This number depends on whether it is a system of bosons,
like photons, or a system of fermions, like electrons. For bosons, the
number of particles is given by the so-called Bose-Einstein distribution,
while for electrons it is given by the so-called Fermi-Dirac distribution.
Either distribution can be simplified to the so-called Maxwell-Boltzmann
distribution under conditions in which the average number of particles
per state is much less than one.

Each distribution depends on both the temperature and on a so-called
chemical potential. Physically, temperature differences promote the dif-
fusion of thermal energy, heat, from hot to cold. Similarly, differences in
chemical potential promote the diffusion of particles from high chemical
potential to low.

At first, systems of identical bosons are studied. Bosons behave quite
strangely at very low temperatures. Even for a nonzero temperature,
a finite fraction of them may stay in the single-particle state of lowest
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energy. That behavior is called Bose-Einstein condensation. Bosons also
show a lack of low-energy global energy eigenfunctions.

A first discussion of electromagnetic radiation, including light, will be
given. The discussed radiation is the one that occurs under conditions of
thermal equilibrium, and is called blackbody radiation.

Next, systems of electrons are covered. It is found that electrons in
typical macroscopic systems have vast amounts of kinetic energy even at
absolute zero temperature. It is this kinetic energy that is responsible
for the volume of solids and liquids and their resistance to compression.
The electrons are normally confined to a solid despite all their kinetic
energy. But at some point, they may escape in a process called thermionic
emission.

The electrical conduction of metals can be explained using the simple
model of noninteracting electrons. However, electrical insulators and
semiconductors cannot. It turns out that these can be explained by in-
cluding a simple model of the forces on the electrons.

Then semiconductors are discussed, including applications such as diodes,
transistors, solar cells, light-emitting diodes, solid state refrigeration,
thermocouples, and thermoelectric generators. A somewhat more gen-
eral discussion of optical issues is also given.

6.1 Intro to Particles in a Box

Since most macroscopic systems are very hard to analyze in quantum-mechanics,
simple systems are very important. They allow insight to be achieved that would
be hard to obtain otherwise. One of the simplest and most important systems is
that of multiple noninteracting particles in a box. For example, it is a starting
point for quantum thermodynamics and the quantum description of solids.

It will be assumed that the particles do not interact with each other, nor
with anything else in the box. That is a dubious assumption; interactions be-
tween particles are essential to achieve statistical equilibrium in thermodynam-
ics. And in solids, interaction with the atomic structure is needed to explain
the differences between electrical conductors, semiconductors, and insulators.
However, in the box model such effects can be treated as a perturbation. That
perturbation is ignored to leading order.

In the absence of interactions between the particles, the possible quantum
states, or energy eigenfunctions, of the complete system take a relatively simple
form. They turn out to be products of single particle energy eigenfunctions. A
generic energy eigenfunction for a system of I particles is:

ψS
~n1,~n2,...,~ni,...,~nI

(~r1, Sz1,~r2, Sz2, . . . ,~ri, Szi, . . . ,~rI , SzI) =
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ψp
~n1
(~r1, Sz1)× ψp

~n2
(~r2, Sz2)× . . .× ψp

~ni
(~ri, Szi)× . . .× ψp

~nI
(~rI , SzI) (6.1)

In such a system eigenfunction, particle number i out of I is in a single-particle
energy eigenfunction ψp

~ni
(~ri, Szi). Here ~ri is the position vector of the particle,

and Szi its spin in a chosen z-direction. The subscript ~ni stands for whatever
quantum numbers characterize the single-particle eigenfunction. A system wave
function of the form above, a simple product of single-particles ones, is called a
“Hartree product.”

For noninteracting particles confined inside a box, the single-particle energy
eigenfunctions, or single-particle states, are essentially the same ones as those
derived in chapter 3.5 for a particle in a pipe with a rectangular cross section.
However, to account for nonzero particle spin, a spin-dependent factor must be
added. In any case, this chapter will not really be concerned that much with the
detailed form of the single-particle energy states. The main quantities of interest
are their quantum numbers and their energies. Each possible set of quantum
numbers will be graphically represented as a point in a so-called “wave number
space.” The single-particle energy is found to be related to how far that point
is away from the origin in that wave number space.

For the complete system of I particles, the most interesting physics has to
do with the (anti) symmetrization requirements. In particular, for a system of
identical fermions, the Pauli exclusion principle says that there can be at most
one fermion in a given single-particle state. That implies that in the above
Hartree product each set of quantum numbers ~n must be different from all the
others. In other words, any system wave function for a system of I fermions
must involve at least I different single-particle states. For a macroscopic number
of fermions, that puts a tremendous restriction on the wave function. The most
important example of a system of identical fermions is a system of electrons, but
systems of protons and of neutrons appear in the description of atomic nuclei.

The antisymmetrization requirement is really more subtle than the Pauli
principle implies. And the symmetrization requirements for bosons like photons
or helium-4 atoms are nontrivial too. This was discussed earlier in chapter 5.7.
Simple Hartree product energy eigenfunctions of the form (6.1) above are not
acceptable by themselves; they must be combined with others with the same
single-particle states, but with the particles shuffled around between the states.
Or rather, because shuffled around sounds too much like Las Vegas, with the
particles exchanged between the states.

Key Points

0 Systems of noninteracting particles in a box will be studied.

0 Interactions between the particles may have to be included at some
later stage.

0 System energy eigenfunctions are obtained from products of single-
particle energy eigenfunctions.
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0 (anti) symmetrization requirements further restrict the system en-
ergy eigenfunctions.

6.2 The Single-Particle States

As the previous section noted, the objective is to understand systems of non-
interacting particles stuck in a closed, impenetrable, box. To do so, the key
question is what are the single-particle quantum states, or energy eigenfunc-
tions, for the particles. They will be discussed in this section.

The box will be taken to be rectangular, with its sides aligned with the
coordinate axes. The lengths of the sides of the box will be indicated by ℓx, ℓy,
and ℓz respectively.

The single-particle energy eigenfunctions for such a box were derived in
chapter 3.5 under the guise of a pipe with a rectangular cross section. The
single-particle energy eigenfunctions are:

ψp
nxnynz

(~r) =

√
8

V sin(kxx) sin(kyy) sin(kzz) (6.2)

Here V = ℓxℓyℓz is the volume of the box. The “wave numbers” kx, ky, and kz
take the values:

kx = nx
π

ℓx
ky = ny

π

ℓy
kz = nz

π

ℓz
(6.3)

where nx, ny, and nz are natural numbers. Each set of three natural num-
bers nx, ny, nz gives one single-particle eigenfunction. In particular, the single-
particle eigenfunction of lowest energy is ψp

111, having nx = ny = nz = 1.
However, the precise form of the eigenfunctions is not really that important

here. What is important is how many there are and what energy they have.
That information can be summarized by plotting the allowed wave numbers in
a kx, ky, kz axis system. Such a plot is shown in the left half of figure 6.1.

Each point in this “wave number space” corresponds to one spatial single-
particle state. The coordinates kx, ky, and kz give the wave numbers in the
three spatial directions. In addition, the distance k from the origin indicates
the single-particle energy. More precisely, the single particle energy is

E
p
=

~
2

2m
k2 k ≡

√
k2x + k2y + k2z (6.4)

The energy is therefore just a constant times the square of this distance. (The
above expression for the energy can be verified by applying the kinetic energy
operator on the given single-particle wave function.)
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kx

ky

kz D

Ep

Figure 6.1: Allowed wave number vectors, left, and energy spectrum, right.

One more point must be made. The single-particle energy eigenfunctions
described above are spatial states. Particles with nonzero spin, which includes
all fermions, can additionally have different spin in whatever is chosen to be the
z-direction. In particular, for fermions with spin 1/2, including electrons, there
is a “spin-up” and a “spin-down” version of each spatial energy eigenfunction:

ψp

nxnynz ,
1
2

(~r, Sz) =

√
8

V sin(kxx) sin(kyy) sin(kzz) ↑(Sz)

ψp

nxnynz ,− 1
2

(~r, Sz) =

√
8

V sin(kxx) sin(kyy) sin(kzz) ↓(Sz)

That means that each point in the wave number space figure 6.1 stands for two
single-particle states, not just one.

In general, if the particles have spin s, each point in wave number space
corresponds to 2s + 1 different single-particle states. However, photons are
an exception to this rule. Photons have spin s = 1 but each spatial state
corresponds to only 2 single-particle states, not 3. (That is related to the fact
that the spin angular momentum of a photon in the direction of motion can only
be ~ or−~, not 0. And that is in turn related to the fact that the electromagnetic
field cannot have a component in the direction of motion. If you are curious,
see addendum {A.21.6} for more.)

Key Points

0 Each single particle state is characterized by a set of three “wave
numbers” kx, ky, and kz.
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0 Each point in the “wave number space” figure 6.1 corresponds to one
specific spatial single-particle state.

0 The distance of the point from the origin is a measure of the energy
of the single-particle state.

0 In the presence of nonzero particle spin s, each point in wave number
space corresponds to 2s+1 separate single-particle states that differ
in the spin in the chosen z-direction. For photons, make that 2s
instead of 2s+ 1.

6.3 Density of States

Up to this point, this book has presented energy levels in the form of an energy
spectrum. In these spectra, each single-particle energy was shown as a tick
mark along the energy axis. The single-particle states with that energy were
usually listed next to the tick marks. One example was the energy spectrum of
the electron in a hydrogen atom as shown in figure 4.8.

However, the number of states involved in a typical macroscopic system can
easily be of the order of 1020 or more. There is no way to show anywhere near
that many energy levels in a graph. Even if printing technology was up to it,
and it can only dream about it, your eyes would have only about 7 106 cones
and 1.3 108 rods to see them.

For almost all practical purposes, the energy levels of a macroscopic system
of noninteracting particles in a box form a continuum. That is schematically
indicated by the hatching in the energy spectrum to the right in figure 6.1. The
spacing between energy levels is however very many orders of magnitude tighter
than the hatching can indicate.

helium atom electron photon
Ep

111, eV: 1.5 10−18 1.1 10−14 1.1 10−4

Tequiv, K: 1.2 10−14 8.7 10−11 0.83

Table 6.1: Energy of the lowest single-particle state in a cube with 1 cm sides.

It can also normally be assumed that the lowest energy is zero for nonin-
teracting particles in a box. While the lowest single particle energy is strictly
speaking somewhat greater than zero, it is extremely small. That is numerically
illustrated by the values for a 1 cm3 cubic box in table 6.1. The table gives the
lowest energy as computed using the formulae given in the previous section. The
lowest energy occurs for the state ψp

111 with nx = ny = nz = 1. As is common
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for single-particle energies, the energy has been expressed in terms of electron
volts, one eV being about 1.6 10−19 J. The table also shows the same energy
in terms of an equivalent temperature, found by dividing it by 1.5 times the
Boltzmann constant. These temperatures show that at room temperature, for
all practical purposes the lowest energy is zero. However, at very low cryogenic
temperatures, photons in the lowest energy state, or “ground state,” may have
a relatively more significant energy.

The spacing between the lowest and second lowest energy is comparable to
the lowest energy, and similarly negligible. It should be noted, however, that
in Bose-Einstein condensation, which is discussed later, there is a macroscopic
effect of the finite spacing between the lowest and second-lowest energy states,
miniscule as it might be.

The next question is why quantum mechanics is needed here at all. Classical
nonquantum physics too would predict a continuum of energies for the parti-
cles. And it too would predict the energy to start from zero. The energy of a
noninteracting particle is all kinetic energy; classical physics has that zero if the
particle is at rest and positive otherwise.

Still, the (anti) symmetrization requirements cannot be accommodated using
classical physics. And there is at least one other important quantum effect.
Quantum mechanics predicts that there are more single-particle states in a
given energy range at high energy than at low energy.

To express that more precisely, physicists define the “density of states” as
the number of single-particle states per unit energy range. For particles in a
box, the density of states is not that hard to find. First, the number dN of
single-particle states in a small wave number range from k to k + dk is given
by, {D.26},

dN = VDk dk Dk =
2s+ 1

2π2
k2 (6.5)

Here V is the volume of the box that holds the particles. As you would expect,
the bigger the box, the more particles it can hold, all else being the same.
Similarly, the larger the wave number range dk, the larger the number of states
in it. The factor Dk is the density of states on a wave number basis. It depends
on the spin s of the particles; that reflects that there are 2s+ 1 possible values
of the spin for every given spatial state.

(It should be noted that for the above expression for Dk to be valid, the wave
number range dk should be small. However, dk should still be large enough that
there are a lot of states in the range dk; otherwise Dk cannot be approximated
by a simple continuous function. If the spacing dk truly becomes zero, Dk turns
into a distribution of infinite spikes.)

To get the density of states on an energy basis, eliminate k in favor of the
single-particle energy Ep using Ep = ~

2k2/2m, where m is the particle mass.
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That gives:

dN = VD dE
p D =

2s+ 1

4π2

(
2m

~2

)3/2√
E

p
(6.6)

The requirements on the energy range dEp are like those on dk.
The factor D is what is conventionally defined as the density of states; it

is on a unit energy range and unit volume basis. In the spectrum to the right
in figure 6.1, the density of states is indicated by means of the width of the
spectrum.

Note that the density of states grows like
√
Ep: quickly at first, more slowly

later, but it continues to grow. There are more states per unit energy range
at higher energy than at lower energy. And that means that at nonzero en-
ergies, the energy states are spaced many times tighter together still than the
ground state spacing of table 6.1 indicates. Assuming that the energies form a
continuum is an extremely accurate approximation in most cases.

The given expression for the density of states is not valid if the particle
speed becomes comparable to the speed of light. In particular for photons the
Planck-Einstein expression for the energy must be used, Ep = ~ω, where the
electromagnetic frequency is ω = ck with c the speed of light. In addition, as
mentioned in section 6.2, photons have only two independent spin states, even
though their spin is 1.

It is conventional to express the density of states for photons on a frequency
basis instead of an energy basis. Replacing k with ω/c in (6.5) and 2s+ 1 by 2
gives

dN = VDω dω Dω =
1

π2c3
ω2 (6.7)

The factor Dω is commonly called the “density of modes” instead of density of
states on a frequency basis.

Key Points

0 The spectrum of a macroscopic number of noninteracting particles
in a box is practically speaking continuous.

0 The lowest single-particle energy can almost always be taken to be
zero.

0 The density of states D is the number of single-particle states per
unit energy range and unit volume.

0 More precisely, the number of states in an energy range dEp is
VD dEp.

0 To use this expression, the energy range dEp should be small. How-
ever, dEp should still be large enough that there are a lot of states
in the range.
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0 For photons, use the density of modes.

6.4 Ground State of a System of Bosons

The ground state for a system of noninteracting spinless bosons is simple. The
ground state is defined as the state of lowest energy, so every boson has to be in
the single-particle state ψp

111(~r) of lowest energy. That makes the system energy
eigenfunction for spinless bosons equal to:

ψgs, bosons = ψp
111(~r1)× ψp

111(~r2)× . . .× ψp
111(~rI) (6.8)

If the bosons have spin, this is additionally multiplied by an arbitrary com-
bination of spin states. That does not change the system energy. The system
energy either way is IEp

111, the number of bosons times the single-particle ground
state energy.

kx

ky

kz D

Ep

Figure 6.2: Ground state of a system of noninteracting bosons in a box.

Graphically, the single-particle ground state ψp
111 is the point closest to the

origin in wave number space. It is shown as a fat blue dot in figure 6.2 to
indicate that all I bosons are bunched together in that state.

Physicists like to talk about “occupation numbers.” The occupation number
of a single-particle state is simply the number of particles in that state. In
particular, for the ground state of the system of noninteracting spinless bosons
above, the single-particle state ψp

111 has occupation number I, while all other
single-particle states have zero.
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Note that for a macroscopic system, I will be a humongous number. Even
a millimol of particles means well over 1020 particles. Bosons in their ground
state are very unfair to the single-particle states: ψp

111 gets all of them, the rest
gets nothing.

Key Points

0 For a system of bosons in the ground state, every boson is in the
single particle state of lowest energy.

6.5 About Temperature

The previous section discussed the wave function for a macroscopic system of
bosons in its ground state. However, that is really a very theoretical exercise.

A macroscopic system of particles is only in its ground state at what is called
absolute zero temperature. Absolute zero temperature is −273.15 ◦C in degrees
Celsius (Centigrade) or −459.67 ◦F in degrees Fahrenheit. It is the coldest that
a stable system could ever be.

Of course, you would hardly think something special was going on from the
fact that it is −273.15 ◦C or −459.67 ◦F. That is why physicists have defined a
more meaningful temperature scale than Centigrade or Fahrenheit; the Kelvin
scale. The Kelvin scale takes absolute zero temperature to be 0 K, zero degrees
Kelvin. A one degree temperature difference in Kelvin is still the same as in
Centigrade. So 1 K is the same as −272.15 ◦C; both are one degree above
absolute zero. Normal ambient temperatures are near 300 K. More precisely,
300 K is equal to 27.15 ◦C or 80.6 ◦F.

A temperature measured from absolute zero, like a temperature expressed in
Kelvin, is called an “absolute temperature.” Any theoretical computation that
you do requires the use of absolute temperatures. (However, there are some
empirical relations and tables that are mistakenly phrased in terms of Celsius
or Fahrenheit instead of in Kelvin.)

Absolute zero temperature is impossible to achieve experimentally. Even
getting close to it is very difficult. Therefore, real macroscopic systems, even
very cold ones, have an energy noticeably higher than their ground state. So
they have a temperature above absolute zero.

But what exactly is that temperature? Consider the classical picture of a
substance, in which the molecules that it consists of are in constant chaotic
thermal motion. Temperature is often described as a measure of the transla-
tional kinetic energy of this chaotic motion. The higher the temperature, the
larger the thermal motion. In particular, classical statistical physics would say
that the average thermal kinetic energy per particle is equal to 3

2
kBT , with kB
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= 1.38 10−23 J/K the Boltzmann constant and T the absolute temperature in
degrees Kelvin.

Unfortunately, this story is only true for the translational kinetic energy of
the molecules in an ideal gas. For any other kind of substance, or any other
kind of kinetic energy, the quantum effects are much too large to be ignored.
Consider, for example, that the electron in a hydrogen atom has 13.6 eV worth
of kinetic energy even at absolute zero temperature. (The binding energy also
happens to be 13.6 eV, {A.17}, even though physically it is not the same thing.)
Classically that kinetic energy would correspond to a gigantic temperature of
about 100 000 K. Not to 0 K. More generally, the Heisenberg uncertainty prin-
ciple says that particles that are in any way confined must have kinetic energy
even in the ground state. Only for an ideal gas is the containing box big enough
that it does not make a difference. Even then that is only true for the transla-
tional degrees of freedom of the ideal gas molecules. Don’t look at their electrons
or rotational or vibrational motion.

The truth is that temperature is not a measure of kinetic energy. Instead the
temperature of a system is a measure of its capability to transfer thermal energy
to other systems. By definition, if two systems have the same temperature,
neither is able to transfer net thermal energy to the other. It is said that
the two systems are in thermal equilibrium with each other. If however one
system is hotter than the other, then if they are put in thermal contact, energy
will flow from the hotter system to the colder one. That will continue until
the temperatures become equal. Transferred thermal energy is referred to as
“heat,” so it is said that heat flows from the hotter system to the colder.

The simplest example is for systems in their ground state. If two systems
in their ground state are brought together, no heat will transfer between them.
By definition the ground state is the state of lowest possible energy. Therefore
neither system has any spare energy available to transfer to the other system. It
follows that all systems in their ground state have the same temperature. This
temperature is simply defined to be absolute zero temperature, 0 K. Systems at
absolute zero have zero capability of transferring heat to other systems.

Systems not in their ground state are not at zero temperature. Besides that,
basically all that can be said is that they still have the same temperature as
any other system that they are in thermal equilibrium with. But of course, this
only defines equality of temperatures. It does not say what the value of that
temperature is.

For identification and computational purposes, you would like to have a
specific numerical value for the temperature of a given system. To get it, look
at an ideal gas that the system is in thermal equilibrium with. A numerical
value of the temperature can simply be defined by demanding that the average
translational kinetic energy of the ideal gas molecules is equal to 3

2
kBT , where

kB is the Boltzmann constant, 1.380 65 10−23 J/K. That kinetic energy can be
deduced from such easily measurable quantities as the pressure, volume, and
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mass of the ideal gas.

Key Points

0 A macroscopic system is in its ground state if the absolute temper-
ature is zero.

0 Absolute zero temperature means 0 K (Kelvin), which is equal to
−273.15 ◦C (Centigrade) or −459.67 ◦F (Fahrenheit).

0 Absolute zero temperature can never be fully achieved.

0 If the temperature is greater than absolute zero, the system will have
an energy greater than that of the ground state.

0 Temperature is not a measure of the thermal kinetic energy of a
system, except under very limited conditions in which there are no
quantum effects.

0 Instead the defining property of temperature is that it is the same
for systems that are in thermal equilibrium with each other.

0 For systems that are not in their ground state, a numerical value
for their temperature can be defined using an ideal gas at the same
temperature.

6.6 Bose-Einstein Condensation

This section examines what happens to a system of noninteracting bosons in a
box if the temperature is somewhat greater than absolute zero.

As noted in the second last section, in the ground state all bosons are in the
single-particle state of lowest energy. This was indicated by the fat blue dot
next to the origin in the wave number space figure 6.2. Nonzero temperature
implies that the bosons obtain an additional amount of energy above the ground
state. Therefore they will spread out a bit towards states of higher energy. The
single fat blue point will become a colored cloud as shown in figures 6.3 and 6.4.
So far, that all seems plausible enough.

But something weird occurs for identical bosons:

Below a certain critical temperature a finite fraction of the bosons
remains bunched together in the single-particle state of lowest energy.

That is indicated by the fat blue dot in figure 6.3. The lowest energy state, the
one closest to the origin, holds less bosons than at absolute zero, but below a
certain critical temperature, it remains a finite fraction of the total.

That is weird because the average thermal energy available to each boson
dwarfs the difference in energy between the lowest energy single-particle state
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Figure 6.3: The system of bosons at a very low temperature.
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Figure 6.4: The system of bosons at a relatively low temperature.
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and its immediate neighbors. If the energy difference between the lowest energy
state and its neighbors is negligibly small, you would reasonably expect that
they will hold similar numbers of bosons. And if a lot of states near the origin
each hold about the same number of bosons, then that number must be a small
fraction of the total, not a finite one. But reasonable or not, it is untrue. For
a system of noninteracting bosons below the critical temperature, the lowest
energy state holds a finite fraction of the bosons, much more than its immediate
neighbors.

If you raise the temperature of the system, you “boil” away the bosons in the
lowest energy state into the surrounding cloud. Above the critical temperature,
the excess bosons are gone and the lowest energy state now only holds a similar
number of bosons as its immediate neighbors. That is illustrated in figure 6.4.
Conversely, if you lower the temperature of the system from above to below the
critical temperature, the bosons start “condensing” into the lowest energy state.
This process is called “Bose-Einstein condensation” after Bose and Einstein who
first predicted it.

Bose-Einstein condensation is a pure quantum effect; it is due to the sym-
metrization requirement for the wave function. It does not occur for fermions, or
if each particle in the box is distinguishable from every other particle. “Distin-
guishable” should here be taken to mean that there are no antisymmetrization
requirements, as there are not if each particle in the system is a different type
of particle from every other particle.

It should be noted that the given description is simplistic. In particular,
it is certainly possible to cool a microscopic system of distinguishable parti-
cles down until say about half the particles are in the single-particle state of
lowest energy. Based on the above discussion, you would then conclude that
Bose-Einstein condensation has occurred. That is not true. The problem is
that this supposed “condensation” disappears when you scale up the system to
macroscopic dimensions and a corresponding macroscopic number of particles.

Given a microscopic system of distinguishable particles with half in the
single-particle ground state, if you hold the temperature constant while increas-
ing the system size, the size of the cloud of occupied states in wave number
space remains about the same. However, the bigger macroscopic system has
much more energy states, spaced much closer together in wave number space.
Distinguishable particles spread out over these additional states, leaving only
a vanishingly small fraction in the lowest energy state. This does not happen
if you scale up a Bose-Einstein condensate; here the fraction of bosons in the
lowest energy state stays finite regardless of system size.

Bose-Einstein condensation was achieved in 1995 by Cornell, Wieman, et al
by cooling a dilute gas of rubidium atoms to below about 170 nK (nano Kelvin).
Based on the extremely low temperature and fragility of the condensate, practi-
cal applications are very likely to be well into the future, and even determination
of the condensate’s basic properties will be difficult.
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A process similar to Bose-Einstein condensation is also believed to occur
in liquid helium when it turns into a superfluid below 2.17 K. However, this
case is more tricky, {N.21}. For one, the atoms in liquid helium can hardly
be considered to be noninteracting. That makes the entire concept of “single-
particle states” poorly defined. Still, it is quite widely believed that for helium
below 2.17 K, a finite fraction of the atoms starts accumulating in what is taken
to be a single-particle state of zero wave number. Unlike for normal Bose-
Einstein condensation, for helium it is believed that the number of atoms in
this state remains limited. At absolute zero only about 9% of the atoms end up
in the state.

Currently there is a lot of interest in other systems of particles undergoing
Bose-Einstein condensation. One example is liquid helium-3. Compared to
normal helium, helium-3 misses a neutron in its nucleus. That makes its spin
half-integer, so it is not a boson but a fermion. Therefore, it should not turn
into a superfluid like normal liquid helium. And it does not. Helium 3 behaves
in almost all aspects exactly the same as normal helium. It becomes liquid
at a similar temperature, 3.2 K instead of 4.2 K. But it does not become a
superfluid like normal helium at any temperature comparable to 2.17 K. That
is very strong evidence that the superfluid behavior of normal helium is due to
the fact that it is a boson.

Still it turns out that at temperatures three orders of magnitude smaller,
helium-3 does turn into a superfluid. That is believed to be due to the fact
that the atoms pair up. A composite of two fermions has integer spin, so it is
a boson. Similarly, superconductivity of simple solids is due to the fact that
the electrons pair up into “Cooper pairs.” They get tied together due to their
interaction with the surrounding atoms.

A variety of other particles can pair up to. At the time of writing, there is
interest in polariton condensates. A polariton is a quantum mechanical super-
position of a photon and an electronic excitation in a solid. It is hoped that
these will allow Bose-Einstein condensation to be studied at room temperature.
There is still much to be learned about it. For example, while the relation-
ship between superfluidity and Bose-Einstein condensation is quite generally
accepted, there are some issues. Snoke & Baym point out, (in the introduction
to Bose-Einstein Condensation, Griffin, A., Snoke, D.W., & Stringari, S., Eds,
1995, Cambridge), that examples indicate that Bose-Einstein condensation is
neither necessary nor sufficient for superfluidity. With only approximate theo-
retical models and approximate experimental data, it is often difficult to make
solid specific statements.

Key Points

0 In Bose-Einstein condensation, a finite fraction of the bosons is in
the single-particle state of lowest energy.
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0 It happens when the temperature falls below a critical value.

0 It applies to macroscopic systems.

0 The effect is unique to bosons.

6.6.1 Rough explanation of the condensation

The reason why bosons show Bose-Einstein condensation while systems of dis-
tinguishable particles do not is complex. It is discussed in chapter 11. However,
the idea can be explained qualitatively by examining a very simple system
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Figure 6.5: Ground state system energy eigenfunction for a simple model sys-
tem. The system has only 6 single-particle states; each of these has one of 3
energy levels. In the specific case shown here, the system contains 3 distinguish-
able spinless particles. All three are in the single-particle ground state. Left:
mathematical form. Right: graphical representation.

Assume that there are just three different single-particle energy levels, with
values Ep

1, 2E
p
1, and 3Ep

1. Also assume that there is just one single-particle
state with energy Ep

1, but two with energy 2Ep
1 and 3 with energy 3Ep

1. That
makes a total of 6 single particle-states; they are shown as “boxes” that can
hold particles at the right hand side of figure 6.5. Assume also that there are
just three particles and for now take them to be distinguishable. Figure 6.5 then
shows the system ground state in which every particle is in the single-particle
ground state with energy Ep

1. That makes the total system energy 3Ep
1.
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Figure 6.6: Example system energy eigenfunction with five times the single-
particle ground state energy.

However, now assume that the system is at a nonzero temperature. In
particular, assume that the total system energy is 5Ep

1. An example system
energy eigenfunction with that energy is illustrated in figure 6.6.
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Figure 6.7: For distinguishable particles, there are 9 system energy eigenfunc-
tions that have energy distribution A.
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Figure 6.8: For distinguishable particles, there are 12 system energy eigenfunc-
tions that have energy distribution B.
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But there are a lot more system eigenfunctions with energy 5Ep
1. There are

two general ways to achieve that energy:

Energy distribution A: Two particles in the ground state with energy Ep
1

and one in a state with energy 3Ep
1.

Energy distribution B: One particle in the ground state with energy Ep
1 and

two in states with energy 2Ep
1.

As figures 6.7 and 6.8 show, there are 9 system energy eigenfunctions that have
energy distribution A, but 12 that have energy distribution B.

Therefore, all else being the same, energy distribution B is more likely to be
observed than A!

Of course, the difference between 9 system eigenfunctions and 12 is minor.
Also, everything else is not the same; the eigenfunctions differ. But it turns out
that if the system size is increased to macroscopic dimensions, the differences
in numbers of energy eigenfunctions become gigantic. There will be one energy
distribution for which there are astronomically more system eigenfunctions than
for any other energy distribution. Common-sense statistics then says that this
energy distribution is the only one that will ever be observed. If there are
countless orders of magnitude more eigenfunctions for a distribution B than for
a distribution A, what are the chances of A ever being found?

It is curious to think of it: only one energy distribution is observed for a
given macroscopic system. And that is not because of any physics; other energy
distributions are physically just as good. It is because of a mathematical count;
there are just so many more energy eigenfunctions with that distribution.
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Figure 6.9: For identical bosons, there are only 3 system energy eigenfunctions
that have energy distribution A.

Bose-Einstein condensation has to do with the fact that the count of eigen-
functions is different for identical bosons than for distinguishable particles. The
details were worked out in chapter 5.7. The symmetrization requirement for
bosons implies that system eigenfunctions that are the same except for ex-
changes of particles must be combined together into one. In particular for
distribution A, in each of the rows of figure 6.7 the eigenfunctions are the same
except for such exchanges. Simply put, they merely differ in what number is
stamped on each particle. Therefore, for each row, the eigenfunctions must
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Figure 6.10: For identical bosons, there are also only 3 system energy eigen-
functions that have energy distribution B.

be combined together into a single eigenfunction. That leaves only the three
system eigenfunctions shown in figure 6.9.

In the combination eigenfunction, every particle occupies every single-parti-
cle state involved equally. Therefore, numbers on the particles would not add
any nontrivial information and may as well be left away. Sure, you could put all
three numbers 1,2, and 3 in each of the particles in figure 6.9. But what good
would that do?

Comparing figures 6.7 and 6.9, you can see why particles satisfying sym-
metrization requirements are commonly called “indistinguishable.” Classical
quantum mechanics may imagine to stamp numbers on the three identical
bosons to keep them apart, but you sure do not see the difference between
them in the system energy eigenfunctions.

For distribution B of figure 6.8, under the symmetrization requirement the
three energy eigenfunctions in the first row must be combined into one, the
six in the second and third rows must be combined into one, and the three
in the fourth row must be combined into one. That gives a total of 3 system
eigenfunctions for distribution B, as shown in figure 6.10.

It follows that the symmetrization requirement reduces the number of eigen-
functions for distribution A, with 2 particles in the ground state, from 9 to 3.
However, it reduces the eigenfunctions for distribution B, with 1 particle in the
ground state, from 12 to 3. Not only does the symmetrization requirement re-
duce the number of energy eigenfunctions, but it also tends to shift the balance
towards eigenfunctions that have more particles in the ground state.

And so, if the system size is increased under conditions of Bose-Einstein con-
densation, it turns out that there are astronomically more system eigenfunctions
for an energy distribution that keeps a finite number of bosons in the ground
state than for anything else.

It may be noted from comparing figures 6.7 and 6.8 with 6.9 and 6.10 that
any energy distribution that is physically possible for distinguishable particles
is just as possible for identical bosons. Bose-Einstein condensation does not
occur because the physics says it must, but because there are so gigantically
more system eigenfunctions that have a finite fraction of bosons in the ground
state than ones that do not.
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It may also be noted that the reduction in the number of system energy
eigenfunctions for bosons is believed to be an important factor in superfluidity.
It eliminates low-energy eigenfunctions that cannot be interpreted as phonons,
traveling particle wave solutions, [18, 39]. The lack of alternate eigenfunctions
leaves no mechanism for the traveling particles to get scattered by small effects.

Key Points

0 Energy distributions describe how many particles are found at each
energy level.

0 For macroscopic systems, one particular energy distribution has as-
tronomically more energy eigenfunctions than any other one.

0 That energy distribution is the only one that is ever observed.

0 Under conditions of Bose-Einstein condensation, the observed distri-
bution has a finite fraction of bosons in the ground state.

0 This happens because the system eigenfunction count for bosons pro-
motes it.

6.7 Bose-Einstein Distribution

As the previous section explained, the energy distribution of a macroscopic sys-
tem of particles can be found by merely counting system energy eigenfunctions.

The details of doing so are messy but the results are simple. For a system
of identical bosons, it gives the so-called:

Bose-Einstein distribution: ιb =
1

e(E
p−µ)/kBT − 1

(6.9)

Here ιb is the average number of bosons in a single-particle state with single-
particle energy Ep. Further T is the absolute temperature, and kB is the Boltz-
mann constant, equal to 1.380 65 10−23 J/K.

Finally, µ is known as the chemical potential and is a function of the tem-
perature and particle density. The chemical potential is an important physical
quantity, related to such diverse areas as particle diffusion, the work that a de-
vice can produce, and to chemical and phase equilibria. It equals the so-called
Gibbs free energy on a molar basis. It is discussed in more detail in chapter
11.12.

The Bose-Einstein distribution is derived in chapter 11. In fact, for various
reasons that chapter gives three different derivations of the distribution. For-
tunately they all give the same answer. Keep in mind that whatever this book
tells you thrice is absolutely true.
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The Bose-Einstein distribution may be used to better understand Bose-
Einstein condensation using a bit of simple algebra. First note that the chemical
potential for bosons must always be less than the lowest single-particle energy
Ep

gs. Just check it out using the formula above: if µ would be greater than
Ep

gs, then the number of particles ιb in the lowest single-particle state would
be negative. Negative numbers of particles do not exist. Similarly, if µ would
equal Ep

gs then the number of particles in the lowest single-particle state would
be infinite.

The fact that µ must stay less than Ep
gs means that the number of particles

in anything but the lowest single-particle state has a limit. It cannot become
greater than

ιbmax =
1

e(E
p−Ep

gs)/kBT − 1

Now assume that you keep the box size and temperature both fixed and start
putting more and more particles in the box. Then eventually, all the single-
particle states except the ground state hit their limit. Any further particles
have nowhere else to go than into the ground state. That is when Bose-Einstein
condensation starts.

The above argument also illustrates that there are two main ways to produce
Bose-Einstein condensation: you can keep the box and number of particles
constant and lower the temperature, or you can keep the temperature and box
constant and push more particles in the box. Or a suitable combination of these
two, of course.

If you keep the box and number of particles constant and lower the tempera-
ture, the mathematics is more subtle. By itself, lowering the temperature lowers
the number of particles ιb in all states. However, that would lower the total
number of particles, which is kept constant. To compensate, µ inches closer to
Ep

gs. This eventually causes all states except the ground state to hit their limit,
and beyond that stage the left-over particles must then go into the ground state.

You may recall that Bose-Einstein condensation is only Bose-Einstein con-
densation if it does not disappear with increasing system size. That too can be
verified from the Bose-Einstein distribution under fairly general conditions that
include noninteracting particles in a box. However, the details are messy and
will be left to chapter 11.14.1.

Key Points

0 The Bose-Einstein distribution gives the number of bosons per single-
particle state for a macroscopic system at a nonzero temperature.

0 It also involves the Boltzmann constant and the chemical potential.

0 It can be used to explain Bose-Einstein condensation.
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6.8 Blackbody Radiation

The Bose-Einstein distribution of the previous section can also be used for
understanding the emission of light and other electromagnetic radiation. If you
turn on an electric stove, the stove plate heats up until it becomes red hot. The
red glow that you see consists of photons with energies in the visible red range.
When the stove plate was cold, it also emitted photons, but those were of too
low energy to be seen by our unaided eyes.

The radiation system that is easiest to analyze is the inside of an empty box.
Empty should here be read as devoid of matter. For if the temperature inside
the box is above absolute zero, then the inside of the box will still be filled
with the electromagnetic radiation that the atoms in the box surfaces emit.
This radiation is representative of the radiation that truly black surfaces emit.
Therefore, the radiation inside the box is called “blackbody radiation.”

Before the advent of quantum mechanics, Rayleigh and Jeans had computed
using classical physics that the energy of the radiation in the box would vary
with electromagnetic frequency ω and temperature T as

ρ(ω) =
ω2

π2c3
kBT

where kB = 1.38 10−23 J/K is the Boltzmann constant and c the speed of
light. That was clearly all wrong except at low frequencies. For one thing, the
radiation energy would become infinite at infinite frequencies!

It was this very problem that led to the beginning of quantum mechanics.
To fix the problem, in 1900 Planck made the unprecedented assumption that
energy would not come in arbitrary amounts, but only in discrete chunks of size
~ω. The constant ~ was a completely new physical constant whose value could
be found by fitting theoretical radiation spectra to experimental ones. Planck’s
assumption was however somewhat vague about exactly what these chunks of
energy were physically. It was Einstein who proposed, in his 1905 explanation
of the photoelectric effect, that ~ω gives the energy of photons, the particles of
electromagnetic radiation.

Photons are bosons, relativistic ones, to be sure, but still bosons. Therefore
the Bose-Einstein distribution should describe their statistics. More specifically,
the average number of photons in each single-particle state should be

ιbγ =
1

eE
p/kBT − 1

(6.10)

where γ is the standard symbol for a photon. Note the missing chemical poten-
tial. As discussed in chapter 11, the chemical potential is related to conservation
of the number of particles. It does not apply to photons that are readily created
out of nothing or absorbed by the atoms in the walls of the box. (One conse-
quence is that Bose-Einstein condensation does not occur for photons, {N.21}.)
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To get the energy of the photons in a small frequency range dω, simply
multiply the number of single particle states in that range, (6.7), by the number
of photons per state ιbγ above, and that by the single-photon energy Ep = ~ω.

That gives the radiation energy per unit volume of the box and per unit
energy range as

ρ(ω) =
ω2

π2c3
~ω

e~ω/kBT − 1
(6.11)

This expression is known as “Planck’s blackbody spectrum.”
For low frequencies, the final ratio is about kBT , giving the Rayleigh-Jeans

result. That is readily verified from writing a Taylor series for the exponential
in the denominator. For high frequencies the energy is much less because of the
rapid growth of the exponential for large values of its argument. In particular,
the energy no longer becomes infinite at high frequencies. It becomes zero
instead.

To rewrite the blackbody spectrum in terms of the frequency f = ω/2π in
cycles per second, make sure to convert the actual energy in a frequency range,
dE = ρ(ω) dω, to dE = ρ̄(f) df . Merely trying to convert ρ will get you into
trouble. The same if you want to rewrite the blackbody spectrum in terms of
the wave length λ = c/f .

For engineering purposes, what is often the most important is the amount
of radiation emitted by a surface into its surroundings. Now it so happens that
if you drill a little hole in the box, you get a perfect model for a truly black
surface. An ideal black surface is defined as a surface that absorbs, rather than
reflects, all radiation that hits it. If the hole in the box is small enough, any
radiation that hits the hole enters the box and is never seen again. In that sense
the hole is perfectly black.

And note that a black surface does not have to look black. If the black plate
of your electric stove is hot enough, it will glow red. Similarly, if you would
heat the inside of the box to the same temperature, the radiation inside the box
would make the hole shine just as red. If you would heat the box to 6 000 K,
about as hot as the surface of the sun, the hole would radiate sunlight.

The amount of radiation that is emitted by the hole can be found by simply
multiplying Planck’s spectrum by one quarter of the speed of light c, {D.27}.
That gives for the radiation energy emitted per unit area, per unit frequency
range, and per unit time:

I(ω) = ω2

4π2c2
~ω

e~ω/kBT − 1
(6.12)

A perfectly black surface area would radiate the same amount as the hole.
If you see the hole under an angle, it will look just as bright per unit area as

when you see it straight on, but it will seem smaller. So your eyes will receive
less radiation. More generally, if Ae is a small black surface at temperature
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T that emits radiation, then the amount of that radiation received by a small
surface Ar is given by

dE =
ω2

4π3c2
Ae cos θeAr cos θr

r2
~ω

e~ω/kBT − 1
dω dt (6.13)

Here r is the distance between the small surfaces, while θe and θr are the angles
that the connecting line between the surfaces makes with the normals to the
emitting and receiving surfaces respectively.

Often the total amount of energy radiated away by a black surface is of
interest. To get it, simply integrate the emitted radiation (6.12) over all values
of the frequency. You will want to make a change of integration variable to
~ω/kBT while doing this and then use a table book like [41, 18.80, p. 132]. The
result is called the “Stefan-Boltzmann law:

dEtotal emitted = AσBT
4 dt σB =

π2k4B
60~3c2

≈ 5.67 10−8 W/m2 K4 (6.14)

Since this is proportional to T 4, at 6 000 K 160 000 times as much radiation
will be emitted as at room temperature. In addition, a much larger part of
that radiation will be in the visible range. That is the reason you will see light
coming from a hole in a box if it is at 6 000 K, but not when it is at room
temperature.

A surface that is not perfectly black will absorb only a fraction of the radi-
ation that hits it. The fraction is called the “absorptivity” a. Such a surface
will also radiate less energy than a perfectly black one by a factor called the
“emissivity” e. This assumes that the surface is in stable thermal equilibrium.
More simply put, it assumes that no external source of energy is directed at the
surface.

Helmholtz discovered that the absorptivity and emissivity of a surface are
equal in thermal equilibrium, {D.28}. So poor absorbers are also poor emitters
of radiation. That is why lightweight emergency blankets typically have reflec-
tive metallic coatings. You would think that they would want to absorb, rather
than reflect, the heat of incoming radiation. But if they did, then according to
Helmholtz they would also radiate precious body heat away to the surroundings.

Since a surface cannot absorb more radiation than hits it, the absorptivity
cannot be greater than one, It follows that the emissivity cannot be greater than
one either. No surface can absorb better or emit better than a perfectly black
one. At least not when in thermodynamic equilibrium.

Note that absorptivity and emissivity typically depend on electromagnetic
frequency. Substances that seem black to the eye may not be at invisible elec-
tromagnetic frequencies and vice-verse. It remains true for any given electro-
magnetic frequency that the absorptivity and emissivity at that frequency are
equal. To soak up the heat of the sun in a solar energy application, you want
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your material to be black in the visible frequency range emitted by the 6 000 K
surface of the sun. However, you want it to be “white” in the infrared range
emitted at the operating temperature of the material, in order that it does not
radiate the heat away again.

Absorptivity and emissivity may also depend on the direction of the radi-
ation, polarization, temperature, pressure, etcetera. In thermodynamic equi-
librium, absorptivity and emissivity must still be equal, but only at the same
frequency and same directions of radiation and polarization.

For surfaces that are not black, formula (6.13) will need to be modified for the
relevant emissivity. A simplifying “grey body” assumption is often made that
the absorptivity, and so the emissivity, is constant. Absorptivity and emissivity
are usually defined as material properties, cited for infinitely thick samples. For
objects, the terms absorptance and emittance are used.

Fluorescence/phosphorescence and stimulated emission (lasers) are impor-
tant examples of radiative processes that are not in thermal equilibrium. The
above discussion simply does not apply to them.

Key Points

0 Blackbody radiation is the radiation emitted by a black surface that
is in thermal equilibrium.

0 Planck’s blackbody spectrum determines how much is radiated at
each frequency.

0 Surfaces that are not black emit radiation that is less by a factor
called the emissivity.

0 Emissivity equals absorptivity for the same frequency and direction
of radiation.

0 If the material is not in thermal equilibrium, like energized materials,
it is a completely different ball game.

6.9 Ground State of a System of Electrons

So far, only the physics of bosons has been discussed. However, by far the
most important particles in physics are electrons, and electrons are fermions.
The electronic structure of matter determines almost all engineering physics:
the strength of materials, all chemistry, electrical conduction and much of heat
conduction, power systems, electronics, etcetera. It might seem that nuclear
engineering is an exception because it primarily deals with nuclei. However,
nuclei consist of protons and neutrons, and these are spin 1/2 fermions just like
electrons. The analysis below applies to them too.
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Noninteracting electrons in a box form what is called a “free-electron gas.”
The valence electrons in a block of metal are often modeled as such a free-
electron gas. These electrons can move relatively freely through the block. As
long as they do not try to get off the block, that is. Sure, a valence electron
experiences repulsions from the surrounding electrons, and attractions from the
nuclei. However, in the interior of the block these forces come from all directions
and so they tend to average away.

Of course, the electrons of a “free” electron gas are confined. Since the term
“noninteracting-electron gas” would be correct and understandable, there were
few possible names left. So “free-electron gas” it was.

At absolute zero temperature, a system of fermions will be in the ground
state, just like a system of bosons. However, the ground state of a macroscopic
system of electrons, or any other type of fermions, is dramatically different from
that of a system of bosons. For a system of bosons, in the ground state all
bosons crowd together in the single-particle state of lowest energy. That was
illustrated in figure 6.2. Not so for electrons. The Pauli exclusion principle
allows only two electrons to go into the lowest energy state; one with spin up
and the other with spin down. A system of I electrons needs at least I/2 spatial
states to occupy. Since for a macroscopic system I is a some gigantic number
like 1020, that means that a gigantic number of states needs to be occupied.
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Figure 6.11: Ground state of a system of noninteracting electrons, or other
fermions, in a box.

In the system ground state, the electrons crowd into the I/2 spatial states of
lowest energy. Now the energy of the spatial states increases with the distance
from the origin in wave number space. Therefore, the electrons occupy the I/2
states closest to the origin in this space. That is shown to the left in figure 6.11.
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Every red spatial state is occupied by 2 electrons, while the black states are
unoccupied. The occupied states form an octant of a sphere. Of course, in a
real macroscopic system, there would be many more states than a figure could
show.

The spectrum to the right in figure 6.11 shows the occupied energy levels in
red. The width of the spectrum indicates the density of states, the number of
single-particle states per unit energy range.

Key Points

0 Noninteracting electrons in a box are called a free-electron gas.

0 In the ground state, the I/2 spatial states of lowest energy are occu-
pied by two electrons each. The remaining states are empty.

0 The ground state applies at absolute zero temperature.

6.10 Fermi Energy of the Free-Electron Gas

As the previous section discussed, a system of noninteracting electrons, a free-
electron gas, occupies a range of single-particle energies. Now the electrons
with the highest single-particle energies are particularly important. The reason
is that these electrons have empty single-particle states available at just very
slightly higher energy. Therefore, these electrons are easily excited to do useful
things, like conduct electricity for example. In contrast, electrons in energy
states of lower energy do not have empty states within easy reach. Therefore
lower energy electron are essentially stuck in their states; they do not usually
contribute to nontrivial electronic effects.

Valence electrons in metals behave qualitatively much like a free-electron
gas. For them too, the electrons in the highest energy single-particle states
are the critical ones for the metallic properties. Therefore, the highest single-
particle energy occupied by electrons in the system ground state has been given
a special name; the “Fermi energy.” In the energy spectrum of the free-electron
gas to the right in figure 6.11, the Fermi energy is indicated by a red tick mark
on the axis.

Also, the surface that the electrons of highest energy occupy in wave number
space is called the “Fermi surface.” For the free-electron gas the wave number
space was illustrated to the left in figure 6.11. The Fermi surface is outlined in
red in the figure; it is the spherical outside surface of the occupied region.

One issue that is important for understanding the properties of systems of
electrons is the overall magnitude of the Fermi energy. Recall first that for a
system of bosons, in the ground state all bosons are in the single-particle state
of lowest energy. That state corresponds to the point closest to the origin in
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wave number space. It has very little energy, even in terms of atomic units of
electronic energy. That was illustrated numerically in table 6.1. The lowest
single-particle energy is, assuming that the box is cubic

E
p
111 = 3π2 ~

2

2me

1

V2/3
(6.15)

where me is the electron mass and V the volume of the box.
Unlike for bosons, for electrons only two electrons can go into the lowest

energy state. Or in any other spatial state for that matter. And since a macro-
scopic system has a gigantic number of electrons, it follows that a gigantic
number of states must be occupied in wave number space. Therefore the states
on the Fermi surface in figure 6.11 are many orders of magnitude further away
from the origin than the state of lowest energy. And since the energy is propor-
tional to the square distance from the origin, that means that the Fermi energy
is many orders of magnitude larger than the lowest single-particle energy Ep

111.
More precisely, the Fermi energy of a free-electron gas can be expressed in

terms of the number of electrons per unit volume I/V as:

E
p
F =

(
3π2
)2/3 ~

2

2me

(
I

V

)2/3

(6.16)

To check this relationship, integrate the density of states (6.6) given in section
6.3 from zero to the Fermi energy. That gives the total number of occupied
states, which equals the number of electrons I. Inverting the expression to give
the Fermi energy in terms of I produces the result above.

It follows that the Fermi energy is larger than the lowest single-particle
energy by the gigantic factor

I2/3

(3π2)1/3

It is instructive to put some ballpark number to the Fermi energy. In par-
ticular, take the valence electrons in a block of copper as a model. Assuming
one valence electron per atom, the electron density I/V in the expression for
the Fermi energy equals the atom density. That can be estimated to be 8.5 1028

atoms/m3 by dividing the mass density, 9 000 kg/m3, by the molar mass, 63.5
kg/kmol, and then multiplying that by Avogadro’s number, 6.02 1026 parti-
cles/kmol. Plugging it in (6.16) then gives a Fermi energy of 7 eV (electron
Volt). That is quite a lot of energy, about half the 13.6 eV ionization energy of
hydrogen atoms.

The Fermi energy gives the maximum energy that an electron can have. The
average energy that they have is comparable but somewhat smaller:

E
p
average =

3
5
E

p
F (6.17)



232 CHAPTER 6. MACROSCOPIC SYSTEMS

To verify this expression, find the total energy E =
∫
EpVD dEp of the electrons

using (6.6) and divide by the number of electrons I =
∫
VD dEp. The integration

is again over the occupied states, so from zero to the Fermi energy.
For copper, the ballpark average energy is 4.2 eV. To put that in context,

consider the equivalent temperature at which classical particles would need to
be to have the same average kinetic energy. Multiplying 4.2 eV by e/3

2
kB gives

an equivalent temperature of 33 000 K. That is gigantic even compared to the
melting point of copper, 1 356 K. It is all due to the exclusion principle that
prevents the electrons from dropping down into the already filled states of lower
energy.

Key Points

0 The Fermi energy is the highest single-particle energy that a system
of electrons at absolute zero temperature will occupy.

0 It is normally a very high energy.

0 The Fermi surface is the surface that the electrons with the Fermi
energy occupy in wave number space.

0 The average energy per electron for a free-electron gas is 60% of the
Fermi energy.

6.11 Degeneracy Pressure

According to the previous sections, electrons, being fermions, behave in a way
very differently from bosons. A system of bosons has very little energy in
its ground state, as all bosons collect in the spatial state of lowest energy.
Electrons cannot do so. At most two electrons can go into a single spatial state.
A macroscopic system of electrons must occupy a gigantic number of states,
ranging from the lowest energy state to states with many orders of magnitude
more energy.

As a result, a “free-electron gas” of I noninteracting electrons ends up with
an average energy per electron that is larger than of a corresponding system of
bosons by a gigantic factor of order I2/3. That is all kinetic energy; all forces on
the electrons are ignored in the interior of a free-electron gas, so the potential
energy can be taken to be zero.

Having so much kinetic energy, the electrons exert a tremendous pressure on
the walls of the container that holds them. This pressure is called “degeneracy
pressure.” It explains qualitatively why the volume of a solid or liquid does not
collapse under normally applied pressures.

Of course, degeneracy pressure is a poorly chosen name. It is really due to
the fact that the energy distribution of electrons is not degenerate, unlike that
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of bosons. Terms like “exclusion-principle pressure” or “Pauli pressure” would
capture the essence of the idea. So they are not acceptable.

The magnitude of the degeneracy pressure for a free-electron gas is

Pd = 2
5

(
3π2
)2/3 ~

2

2me

(
I

V

)5/3

(6.18)

This may be verified by equating the work −Pd dV done when compressing the
volume a bit to the increase in the total kinetic energy ES of the electrons:

−Pd dV = dE
S

The energy ES is I times the average energy per electron. According to section
6.10, that is 3

5
I times the Fermi energy (6.16).

A ballpark number for the degeneracy pressure is very instructive. Consider
once again the example of a block of copper, with its valence electrons modeled
as a free-electron gas, Using the same numbers as in the previous section, the
degeneracy pressure exerted by these valence electrons is found to be 40 109 Pa,
or 40 GPa.

This tremendous outward pressure is balanced by the nuclei that pull on
electrons that try to leave the block. The details are not that simple, but
electrons that try to escape repel other, easily displaced, electrons that might
aid in their escape, leaving the nuclei unopposed to pull them back. Obviously,
electrons are not very smart.

It should be emphasized that it is not mutual repulsion of the electrons that
causes the degeneracy pressure; all forces on the electrons are ignored in the
interior of the block. It is the uncertainty relationship that requires spatially
confined electrons to have momentum, and the exclusion principle that explodes
the resulting amount of kinetic energy, creating fast electrons that are as hard
to contain as students on the day before Thanksgiving.

Compared to a 1010 Pa degeneracy pressure, the normal atmospheric pres-
sure of 105 Pa cannot add any noticeable further compression. Pauli’s exclusion
principle makes liquids and solids quite incompressible under normal pressures.

However, under extremely high pressures, the electron pressure can lose out.
In particular, for neutron stars the spatial electron states collapse under the
very weight of the massive star. This is related to the fact that the degeneracy
pressure grows less quickly with compression when the velocity of the electrons
becomes relativistic. (For very highly relativistic particles, the kinetic energy is
not given in terms of the momentum p by the Newtonian value Ep = p2/2m, but
by the Planck-Einstein relationship Ep = pc like for photons.) That makes a
difference since gravity too increases with compression. If gravity increases more
quickly, all is lost for the electrons. For neutron stars, the collapsed electrons
combine with the protons in the star to form neutrons. It is the degeneracy
pressure of the neutrons, also spin 1/2 fermions but 2 000 times heavier, that
carries the weight of a neutron star.
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Key Points

0 Because typical confined electrons have so much kinetic energy, they
exert a great degeneracy pressure on what is holding them.

0 This pressure makes it very hard to compress liquids and solids sig-
nificantly in volume.

0 Differently put, liquids and solids are almost incompressible under
typical conditions.

6.12 Confinement and the DOS

The motion of a single particle in a confining box was described in chapter
3.5.9. Nontrivial motion in a direction in which the box is sufficiently narrow
can become impossible. This section looks at what happens to the density of
states for such a box. The density of states gives the number of single-particle
states per unit energy range. It is interesting for many reasons. For example,
for systems of electrons the density of states at the Fermi energy determines
how many electrons in the box pick up thermal energy if the temperature is
raised above zero. It also determines how many electrons will be involved in
electrical conduction if their energy is raised.

By definition, the density of states D gives the number of single-particle
states dN in an energy range from Ep to Ep + dEp as

dN = VD dE
p

where V is the volume of the box containing the particles. To use this expression,
the size of the energy range dEp should be small, but still big enough that the
number of states dN in it remains large.

For a box that is not confining, the density of states is proportional to
√
Ep.

To understand why, consider first the total number of states N that have energy
less than some given value Ep. For example, the wave number space to the left
in figure 6.11 shows all states with energy less than the Fermi energy in red.
Clearly, the number of such states is about proportional to the volume of the
octant of the sphere that holds them. And that volume is in turn proportional
to the cube of the sphere radius k, which is proportional to

√
Ep, (6.4), so

N = (some constant)
(
E

p)3/2

This gives the number of states that have energies less than some value Ep.
To get the number of states in an energy range from Ep to Ep + dEp, take a
differential:

dN = (some other constant)
√
E

p
dE

p
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So the density of states is proportional to
√
Ep. (The constant of proportionality

is worked out in derivation {D.26}.) This density of states is shown as the width
of the energy spectrum to the right in figure 6.11.
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Figure 6.12: Severe confinement in the y-direction, as in a quantum well.

Confinement changes the spacing between the states. Consider first the case
that the box containing the particles is very narrow in the y-direction only. That
produces a quantum well, in which motion in the y-direction is inhibited. In
wave number space the states become spaced very far apart in the ky-direction.
That is illustrated to the left in figure 6.12. The red states are again the ones
with an energy below some given example value Ep, say the Fermi energy.
Clearly, now the number of states inside the red sphere is proportional not to
its volume, but to the area of the quarter circle holding the red states. The
density of states changes correspondingly, as shown to the right in figure 6.12.

Consider the variation in the density of states for energies starting from
zero. As long as the energy is less than that of the smaller blue sphere in figure
6.12, there are no states at or below that energy, so there is no density of states
either. However, when the energy becomes just a bit higher than that of the
smaller blue sphere, the sphere gobbles up quite a lot of states compared to
the small box volume. That causes the density of states to jump up. However,
after that jump, the density of states does not continue grow like the unconfined
case. The unconfined case keeps gobbling up more and more circles of states
when the energy grows. The confined case remains limited to a single circle
until the energy hits that of the larger blue sphere. At that point, the density of
states jumps up again. Through jumps like that, the confined density of states
eventually starts resembling the unconfined case when the energy levels get high
enough.
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As shown to the right in the figure, the density of states is piecewise constant
for a quantum well. To understand why, note that the number of states on a
circle is proportional to its square radius k2x + k2z . That is the same as k2 − k2y,
and k2 is directly proportional to the energy Ep. So the number of states varies
linearly with energy, making its derivative, the density of states, constant. (The
detailed mathematical expressions for the density of states for this case and the
ones below can again be found in derivation {D.26}.)
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Figure 6.13: Severe confinement in both the y and z directions, as in a quantum
wire.

The next case is that the box is very narrow in the z-direction as well as in
the y-direction. This produces a quantum wire, where there is full freedom of
motion only in the x-direction. This case is shown in figure 6.13. Now the states
separate into individual lines of states. The smaller blue sphere just reaches the
line of states closest to the origin. There are no energy states until the energy
exceeds the level of this blue sphere. Just above that level, a lot of states
are encountered relative to the very small box volume, and the density of states
jumps way up. When the energy increases further, however, the density of states
comes down again: compared to the less confined cases, no new lines of states
are added until the energy hits the level of the larger blue sphere. When the
latter happens, the density of states jumps way up once again. Mathematically,
the density of states produced by each line is proportional to the reciprocal
square root of the excess energy above the one needed to reach the line.

The final possibility is that the box holding the particles is very narrow
in all three directions. This produces a quantum dot or artificial atom. Now
each energy state is a separate point, figure 6.14. The density of states is now
zero unless the energy sphere exactly hits one of the individual points, in which
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Figure 6.14: Severe confinement in all three directions, as in a quantum dot or
artificial atom.

case the density of states is infinite. So, the density of states is a set of spikes.
Mathematically, the contribution of each state to the density of states is a delta
function located at that energy.

(It may be pointed out that very strictly speaking, every density of states is
a set of delta functions. After all, the individual states always remain discrete
points, however extremely densely spaced they might be. Only if you average
the delta functions over a small energy range dEp do you get the smooth math-
ematical functions of the quantum wire, quantum well, and unconfined box. It
is no big deal, as a perfect confining box does not exist anyway. In real life,
energy spikes do broaden out bit; there is always some uncertainty in energy
due to various effects.)

Key Points

0 If one or more dimensions of a box holding a system of particles
becomes very small, confinement effects show up.

0 In particular, the density of states shows a staging behavior that is
typical for each reduced dimensionality.

6.13 Fermi-Dirac Distribution

The previous sections discussed the ground state of a system of fermions like
electrons. The ground state corresponds to absolute zero temperature. This
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section has a look at what happens to the system when the temperature becomes
greater than zero.

For nonzero temperature, the average number of fermions ιf per single-
particle state can be found from the so-called

Fermi-Dirac distribution: ιf =
1

e(E
p−µ)/kBT + 1

(6.19)

This distribution is derived in chapter 11. Like the Bose-Einstein distribution
for bosons, it depends on the energy Ep of the single-particle state, the absolute
temperature T , the Boltzmann constant kB = 1.38 10−23 J/K, and a chemical
potential µ. In fact, the mathematical difference between the two distributions
is merely that the Fermi-Dirac distribution has a plus sign in the denominator
where the Bose-Einstein one has a minus sign. Still, that small change makes
for very different statistics.

The biggest difference is that ιf is always less than one: the Fermi-Dirac
distribution can never have more than one fermion in a given single-particle
state. That follows from the fact that the exponential in the denominator of
the distribution is always greater than zero, making the denominator greater
than one.

It reflects the exclusion principle: there cannot be more than one fermion
in a given state, so the average per state cannot exceed one either. The Bose-
Einstein distribution can have many bosons in a single state, especially in the
presence of Bose-Einstein condensation.

Note incidentally that both the Fermi-Dirac and Bose-Einstein distributions
count the different spin versions of a given spatial state as separate states. In
particular for electrons, the spin-up and spin-down versions of a spatial state
count as two separate states. Each can hold one electron.

Consider now the system ground state that is predicted by the Fermi-Dirac
distribution. In the limit that the temperature becomes zero, single-particle
states end up with either exactly one electron or exactly zero electrons. The
states that end up with one electron are the ones with energies Ep below the
chemical potential µ. Similarly the states that end up empty are the ones with
Ep above µ.

To see why, note that for Ep − µ < 0, in the limit T → 0 the argument of
the exponential in the Fermi-Dirac distribution becomes minus infinity. That
makes the exponential zero, and ιf is then equal to one. Conversely, for Ep − µ
> 0, in the limit T → 0 the argument of the exponential in the Fermi-Dirac
distribution becomes positive infinity. That makes the exponential infinite, and
ιf is then zero.

The correct ground state, as pictured earlier in figure 6.11, has one electron
per state below the Fermi energy Ep

F and zero electrons per state above the Fermi
energy. The Fermi-Dirac ground state can only agree with this if the chemical
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potential at absolute zero temperature is the same as the Fermi energy:

µ = E
p
F at T = 0 (6.20)
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Figure 6.15: A system of fermions at a nonzero temperature.

Next consider what happens if the absolute temperature is not zero but
a bit larger than that. The story given above for zero temperature does not
change significantly unless the value of Ep−µ is comparable to kBT . Only in a
energy range of order kBT around the Fermi energy does the average number of
particles in a state change from its value at absolute zero temperature. Compare
the spectrum at absolute zero temperature as sketched to the right in figure 6.11
to the one at a nonzero temperature shown in figure 6.15. The sharp transition
from one particle per state, red, below the Fermi energy to zero particles per
state, grey, above it smooths out a bit. As the wave number space to the
left in figure 6.15 illustrates, at nonzero temperature a typical system energy
eigenfunction has a few electrons slightly beyond the Fermi surface. Similarly
it has a few “holes” (states that have lost their electron) immediately below the
Fermi surface.

Put in physical terms, some electrons just below the Fermi energy pick up
some thermal energy, which gives them an energy just above the Fermi energy.
The affected energy range, and also the typical energy that the electrons in this
range pick up, is comparable to kBT .

You may at first hardly notice the effect in the wave number space shown
in figure 6.15. And that figure greatly exaggerates the effect to ensure that it
is visible at all. Recall the ballpark Fermi energy given earlier for copper. It
was equal to a kBT value for an equivalent temperature of 33 000 K. Since the
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melting point of copper is only 1 356 K, kBT is still negligibly small compared
to the Fermi energy when copper melts. To good approximation, the electrons
always remain like they were in their ground state at 0 K.

One of the mysteries of physics before quantum mechanics was why the
valence electrons in metals do not contribute to the heat capacity. At room
temperature, the atoms in typical metals were known to have picked up an
amount of thermal energy comparable to kBT per atom. Classical physics pre-
dicted that the valence electrons, which could obviously move independently of
the atoms, should pick up a similar amount of energy per electron. That should
increase the heat capacity of metals. However, no such increase was observed.

The Fermi-Dirac distribution explains why: only the electrons within a dis-
tance comparable to kBT of the Fermi energy pick up the additional kBT of
thermal energy. This is only a very small fraction of the total number of elec-
trons, so the contribution to the heat capacity is usually negligible. While
classically the electrons may seem to move freely, in quantum mechanics they
are constrained by the exclusion principle. Electrons cannot move to higher
energy states if there are already electrons in these states.

To discourage the absence of confusion, some or all of the following terms
may or may not indicate the chemical potential µ, depending on the physicist:
Fermi level, Fermi brim, Fermi energy, and electrochemical potential. It is more
or less common to reserve “Fermi energy” to absolute zero temperature, but to
not do the same for “Fermi level” or “Fermi brim.” In any case, do not count
on it. This book will occasionally use the term Fermi level for the chemical
potential where it is common to do so. In particular, a Fermi-level electron has
an energy equal to the chemical potential.

The term “electrochemical potential” needs some additional comment. The
surfaces of solids are characterized by unavoidable layers of electric charge.
These charge layers produce an electrostatic potential inside the solid that shifts
all energy levels, including the chemical potential, by that amount. Since the
charge layers vary, so does the electrostatic potential and with it the value of the
chemical potential. It would therefore seem logical to define some “intrinsic”
chemical potential, and add to it the electrostatic potential to get the total, or
“electrochemical” potential.

For example, you might consider defining the “intrinsic” chemical potential
µi of a solid as the value of the chemical potential µ when the solid is electrically
neutral and isolated. Now, when you bring dissimilar solids at a given temper-
ature into electrical contact, double layers of charge build up at the contact
surfaces between them. These layers change the electrostatic potentials inside
the solids and with it their total electrochemical potential µ.

In particular, the strengths of the double layers adjust so that in thermal
equilibrium, the electrochemical potentials µ of all the solids (intrinsic plus
additional electrostatic contribution due to the changed surface charge layers)
are equal. They have to; solids in electrical contact become a single system of
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electrons. A single system should have a single chemical potential.
Unfortunately, the assumed “intrinsic” chemical potential in the above de-

scription is a somewhat dubious concept. Even if a solid is uncharged and
isolated, its chemical potential is not a material property. It still depends un-
avoidably on the surface properties: their contamination, roughness, and angu-
lar orientation relative to the atomic crystal structure. If you mentally take a
solid attached to other solids out to isolate it, then what are you to make of the
condition of the surfaces that were previously in contact with other solids?

Because of such concerns, nowadays many physicists disdain the concept of
an intrinsic chemical potential and simply refer to µ as “the” chemical potential.
Note that this means that the actual value of the chemical potential depends on
the detailed conditions that the solid is in. But then, so do the electron energy
levels. The location of the chemical potential relative to the spectrum is well
defined regardless of the electrostatic potential.

And the chemical potentials of solids in contact and in thermal equilibrium
still line up.

The Fermi-Dirac distribution is also known as the “Fermi factor.” Note that
in proper quantum terms, it gives the probability that a state is occupied by an
electron.

Key Points

0 The Fermi-Dirac distribution gives the number of electrons, or other
fermions, per single-particle state for a macroscopic system at a non-
zero temperature.

0 Typically, the effects of nonzero temperature remain restricted to a,
relatively speaking, small number of electrons near the Fermi energy.

0 These electrons are within a distance comparable to kBT of the Fermi
energy. They pick up a thermal energy that is also comparable to
kBT .

0 Because of the small number of electrons involved, the effect on the
heat capacity can usually be ignored.

0 When solids are in electrical contact and in thermal equilibrium, their
(electro)chemical potentials / Fermi levels / Fermi brims / whatever
line up.

6.14 Maxwell-Boltzmann Distribution

The previous sections showed that the thermal statistics of a system of identical
bosons is normally dramatically different from that of a system of identical
fermions. However, if the temperature is high enough, and the box holding the
particles big enough, the differences disappear. These are ideal gas conditions.
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Under these conditions the average number of particles per single-particle
state becomes much smaller than one. That average can then be approximated
by the so-called

Maxwell-Boltzmann distribution: ιd =
1

e(E
p−µ)/kBT

ιd ≪ 1 (6.21)

Here Ep is again the single-particle energy, µ the chemical potential, T the abso-
lute temperature, and kB the Boltzmann constant. Under the given conditions
of a low particle number per state, the exponential is big enough that the ±1
found in the Bose-Einstein and Fermi-Dirac distributions (6.9) and (6.19) can
be ignored.

Figure 6.16 gives a picture of the distribution for noninteracting particles in
a box. The energy spectrum to the right shows the average number of particles
per state as the relative width of the red region. The wave number space to the
left shows a typical system energy eigenfunction; states with a particle in them
are in red.
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Figure 6.16: Particles at high-enough temperature and low-enough particle den-
sity.

Since the (anti) symmetrization requirements no longer make a difference,
the Maxwell-Boltzmann distribution is often represented as applicable to “dis-
tinguishable” particles. But of course, where are you going to get a macroscopic
number of, say, 1020 particles, each of a different type? The imagination boggles.
Still, the “d” in ιd refers to distinguishable.

The Maxwell-Boltzmann distribution was already known before quantum
mechanics. The factor e−E

p/kBT in it implies that the number of particles at
a given energy decreases exponentially with the energy. A classical example
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is the decrease of density with height in the atmosphere. In an equilibrium
(i.e. isothermal) atmosphere, the number of molecules at a given height h is
proportional to e−mgh/kBT wheremgh is the gravitational potential energy of the
molecules. (It should be noted that normally the atmosphere is not isothermal
because of the heating of the earth surface by the sun and other effects.)

The example of the isothermal atmosphere can be used to illustrate the idea
of intrinsic chemical potential. Think of the entire atmosphere as build up out of
small boxes filled with particles. The walls of the boxes conduct some heat and
they are very slightly porous, to allow an equilibrium to develop if you are very
patient. Now write the energy of the particles as the sum of their gravitational
potential energy plus an intrinsic energy (which is just their kinetic energy for
the model of noninteracting particles). Similarly write the chemical potential as
the sum of the gravitational potential energy plus an intrinsic chemical potential:

E
p
= mgh+ E

p
i µ = mgh+ µi

Since Ep − µ = Ep
i − µi, the Maxwell-Boltzmann distribution is not affected

by the switch to intrinsic quantities. But that implies that the relationship
between kinetic energy, intrinsic chemical potential, and number of particles in
each individual box is the same as if gravity was not there. In each box, the
normal ideal gas law applies in terms of intrinsic quantities.

However, different boxes have different intrinsic chemical potentials. The
entire system of boxes has one global temperature and one global chemical
potential, since the porous walls make it a single system. But the global chemical
potential that is the same in all boxes includes gravity. That makes the intrinsic
chemical potential in boxes at different heights different, and with it the number
of particles in the boxes.

In particular, boxes at higher altitudes have less molecules. Compare states
with the same intrinsic, kinetic, energy for boxes at different heights. According
to the Maxwell-Boltzmann distribution, the number of particles in a state with
intrinsic energy Ep

i is 1/e(E
p
i +mgh−µ)/kBT . That decreases with height propor-

tional to e−mgh/kBT , just like classical analysis predicts.
Now suppose that you make the particles in one of the boxes hotter. There

will then be a flow of heat out of that box to the neighboring boxes until a
single temperature has been reestablished. On the other hand, assume that you
keep the temperature unchanged, but increase the chemical potential in one of
the boxes. That means that you must put more particles in the box, because
the Maxwell-Boltzmann distribution has the number of particles per state equal
to eµ/kBT . The excess particles will slowly leak out through the slightly porous
walls until a single chemical potential has been reestablished. Apparently, then,
too high a chemical potential promotes particle diffusion away from a site, just
like too high a temperature promotes thermal energy diffusion away from a site.

While the Maxwell-Boltzmann distribution was already known classically,
quantum mechanics adds the notion of discrete energy states. If there are more
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energy states at a given energy, there are going to be more particles at that
energy, because (6.21) is per state. For example, consider the number of ther-
mally excited atoms in a thin gas of hydrogen atoms. The number I2 of atoms
that are thermally excited to energy E2 is in terms of the number I1 with the
ground state energy E1:

I2
I1

=
8

2
e−(E2−E1)/kBT

The final exponential is due to the Maxwell-Boltzmann distribution. The lead-
ing factor arises because there are eight electron states at energy E2 and only
two at energy E1 in a hydrogen atom. At room temperature kBT is about 0.025
eV, while E2−E1 is 10.2 eV, so there are not going to be any thermally excited
atoms at room temperature.

Key Points

0 The Maxwell-Boltzmann distribution gives the number of particles
per single-particle state for a macroscopic system at a nonzero tem-
perature.

0 It assumes that the particle density is low enough, and the temper-
ature high enough, that (anti) symmetrization requirements can be
ignored.

0 In particular, the average number of particles per single-particle state
should be much less than one.

0 According to the distribution, the average number of particles in a
state decreases exponentially with its energy.

0 Systems for which the distribution applies can often be described
well by classical physics.

0 Differences in chemical potential promote particle diffusion.

6.15 Thermionic Emission

The valence electrons in a block of metal have tremendous kinetic energy, of the
order of electron volts. These electrons would like to escape the confines of the
block, but attractive forces exerted by the nuclei hold them back. However, if
the temperature is high enough, typically 1 000 to 2 500 K, a few electrons can
pick up enough thermal energy to get away. The metal then emits a current of
electrons. This is called “thermionic emission.” It is important for applications
such as electron tubes and fluorescent lamps.

The amount of thermionic emission depends not just on temperature, but
also on how much energy electrons inside the metal need to escape. Now the
energies of the most energetic electrons inside the metal are best expressed in
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terms of the Fermi energy level. Therefore, the energy required to escape is
conventionally expressed relative to that level. In particular, the additional
energy that a Fermi-level electron needs to escape is traditionally written in the
form eϕw where e is the electron charge and ϕw is called the “work function.”
The magnitude of the work function is typically on the order of volts. That
makes the energy needed for a Fermi-level electron to escape on the order of
electron volts, comparable to atomic ionization energies.

The thermionic emission equation gives the current density of electrons as,
{D.29},

j = AT 2e−eϕw/kBT (6.22)

where T is the absolute temperature and kB is the Boltzmann constant. The
constant A is typically one quarter to one half of its theoretical value

Atheory =
meekB
2π2~3

≈ 1.2 106 amp/m2K2 (6.23)

Note that thermionic emission depends exponentially on the temperature;
unless the temperature is high enough, extremely little emission will occur.
You see the Maxwell-Boltzmann distribution at work here. This distribution is
applicable since the number of electrons per state is very small for the energies
at which the electrons can escape.

Despite the applicability of the Maxwell-Boltzmann distribution, classical
physics cannot explain thermionic emission. That is seen from the fact that the
constant Atheory depends nontrivially, and strongly, on ~. The dependence on
quantum theory comes in through the density of states for the electrons that
have enough energy to escape, {D.29}.

Thermionic emission can be helped along by applying an additional electric
field Eext that drives the electrons away from the surface of the solid. That is
known as the “Schottky effect.” The electric field has the approximate effect of
lowering the work function value by an amount, {D.29},

√
eEext
4πǫ0

(6.24)

For high-enough electric fields, significant numbers of electrons may also “tun-
nel” out due to their quantum uncertainty in position. That is called “field
emission.” It depends exponentially on the field strength, which must be very
high as the quantum uncertainty in position is small.

It may be noted that the term “thermionic emission” may be used more
generally to indicate the flow of charge carriers, either electrons or ions, over a
potential barrier. Even for standard thermionic emission, it should be cautioned
that the work function depends critically on surface conditions. For example,
surface pollution can dramatically change it.
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Key Points

0 Some electrons can escape from solids if the temperature is suffi-
ciently high. That is called thermionic emission.

0 The work function is the minimum energy required to take a Fermi-
level electron out of a solid, per unit charge.

0 An additional electric field can help the process along, in more ways
than one.

6.16 Chemical Potential and Diffusion

The chemical potential, or Fermi level, that appears in the Fermi-Dirac distri-
bution is very important for solids in contact. If two solids are put in electrical
contact, at first electrons will diffuse to the solid with the lower chemical po-
tential. It is another illustration that differences in chemical potential cause
particle diffusion.

Of course the diffusion cannot go on forever. The electrons that transfer to
the solid with the lower chemical potential will give it a negative charge. They
will also leave a net positive charge behind on the solid with the higher chemical
potential. Therefore, eventually an electrostatic force builds up that terminates
the further transfer of electrons. With the additional electrostatic contribution,
the chemical potentials of the two solids have then become equal. As it should.
If electrons can transfer from one solid to the other, the two solids have become
a single system. In thermal equilibrium, a single system should have a single
Fermi-Dirac distribution with a single chemical potential.

The transferred net charges will collect at the surfaces of the two solids,
mostly where the two meet. Consider in particular the contact surface of two
metals. The interiors of the metals have to remain completely free of net charge,
or there would be a variation in electric potential and a current would flow
to eliminate it. The metal that initially has the lower Fermi energy receives
additional electrons, but these stay within an extremely thin layer at its surface.
Similarly, the locations of missing electrons in the other metal stay within a
thin layer at its surface. Where the two metals meet, a “double layer” exists; it
consists of a very thin layer of highly concentrated negative net charges next to
a similar layer of highly concentrated positive net charges. Across this double
layer, the mean electrostatic potential changes almost discontinuously from its
value in the first metal to that in the second. The step in electrostatic potential
is called the “Galvani potential.”

Galvani potentials are not directly measurable; attaching voltmeter leads to
the two solids adds two new contact surfaces whose potentials will change the
measured potential difference. More specifically, they will make the measured
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potential difference exactly zero. To see why, assume for simplicity that the two
leads of the voltmeter are made of the same material, say copper. All chemical
potentials will level up, including those in the two copper leads of the meter.
But then there is no way for the actual voltmeter to see any difference between
its two leads.

Of course, it would have to be so. If there really was a net voltage in thermal
equilibrium that could move a voltmeter needle, it would violate the second law
of thermodynamics. You cannot get work for nothing.

Note however that if some contact surfaces are at different temperatures
than others, then a voltage can in fact be measured. But the physical reason
for that voltage is not the Galvani potentials at the contact surfaces. Instead
diffusive processes in the bulk of the materials cause it. See section 6.28.2 for
more details. Here it must suffice to note that the usable voltage is powered by
temperature differences. That does not violate the second law; you are depleting
temperature differences to get whatever work you extract from the voltage.

Similarly, chemical reactions can produce usable electric power. That is the
principle of the battery. It too does not violate the second law; you are using up
chemical fuel. The chemical reactions do physically occur at contact surfaces.

Somewhat related to Galvani potentials, there is an electric field in the
gap between two different metals that are in electrical contact elsewhere. The
corresponding change in electric potential across the gap is called the “contact
potential” or “Volta potential.”

As usual, the name is poorly chosen: the potential does not occur at the
contact location of the metals. In fact, you could have a contact potential
between different surfaces of the same metal, if the two surface properties are
different. “Surface potential difference” or “gap potential” would have been a
much more reasonable term. Only physicists would describe what really is a
“gap potential” as a “contact potential.”

The contact potential is equal to the difference in the work functions of the
surfaces of the metals. As discussed in the previous section, the work function is
the energy needed to take a Fermi-level electron out of the solid, per unit charge.
To see why the contact potential equals the difference in work functions, imagine
taking a Fermi-level electron out of the first metal, moving it through the gap,
and putting it into the second metal. Since the electron is back at the same
Fermi level that it started out at, the net work in this process should be zero.
But if the work function of the second metal is different from the first, putting
the electron back in the second metal does not recover the work needed to take
it out of the first metal. Then electric work in the gap must make up the
difference.

Key Points

0 When two solids are brought in contact, their chemical potentials, or
Fermi levels, must line up. A double layer of positive and negative
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charges forms at the contact surface between the solids. This double
layer produces a step in voltage between the interiors of the solids.

0 There is a voltage difference in the gap between two metals that are
electrically connected and have different work functions. It is called
the contact potential.

6.17 Intro to the Periodic Box

This chapter so far has shown that lots can be learned from the simple model
of noninteracting particles inside a closed box. The biggest limitation of the
model is particle motion. Sustained particle motion is hindered by the fact that
the particles cannot penetrate the walls of the box.

One way of dealing with that is to make the box infinitely large. That
produces motion in infinite and empty space. It can be done, as shown in
chapter 7.9 and following. However, the analysis is nasty, as the eigenfunctions
cannot be properly normalized. In many cases, a much simpler approach is to
assume that the particles are in a finite, but periodic box. A particle that exits
such a box through one side reenters it at the same time through the opposing
side.

To understand the idea, consider the one-dimensional case. Studying one-di-
mensional motion along an infinite straight line −∞ < x <∞ is typically nasty.
One-dimensional motion along a circle is likely to be easier. Unlike the straight
line, the circumference of the circle, call it ℓx, is finite. So you can define a
coordinate x along the circle with a finite range 0 < x < ℓx. Yet despite the
finite circumference, a particle can keep moving along the circle without getting
stuck. When the particle reaches the position x = ℓx along the circle, it is back
at its starting point x = 0. It leaves the defined x-range through x = ℓx, but it
reenters it at the same time through x = 0. The position x = ℓx is physically
exactly the same point as x = 0.

Similarly a periodic box of dimensions ℓx, ℓy, and ℓz assumes that x = ℓx is
physically the same as x = 0, y = ℓy the same as y = 0, and z = ℓz the same as
z = 0. That is of course hard to visualize. It is just a mathematical trick, but
one that works well. Typically at the end of the analysis you take the limit that
the box dimensions become infinite. That makes this artificial box disappear
and you get the valid infinite-space solution.

The biggest difference between the closed box and the periodic box is linear
momentum. For noninteracting particles in a periodic box, the energy eigen-
functions can be taken to be also eigenfunctions of linear momentum ~̂p. They
then have definite linear momentum in addition to definite energy. In fact, the
linear momentum is just a scaled wave number vector; ~p = ~~k. That is discussed
in more detail in the next section.
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Key Points

0 A periodic box is a mathematical concept that allows unimpeded
motion of the particles in the box. A particle that exits the box
through one side reenters it at the opposite side at the same time.

0 For a periodic box, the energy eigenfunctions can be taken to be also
eigenfunctions of linear momentum.

6.18 Periodic Single-Particle States

The single-particle quantum states, or energy eigenfunctions, for noninteracting
particles in a closed box were given in section 6.2, (6.2). They were a product
of a sine in each axial direction. Those for a periodic box can similarly be taken
to be a product of a sine or cosine in each direction. However, it is usually much
better to take the single-particle energy eigenfunctions to be exponentials:

ψp
nxnynz

(~r) = V− 1
2 ei(kxx+kyy+kzz) = V− 1

2 ei
~k·~r (6.25)

Here V is the volume of the periodic box, while ~k = (kx, ky, kz) is the “wave
number vector” that characterizes the state.

One major advantage of these eigenfunctions is that they are also eigenfunc-
tion of linear momentum. For example. the linear momentum in the x-direction
equals px = ~kx. That can be verified by applying the x-momentum operator
~∂/i∂x on the eigenfunction above. The same for the other two components of
linear momentum, so:

px = ~kx py = ~ky pz = ~kz ~p = ~~k (6.26)

This relationship between wave number vector and linear momentum is known
as the “de Broglie relation.”

The reason that the momentum eigenfunctions are also energy eigenfunctions
is that the energy is all kinetic energy. It makes the energy proportional to
the square of linear momentum. (The same is true inside the closed box, but
momentum eigenstates are not acceptable states for the closed box. You can
think of the surfaces of the closed box as infinitely high potential energy barriers.
They reflect the particles and the energy eigenfunctions then must be a 50/50
mix of forward and backward momentum.)

Like for the closed box, for the periodic box the single-particle energy is still
given by

E
p
=

~
2

2m
k2 k ≡

√
k2x + k2y + k2z (6.27)



250 CHAPTER 6. MACROSCOPIC SYSTEMS

That may be verified by applying the kinetic energy operator on the eigenfunc-
tions. It is simply the Newtonian result that the kinetic energy equals 1

2
mv2

since the velocity is v = p/m by the definition of linear momentum and p = ~k
in quantum terms.

Unlike for the closed box however, the wave numbers kx, ky, and kz are now
constrained by the requirement that the box is periodic. In particular, since x
= ℓx is supposed to be the same physical plane as x = 0 for a periodic box,
eikxℓx must be the same as eikx0. That restricts kxℓx to be an integer multiple of
2π, (2.5). The same for the other two components of the wave number vector,
so:

kx = nx
2π

ℓx
ky = ny

2π

ℓy
kz = nz

2π

ℓz
(6.28)

where the quantum numbers nx, ny, and nz are integers.
In addition, unlike for the sinusoidal eigenfunctions of the closed box, zero

and negative values of the wave numbers must now be allowed. Otherwise the
set of eigenfunctions will not be complete. The difference is that for the closed
box, sin(−kxx) is just the negative of sin(kxx), while for the periodic box, e−ikxx
is not just a multiple of eikxx but a fundamentally different function.

Figure 6.17 shows the wave number space for a system of electrons in a
periodic box. The wave number vectors are no longer restricted to the first
quadrant like for the closed box in figure 6.11; they now fill the entire space.
In the ground state, the states occupied by electrons, shown in red, now form
a complete sphere. For the closed box they formed just an octant of one. The
Fermi surface, the surface of the sphere, is now a complete spherical surface.

It may also be noted that in later parts of this book, often the wave number
vector or momentum vector is used to label the eigenfunctions:

ψp
nxnynz

(~r) = ψp
kxkykz

(~r) = ψp
pxpypz(~r)

In general, whatever is the most relevant to the analysis is used as label. In any
scheme, the single-particle state of lowest energy is ψp

000(~r); it has zero energy,
zero wave number vector, and zero momentum.

Key Points

0 The energy eigenfunctions for a periodic box are usually best taken to
be exponentials. Then the wave number values can be both positive
and negative.

0 The single-particle kinetic energy is still ~2k2/2m.

0 The momentum is ~~k.

0 The eigenfunction labelling may vary.
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Figure 6.17: Ground state of a system of noninteracting electrons, or other
fermions, in a periodic box.

6.19 DOS for a Periodic Box

The density of states is the number of single-particle states per unit energy
range. It turns out that the formulae for the density of states given in section
6.3 may be used for the periodic box as well as for the closed box. A box can
hold about the same number of particles per unit volume whether the boundary
conditions are periodic or not.

It is not that hard to verify. For a periodic box, the wave numbers can be
both positive and negative, not just positive like for a closed box. On the other
hand, a comparison of (6.3) and (6.28) shows that the wave number spacing for
a periodic box is twice as large as for a corresponding closed box. That cancels
the effect of the additional negative wave numbers and the total number of wave
number vectors in a given energy range remains the same. Therefore the density
of states is the same.

For the periodic box it is often convenient to have the density of states on
a linear momentum basis. It can be found by substituting k = p/~ into (6.5).
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That gives the number of single-particle states dN in a momentum range of size
dp as:

dN = VDp dp Dp =
2s+ 1

2π2~3
p2 (6.29)

Here Dp is the density of states per unit momentum range and unit volume.
Also, s is again the particle spin. Recall that 2s+ 1 becomes 2s for photons.

The staging behavior due to confinement gets somewhat modified compared
to section 6.12, since zero wave numbers are now included. The analysis is
however essentially unchanged.

Key Points

0 The density of states is essentially the same for a periodic box as for
a closed one.

6.20 Intro to Electrical Conduction

Some of the basic physics of electrical conduction in metals can be understood
using a very simple model. That model is a free-electron gas, i.e. noninteracting
electrons, in a periodic box.

The classical definition of electric current is moving charges. That can read-
ily be converted to quantum terms for noninteracting electrons in a periodic
box. The single-particle energy states for these electrons have definite velocity.
That velocity is given by the linear momentum divided by the mass.

Consider the possibility of an electric current in a chosen x-direction. Figure
6.18 shows a plot of the single-particle energy Ep against the single-particle
velocity vpx in the x-direction. The states that are occupied by electrons are
shown in red. The parabolic outer boundary reflects the classical expression
Ep = 1

2
mev

p2 for the kinetic energy: for the single-particle states on the outer
boundary, the velocity is purely in the x-direction.

In the system ground state, shown to the left in figure 6.18, no current will
flow, because there are just as many electrons that move toward negative x as
there are that move towards positive x. To get net electron motion in the x-
direction, electrons must be moved from states that have negative velocity in the
x-direction to states that have positive velocity. That is indicated to the right
in figure 6.18. The asymmetric occupation of states now produces net electron
motion in the positive x-direction. That produces a current in the negative x-
direction because of the fact that the charge −e of electrons is negative.

Note that the electrons must pick up a bit of additional energy when they
are moved from states with negative velocity to states with positive velocity.
That is because the Pauli exclusion principle forbids the electrons from entering
the lower energy states of positive velocity that are already filled with electrons.
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Figure 6.18: Conduction in the free-electron gas model.

However, the required energy is small. You might just briefly turn on an ex-
ternal voltage source to produce an electric field that gets the electrons moving.
Then you can turn off the voltage source again, because once set into motion,
the noninteracting electrons will keep moving forever.

In physical terms, it is not really that just a few electrons make a big ve-
locity change from negative to positive due to the applied voltage. In quantum
mechanics electrons are completely indistinguishable, and all the electrons are
involved equally in the changes of state. It is better to say that all electrons ac-
quire a small additional drift velocity ∆vpx in the positive x-direction. In terms
of the wave number space figure 6.17, this shifts the entire sphere of occupied
states a bit towards the right, because velocity is proportional to wave number
for a free-electron gas.

The net result is still the energy versus velocity distribution shown to the
right in figure 6.18. Electrons at the highest energy levels with positive velocities
go up a bit in energy. Electrons at the highest energy levels with negative
velocities go down a bit in energy. The electrons at lower energy levels move
along to ensure that there is no more than one electron in each quantum state.
The fact remains that the system of electrons picks up a bit of additional energy.
(The last subsection of derivation {D.45} discusses the effect of the applied
voltage in more detail.)

Conduction electrons in an actual metal wire behave similar to free electrons.
However, they must move around the metal atoms, which are normally arranged
in some periodic pattern called the crystal structure. The conduction electrons
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will periodically get scattered by thermal vibrations of the crystal structure, (in
quantum terms, by phonons), and by crystal structure imperfections and impu-
rities. That kills off their organized drift velocity ∆vpx, and a small permanent
electric field is required to replenish it. In other words, there is resistance. But
it is not a large effect. For one, in macroscopic terms the conduction electrons
in a metal carry quite a lot of charge per unit volume. So they do not have to
go fast. Furthermore, conduction electrons in copper or similar good metal con-
ductors may move for thousands of Ångstroms before getting scattered, slipping
past thousands of atoms. Electrons in extremely pure copper at liquid helium
temperatures may even move millimeters or more before getting scattered. The
average distance between scattering events, or “collisions,” is called the “free
path” length ℓ. It is very large on an atomic scale.

Of course, that does not make much sense from a classical point of view.
Common sense says that a point-size classical electron in a solid should pretty
much bounce off every atom it encounters. Therefore the free path of the elec-
trons should be of the order of a single atomic spacing, not thousands of atoms
or much more still. However, in quantum mechanics electrons are not particles
with a definite position. Electrons are described by a wave function. It turns
out that electron waves can propagate through perfect crystals without scatter-
ing, much like electromagnetic waves can. The free-electron gas wave functions
adapt to the crystal structure, allowing the electrons to flow past the atoms
without reflection.

It is of some interest to compare the quantum picture of conduction to that
of a classical, nonquantum, description. In the classical picture, all conduction
electrons would have a random thermal motion. The average velocity v of that
motion would be proportional to

√
kBT/me, with kB the Boltzmann constant,

T the absolute temperature, and me the electron mass. In addition to this
random thermal motion in all directions, the electrons would also have a small
organized drift velocity ∆vpx in the positive x-direction that produces the net
current. This organized motion would be created by the applied electric field in
between collisions. Whenever the electrons collide with atoms, they lose much
of their organized motion, and the electric field has to start over again from
scratch.

Based on this picture, a ballpark expression for the classical conductivity can
be written down. First, by definition the current density jx equals the number
of conduction electrons per unit volume ie, times the electric charge −e that
each carries, times the small organized drift velocity ∆vpx in the x-direction that
each has:

jx = −iee∆vpx (6.30)

The drift velocity ∆vpx produced by the electric field between collisions can be
found from Newton’s second law as the force on an electron times the time inter-
val between collisions during which this force acts and divided by the electron
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mass. The average drift velocity would be half that, assuming for simplicity
that the drift is totally lost in collisions, but the half can be ignored in the
ballpark anyway. The force on an electron equals −eEx where Ex is the electric
field due to the applied voltage. The time between collisions can be computed
as the distance between collisions, which is the free path length ℓ, divided by the
velocity of motion v. Since the drift velocity is small compared to the random
thermal motion, v can be taken to be the thermal velocity. The “conductivity”
σ is the current density per unit electric field, so putting it all together,

σ ∼ iee
2ℓ

mev
(6.31)

Neither the thermal velocity v nor the free path ℓ will be the same for all
electrons, so suitable averages have to be used in more detailed expressions.
The “resistivity” is defined as the reciprocal of the conductivity, so as 1/σ. It
is the resistance of a unit cube of material.

For metals, things are a bit different because of quantum effects. In metals
random collisions are restricted to a small fraction of electrons at the highest
energy levels. These energy levels are characterized by the Fermi energy, the
highest occupied energy level in the spectrum to the left in figure 6.18. Electrons
of lower energies do not have empty states nearby to be randomly scattered
into. The velocity of electrons near the Fermi energy is much larger than the
thermal value

√
kBT/me, because there are much too few states with thermal-

level energies to hold all conduction electrons, section 6.10. The bottom line is
that for metals, in the ballpark for the conductivity the free path length ℓ and
velocity v of the Fermi-level electrons must be used. In addition, the electron
mass me may need to be changed into an effective one to account for the forces
exerted by the crystal structure on the electrons. That will be discussed in more
detail in section 6.22.3.

The classical picture works much better for semiconductors, since these have
much less conduction electrons than would be needed to fill all the quantum
states available at thermal energies. The mass correction remains required.

Key Points

0 The free-electron gas can be used to understand conduction in metals
in simple terms.

0 In the absence of a net current the electrons are in states with ve-
locities in all directions. The net electron motion therefore averages
out to zero.

0 A net current is achieved by giving the electrons an additional small
organized motion.

0 The energy needed to do this is small.
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0 In real metals, the electrons lose their organized motion due to colli-
sions with phonons and crystal imperfections. Therefore a small per-
manent voltage must be applied to maintain the net motion. That
means that there is electrical resistance. However, it is very small
for typical metals.

6.21 Intro to Band Structure

Quantum mechanics is essential to describe the properties of solid materials,
just as it is for lone atoms and molecules. One well-known example is supercon-
ductivity, in which current flows without any resistance. The complete absence
of any resistance cannot be explained by classical physics, just like superfluidity
cannot for fluids.

But even normal electrical conduction simply cannot be explained without
quantum theory. Consider the fact that at ordinary temperatures, typical metals
have electrical resistivities of a few times 10−8 ohm-m (and up to a hundred
thousand times less still at very low temperatures), while Wikipedia lists a
resistance for teflon of up to 1024 ohm-m. (Teflon’s “one-minute” resistivity
can be up to 1019 ohm-m.) That is a difference in resistance between the best
conductors and the best insulators by over thirty orders of magnitude!

There is simply no way that classical physics could even begin to explain it.
As far as classical physics is concerned, all of these materials are quite similar
combinations of positive nuclei and negative electrons.

Consider an ordinary sewing needle. You would have as little trouble sup-
porting its tiny 60 mg weight as a metal has conducting electricity. But multiply
it by 1030. Well, don’t worry about supporting its weight. Worry about the en-
tire earth coming up over your ears and engulfing you, because the needle now
has ten times the mass of the earth. That is how widely different the electrical
conductivities of solids are.

Only quantum mechanics can explain why it is possible, by making the
electron energy levels discrete, and more importantly, by grouping them together
in “bands.”

Key Points

0 Even excluding superconductivity, the electrical conductivities of sol-
ids vary enormously.

6.21.1 Metals and insulators

To understand electrical conduction in solids requires consideration of their
electron energy levels.
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Typical energy spectra are sketched in figure 6.19. The spectrum of a free-
electron gas, noninteracting electrons in a box, is shown to the left. The energy
Ep of the single-particle states is shown along the vertical axis. The energy
levels allowed by quantum mechanics start from zero and reach to infinity. The
energy levels are spaced many orders of magnitude more tightly together than
the hatching in the figure can indicate. For almost all practical purposes, the
energy levels form a continuum. In the ground state, the electrons fill the
lowest of these energy levels, one electron per state. In the figure, the occupied
states are shown in red. For a macroscopic system, the number of electrons is
practically speaking infinite, and so is the number of occupied states.

free
electron

gas

Ep

metal

Ep

insulator

✻❄E
p
gap

Ep

lone
atoms

Ep unoccupied
states
(grey)
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states
(red)

Figure 6.19: Sketch of electron energy spectra in solids at absolute zero tem-
perature. (No attempt has been made to picture a density of states). Far left:
the free-electron gas has a continuous band of extremely densely spaced energy
levels. Far right: lone atoms have only a few discrete electron energy levels.
Middle: actual metals and insulators have energy levels grouped into densely
spaced bands separated by gaps. Insulators completely fill up the highest occu-
pied band.

However, the free-electron gas assumes that there are no forces on the elec-
trons. Inside a solid, this would only be true if the electric charges of the nuclei
and fellow electrons would be homogeneously distributed throughout the entire
solid. In that case the forces come equally from all directions and cancel each
other out perfectly. In a true solid, forces from different directions do tend to
cancel each other out, but this is far from perfect. For example, an electron
very close to one particular nucleus experiences a strong attraction from that
nucleus, much too strong for the rest of the solid to cancel.

The diametrical opposite of the free-electron gas picture is the case that the
atoms of the solid are spaced so far apart that they are essentially lone atoms.
In that case, of course, the “solid” would not physically be a solid at all, but
a thin gas. Lone atoms do not have a continuum of electron energy levels, but
discrete ones, as sketched to the far right in figure 6.19. One basic example
is the hydrogen spectrum shown in figure 4.8. Every lone atom in the system

extrascale=3
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has the exact same discrete energy levels. Widely spaced atoms do not conduct
electricity, assuming that not enough energy is provided to ionize them. While
for the free-electron gas conduction can be achieved by moving a few electrons to
slightly higher energy levels, for lone atoms there are no slightly higher energy
levels.

When the lone atoms are brought closer together to form a true solid, how-
ever, the discrete atomic energy levels broaden out into bands. In particular,
the outer electrons start to interact strongly with surrounding atoms. The dif-
ferent forms that these interactions can take produce varying energies, causing
initially equal electron energies to broaden into bands. The result is sketched
in the middle of figure 6.19. The higher occupied energy levels spread out sig-
nificantly. (The inner atomic electrons, having the most negative net energies,
do not interact significantly with different atoms, and their energy levels do
not broaden much. This is not just because these electrons are farther from
the surrounding atoms, but also because the inner electrons have much greater
kinetic and much more negative potential energy levels to start with.)

For metals, conduction now becomes possible. Electrons at the highest oc-
cupied energy level, the Fermi energy, can be moved to slightly higher energy
levels to provide net motion in a particular direction. That is just like they
can for a free-electron gas as discussed in the previous section. The net motion
produces a current.

Insulators are different. As sketched in figure 6.19, they completely fill up
the highest occupied energy band. That filled band is called the “valence band.”
The next higher and empty band is called the “conduction band.”

Now it is no longer possible to prod electrons to slightly higher energy levels
to create net motion. There are no slightly higher energy levels available; all
levels in the valence band are already filled with electrons.

To create a state with net motion, some electrons would have to be moved
to the conduction band. But that would require large amounts of energy. The
minimum energy required is the difference between the top of the valence band
and the bottom of the conduction band. This energy is appropriately called the
“band gap” energy Ep

gap. It is typically of the order of electron volts, comparable
to atomic potentials for outer electrons. That is in turn comparable to ionization
energies, a great amount of energy on an atomic scale.

Resistance is determined for voltages low enough that Ohm’s law applies.
Such voltages do not provide anywhere near the energy required to move elec-
trons to the conduction band. So the electrons in an insulator are stuck. They
cannot achieve net motion at all. And without net motion, there is no current.
That makes the resistance infinite. In this way the band gaps are responsible
for the enormous difference in resistance between metals and insulators.

Note that a normal applied voltage will not have a significant effect on the
band structure. Atomic potential energies are in terms of eV or more. For the
applied voltage to compete with that would require a voltage drop comparable
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to volts per atom. On a microscopic scale, the applied potential does not change
the states.

Key Points

0 Quantum mechanics allows only discrete energy levels for the elec-
trons in a solid, and these levels group together in bands with gaps
in between them.

0 If the electrons fill the spectrum right up to a gap between bands,
the electrons are stuck. It will require a large amount of energy
to activate them to conduct electricity or heat. Such a solid is an
insulator at absolute zero temperature.

0 The filled band is called the valence band, and the empty band above
it the conduction band.

6.21.2 Typical metals and insulators

If a material completely fills up its valence band with electrons, it is an insulator.
But what materials would do that? This subsection gives a few rules of thumb.

One important rule is that the elements towards the left in the periodic table
figure 5.8 are metals. A relatively small group of elements towards the right are
nonmetals.

Consider first the alkali metals found in group I to the far left in the table.
The lone atoms have only one valence electron per atom. It is in an atomic “s”
state that can hold two electrons, chapter 5.9.4. Every spatial state, including
the s state, can hold two electrons that differ in spin.

Now if the lone atoms are brought closer together to form a solid, the spatial
states change. Their energy levels broaden out into a band. However, the total
number of states does not change. One spatial state per atom stays one spatial
state per atom. Since each spatial state can hold two electrons, and there is
only one, the band formed from the s states is only half filled. Therefore, like
the name says, the alkali metals are metals.

In helium the spatial 1s states are completely filled with the two electrons
per atom. That makes solid helium an insulator. It should be noted that helium
is only a solid at very low temperatures and very high pressures. The atoms are
barely held together by very weak Van der Waals forces.

The alkaline metals found in group II of the periodic table also have two
valence electrons per atom. So you would expect them to be insulators too.
However, like the name says, the alkaline metals are metals. What happens is
that the filled band originating from the atomic s states merges with an empty
band originating from the atomic p states. That produces a partially filled
combined band.
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This does not apply to helium because there are no 1p states. The lowest
empty energy states for helium are the 2s ones. Still, computations predict
that helium will turn metallic at extremely high pressures. Compressing a
solid has the primary effect of increasing the kinetic energy of the electrons.
Roughly speaking, the kinetic energy is inversely proportional to the square
of the electron spacing, compare the Fermi energy (6.16). And increasing the
kinetic energy of the electrons brings them closer to a free-electron gas.

A case resembling that of helium is ionic materials in which the ions have a
noble-gas electron structure. A basic example is salt, sodium chloride. These
materials are insulators, as it takes significant energy to take apart the noble-gas
electron configurations. See however the discussion of ionic conductivity later
in this section.

Another case that requires explanation is hydrogen. Like the alkali metals,
hydrogen has only one valence electron per atom. That is not enough to fill up
the energy band resulting from the atomic 1s states. So you would expect solid
hydrogen to be a metal. But actually, hydrogen is an insulator. What happens
is that the energy band produced by the 1s states splits into two. And the lower
half is completely filled with electrons.

The reason for the splitting is that in the solid, the hydrogen atoms combine
pairwise into molecules. In an hydrogen molecule, there are not two separate
spatial 1s states of equal energy, chapter 5.2. Instead, there is a lowered-energy
two-electron spatial state in which the two electrons are symmetrically shared.
There is also a raised-energy two-electron spatial state in which the two electrons
are antisymmetrically shared. So there are now two energy levels with a gap in
between them. The two electrons occupy the lower-energy symmetric state with
opposite spins. In the solid, the hydrogen molecules are barely held together by
weak Van der Waals forces. The interactions between the molecules are small,
so the two molecular energy levels broaden only slightly into two thin bands.
The gap between the filled symmetric states and the empty antisymmetric ones
remains.

Note that sharing electrons in pairs involves a nontrivial interaction between
the two electrons in each pair. The truth must be stretched a bit to fit it
within the band theory idea of noninteracting electrons. Truly noninteracting
electrons would have the spatial states of the hydrogen molecular ion available to
them, chapter 4.6. Here the lower energy state is one in which a single electron
is symmetrically shared between the atoms. And the higher energy state is
one in which a single electron is antisymmetrically shared. In the model of
noninteracting electrons, both electrons occupy the lower-energy single-electron
spatial state, again with opposite spins. One problem with this picture is that
the single-electron states do not take into account where the other electron is.
There is then a significant chance that both electrons can be found around the
same atom. In the correct two-electron state, the electrons largely avoid that.
Being around the same atom would increase their energy, since the electrons
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repel each other.

Note also that using the actual hydrogen molecular ion states may not be
the best approach. It might be better to account for the presence of the other
electron approximately using some nuclear shielding approach like the one used
for atoms in chapter 5.9. An improved, but still approximate way of accounting
for the second electron would be to use a so-called “Hartree-Fock” method.
More generally, the most straightforward band theory approach tends to work
better for metals than for insulators. Alternative numerical methods exist that
work better for insulators. At the time of writing there is no simple magic bullet
that works well for every material.

Group IV elements like diamond, silicon, and germanium pull a similar trick
as hydrogen. They are insulators at absolute zero temperature. However, their
4 valence electrons per atom are not enough to fill the merged band arising
from the s and p states. That band can hold 8 electrons per atom. Like hydro-
gen, a gap forms within the band. First the s and p states are converted into
hybrids, chapter 5.11.4. Then states are created in which electrons are shared
symmetrically between atoms and states in which they are shared antisymmet-
rically. There is an energy gap between these states. The lower energy states
are filled with electrons and the higher energy states are empty, producing again
an insulator. But unlike in hydrogen, each atom is now bonded to four others.
That turns the entire solid into essentially one big molecule. These materials
are much stronger and more stable than solid hydrogen. Like helium, hydrogen
is only a solid at very low temperatures.

It may be noted that under extremely high pressures, hydrogen might be-
come metallic. Not only that, as the smallest atom of them all, and in the
absence of 1p atomic states, metallic hydrogen is likely to have some very un-
usual properties. It makes metallic hydrogen the holy grail of high pressure
physics.

It is instructive to examine how the band theory of noninteracting electrons
accounts for the fact that hydrogen is an insulator. Unlike the discussion above,
band theory does not actually look at the number of valence electrons per atom.
For one, a solid may consist of atoms of more than one kind. In general, crys-
talline solids consist of elementary building blocks called “primitive cells” that
can involve several atoms. Band theory predicts the solid to be a metal if the
number of electrons per primitive cell is odd. If the number of electrons per
primitive cell is even, the material may be an insulator. In solid hydrogen each
primitive cell holds a complete molecule, so there are two atoms per primitive
cell. Each atom contributes an electron, so the number of electrons per primitive
cell is even. According to band theory, that allows hydrogen to be an insulator.
In a similar way group V elements can fill up their valence bands with an odd
number of valence electrons per atom. And like hydrogen, diamond, silicon, and
germanium have two atoms per primitive cell, reflecting the gap that forms in
the merged s and p bands.



262 CHAPTER 6. MACROSCOPIC SYSTEMS

Of course, that cannot be the complete story. It does not explain why atoms
towards the right in the periodic table would group together into primitive cells
that allow them to be insulators. Why don’t the atoms to the left in the periodic
table do the same? Why don’t the alkali metals group together in two-atom
molecules like hydrogen does? Qualitatively speaking, metals are characterized
by valence electrons that are relatively loosely bound. Suppose you compare
the size of the 2s state of a lithium atom with the spacing of the atoms in solid
lithium. If you do, you find that on average the 2s valence electron is no closer
to the atom to which it supposedly “belongs” than to the neighboring atoms.
Therefore, the electrons are what is called “delocalized.” They are not bound
to one specific location in the atomic crystal structure. So they are not really
interested in helping bond “their” particular atom to its immediate neighbors.
On the other hand, to the right in the periodic table, including hydrogen and
helium, the valence electrons are much more tightly held. To delocalize them
would require that the atoms would be squeezed much more tightly together.
That does not happen under normal pressures because it produces very high
kinetic energy of the electrons.

Where hydrogen refuses to be a metal with one valence electron per atom,
boron refuses to do so with three. However, boron is very ambivalent about it.
It does not really feel comfortable with either metallic or covalent behavior. A
bit of impurity can readily turn it metallic. That great sensitivity to impurity
makes the element very hard to study. At the time of writing, it is believed
that boron has a covalent ground state under normal pressures. The convoluted
crystal structure is believed to have a unit cell with either 12 or 106 atoms,
depending on precise conditions.

In group IV, tin is metallic above 13 ◦C, as white tin, but covalent below
this temperature, as grey tin. It is often difficult to predict whether an element
is a metal or covalent near the middle of the periodic table. Lead, of course, is
a metal.

It should further be noted that band theory can be in error because it ignores
the interactions between the electrons. “Mott insulators” and “charge transfer
insulators” are, as the name says, insulators even though conventional band
theory would predict that they are metals.

Key Points

0 In the periodic table, the group I, II, and III elements are normally
metals.

0 Hydrogen and helium are nonmetals. Don’t ask about boron.

0 The group IV elements diamond, silicon, and germanium are insula-
tors at absolute zero temperature.
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6.21.3 Semiconductors

Temperature can have significant effects on electrical conduction. As the pre-
vious section noted, higher temperature decreases the conduction in metals, as
there are more crystal vibrations that the moving electrons can get scattered
by. But a higher temperature also changes which energy states the electrons
occupy. And that can produce semiconductors.

Figure 6.19 showed which energy states the electrons occupy at absolute
zero temperature. There are no electrons with energies above the Fermi level
indicated by the red tick mark. Figure 6.20 shows how that changes for a
nonzero temperature. Now random thermal motion allows electrons to reach
energy levels up to roughly kBT above the Fermi level. Here kB is the Boltzmann
constant and T the absolute temperature. This change in electron energies is
described mathematically by the Fermi-Dirac distribution discussed earlier.

free
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gas

Ep

metal

Ep

insulator

Ep
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Ep
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Ep unoccupied
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Figure 6.20: Sketch of electron energy spectra in solids at a nonzero tempera-
ture.

It does not make much difference for a free-electron gas or a metal. However,
for an insulator it may make a dramatic difference. If the band gap is not
too large compared to kBT , random thermal motion will put a few very lucky
electrons in the previously empty conduction band. These electrons can then
be prodded to slightly higher energies to allow some electric current to flow.
Also, the created “holes” in the valence band, the states that have lost their
electrons, allow some electric current. Valence band electrons can be moved
into holes that have a preferred direction of motion from states that do not.
These electrons will then leave behind holes that have the opposite direction of
motion.

It is often more convenient to think of the moving holes instead of the elec-
trons as the electric current carriers in the valence band. Since a hole means
that a negatively charged electron is missing, a hole acts much like a positively
charged particle would.

Because both the electrons in the conduction band and the holes in the
valence band allow some electrical conduction, the original insulator has turned

extrascale=3
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into what is called a “semiconductor.”
The previous section mentioned that a classical picture of moving electrons

simply does not work for metals. Their motion is much too much restrained by
a lack of available empty energy states. However, the conduction band of semi-
conductors is largely empty. Therefore a classical picture works much better for
the motion of the electrons in the conduction band of a semiconductor.

Key Points

0 For semiconductors, conduction can occur because some electrons
from the valence band are thermally excited to the conduction band.

0 Both the electrons that get into the conduction band and the holes
they leave behind in the valence band can conduct electricity.

6.21.4 Semimetals

One additional type of electron energy spectrum for solids should be mentioned.
For a “semimetal,” two distinct energy bands overlap slightly at the Fermi level.
In terms of the simplistic spectra of figure 6.19, that would mean that semimetals
are metals. Indeed they do allow conduction at absolute zero temperature.
However, their further behavior is noticeably different from true metals because
the overlap of the two bands is only small. One difference is that the electrical
conduction of semimetals increases with temperature, unlike that of metals.
Like for semiconductors, for semimetals a higher temperature means that there
are more electrons in the upper band and more holes in the lower band. That
effect is sketched to the far right in figure 6.20.

The classical semimetals are arsenic, antimony, and bismuth. Arsenic and
antimony are not just semimetals, but also “metalloids,” a group of elements
whose chemical properties are considered to be intermediate between metals and
nonmetals. But semimetal and metalloid are not the same thing. Semimetals
do not have to consist of a single element. Conversely, metalloids include the
semiconductors silicon and germanium.

A semimetal that is receiving considerable attention at the time of writing is
graphite. Graphite consists of sheets of carbon atoms. A single sheet of carbon,
called graphene, is right on the boundary between semimetal and semiconductor.
A carbon nanotube can be thought of as a strip cut from a graphene sheet
that then has its long edges attached together to produce a cylinder. Carbon
nanotubes have electrical properties that are fundamentally different depending
on the direction in which the strip is cut from the sheet. They can either be
metallic or nonmetallic.

Key Points
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0 Semimetals have properties intermediate between metals and semi-
conductors.

6.21.5 Electronic heat conduction

The valence electrons in metals are not just very good conductors of electricity,
but also of heat. In insulators electrons do not assist in heat conduction; it takes
too much energy to excite them. However, atomic vibrations in solids can con-
duct heat too. For example, diamond, an excellent electrical insulator, is also
an excellent conductor of heat. Therefore the differences in heat conduction
between solids are not by far as large as those in electrical conduction. Because
atoms can conduct significant heat, no solid material will be a truly superb ther-
mal insulator. Practical thermal insulators are highly porous materials whose
volume consists largely of voids.

Key Points

0 Electrons conduct heat very well, but atoms can do it too.

0 Practical thermal insulators use voids to reduce atomic heat conduc-
tion.

6.21.6 Ionic conductivity

It should be mentioned that electrons do not have an absolute monopoly on
electrical conduction in solids. A different type of electrical conduction is possi-
ble in ionic solids. These solids consist of a mixture of positively and negatively
charged ions. Positive ions, or “cations,” are atoms that have lost one or more
electrons. Negative ions, or “anions,” are atoms that have absorbed one or more
additional electrons. A simple example of a ionic solid is salt, which consists of
Na+ sodium cations and Cl− chlorine anions. For ionic solids a small amount of
electrical conduction may be possible due to motion of the ions. This requires
defects in the atomic crystal structure in order to give the atoms some room to
move.

Typical defects include “vacancies,” in which an atom is missing from the
crystal structure, and “interstitials,” in which an additional atom has been
forced into one of the small gaps between the atoms in the crystal. Now if a
ion gets removed from its normal position in the crystal to create a vacancy, it
must go somewhere. One possibility is that it gets squeezed in between the other
atoms in the crystal. In that case both a vacancy and an interstitial have been
produced at the same time. Such a combination of a vacancy and an interstitial
is called a “Frenkel defect.” Another possibility occurs in, for example, salt;
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along with the original vacancy, a vacancy for a ion of the opposite kind is
created. Such a combination of two opposite vacancies is called a “Schottky
defect.” In this case there is no need to squeeze an atom in the gaps in the
crystal structure; there are now equal numbers of ions of each kind to fill the
surrounding normal crystal sites. Creating defects in Frenkel or Schottky pairs
ensures that the complete crystal remains electrically neutral as it should.

Impurities are another important defect. For example, in salt a Ca2+ calcium
ion might be substituted for a Na+ sodium ion. The calcium ion has the charge of
two sodium ions, so a sodium vacancy ensures electric neutrality of the crystal.
In yttria-stabilized zirconia, (YSZ), oxygen vacancies are created in zirconia,
ZrO2, by replacing some Zr4+ zirconium ions with Y3+ yttrium ones. Calcium
ions can also be used. The oxygen vacancies allow mobility for the oxygen ions.
That is important for applications such as oxygen sensors and solid oxide fuel
cells.

For salt, the main conduction mechanism is by natrium vacancies. But the
ionic conductivity of salt is almost immeasurably small at room temperature.
That is due to the high energy needed to create Schottky defects and for natrium
ions to migrate into the natrium vacancies. Indeed, whatever little conduction
there is at room temperature is due to impurities. Heating will help, as it
increases the thermal energy available for both defect creation and ion mobility.
As seen from the Maxwell-Boltzmann distribution discussed earlier, thermal
effects increase exponentially with temperature. Still, even at the melting point
of salt its conductivity is eight orders of magnitude less than that of metals.

There are however ionic materials that have much higher conductivities.
They cannot compete with metals, but some ionic solids can compete with liq-
uid electrolytes. These solids may be referred to as “solid electrolytes, “fast ion
conductors,” or “superionic conductors.” They are important for such appli-
cations as batteries, fuel cells, and gas sensors. Yttria-stabilized zirconia is an
example, although unfortunately only at temperatures around 1 000 ◦C. In the
best ionic conductors, the crystal structure for one kind of ion becomes so irreg-
ular that these ions are effectively in a molten state. For example, this happens
for the silver ions in the classical example of hot silver iodide. Throw in 25% of
rubidium chloride and RbAg4Cl5 stays superionic to room temperature.

Crystal surfaces are also crystal defects, in a sense. They can enhance ionic
conductivity. For example, nanoionics can greatly improve the ionic conductiv-
ity of poor ionic conductors by combining them in nanoscale layers.

Key Points

0 In ionic solids, some electrical conduction may occur through the
motion of the ions instead of individual electrons.

0 It is important for applications such as batteries, fuel cells, and gas
sensors.
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6.22 Electrons in Crystals

A meaningful discussion of semiconductors requires some background on how
electrons move through solids. The free-electron gas model simply assumes that
the electrons move through an empty periodic box. But of course, to describe a
real solid the box should really be filled with the countless atoms around which
the conduction electrons move.

This subsection will explain how the motion of electrons gets modified by
the atoms. To keep things simple, it will still be assumed that there is no
direct interaction between the electrons. It will also be assumed that the solid
is crystalline, which means that the atoms are arranged in a periodic pattern.
The atomic period should be assumed to be many orders of magnitude shorter
than the size of the periodic box. There must be many atoms in each direction
in the box.

Figure 6.21: Potential energy seen by an electron along a line of nuclei. The
potential energy is in green, the nuclei are in red.

The effect of the crystal is to introduce a periodic potential energy for the
electrons. For example, figure 6.21 gives a sketch of the potential energy seen
by an electron along a line of nuclei. Whenever the electron is right on top of a
nucleus, its potential energy plunges. Close enough to a nucleus, a very strong
attractive Coulomb potential is seen. Of course, on a line that does not pass
exactly through nuclei, the potential will not plunge that low.

✲✛dx

✲✛
ℓx

Figure 6.22: Potential energy seen by an electron in the one-dimensional sim-
plified model of Kronig & Penney.

Kronig & Penney developed a very simple one-dimensional model that ex-
plains much of the motion of electrons through crystals. It assumes that the
potential energy seen by the electrons is periodic on some atomic-scale period
dx. It also assumes that this potential consists of square dips, like in figure 6.22.
You might think of the regions of lowered potential energy as the immediate
vicinity of the nuclei. This is the model that will be examined. The atomic
period dx is assumed to be much smaller than the periodic box size ℓx, i.e. the
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size of the complete “crystal.” In particular, the box should contain a large and
whole number of atomic periods.

Three-dimensional Kronig & Penney quantum states can be formed as prod-
ucts of one-dimensional ones, compare chapter 3.5.8. However, such states are
limited to potentials that are sums of one-dimensional ones. In any case, this
section will restrict itself mostly to the one-dimensional case.

6.22.1 Bloch waves

This subsection examines the single-particle quantum states, or energy eigen-
functions, of electrons in one-dimensional solids.

For free electrons, the energy eigenfunctions were given in section 6.18. In
one dimension they are:

ψp
nx
(x) = Ceikxx

where integer nx merely numbers the eigenfunctions and C is a normalization
constant that is not really important. What is important is that these eigenfunc-
tions do not just have definite energy Ep

x = ~
2k2x/2me, they also have definite

linear momentum px = ~kx. Here me is the electron mass and ~ the reduced
Planck constant. In classical terms, the electron velocity is given by the linear
momentum as vpx = px/me.

To find the equivalent one-dimensional energy eigenfunctions ψp
nx
(x) in the

presence of a crystal potential Vx(x) is messy. It requires solution of the one-di-
mensional Hamiltonian eigenvalue problem

− ~
2

2me

∂2ψp

∂x2
+ Vxψ

p = E
p
xψ

p

where Ep
x is the energy of the state. The solution is best done on a computer,

even for a potential as simple as the Kronig & Penney one, {N.9}.
However, it can be shown that the eigenfunctions can always be written in

the form:

ψp
nx
(x) = ψp

p,nx
(x)eikxx (6.32)

in which ψp
p,nx

(x) is an periodic function on the atomic period. Note that as long
as ψp

p,nx
(x) is a simple constant, this is exactly the same as the eigenfunctions

of the free-electron gas in one dimension; mere exponentials. But if the periodic
potential Vx(x) is not a constant, then neither is ψp

p,nx
(x). In that case, all that

can be said a priori is that it is periodic on the atomic period.
Energy eigenfunctions of the form (6.32) are called “Bloch waves.” It may

be pointed out that this form of the energy eigenfunctions was discovered by
Floquet, not Bloch. However, Floquet was a mathematician. In naming the
solutions after Bloch instead of Floquet, physicists celebrate the physicist who
could do it too, just half a century later.
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The reason why the energy eigenfunctions take this form, and what it means
for the electron motion are discussed further in chapter 7.10.5. There are only
two key points of interest for now. First, the possible values of the wave number
kx are exactly the same as for the free-electron gas, given in (6.28). Otherwise
the eigenfunction would not be periodic on the period of the box. Second, the
electron velocity can be found by differentiating the single particle energy Ep

x

with respect to the “crystal momentum” pcm,x = ~kx. That is the same as for
the free-electron gas. If you differentiate the one-dimensional free-electron gas
kinetic energy Ep

x = (~kx)
2/2me with respect to px = ~kx, you get the velocity.

Key Points

0 In the presence of a periodic crystal potential, the energy eigenfunc-
tions pick up an additional factor that has the atomic period.

0 The wave number values do not change.

0 The velocity is found by differentiating the energy with respect to
the crystal momentum.

6.22.2 Example spectra

As the previous section discussed, the difference between metals and insulators
is due to differences in their energy spectra. The one-dimensional Kronig &
Penney model can provide some insight into it.

vpx vpx vpx

Ep
x Ep

x Ep
x

metal insulator free electrons

Figure 6.23: Example Kronig & Penney spectra.

Finding the energy eigenvalues is not difficult on a computer, {N.9}. A
couple of example spectra are shown in figure 6.23. The vertical coordinate is
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the single-electron energy, as usual. The horizontal coordinate is the electron
velocity. (So the free electron example is the one-dimensional version of the
spectrum in figure 6.18, but the axes are much more compressed here.) Quantum
states occupied by electrons are again in red.

The example to the left in figure 6.23 tries to roughly model a metal like
lithium. The depth of the potential drops in figure 6.22 was chosen so that for
lone “atoms,” (i.e. for widely spaced potential drops), there is one bound spatial
state and a second marginally bound state. You might think of the bound state
as holding lithium’s two inner “1s” electrons, and the marginally bound state
as holding its loosely bound single “2s” valence electron.

Note that the 1s state is just a red dot in the lower part of the left spectrum
in figure 6.23. The energy of the inner electrons is not visibly affected by the
neighboring “atoms.” Also, the velocity does not budge from zero; electrons in
the inner states would hardly move even if there were unfilled states. These
two observations are related, because as mentioned earlier, the velocity is the
derivative of the energy with respect to the crystal momentum. If the energy
does not vary, the velocity is zero.

The second energy level has broadened into a half-filled “conduction band.”
Like for the free-electron gas in figure 6.18, it requires little energy to move
some Fermi-level electrons in this band from negative to positive velocities to
achieve net electrical conduction.

The spectrum in the middle of figure 6.23 tries to roughly model an insulator
like diamond. (The one-dimensional model is too simple to model an alkaline
metal with two valence electrons like beryllium. The spectra of these metals
involve different energy bands that merge together, and merging bands do not
occur in the one-dimensional model.) The voltage drops have been increased a
bit to make the second energy level for lone “atoms” more solidly bound. And
it has been assumed that there are now four electrons per “atom,” so that the
second band is completely filled.

Now the only way to achieve net electrical conduction is to move some elec-
trons from the filled “valence band” to the empty “conduction band” above it.
That requires much more energy than a normal applied voltage could provide.
So the crystal is an insulator.

The reasons why the spectra look as shown in figure 6.23 are not obvious.
Note {N.9} explains by example what happens to the free-electron gas energy
eigenfunctions when there is a crystal potential. A much shorter explanation
that hits the nail squarely on the head is “That is just the way the Schrödinger
equation is.”

Key Points

0 A periodic crystal potential produces energy bands.
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6.22.3 Effective mass

The spectrum to the right in figure 6.23 shows the one-dimensional free-electron
gas. The relationship between velocity and energy is given by the classical
expression for the kinetic energy in the x-direction:

E
p
x =

1
2
mev

p
x
2

This leads to the parabolic spectrum shown.
It is interesting to compare this spectrum to that of the “metal” to the

left in figure 6.23. The occupied part of the conduction band of the metal
is approximately parabolic just like the free-electron gas spectrum. To a fair
approximation, in the occupied part of the conduction band

E
p
x − Ep

c,x =
1
2
meff,xv

p
x
2

where Ep
c,x is the energy at the bottom of the conduction band and meff,x is a

constant called the “effective mass.”
This illustrates that conduction band electrons in metals behave much like

free electrons. And the similarity to free electrons becomes even stronger if you
define the zero level of energy to be at the bottom of the conduction band and
replace the true electron mass by an effective mass. For the metal shown in
figure 6.23, the effective mass is 61% of the true electron mass. That makes
the parabola somewhat flatter than for the free-electron gas. For electrons that
reach the conduction band of the insulator in figure 6.23, the effective mass is
only 18% of the true mass.

In previous sections, the valence electrons in metals were repeatedly approx-
imated as free electrons to derive such properties as degeneracy pressure and
thermionic emission. The justification was given that the forces on the valence
electrons tend to come from all directions and average out. But as the example
above now shows, that approximation can be improved upon by replacing the
true electron mass by an effective mass. For the valence electrons in copper,
the appropriate effective mass is about one and a half times the true electron
mass, [42, p. 257]. So the use of the true electron mass in the examples was not
dramatically wrong.

And the agreement between conduction band electrons and free electrons
is even deeper than the similarity of the spectra indicates. You can also use
the density of states for the free-electron gas, as given in section 6.3, if you
substitute in the effective mass.

To see why, assume that the relationship between the energy Ep
x and the

velocity vpx is the same as that for a free-electron gas whose electrons have the
appropriate effective mass. Then so is the relationship between the energy Ep

x

and the wave number kx the same as for that electron gas. That is because
the velocity is merely the derivative of Ep

x with respect to ~kx. You need the
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same Ep
x versus kx relation to get the same velocity. (This assumes that you

measure both the energy and the wave number from the location of minimum
conduction band energy.) And if the Ep

x versus kx relation is the same as for the
free-electron gas, then so is the density of states. That is because the quantum
states have the same wave number spacing regardless of the crystal potential.

It should however be pointed out that in three dimensions, things get messier.
Often the effective masses are different in different crystal directions. In that
case you need to define some suitable average to use the free-electron gas density
of states. In addition, for typical semiconductors the energy structure of the
holes at the top of the valence band is highly complex.

Key Points

0 The electrons in a conduction band and the holes in a valence band
are often modeled as free particles.

0 The errors can be reduced by giving them an effective mass that is
different from the true electron mass.

0 The density of states of the free-electron gas can also be used.

6.22.4 Crystal momentum

The crystal momentum of electrons in a solid is not the same as the linear
momentum of free electrons. However, it is similarly important. It is related
to optical properties such as the difference between direct and indirect gap
semiconductors. Because of this importance, spectra are usually plotted against
the crystal momentum, rather than against the electron velocity. The Kronig
& Penney model provides a simple example to explain some of the ideas.

Figure 6.24 shows the single-electron energy plotted against the crystal mo-
mentum. Note that this is equivalent to a plot against the wave number kx;
the crystal momentum is just a simple multiple of the wave number, pcm,x =
~kx. The figure has nondimensionalized the wave number by multiplying it by
the atomic period dx. Both the example insulator and the free-electron gas are
shown in the figure.

There is however an ambiguity in the figure:

The crystal wave number, and so the crystal momentum, is not
unique.

Consider once more the general form of a Bloch wave,

ψp
nx
(x) = ψp

p,nx
(x)eikxx

If you change the value of kx by a whole multiple of 2π/dx, it remains a Bloch
wave in terms of the new kx. The change in the exponential can be absorbed in
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Figure 6.24: Spectrum against wave number in the extended zone scheme.

the periodic part ψp
p,nx

. The periodic part changes, but it remains periodic on
the atomic scale dx.

Therefore there is a problem with how to define a unique value of kx. There
are different solutions to this problem. Figure 6.24 follows the so-called “ex-
tended zone scheme.” It takes the wave number to be zero at the minimum
energy and then keeps increasing the magnitude with energy. This is a good
scheme for the free-electron gas. It also works nicely if the potential is so weak
that the energy states are almost the free-electron gas ones.

A second approach is much more common, though. It uses the indeterminacy
in kx to shift it into the range −π 6 kxdx 6 π. That range is called the
“first Brillouin zone.” Restricting the wave numbers to the first Brillouin zone
produces figure 6.25. This is called the “reduced zone scheme.” Esthetically, it
is clearly an improvement in case of a nontrivial crystal potential.

But it is much more than that. For one, the different energy curves in the
reduced zone scheme can be thought of as modified atomic energy levels of lone
atoms. The corresponding Bloch waves can be thought of as modified atomic
states, modulated by a relatively slowly varying exponential eikxx.

Second, the reduced zone scheme is important for optical applications of
semiconductors. In particular,

A lone photon can only produce an electron transition along the same
vertical line in the reduced zone spectrum.

The reason is that crystal momentum must be conserved. That is much like
linear momentum must be preserved for electrons in free space. Since a photon
has negligible crystal momentum, the crystal momentum of the electron cannot
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Figure 6.25: Spectrum against wave number in the reduced zone scheme.

change. That means it must stay on the same vertical line in the reduced zone
scheme.

To see why that is important, suppose that you want to use a semiconductor
to create light. To achieve that, you need to somehow excite electrons from the
valence band to the conduction band. How to do that will be discussed in
section 6.27.7. The question here is what happens next. The excited electrons
will eventually drop back into the valence band. If all is well, they will emit
the energy they lose in doing so as a photon. Then the semiconductor will emit
light.

pcm pcm pcm
pcm

Ep Ep Ep

Ep

Si Ge GaAs Si

❄❄ ❄
❄❄

Figure 6.26: Some one-dimensional energy bands for a few basic semiconductors.

It turns out that the excited electrons are mostly in the lowest energy states
in the conduction band. For various reasons. that tends to be true despite the
absence of thermal equilibrium. They are created there or evolve to it. Also,
the holes that the excited electrons leave behind in the valence band are mostly
at the highest energy levels in that band.
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Now consider the energy bands of some actual semiconductors shown to the
left in figure 6.26. In particular, consider the spectrum of gallium arsenide. The
excited electrons are at the lowest point of the conduction band. That is at
zero crystal momentum. The holes are at the highest point in the valence band,
which is also at zero crystal momentum. Therefore, the excited electrons can
drop vertically down into the holes. The crystal momentum does not change,
it stays zero. There is no problem. In fact, the first patent for a light emitting
diode was for a gallium arsenide one, in 1961. The energy of the emitted photons
is given by the band gap of gallium arsenide, somewhat less than 1.5 eV. That
is slightly below the visible range, in the near infrared. It is suitable for remote
controls and other nonvisible applications.

But now consider germanium in figure 6.26. The highest point of the valence
band is still at zero crystal momentum. But the lowest point of the conduc-
tion band is now at maximum crystal momentum in the reduced zone scheme.
When the excited electrons drop back into the holes, their crystal momentum
changes. Since crystal momentum is conserved, something else must account
for the difference. And the photon does not have any crystal momentum to
speak of. It is a phonon of crystal vibration that must carry off the difference
in crystal momentum. Or supply the difference, if there are enough pre-existing
thermal phonons. The required involvement of a phonon in addition to the
photon makes the entire process much more cumbersome. Therefore the en-
ergy of the electron is much more likely to be released through some alternate
mechanism that produces heat instead of light.

The situation for silicon is like that for germanium. However, the lowest
energy in the conduction band occurs for a different direction of the crystal
momentum. The spectrum for that direction of the crystal momentum is shown
to the right in figure 6.26. It still requires a change in crystal momentum.

At the time of writing, there is a lot of interest in improving the light emission
of silicon. The reason is its prevalence in semiconductor applications. If silicon
itself can be made to emit light efficiently, there is no need for the complications
of involving different materials to do it. One trick is to minimize processes that
allow electrons to drop back into the valence band without emitting photons.
Another is to use surface modification techniques that promote absorption of
photons in solar cell applications. The underlying idea is that at least in thermal
equilibrium, the best absorbers of electromagnetic radiation are also the best
emitters, section 6.8.

Gallium arsenide is called a “direct-gap semiconductor” because the elec-
trons can fall straight down into the holes. Silicon and germanium are called
“indirect-gap semiconductors” because the electrons must change crystal mo-
mentum. Note that these terms are accurate and understandable, a rarity in
physics.

Conservation of crystal momentum does not just affect the emission of light.
It also affects its absorption. Indirect-gap semiconductors do not absorb photons
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very well if the photons have little more energy than the band gap. They absorb
photons with enough energy to induce vertical electron transitions a lot better.

It may be noted that conservation of crystal momentum is often called “con-
servation of wave vector.” It is the same thing of course, since the crystal mo-
mentum is simply ~ times the wave vector. However, those pesky new students
often have a fairly good understanding of momentum conservation, and the term
momentum would leave them insufficiently impressed with the brilliance of the
physicist using it.

(If you wonder why crystal momentum is preserved, and how it even can
be if the crystal momentum is not unique, the answer is in the discussion of
conservation laws in chapter 7.3 and its note. It is not really momentum that is
conserved, but the product of the single-particle eigenvalues eikxdx of the opera-
tor that translates the system involved over a distance dx. These eigenvalues do
not change if the wave numbers change by a whole multiple of 2π/dx, so there is
no violation of the conservation law if they do. For a system of particles in free
space, the potential is trivial; then you can take dx equal to zero to eliminate the
ambiguity in kx and so in the momentum. But for a nontrivial crystal potential,
dx is fixed. Also, since a photon moves so fast, its wave number is almost zero
on the atomic scale, giving it negligible crystal momentum. At least it does for
the photons in the eV range that are relevant here.)

✲
kxdxπ−π

Ep
x
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Figure 6.27: Spectrum against wave number in the periodic zone scheme.

Returning to the possible ways to plot spectra, the so-called “periodic zone
scheme” takes the reduced zone scheme and extends it periodically, as in figure
6.27. That makes for very esthetic pictures, especially in three dimensions.

Of course, in three dimensions there is no reason for the spectra in the y and
z directions to be the same as the one in the x-direction. Each can in principle
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be completely different from the other two. Regardless of the differences, valid
three-dimensional Kronig & Penney energy eigenfunctions are obtained as the
product of the x, y and z eigenfunctions, and their energy is the sum of the
eigenvalues.

Similarly, typical spectra for real solids have to show the spectrum versus
wave number for more than one crystal direction to be comprehensive. One
example was for silicon in figure 6.26. A more complete description of the one-
dimensional spectra of real semiconductors is given in the next subsection.

Key Points

0 The wave number and crystal momentum values are not unique.

0 The extended, reduced, and periodic zone schemes make different
choices for which values to use.

0 The reduced zone scheme limits the wave numbers to the first Bril-
louin zone.

0 For a photon to change the crystal momentum of an electron in the
reduced zone scheme requires the involvement of a phonon.

0 That makes indirect gap semiconductors like silicon and germanium
undesirable for some optical applications.

6.22.5 Three-dimensional crystals

A complete description of the theory of three-dimensional crystals is beyond the
scope of the current discussion. Chapter 10 provides a first introduction. How-
ever, because of the importance of semiconductors such as silicon, germanium,
and gallium arsenide, it may be a good idea to explain a few ideas already.

Consider first a gallium arsenide crystal. Gallium arsenide has the same
crystal structure as zinc sulfide, in the form known as zinc blende or sphalerite.
The crystal is sketched in figure 6.28. The larger spheres represent the nuclei and
inner electrons of the gallium atoms. The smaller spheres represent the nuclei
and inner electrons of the arsenic atoms. Because arsenic has a more positively
charged nucleus, it holds its electrons more tightly. The figure exaggerates the
effect to keep the atoms visually apart.

The grey gas between these atom cores represents the valence electrons. Each
gallium atom contributes 3 valence electrons and each arsenic atom contributes
5. That makes an average of 4 valence electrons per atom.

As the figure shows, each gallium atom core is surrounded by 4 arsenic ones
and vice-versa. The grey sticks indicate the directions of the covalent bonds
between these atom cores. You can think of these bonds as somewhat polar sp3

hybrids. They are polar since the arsenic atom is more electronegative than the
gallium one.
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Figure 6.28: Schematic of the zinc blende (ZnS) crystal relevant to important
semiconductors including silicon.

It is customary to think of crystals as being build up out of simple building
blocks called “unit cells.” The conventional unit cells for the zinc blende crystal
are the little cubes outlined by the thicker red lines in figure 6.28. Note in
particular that you can find gallium atoms at each corner of these little cubes,
as well as in the center of each face of them. That makes zinc blende an example
of what is called a “face-centered cubic” lattice. For obvious reasons, everybody
abbreviates that to FCC.

You can think of the unit cells as subdivided further into 8 half-size cubes,
as indicated by the thinner red lines. There is an arsenic atom in the center of
every other of these smaller cubes.

The simple one-dimensional Kronig & Penney model assumed that the crys-
tal was periodic with a period dx. For real three-dimensional crystals, there is
not just one period, but three. More precisely, there are three so-called “primi-
tive translation vectors” ~d1, ~d2, and ~d3. A set of primitive translation vectors for
the FCC crystal is shown in figure 6.28. If you move around by whole multiples
of these vectors, you arrive at points that look identical to your starting point.

For example, if you start at the center of a gallium atom, you will again be
at the center of a gallium atom. And you can step to whatever gallium atom
you like in this way. At least as long as the whole multiples are allowed to be
both positive and negative. In particular, suppose you start at the gallium atom
with the Ga label in figure 6.28. Then ~d1 allows you to step to any other gallium
atom on the same line going towards the right and left. Vector ~d2 allows you to
step to the next or previous line in the same horizontal plane. And vector ~d3
allows you to step to the next higher or lower horizontal plane.
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The choice of primitive translation vectors is not unique. In particular, many
sources prefer to draw the vector ~d1 towards the gallium atom in the front face
center rather than to the one at the right. That is more symmetric, but moving
around with them gets harder to visualize. Then you would have to step over
~d1, ~d2, and −~d3 just to reach the atom to the right.

You can use the primitive translation vectors also to mentally create the zinc
blende crystal. Consider the pair of atoms with the Ga and As labels in figure
6.28. Suppose that you put a copy of this pair at every point that you can reach
by stepping around with the primitive translation vectors. Then you get the
complete zinc blende crystal. The pair of atoms is therefore called a “basis” of
the zinc blende crystal.

This also illustrates another point. The choice of unit cell for a given crystal
structure is not unique. In particular, the parallelepiped with the primitive
translation vectors as sides can be used as an alternative unit cell. Such a unit
cell has the smallest possible volume, and is called a primitive cell.

The crystal structure of silicon and germanium, as well as diamond, is iden-
tical to the zinc blende structure, but all atoms are of the same type. This
crystal structure is appropriately called the diamond structure. The basis is
still a two-atom pair, even if the two atoms are now the same. Interestingly
enough, it is not possible to create the diamond crystal by distributing copies
of a single atom. Not as long as you step around with only three primitive
translation vectors.

For the one-dimensional Kronig & Penney model, there was only a single
wave number kx that characterized the quantum states. For a three-dimension-
al crystal, there is a three-dimensional wave number vector ~k with components
kx, ky, and kz. That is just like for the free-electron gas in three dimensions as
discussed in earlier sections.

In the Kronig & Penney model, the wave numbers could be reduced to a
finite interval

− π

dx
6 kx <

π

dx

This interval was called the first Brillouin zone. Wave numbers outside this
zone are equivalent to ones inside. The general rule was that wave numbers a
whole multiple of 2π/dx apart are equivalent.

In three dimensions, the first Brillouin zone is no longer a one-dimensional
interval but a three-dimensional volume. And the separations over which wave
number vectors are equivalent are no longer so simple. Instead of simply taking
an inverse of the period dx, as in 2π/dx, you have to take an inverse of the matrix

formed by the three primitive translation vectors ~d1, ~d2, and ~d3. Next you have
to identify the wave number vectors closest to the origin that are enough to
describe all quantum states. If you do all that for the FCC crystal, you will end
up with the first Brillouin zone shown in figure 6.29. It is shaped like a cube
with its 8 corners cut off.
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Figure 6.29: First Brillouin zone of the FCC crystal.

The shape of the first Brillouin zone is important for understanding graphs
of three-dimensional spectra. Every single point in the first Brillouin zone cor-
responds to multiple Bloch waves, each with its own energy. To plot all those
energies is not possible; it would require a four-dimensional plot. Instead, what
is done is plot the energies along representative lines. Such plots will here be
indicated as one-dimensional energy bands. Note however that they are one-di-
mensional bands of true three-dimensional crystals. They are not just Kronig
& Penney model bands.

Typical points between which one-dimensional bands are drawn are indicated
in figure 6.29. You and I would probably name such points something like F
(face), E (edge), and C (corner), with a clarifying subscript as needed. However,
physicists come up with names like K, L, W, and X, and declare them standard.
The center of the Brillouin zone is the origin, where the wave number vector is
zero. Normal people would therefore indicate it as O or 0. However, physicists
are not normal people. They indicate the origin by Γ because the shape of this
Greek letter reminds them of a gallows. Physicists just love gallows humor.

Computed one-dimensional energy bands between the various points in the
Brillouin zone can be found in the plot to the left in figure 6.30. The plot is
for germanium. The zero level of energy was chosen as the top of the valence
band. The various features of the plot agree well with other experimental and
computational data.

The earlier spectrum for germanium in figure 6.26 showed only the part
within the little frame in figure 6.30. That part is for the line between zero wave
number and the point L in figure 6.29. Unlike figure 6.30, the earlier spectrum
figure 6.26 showed both negative and positive wave numbers, as its left and
right halves. On the other hand, the earlier spectrum showed only the highest
one-dimensional valence band and the lowest one-dimensional conduction band.
It was sufficient to show the top of the valence band and the bottom of the
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Figure 6.30: Sketch of a more complete spectrum of germanium. (Based on
results of the VASP 5.2 commercial computer code.)

conduction band, but little else. As figure 6.30 shows, there are actually four
different types of Bloch waves in the valence band. The energy range of each of
the four is within the range of the combined valence band.

The complete valence band, as well as the lower part of the conduction
band, is sketched in the spectrum to the right in figure 6.30. It shows the
energy plotted against the density of states D. Note that the computed density
of states for the conduction electrons is a mess when seen over its complete
range. It is nowhere near parabolic as it would be for electrons in empty space,
figure 6.1. Similarly the density of states applicable to the valence band holes is
nowhere near an inverted parabola over its complete range. However, typically
only about 1/40th of an eV below the top of the valence band and above the
bottom of the conduction band is relevant for applications. That is very small
on the scale of the figure.

An interesting feature of figure 6.30 is that two different energy bands merge
at the top of the valence band. These two bands have the same energy at the top
of the valence band, but very different curvature. And according to the earlier
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subsection 6.22.3, that means that they have different effective mass. Physicists
therefore speak of “light holes” and “heavy holes” to keep the two types of
quantum states apart. Typically even the heavy holes have effective masses less
than the true electron mass, [29, pp. 214-216]. Diamond is an exception.

The spectrum of silicon is not that different from germanium. However, the
bottom of the conduction band is now on the line from the origin Γ to the point
X in figure 6.29.

Key Points

0 Silicon and germanium have the same crystal structure as diamond.
Gallium arsenide has a generalized version, called the zinc blende
structure.

0 The spectra of true three-dimensional crystals are considerably more
complex than those of the one-dimensional Kronig & Penney model.

0 In three dimensions, the period turns into three primitive translation
vectors.

0 The first Brillouin zone becomes three-dimensional.

0 There are light holes and heavy holes at the top of the valence band
of typical semiconductors.

6.23 Semiconductors

Semiconductors are at the core of modern technology. This section discusses
some basic properties of semiconductors that will be needed to explain how the
various semiconductor applications work. The main semiconductor manipula-
tion that must be described in this section is “doping,” adding a small amount
of impurity atoms.

If semiconductors did not conduct electricity, they would not be very useful.
Consider first the pure, or “intrinsic,” semiconductor. The vicinity of the band
gap in its spectrum is shown to the left in figure 6.31. The vertical coordinate
shows the energy Ep of the single-electron quantum states. The horizontal
coordinate shows the density of states D, the number of quantum states per
unit energy range. Recall that there are no quantum states in the band gap.
States occupied by electrons are shown in red. At room temperature there are
some thermally excited electrons in the conduction band. They left behind
some holes in the valence band. Both the electrons and the holes can provide
electrical conduction.

Time for a reality check. The number of such electrons and holes is very much
smaller than the figure indicates. The number ιe of electrons per quantum state
is given by the Fermi-Dirac distribution (6.19). In the conduction band, that
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Figure 6.31: Vicinity of the band gap in the spectra of intrinsic and doped
semiconductors. The amounts of conduction band electrons and valence band
holes have been vastly exaggerated to make them visible.

may be simplified to the Maxwell-Boltzmann one (6.21) because the number of
electrons in the conduction band is small. The average number of electrons per
state in the conduction band is then:

ιe = e−(E
p−µ)/kBT (6.33)

Here T is the absolute temperature, kB is the Boltzmann constant, and µ is the
chemical potential, also known as the Fermi level. The Fermi level is shown by
a red tick mark in figure 6.31.

For an intrinsic semiconductor, the Fermi level is about in the middle of the
band gap. Therefore the average number of electrons per quantum state at the
bottom of the conduction band is

Bottom of the conduction band: ιe = e−E
p
gap/2kBT

At room temperature, kBT is about 0.025 eV while for silicon, the band gap
energy is about 1.12 eV. That makes ιe about 2 10−10. In other words, only
about 1 in 5 billion quantum states in the lower part of the conduction band
has an electron in it. And it is even less higher up in the band. A figure cannot
show a fraction that small; there are just not enough atoms on a page.

So it is not surprising that pure silicon conducts electricity poorly. It has
a resistivity of several thousand ohm-m where good metals have on the order
of 10−8. Pure germanium, with a smaller band gap of 0.66 eV, has a much
larger ιe of about 3 10−6 at the bottom of the conduction band. Its resistivity
is correspondingly lower at about half an ohm-m. That is still many orders of
magnitude larger than for a metal.

And the number of conduction electrons becomes much smaller still at cryo-
genic temperatures. If the temperature is a frigid 150 K instead of a 300 K
room temperature, the number of electrons per state in silicon drops by another
factor of a billion. That illustrates one important rule:
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You cannot just forget about temperature to understand semiconduc-
tors.

Usually, you like to analyze the ground state at absolute zero temperature of
your system, because it is easier. But that simply does not work for semicon-
ductors.

The number of holes per state in the valence band may be written in a form
similar to that for the electrons in the conduction band:

ιh = e−(µ−E
p)/kBT (6.34)

Note that in the valence band the energy is less than the Fermi level µ, so that
the exponential is again very small. The expression above may be checked by
noting that whatever states are not filled with electrons are holes, so ιh = 1− ιe.
If you plug the Fermi-Dirac distribution into that, you get the expression for ιh
above as long as the number of holes per state is small.

From a comparison of the expressions for the number of particles per state
ιe and ιh it may already be understood why the Fermi level µ is approximately
in the middle of the band gap. If the Fermi level is exactly in the middle of the
band gap, ιe at the bottom of the conduction band is the same as ιh at the top
of the valence band. Then there is the same number of electrons per state at
the bottom of the conduction band as holes per state at the top of the valence
band. That is about as it should be, since the total number of electrons in the
conduction band must equal the total number of holes in the valence band. The
holes in the valence band is where the electrons in the conduction band came
from.

Note that figure 6.31 is misleading in the sense that it depicts the same
density of states D in the conduction band as in the valence band. In reality,
the number of states per unit energy range in the conduction band could easily
be twice that at the corresponding location in the valence band. It seems that
this should invalidate the above argument that the Fermi level µ must be in
the middle of the band gap. But it does not. To change the ratio between ιe
and ιh by a factor 2 requires a shift in µ of about 0.01 eV at room temperature.
That is very small compared to the band gap. And the shift would be much
smaller still closer to absolute zero temperature. At absolute zero temperature,
the Fermi level must move to the exact middle of the gap.

That illustrates another important rule of thumb for semiconductors:

Keep your eyes on the thermal exponentials. Usually, their varia-
tions dwarf everything else.

If Ep or µ changes just a little bit, e−(E
p−µ)/kBT changes dramatically.

(For gallium arsenide, the difference between the densities of states for holes
and electrons is much larger than for silicon or germanium. That makes the
shift in Fermi level at room temperature more substantial.)
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The Fermi level may be directly computed. Expressions for the total number
of conduction electrons per unit volume and the total number of holes per unit
volume are, {D.30}:

ie = 2

(
meff,ekBT

2π~2

)3/2

e−(E
p
c−µ)/kBT ih = 2

(
meff,hkBT

2π~2

)3/2

e−(µ−E
p
v)/kBT

(6.35)
Here Ep

c and Ep
v are the energies at the bottom of the conduction band, respec-

tively the top of the valence band. The appropriate effective masses for electrons
and holes to use in these expressions are comparable to the true electron masses
for silicon and germanium. Setting the two expressions above equal allows µ to
be computed.

The first exponential in (6.35) is the value of the number of electrons per
state ιe at the bottom of the conduction band, and the second exponential is
the number of holes per state ιh at the top of the valence band. The bottom
line remains that semiconductors have much too few current carriers to have
good conductivity.

That can be greatly improved by what is called doping the material. Suppose
you have a semiconductor like germanium, that has 4 valence electrons per
atom. If you replace a germanium atom in the crystal by a stray atom of a
different element that has 5 valence electrons, then that additional electron is
mismatched in the crystal structure. It can easily become dislocated and start
roving through the conduction band. That allows additional conduction to
occur. Even at very small concentrations, such impurity atoms can make a big
difference. For example, you can increase the conductivity of germanium by a
factor of a thousand by replacing 1 in a million germanium atoms by an arsenic
one.

Because such valence-5 impurity atoms add electrons to the conduction band,
they are called “donors.” Because electrical conduction occurs by the negatively
charged additional electrons provided by the doping, the doped semiconductor
is called “n-type.”

Alternatively, you can replace germanium atoms by impurity atoms that
have only 3 valence electrons. That creates holes that can accept valence band
electrons with a bit of thermal energy. Therefore such impurity atoms are
called “acceptors.” The holes in the valence band from which the electrons
were taken allow electrical conduction to occur. Because the holes act like
positively charged particles, the doped semiconductor is called “p-type.”

Silicon has 4 valence band electrons just like germanium. It can be doped
similarly.

Now consider an n-type semiconductor in more detail. As the center of figure
6.31 indicates, the effect of the donor atoms is to add a spike of energy states
just below the conduction band. At absolute zero temperature, these states
are filled with electrons and the conduction band is empty. And at absolute
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zero, the Fermi level is always in between filled and empty states. So the Fermi
level is now in the narrow gap between the spike and the conduction band. It
illustrates that the Fermi level of a semiconductor can jump around wildly at
absolute zero.

But what happens at absolute zero is irrelevant to a room temperature
semiconductor anyway. At room temperature the Fermi level is typically as
shown by the tick mark in figure 6.31. The Fermi level has moved up a lot
compared to the intrinsic semiconductor, but it still stays well below the donor
states.

If the Fermi level would still be in the middle of the band gap like for the
undoped material, then there would be very few electrons in the donor states.
But all the electrons that are in the donor states at absolute zero temperature
cannot just disappear into nothing. And they cannot go into the intrinsic states.
If the Fermi level does not change, the intrinsic states still have the same number
of electrons as before the doping.

So the Fermi level cannot be in the middle of the band gap. And the Fermi
level going down makes the missing electron problem worse; then there are even
less electrons in the donor states and conduction band, and even more holes in
the valence band.

The Fermi level must go up, significantly. For one, that will reduce the
number of holes in the valence band. However, since the number of such holes
is so tiny compared to the nuber of donor electrons, that does not help much.
Much more importantly, the Fermi level µ going up will increase the number
of electrons not just in the donor states, but also and especially in the lowest
conduction band states, (6.33). The missing electron problem gets resolved: the
electrons missing from the donor states are now in conduction band states. (Or
to be picky, a very few of them have gone in valence band holes.)

Do note that while the Fermi level must go up, it cannot move too close to the
donor states either. For assume the contrary, that the Fermi level is really close
to the donor states. Then the donor states will be largely filled with electrons.
But at room temperature the gap between the donor states and the conduction
band is comparable to kBT . Therefore, if the donor states are largely filled
with electrons, then the states at the bottom of the conduction band contain
significant numbers of electrons too. Since there are so many of these conduction
states compared to a typical number of donor states, the number of electrons
in the conduction states would dwarf the number of electrons missing from the
donor states. And that would mean that now there would be far too many
electrons. The Fermi level must go up but stay low enough that the number of
electrons per state ιe stays small in both the donor states and conduction band.
That is as sketched in figure 6.31.

If more donors are added, the Fermi level will move up more. Light dop-
ing may be on the order of 1 impurity atom in a 100 million, heavy doping 1
in 10,000. If the donor atoms get too close together, their electrons start to
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interact. If that happens the spike of donor states broadens into a band ex-
tending to the conduction band, and you end up with a metallic “degenerate”
semiconductor. For example, low temperature measurements show that phos-
phor donors turn silicon metallic at about 1 phosphor atom per 15 000 silicon
ones. It may seem strange that impurity electrons at such a small concentration
could interact at all. But note that 1 impurity in 15 000 atoms means that each
25 × 25 × 25 cube of silicon atoms has one phosphor atom. On average the
phosphor atoms are only about 25 atom spacings apart. In addition, the orbit
of the very loosely bound donor electron is really far from the positively charged
donor atom compared to the crystal spacing.

The p-type material is analyzed pretty much the same as n-type, with holes
taking the place of electrons and acceptors the place of donors.

As already mentioned, the upward shift in the Fermi level in the n-type
material has another effect besides providing lots of electrons in the conduction
band. It decimates the already miserably small number of holes in the valence
band that the undoped semiconductor had. That means that virtually all elec-
trical conduction will now be performed by electrons, not holes. The electrons
in n-type material are therefore called the “majority carriers” and the holes the
“minority carriers.”

ie

ih

��✠
intrinsic

✛ n-type

❄

p-type

Figure 6.32: Relationship between conduction electron density and hole density.
Intrinsic semiconductors have neither much conduction electrons nor holes.

The fact that raising the amount of conduction band electrons lowers the
amount of valence band holes may be verified mathematically from (6.35). That
equation implies that the product of the electron and hole densities is constant
at a given temperature:

ieih = 4

(√
meff,emeff,ekBT

2π~2

)3

e−E
p
gap/kBT (6.36)
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This relationship is called the “law of mass action” since nonexperts would be
able to make sense out of “electron-hole density relation.” And if you come to
think of it, what is wrong with the name? Doesn’t pretty much everything in
physics come down to masses performing actions? That includes semiconductors
too!

The relationship is plotted in figure 6.32. It shows that a high number of
conduction electrons implies a very low number of holes. Similarly a p-type
material with a high number of holes will have very few conduction electrons.

The law of mass action can also be understood from more classical argu-
ments. That is useful since band theory has its limits. The classical picture is
as follows: In thermal equilibrium, the semiconductor is bathed in blackbody
radiation. A very small but nonzero fraction of the photons of this radiation
have energies above the band gap. These will move valence band electrons to
the conduction band, thus creating electron-hole pairs. In equilibrium, this cre-
ation of electron-hole pairs must be balanced by the removal of an identical
amount of electron-hole pairs. The removal of a pair occurs through “recombi-
nation,” in which an conduction band electron drops back into a valence band
hole, eliminating both. The rate of recombinations will be proportional to the
product of the densities of electrons and holes. Indeed, for a given number of
holes, the more electrons there are, the more will be able to find holes under
suitable conditions for recombination. And vice-versa with electrons and holes
swapped. Equating a creation rate of electron-hole pairs by photons, call it
A, to a removal rate of the form Bieih shows that the product ieih equals the
constant A/B. This constant will depend primarily on the Maxwell-Boltzmann
factor e−E

p
gap/kBT that limits the number of photons that have sufficient energy

to create pairs.
This classical picture also provides an intuitive explanation why adding both

donors and acceptors to a semiconductor does not double the amount of current
carriers over just one type of doping alone. Quite the opposite. As figure 6.32
shows, if the number of holes becomes comparable to the number of electrons,
there are not many of either one. The semiconductor behaves again like an
intrinsic one. The reason is that adding, say, some acceptors to an n-type
material has the primary effect of making it much easier for the conduction
band electrons to find valence band holes to recombine with. It is said that the
added acceptors “compensate” for the donors.

Key Points

0 Doping a semiconductor with donor atoms greatly increases the num-
ber of electrons in the conduction band. It produces an n-type semi-
conductor.

0 Doping a semiconductor with acceptor atoms greatly increases the
number of holes in the valence band. It produces an p-type semicon-
ductor.



6.24. THE P-N JUNCTION 289

0 The minority carrier gets decimated.

0 The Fermi level is in the band gap, and towards the side of the
majority carrier.

0 There is compensation in doping. In particular, if there are about
the same numbers of electrons and holes, then there are not many of
either.

6.24 The P-N Junction

The p-n junction is the work horse of semiconductor applications. This section
explains its physical nature, and why it can act as a current rectifier, among
other things.
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Figure 6.33: The p-n junction in thermal equilibrium. Top: energy spectra.
Quantum states with electrons in them are in red. The mean electrostatic
energy of the electrons is in green. Below: Physical schematic of the junction.
The dots are conduction electrons and the small circles holes. The encircled plus
signs are donor atoms, and the encircled minus signs acceptor atoms. (Donors
and acceptors are not as regularly distributed, nor as densely, as this greatly
simplified schematic suggests.)

A p-n junction is created by doping one side of a semiconductor crystal n
type and the other side p type. As illustrated at the bottom of figure 6.33,
the n side has a appreciable amount of conduction electrons, shown as black
dots. These electrons have been provided by donor atoms. The donor atoms,
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having given up one of their negatively charged electrons, have become positively
charged and are shown as encircled plus signs.

The p side has a appreciable number of holes, quantum states that have
lost their electrons. The holes are shown as small circles in the figure. Since
a negatively charged electron is missing at a hole, the hole behaves as a posi-
tively charged particle. The missing electrons have been absorbed by acceptor
atoms. These atoms have therefore acquired a negative charge and are shown
by encircled minus signs.

The atoms are stuck in the crystal and cannot move. Electrical conduction
takes place by means of motion of the electrons and holes. But under normal
conditions, significant electrical conduction can only occur in one direction.
That makes the p-n junction into a “diode,” a current rectifier.

To see the basic reason is not difficult. In the so-called “forward” direction
that allows a significant current, both the electrons in the n side and the holes
in the p side flow towards the junction between the n and p sides. (Note that
since electrons are negatively charged, they move in the direction opposite to the
current.) In the vicinity of the junction, the incoming n-side electrons can drop
into the incoming p-side holes. Phrased more formally, the electrons recombine
with the holes. That can readily happen. A forward current flows freely if a
suitable “forward-biased” voltage is applied.

However, if a “reverse-biased” voltage is applied, then normally very little
current will flow. For a significant current in the reverse direction, both the
electrons in the n side and the holes in the p side would have to flow away from
the junction. So new conduction electrons and holes would have to be created
near the junction to replace them. But random thermal motion can create only
a few. Therefore there is negligible current.

While this simple argument explains why a p-n junction can act as a diode,
it is not sufficient. It does not explain the true response of the current to a
voltage. It also does not explain other applications of p-n junctions, such as
transistors, voltage stabilizers, light-emitting diodes, solar cells, etcetera.

It turns out that in the forward direction, the recombination of the incoming
electrons and holes is severely hindered by an electrostatic barrier that develops
at the contact surface between the n-type and p-type material. This barrier is
known as the “built-in potential.” It is shown in green in figure 6.33.

Consider first the p-n junction in thermal equilibrium, when there is no
current. The junction is shown in the lower part of figure 6.33. The n side has
an excess amount of conduction electrons. The negative charge of these electrons
is balanced by the positively charged donor atoms. Similarly, the p side has an
excess amount of holes. The positive charge of these holes is balanced by the
negatively charged acceptor atoms.

At the junction, due to random thermal motion the n-side electrons would
want to diffuse into the p side. Similarly the p-side holes would want to diffuse
into the n side. But that cannot go on indefinitely. These diffusion processes
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cause a net negative charge to flow out of the n side and a net positive charge
out of the p side. That produces the electrostatic barrier; it repels further n-side
electrons from the p side and p-side holes from the n side.

The barrier takes the physical form of a double layer of positive charges
next to negative charges. This layer is called the “space charge region.” It is
illustrated in figure 6.33. Double layers are common at contact surfaces between
different solids. However, the one at the p-n junction is somewhat unusual as it
consists of ionized donor and acceptor atoms. There are preciously few electrons
and holes in the space charge region, and therefore the charges of the donors
and acceptors are no longer offset by the electrons, respectively holes.

The reason for the lack of electrons and holes in the space charge region
may be understood from figure 6.32: when the numbers of electrons and holes
become comparable, there are not many of either. The lack of electrons and
holes explains why the space charge region is also known as the “depletion
layer.”

The double layer is relatively thick. It has to be, to compensate for the fact
that the fraction of atoms that are donors or acceptors is quite small. A typical
thickness is 10−6 m, but this can vary greatly with doping level and any applied
external voltage.

An n-side electron that tries to make it through the space charge region is
strongly pulled back by the positive donors behind it and pushed back by the
negative acceptors in front of it. Therefore there is a step-up in the electro-
static potential energy of an electron going through the region. This increase in
potential energy is shown in green in figure 6.33. It raises the electron energy
levels in the p side relative to the n side. In particular, it makes the chemical
potentials, or Fermi levels, of the two sides equal. It has to do so; differences in
chemical potential produce net electron diffusion, section 6.16. For the diffusion
to stop, the chemical potential must become everywhere the same.

There is still some flow of electrons and holes through the junction, even in
the absence of net current. It is due to random thermal motion. To simplify
its description, it will be assumed that there is no significant recombination
of electrons and holes while they pass through the space charge region, nor
creation of new electrons and holes. That is a standard assumption, but by
no means trivial. It requires great purification of the semiconductor. Crystal
defects can act as “recombination centers,” locations that help the electrons
and holes recombine. For example, if you try to simply press separate n and p
crystals together to create a p-n junction, it will not work. It will have far too
many defects where the crystals meet. A proper recombination of electrons and
holes should take place near the junction, but mostly outside the space charge
region.

Consider now first the thermal flow of electrons and holes through the junc-
tion when there is no net current. It is sketched in figure 6.34a. All those n-side
electrons would love to diffuse into the p side, but the electrostatic barrier is
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✛
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(b) Forward biased:
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Figure 6.34: Schematic of the operation of an p-n junction.
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holding them back. Only very few electrons have enough energy to make it
through. The required amount of energy is the electrostatic energy increase
over the junction. That energy will be called Vj. For n-side electrons to make it
through the barrier, they need to have at least that much energy above the bot-
tom of the n-side conduction band. The relative amount of electrons at those
energy levels is primarily determined by the Maxwell-Boltzmann factor (6.33).
It implies that there are a factor e−Vj/kBT less electrons per quantum state with
the additional energy Vj than there are at the bottom of the conduction band.

The crossings of these few very lucky electrons produce a miniscule current
through the junction. It is indicated as je,maj in figure 6.34a. The electrons are
called the majority carriers in the n side because there are virtually no holes in
that side to carry current. Note also that the figure shows the negative currents
for electrons, because that gives the direction that the electrons actually move.
The currents in this discussion will be assumed to be per unit junction area,
which explains why the symbol j is used instead of I. A junction twice as large
produces double the current, all else being the same. All else being the same
includes ignoring edge effects.

The miniscule current of the n-side majority electrons is balanced by an
equally miniscule but opposite current je,min produced by p-side minority elec-
trons that cross into the n side. Although the p side has very few conduction
band electrons, the number of electrons per state is still the same as that of
n-side electrons with enough energy to cross the barrier. And note that for the
p-side electrons, there is no barrier. If they diffuse into the space charge region,
the electrostatic potential will instead help them along into the n side.

For holes the story is equivalent. Because they have the opposite charge
from the electrons, the same barrier that keeps the n-side electrons out of the
p side also keeps the p-side holes out of the n side.

The bottom line is that there is no net current. And there should not be;
otherwise you would have a battery that worked for free. Batteries must be
powered by a chemical reaction.

But now suppose that a “forward-bias” external voltage ϕ is applied that
lowers the barrier by an amount eϕj. What happens then is shown in figure
6.34b. The n-side majority electrons will now come pouring over the lowered
barrier, and so will the p-side majority holes. Indeed, the Maxwell-Boltzmann
factor for the majority carriers that can get through the barrier increases by a
factor eeϕj/kBT . That is a very large factor if the voltage change is bigger than
about 0.025 volt, since kBT is about 0.025 eV at normal temperatures. The
currents of majority carriers explode, as sketched in the figure. And therefore,
so does the net current.

The currents of minority carriers do not change appreciably. Whatever mi-
nority carriers diffuse into the space charge region still all pass through it. Note
that the Fermi levels of the n and p sides do no longer match up when there is
a current. If there is a current, the system is not in thermal equilibrium.
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Figure 6.34c shows the case that a reverse bias voltage is applied. The
reverse voltage increases the barrier for the majority carriers. The number that
still have enough energy to cross the junction gets decimated to essentially zero.
All that remains is a residual small reverse current of minority carriers through
the junction.

Based on this discussion, it is straightforward to write a ballpark expression
for the net current through the junction:

j = j0e
eϕj/kBT − j0 (6.37)

The final term is the net reverse current due to the minority carriers. According
to the above discussion, that current does not change with the applied voltage.
The other term is the net forward current due to the majority carriers. Ac-
cording to the above discussion, it differs from the minority current primarily
by a Maxwell-Boltzmann exponential. The energy in the exponential is the
electrostatic energy due to the external voltage difference across the junction.

For forward bias the exponential explodes, producing significant current.
For reverse bias, the exponential is essentially zero and only the small reverse
minority current is left.

Equation (6.37) is known as the “Shockley diode equation.” It works well for
germanium but not quite that well for silicon. Silicon has a much larger band
gap. That makes the minority currents much smaller still, which is good. But
the correspondingly small reversed-biased and slightly forward-biased currents
are sensitive to depletion layer electron-hole generation, respectively recombina-
tion. A fudge factor called the “ideality factor” is often added to the argument
of the exponential to improve agreement.

Even for germanium, the Shockley diode equation applies only over a limited
range. The equation does not include the resistance of the semiconductor. If
the current increases rapidly, the voltage drop due to resistance does too, and it
should be added to the voltage drop ϕj over the junction. That will eventually
make the current versus voltage relation linear instead of exponential. And if
the reverse voltage is too large, phenomena discussed in section 6.26 show up.

Key Points

0 The p-n junction is the interface between an n-type and a p-type
side of a semiconductor crystal.

0 Under normal conditions, it will only conduct a significant current
in one direction, called the forward direction.

0 In the forward direction both the n-side electrons and the p-side
holes move towards the junction.

0 The Shockley diode equation describes the current versus voltage
relation of p-n junctions, but only in a limited range.
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0 At the junction a space-charge region exists. It provides a barrier for
the majority carriers. However, it accelerates the minority carriers
passing through the junction.

6.25 The Transistor

A second very important semiconductor device besides the p-n diode is the
transistor. While the p-n diode allows currents to be blocked in one direction,
the transistor allows currents to be regulated.

emitter
n-type

base
p-type

collector
n-type

✛ ✲
(narrow)

junction crossings by electrons:

−je,min

✛
−je,maj

✲
−je,maj

.
−je,min

✲

junction crossings by holes:

jh,maj

✛
jh,min

✲
jh,min

✛
jh,maj

.

net currents:

−jemitter

✲

−jbase
❄ −jcollector

✲

Figure 6.35: Schematic of the operation of an n-p-n transistor.

For example, an n-p-n transistor allows the current of electrons through an
n-type semiconductor to be controlled. A schematic is shown in figure 6.35.
Electrons flow through the transistor from one side, called the “emitter,” to the
other side, called the “collector.”

To control this current, a very narrow region of p-type doping is sandwiched
in between the two sides of n-type doping. This p-type region is called the
“base.” If the voltage at the base is varied, it regulates the current between
emitter and collector.

Of course, when used in a circuit, electrodes are soldered to the emitter and
collector, and a third one to the base. The transistor then allows the current
between the emitter and collector electrodes to be controlled by the voltage
of the base electrode. At the same time, a well-designed transistor will divert
almost none of the current being regulated to the base electrode.
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The transistor works on the same principles as the p-n junction of the pre-
vious section, with one twist. Consider first the flow of electrons through the
device, as shown in figure 6.35. The junction between emitter and base is oper-
ated at a forward-bias voltage difference. Therefore, the majority electrons of
the n-type emitter pour through it in great numbers. By the normal logic, these
electrons should produce a current between the emitter and base electrodes.

But here comes the twist. The p region is made extremely thin, much smaller
than its transverse dimensions and even much smaller than the diffusion distance
of the electrons. Essentially all electrons that pour through the junction blunder
into the second junction, the one between base and collector. Now this second
junction is operated at a reverse-bias voltage. That produces a strong electric
field that sweeps the electrons forcefully into the collector. (Remember that
since the electrons are considered to be minority carriers in the base, they get
sweeped through the junction by the electric field rather than stopped by it.)

As a result, virtually all electrons leaving the emitter end up as an electron
flow to the collector electrode instead of to the base one as they should have.
The stupidity of these electrons explains why the base voltage can regulate the
current between emitter and collector without diverting much of it. Further, as
seen for the p-n junction, the amount of electrons pouring through the junction
from emitter to base varies very strongly with the base voltage. Small voltage
changes at the base can therefore decimate or explode the electron flow, and
almost all of it goes to the collector.

There is one remaining problem, however. The forward bias of the junction
between emitter and base also means that the majority holes in the base pour
through the junction towards the emitter. And that is strictly a current between
the emitter and base electrodes. The holes cannot come from the collector,
as the collector has virtually none. The hole current is therefore bad news.
Fortunately, if you dope the p-type base only lightly, there are not that many
majority holes, and virtually all current through the emitter to base junction
will be carried by electrons.

A p-n-p transistor works just like an n-p-n-one, but with holes taking the
place of electrons. There are other types of semiconductor transistors, but they
use similar ideas.

Key Points

0 A transistor allows current to be regulated.

6.26 Zener and Avalanche Diodes

Section 6.24 explained that normally no significant current will pass through a
p-n junction in the reverse direction. The basic reason can be readily explained
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in terms of the schematic of the p-n junction figure 6.33. A significant reverse
current would require that the majority n-side conduction electrons and p-side
holes both move away from the junction. That would require the creation of
significant amounts of electron-hole pairs at the junction to replenish those that
leave. Normally that will not happen.

But if the reverse voltage is increased enough, the diode can break down
and a significant reverse current can indeed start to flow. That can be useful
for voltage stabilization purposes.

Consider figure 6.33. One thing that can happen is that electrons in the
valence band on the p side end up in the conduction band on the n side sim-
ply because of their quantum uncertainty in position. That process is called
“tunneling.” Diodes in which tunneling happens are called “Zener diodes.”

The process requires that the energy spectrum at one location is raised
sufficiently that its valence band reaches the level of the conduction band at
another location. And the two locations must be extremely close together, as
the quantum uncertainty in position is very small. Now it is the electrostatic
potential, shown in green in figure 6.33, that raises the p-side spectra relative
to the n-side ones. To raise a spectrum significantly relative to one very nearby
requires a very steep slope to the electrostatic potential. And that in turn
requires heavy doping and a sufficiently large reverse voltage to boost the built-
in potential.

Once tunneling becomes a measurable effect, the current increases extremely
rapidly with further voltage increases. That is a consequence of the fact that
the strength of tunneling involves an exponential function, chapter 7.13 (7.74).
The fast blow-up of current allows Zener diodes to provide a very stable voltage
difference. The diode is put into a circuit that puts a nonzero tunneling current
through the diode. Even if the voltage source in the circuit gets perturbed, the
voltage drop across the Zener will stay virtually unchanged. Changes in voltage
drops will remain restricted to other parts of the circuit; a corresponding change
over the Zener would need a much larger change in current.

There is another way that diodes can break down under a sufficiently large
reverse voltage. Recall that even under a reverse voltage there is still a tiny
current through the junction. That current is due to the minority carriers,
holes from the n side and conduction electrons from the p side. However, there
are very few holes in the n side and conduction electrons in the p side. So
normally this current can be ignored.

But that can change. When the minority carriers pass through the space
charge region at the junction, they get accelerated by the strong electric field
that exists there. If the reverse voltage is big enough, the space charge region
can accelerate the minority carriers so much that they can knock electrons out of
the valence band. The created electrons and holes will then add to the current.

Now consider the following scenario. A minority electron passes through
the space charge region. Near the end of it, the electron has picked up enough
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energy to knock a fellow electron out of the valence band. The two electrons
continue on into the n side. But the created hole is swept by the electric field
in the opposite direction. It goes back into the space charge region. Traveling
almost all the way through it, near the end the hole has picked up enough energy
to knock an electron out of the valence band. The created conduction electron
is swept by the electric field in the opposite direction of the two holes, back into
the space charge region... The single original minority electron has set off an
avalanche of new conduction electrons and holes. The current explodes.

A diode designed to survive this is an “avalanche diode.” Avalanche diodes
are often loosely called Zener diodes, because the current explodes in a similar
way. However, the physics is completely different.

Key Points

0 Unlike the idealized theory suggests, under suitable conditions sig-
nificant reverse currents can be made to pass through p-n junctions.

0 It allows voltage stabilization.

6.27 Optical Applications

This section gives a concise overview of optical physics ranging from the x-ray
spectrum of solids to semiconductor devices such as solar cells and light-emitting
diodes.

6.27.1 Atomic spectra

Lone atoms have discrete electron energy levels, figure 6.19. An electron can
transition from one of these levels to another by emitting or absorbing a photon
of light. The energy of the photon is given by the difference in energy between
the levels. Therefore emitted and absorbed photons have very specific energies,
and corresponding very specific frequencies and wave lengths.

If they are in the visible range, they have very specific colors. The visible
range of light corresponds to photons with energies from about 1.6 eV (red) to
3.2 eV (violet). In terms of the wave length of the light, the range is from about
390 nm (violet) to 760 nm (red).

A basic example is the red photon emitted in an E3 to E2 Balmer transition
of a hydrogen atom, figure 4.8. Its energy is 1.89 eV and its wave length is 656
nm. In general, when the light emitted by excited lone atoms is sent through a
prism, it separates into a few discrete thin beams of specific colors. The colors
are characteristic for the type of atom that emitted the light.

Lone atoms can also absorb photons from light that passes them by. The
same wave lengths that they can emit, they can also absorb. Absorbing a photon
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puts the atoms in an excited state of higher energy. They may then subsequently
emit a photon identical to the absorbed one in a different direction. Or they
may lose their excitation energy in a transition between different energy levels,
producing a photon of a different wave length. Or they may lose the energy in
collisions. Either one eliminates the original photon altogether. For example,
an excited hydrogen atom in the E2 state might absorb a 656 nm photon to
reach the E3 state. Then it may transition directly back to the E1 ground state.
One 656 nm photon has then been eliminated.

In 1817 Fraunhofer gave a list of dark lines in the spectrum of sunlight. His
list included the red E2 to E3 Balmer line, as well as the blue-green E2 to E4

one. It was eventually discovered that light at these frequencies is absorbed by
the hydrogen atoms in the solar atmosphere. Other lines were due to absorption
by other atoms like helium, sodium, calcium, titanium, and iron. The atoms
present in the solar atmosphere could be identified without having to actually
go there in a space ship. Since the days of Fraunhofer, spectroscopy has become
one of the most important sources of information about the large-scale universe.

A typical solar spectrum also includes absorption lines due to molecules like
oxygen and water vapor in the atmosphere of the earth. Molecular spectra
tend to be more complicated than atomic ones, especially in the infrared region.
That is due to relative motion of the different nuclei. The spectra are also more
complicated due to the larger number of electrons involved.

Key Points

0 Lone atoms and molecules emit and absorb light at specific wave
lengths.

0 It allows atoms and molecules to be recognized in the lab or far out
in space.

6.27.2 Spectra of solids

Solids have electron energy levels arranged into continuous bands, figure 6.19.
Therefore solids do not emit discrete wave lengths of light like lone atoms do.
When light from solids is sent through a prism, the light will spread out into
bands of gradually changing color. That is called “broadband” radiation.

To be sure, transitions involving the inner atomic electrons in solids still
produce radiation at discrete wave lengths. The reason is that the energies of
the inner electrons are not significantly different from the discrete values of the
corresponding lone atoms. But because these energies are so much larger in
magnitude, the produced radiation is in the X-ray range, not in the visible light
range.

Key Points
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0 Solids can emit and absorb electromagnetic radiation in continuous
bands.

0 The X-ray range of the inner electrons is still discrete.

6.27.3 Band gap effects

As noted above, the light from solids is not limited to discrete wave lengths like
that of lone atoms. But it is not true that solids can emit and absorb all wave
lengths. In particular, a perfect crystal of an insulator with a large-enough
band gap will be transparent to visible light. Take diamond as an example.
Its valence band is completely filled with electrons but its conduction band is
empty, as sketched in figure 6.36. A photon of light with enough energy can use
its energy to take take an electron out of the valence band and put it into the
conduction band. That leaves a hole behind in the valence band and eliminates
the photon. However, to do this requires that the photon has at least the
band gap energy of diamond, which is 5.5 eV. The photons of visible light have
energies from about 1.6 eV to 3.2 eV. That is not enough. Visible light simply
does not have enough energy to be absorbed by diamond electrons. Therefore
a perfect diamond is transparent. Visible light passes through it unabsorbed.

conduction band:

band gap: Ep
gap

valence band:

✻

❄

✛

photon
~ω > Ep

gap

Figure 6.36: Vicinity of the band gap in the electron energy spectrum of an
insulator. A photon of light with an energy greater than the band gap can
take an electron from the valence band to the conduction band. The photon is
absorbed in the process.

By this reasoning, all perfect crystals will be transparent if their band gap
exceeds 3.2 eV. But actually, the energy of the photon can be somewhat less
than the band gap and it may still be able to excite electrons. The model of
energy states for noninteracting electrons that underlies spectra such as figure
6.36 is not perfect. The band gap in a spectrum is really the energy to create a
conduction band electron and a valence band hole that do not interact. But the
electron is negatively charged, and the hole acts as a positive particle. The two
attract each other and can therefore form a bound state called an “exciton.”
The energy of the photon needed to create an exciton is less than the band gap
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by the binding energy of the exciton. There is some additional slack due to
variations in this binding energy. In the simplest model, the energy levels of
lone excitons would be discrete like those of the hydrogen atom. However, they
broaden considerably in the less than ideal environment of the solid.

If visible-light photons do not have enough energy to form electron-hole
pairs nor excitons, the perfect crystal will be transparent. If the blue side of
the visible spectrum has enough energy to excite electrons, the crystal will be
colored reddish, since those components of light will remain unabsorbed.

Key Points

0 A perfect crystal of a solid with a large enough band gap will be
transparent.

0 An exciton is a bound state of an electron and a hole.

6.27.4 Effects of crystal imperfections

It should be pointed out that in real life, the colors of most nonmetals are
caused by crystal imperfections. For example, in ionic materials there may be
a vacancy where a negative ion is missing. Since the vacancy has a net positive
charge, an electron can be trapped inside it. That is called an “F -center.”
Because its energy levels are relatively small, such a center can absorb light in
the visible range. Besides vacancies, chemical impurities are another common
cause of optical absorption. A complete description of all the different types of
crystal imperfections and their effects is beyond the scope of this book.

Key Points

0 The colors of most nonmetals are caused by crystal imperfections.

0 An electron bound to a vacancy in a ionic crystal is a called an F -
center.

6.27.5 Photoconductivity

For a nonmetal with a sufficiently narrow band gap, photons of light may have
enough energy to take electrons to the conduction band. Then both the elec-
trons in the conduction band, as well as the holes that they leave behind in
the valence band, can participate in electrical conduction through the solid. In-
creased electrical conductivity due to light is called “photoconductivity.” It is
used for a variety of light sensing devices and for Xerox copiers.

Note that excitons cannot directly produce electrical conduction, as the com-
plete exciton is electrically neutral. However, excitons can create charge carriers
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by interacting with crystal imperfections. Or photons with energies less than
the band gap can do so themselves. In general, the mechanisms underlying
photoconductivity are highly complex and strongly affected by crystal imper-
fections.

Key Points

0 Photoconductivity is the increase in conductivity of nonmetals when
photons of light create additional charge carriers.

6.27.6 Photovoltaic cells

In the vicinity of a p-n junction in a semiconductor crystal, light can do much
more than just increase conductivity. It can create electricity. That is the
principle of the “photovoltaic cell.” These cells are also known as solar cells if
the source of light is sunlight.

To understand how they work, consider the schematic of a p-n junction in
figure 6.33. Suppose that the crystal is exposed to light. If the photons of
light have more energy than the band gap, they can knock electrons out of the
valence band. For example, silicon has a band gap of about 1.12 eV. And as
noted above, the photons of visible light have energies from about 1.6 eV to
3.2 eV. So a typical photon of sunlight has plenty of energy to knock a silicon
electron out of the valence band.

That produces a conduction band electron and a valence band hole. The
two will move around randomly due to thermal motion. If they are close enough
to the junction, they will eventually stumble into its space charge region, figure
6.33. The electric field in this region will forcefully sweep electrons to the n side
and holes to the p side. Therefore, if the p-n junction is exposed to a continuous
stream of light, there will be a continuous flow of new electrons to the n side
and new holes to the p side. This creates a usable electric voltage difference
between the two sides: the excess n-side electrons are willing to pass through
an external load to recombine with the p-side holes.

There are limitations for the efficiency of the creation of electricity. The
excess energy that the absorbed photons have above the band gap ends up
as heat instead of as electrical power. And photons with insufficient energy to
create electron-hole pairs do not contribute. Having p-n junctions with different
band gaps absorb different wave lengths of the incoming light can significantly
improve efficiency.

Key Points

0 Photovoltaics is the creation of electricity by photons. Solar cells are
an important example.
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6.27.7 Light-emitting diodes

In the photovoltaic effect, light creates electricity. But the opposite is also
possible. A current across a p-n junction can create light. That is the principle
of the “light-emitting diode” (LED) and the “semiconductor laser.”

Consider again the schematic of a p-n junction in figure 6.33. When a
forward voltage is applied across the junction, n-side electrons stream into the
p side. These electrons will eventually recombine with the prevailing holes in
the p side. Simply put, the conduction electrons drop into the valence band
holes. Similarly, p-side holes stream into the n side and eventually recombine
with the prevailing electrons at that side. Each recombination releases a net
amount of energy that is at least equal to the band gap energy. In a suitably
chosen semiconductor, the energy can come out as light.

As section 6.22.4 discussed, silicon or germanium are not really suitable.
They are what is called “indirect band gap” semiconductors. For these the en-
ergy is much more likely to come out as heat rather than light. Using various
tricks, silicon can be made to emit some light, but the efficiency is low. LEDs
normally use “direct band gap” semiconductors. The classical direct gap ma-
terial is gallium arsenide, which produced the first patented infrared LED. To
emit visible light, the band gap should exceed about 1.6 eV. Indeed, as noted
earlier, the photons of visible light range from about 1.6 eV (red) to 3.2 eV
(violet). That relates the band gap of the LED to its color. (For indirect gap
semiconductors a phonon is involved, section 6.22.4, but its energy is small.)
Gallium arsenide, with its 1.4 eV direct band gap emits infrared light with an
average wave length of 940 nm. A 1.4 eV photon has a wave length of 885 nm.
Diamond, with its 5.5 eV indirect band gap emits some ultraviolet light with
an average wave length of 235 nm. A 5.5 eV photon has a wave length of 225
nm.

By the addition of a suitable optical cavity, a “diode laser” can be con-
structed that emits coherent light. The cavity lets the photons bounce a few
times around through the region with the conduction electrons and holes. Now
it is one of the peculiar symmetries of quantum mechanics that photons are not
just good in taking electrons out of the valence band, they are also good at
putting them back in. Because of energy conservation, the latter produces more
photons than there were already; therefore it is called stimulated emission. Of
course, bouncing the photons around might just get them absorbed again. But
stimulated emission can win out over absorption if most electrons at the top
of the valence band have been excited to the bottom of the conduction band.
That is called a “population inversion.” Such a situation can be achieved using
a strong current across the junction. Under these conditions a photon may pro-
duce another photon through stimulated emission, then the two photons go on
to stimulate the emission of still more photons, and so on in a runaway process.
The result is coherent light because of the common origin of all the photons.
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The idea of lasers is discussed in more detail in chapter 7.7.

Key Points

0 A LED creates light due to the recombination of electrons and holes
near a p-n junction. Normally, the semiconductor has a direct band
gap.

0 A laser diode adds an optical cavity to create coherent light.

6.28 Thermoelectric Applications

Thermoelectric effects can be used to make solid-state refrigeration devices,
or to sense temperature differences, or to convert thermal energy directly into
electricity. This section explains the underlying principles.

There are three different thermoelectric effects. They are named the Peltier,
Seebeck, and Thomson effects after the researchers who first observed them.
Thomson is better known as Kelvin.

These effects are not at all specific to semiconductors. However semicon-
ductors are particularly suitable for thermoelectric applications. The reason is
that the nature of the current carriers in semiconductors can be manipulated.
That is done by doping the material as described in section 6.23. In an n-type
doped semiconductor, currents are carried by mobile electrons. In a p-type
doped semiconductor, the currents are carried by mobile holes, quantum states
from which electrons are missing. Electrons are negatively charged particles,
but holes act as positively charged ones. That is because a negatively charged
electron is missing from a hole.

6.28.1 Peltier effect

Thermoelectric cooling can be achieved through what is called the “Peltier ef-
fect.” The top part of figure 6.37 shows a schematic of a Peltier cooler. The
typical device consists of blocks of a semiconductor like bismuth telluride that
are alternately doped n-type and p-type. The blocks are electrically connected
by strips of a metal like copper.

The connections are made such that when a current is passed through the
device, both the n-type electrons and the p-type holes move towards the same
side of the device. For example, in figure 6.37 both electrons and holes move
to the top of the device. The current however is upward in the p-type blocks
and downward in the n-type blocks. (Since electrons are negatively charged,
their current is in the direction opposite to their motion.) The same current
that enters a metal strip from one block leaves the strip again through the other
block.
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Figure 6.37: Peltier cooling. Top: physical device. Bottom: Electron energy
spectra of the semiconductor materials. Quantum states filled with electrons
are shown in red.

Consider now a metal strip at the top of the device in figure 6.37. Such a
strip needs to take in a stream of conduction-band electrons from an n-type
semiconductor block A. It must drop the same number of electrons into the
valence-band holes coming in from a p-type semiconductor block B to eliminate
them. As illustrated by the top arrow between the spectra at the bottom of
figure 6.37, this lowers the energy of the electrons. Therefore energy is released,
and the top strips get hot.

However, a bottom strip needs to take electrons out of the valence band of
a p-type semiconductor B to create the outgoing holes. It needs to put these
electrons into the conduction band of an n-type semiconductor A. That requires
energy, so the bottom strips lose energy and cool down. You might think of it
as evaporative cooling: the bottom strips have to give up their electrons with
the highest thermal energy.

The net effect is that the Peltier cooler acts as a heat pump that removes
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heat from the cold side and adds it to the hot side. It can therefore provide
refrigeration at the cold side. At the time of writing, Peltier coolers use a
lot more power to operate than a refrigerant-based device of the same cooling
capability. However, the device is much simpler, and is therefore more suitable
for various small applications. And it can easily regulate temperatures; a simple
reversal of the current turns the cold side into the hot side.

Note that while the Peltier device connects p and n type semiconductors,
it does not act as a diode. In particular, even in the bottom strips there is no
need to raise electrons over the band gap of the semiconductor to create the
new electrons and holes. Copper does not have a band gap.

It is true that the bottom strips must take electrons out of the p-type valence
band and put them into the n-type conduction band. However, as the spectra
at the bottom of figure 6.37 show, the energy needed to do so is much less than
the band gap. The reason is that the p-type spectrum is raised relative to the
n-type one. That is an effect of the electrostatic potential energies that are
different in the two semiconductors. Even in thermal equilibrium, the spectra
are at unequal levels. In particular, in equilibrium the electrostatic potentials
adjust so that the chemical potentials, shown as red tick marks in the spectra,
line up. The applied external voltage then decreases the energy difference even
more.

The analysis of Peltier cooling can be phrased more generally in terms of
properties of the materials involved. The “Peltier coefficient” P of a material is
defined as the heat flow produced by an electric current, taken per unit current.

P ≡ Q̇

I
(6.38)

Here I is the current through the material and Q̇ the heat flow it causes. Phrased
another way, the Peltier coefficient is the thermal energy carried per unit charge.
That gives it SI units of volts.

Now consider the energy balance of a top strip in figure 6.37. An electric
current IAB flows from material A to material B through the strip. (This current
is negative as shown, but that is not important for the general formula.) The
current brings along a heat flux Q̇A = PAIAB from material A that flows into the
strip. But a different heat flux Q̇B = PBIAB leaves the strip through material
B. The difference between what comes in and what goes out is what remains
inside the strip to heat it:

Q̇ = − (PB − PA) IAB (6.39)

This equation is generally valid; A and B do not need to be semiconductors.
The difference in material Peltier coefficients is called the Peltier coefficient of
the junction.
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For the top strips in figure 6.37, IAB is negative. Also, as discussed below,
the n-type PA will be negative and the p-type PB positive. That makes the net
heat flowing into the strip positive as it should be. Note also that the opposite
signs of n-type and p-type Peltier coefficients really help to make the net heat
flow as big as possible.

If there is a temperature gradient in the semiconductors in addition to the
current, and there will be, it too will create a heat flow, {A.11}. This heat flow
can be found using what is known as Fourier’s law. It is bad news as it removes
heat from the hot side and conducts it to the cold side.

A more quantitative understanding of the Peltier effect can be obtained
using some ballpark Peltier coefficients. Consider again the spectra in figure
6.37. In the n-type semiconductor, each conduction electron has an energy per
unit charge of about

Pn type ∼
Ep

−e =
Ep

c +
3
2
kBT − µ
−e

Here −e in the denominator is the charge of the electron, while Ep
c in the

numerator is the energy at the bottom of the conduction band. It has been
assumed that a typical electron in the conduction band has an additional random
thermal energy equal to the classical value 3

2
kBT . Further the chemical potential,

or Fermi level, µ has been taken as the zero level of energy.
The reason for doing the latter has to do with the fact that in thermal

equilibrium, all solids in contact have the same chemical potential. That makes
the chemical potential a convenient reference level of energy. The idea can be
described graphically in terms of the spectra of figure 6.37. In the spectra,
the chemical potential is indicated by the red tick marks on the vertical axes.
Now consider again the energy change in transferring electrons between the n-
and p-type materials. What determines it is how much the n-type electrons
are higher in energy than the chemical potential and how much electrons put
in the p-type holes are lower than it. (This assumes that the current remains
small enough that the chemical potentials in the two semiconductors stay level.
Otherwise theoretical description would become much more difficult.)

As this picture suggests, for the holes in the p-type semiconductor, the
energy should be taken to be increasing downwards in the electron spectrum.
It takes more energy to create a hole by taking an electron up to the Fermi
level if the hole is lower in the spectrum. Therefore the Peltier coefficient of the
p-doped semiconductor is

Pp type ∼
Ep

e
=
µ− Ep

v +
3
2
kBT

e

where Ep
v is the electron energy at the top of the valence band. Because holes act

as positively charged particles, the Peltier coefficient of a p-type semiconductor
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is positive. On the other hand, the Peltier coefficient of an n-type semiconductor
is negative because of the negative charge in the denominator.

Note that both formulae are just ballparks. The thermal energy dragged
along by a current is not simply the thermal equilibrium distribution of electron
energy. The average thermal kinetic energy per current carrier to be used turns
out to differ somewhat from 3

2
kBT . The current is also associated with a flow

of phonons; their energy should be added to the thermal energy that is carried
directly by the electrons or holes, {A.11}. Such issues are far beyond the scope
of this book.

It is however interesting to compare the above semiconductor ballparks to
one for metals:

Pmetal ∼ −
2π2

9

3
2
kBT

Ep
F

3
2
kBT

e

This ballpark comes from assuming the spectrum of a free-electron gas, {A.11}.
The final ratio is easily understood as the classical thermal kinetic energy 3

2
kBT

per unit charge e. The ratio in front of it is the thermal energy divided by the
Fermi energy Ep

F. As discussed in section 6.10, this fraction is much less than
one. Its presence can be understood from the exclusion principle: as illustrated
in figure 6.15, only a small fraction of the electrons pick up thermal energy in a
metal.

The ballpark above implies that the Peltier coefficient of a metal is very
much less than that of a doped semiconductor. It should however be noted
that while the ballpark does give the rough order of magnitude of the Peltier
coefficients of metals, they tend to be noticeably larger. Worse, there are quite
a few metals whose Peltier coefficient is positive, unlike the ballpark above says.

To some extent, the lower Peltier coefficients of metals are compensated for
by their larger electrical conductivity. A nondimensional figure of merit can be
defined for thermoelectric materials as, {A.11}:

P
2σ

Tκ

where T is a typical operating absolute temperature. This figure of merit shows
that a large Peltier coefficient is good, quadratically so, but so is a large electrical
conductivity σ and a low thermal conductivity κ. Unfortunately, metals also
conduct heat well.

Key Points

0 In the Peltier effect, a current produces cooling or heating when it
passes through the contact area between two solids.

0 The heat released is proportional to the current and the difference
in Peltier coefficients of the materials.

0 Connections between oppositely-doped semiconductors work well.
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6.28.2 Seebeck effect

Thermoelectric temperature sensing and power generation can be achieved by
what is known as the “Seebeck effect.” It is in some sense the opposite of the
Peltier effect of the previous subsection.

Consider the configuration shown in figure 6.38. Blocks of n-type and p-type
doped semiconductors are electrically connected at their tops using a copper
strip. Copper strips are also attached to the bottoms of the semiconductor
blocks. Unlike for the Peltier device, no external voltage source is attached. In
the pure Seebeck effect, the bottom strips are electrically not in contact at all.
So there is no current through the device. It is what is called an open-circuit
configuration.
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Figure 6.38: An example Seebeck voltage generator.

To achieve the Seebeck effect, heat from an external heat source is added
to the top copper strip. That heats it up. Heat is allowed to escape from the
bottom strips to, say, cooling water. This heat flow pattern is the exact opposite
of the one for the Peltier cooler. If heat went out of the strips of your Peltier
cooler at the cold side, it would melt your ice cubes.

But the Peltier cooler requires an external voltage to be supplied to keep the
device running. The opposite happens for the Seebeck generator of figure 6.38.
The device itself turns into a electric power supply. A voltage difference develops
spontaneously between the bottom two strips.

That voltage difference can be used to determine the temperature of the top
copper strip, assuming that the bottom strips are kept at a known temperature.
A device that measures temperatures this way is called a “thermocouple.”

Alternatively, you can extract electrical power from the voltage difference
between the two bottom terminals. In that case the Seebeck device acts as a
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“thermoelectric generator.” Of course, to extract power you need to allow some
current to flow. That will reduce the voltage below the pure Seebeck value.

To describe why the device works physically is not that easy. To understand
the basic idea, consider an arbitrary point P in the n-type semiconductor, as
indicated in figure 6.38. Imagine yourself standing at this point, shrunk down
to microscopic dimensions. Due to random heat motion, conduction electrons
come at you randomly from both above and below. However, those coming from
above are hotter and so they come towards you at a higher speed. Therefore,
assuming that all else is the same, there is a net electron current downwards at
your location. Of course, that cannot go on, because it moves negative charge
down, charging the lower part of the device negative and the top positive. This
will create an electric field that slows down the hot electrons going down and
speeds up the cold electrons going up. The voltage gradient associated with this
electric field is the Seebeck effect, {A.11}.

In the Seebeck effect, an incremental temperature change dT in a material
causes a corresponding change in voltage dϕ given by:

dϕµ = −SdT

The subscript on ϕµ indicates that the intrinsic chemical potential of the ma-
terial must be included in addition to the electrostatic potential ϕ. In other
words, ϕµ is the total chemical potential per unit electron charge. The constant
S is a material coefficient depending on material and temperature.

This coefficient is sometimes called the “Seebeck coefficient.” However, it is
usually called the “thermopower” or “thermoelectric power.” These names are
much better, because the Seebeck coefficient describes an open-circuit voltage,
in which no power is produced. It has units of V/K. It is hilarious to watch the
confused faces of those hated nonspecialists when a physicist with a straight face
describes something that is not, and cannot be, a power as the “thermopower.”

The net voltage produced is the integrated total voltage change over the
lengths of the two materials. If TH is the temperature of the top strip and TL
that of the bottom ones, the net voltage can be written as:

ϕB − ϕA =

∫ TH

TL

(SB − SA) dT (6.40)

This is the voltage that will show up on a voltmeter connected between the
bottom strips. Note that there is no need to use the chemical potential ϕµ
in this expression: since the bottom strips are both copper and at the same
temperature, their intrinsic chemical potentials are identical.

The above equation assumes that the copper strips conduct heat well enough
that their temperature is constant, (or alternatively, that materials A and B are
in direct contact with each other at their top edges and with the voltmeter at
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their bottom edges). Otherwise you would need to add an integral over the
copper.

Note from the above equation that, given the temperature TL of the bottom
strips, the voltage only depends on the temperature TH of the top strip. In
terms of figure 6.38, the detailed way that the temperature varies with height is
not important, just that the end values are TH and TL. That is great for your
thermocouple application, because the voltage that you get only depends on
the temperature at the tip of the thermocouple, the one you want to measure.
It is not affected by whatever is the detailed temperature distribution in the
two leads going to and from the tip. (As long as the material properties stay
constant in the leads, that is. The temperature dependence of the Seebeck
coefficients is not a problem.)
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Figure 6.39: The Galvani potential jump over the contact surface does not
produce a usable voltage.

It is sometimes suggested, even by some that surely know better like [22,
p. 14-9], that the Seebeck potential is due to jumps in potential at the contact
surfaces. To explain the idea, consider figure 6.39. In this figure materials A
and B have been connected directly in order to simplify the ideas. It turns
out that the mean electrostatic potential inside material A immediately before
the contact surface with material B is different from the mean electrostatic
potential inside material B immediately after the contact surface. The difference
is called the Galvani potential. It is due to the charge double layer that exists
at the contact surface between different solids. This charge layer develops to
ensure that the chemical potentials are the same at both sides of the contact
surface. Equality of chemical potentials across contact surfaces is a requirement
for thermal equilibrium. Electrostatic potentials can be different.

If you try to measure this Galvani potential directly, like with the bottom
voltmeter in figure 6.39, you fail. The reason is that there are also Galvani
potential jumps between materials A and B and the leads of your voltmeter.
Assume for simplicity that the leads of your voltmeter are both made of copper.
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Because the chemical potentials are pairwise equal across the contact surfaces,
all four chemical potentials are the same, including the two in the voltmeter
leads. Therefore, the actual voltmeter can detect no difference between its two
leads and gives a zero reading.

Now consider the top voltmeter in figure 6.39. This voltmeter does measure a
voltage. Also in this case, the contact surfaces between the leads of the voltmeter
and materials A and B are at a different temperature TL than the temperature
TH of the contact surface between materials A and B. The suggestion is therefore
sometimes made that changes in the Galvani potentials due to temperature
differences produce the measured voltage. That would explain very neatly why
the measured voltage only depends on the temperatures of the contact surfaces.
Not on the detailed temperature distributions along the lengths of the materials.

It may be neat, but unfortunately it is also all wrong. The fact that the
dependence on the temperature distribution drops out of the final result is
just a mathematical coincidence. As long as the changes in intrinsic chemical
potential can be ignored, the Galvani potential jumps still sum to zero. Not
to the measured potential. After all, in that case the voltage changes over the
lengths of the materials are the same as the chemical potential changes. And
because they already sum to the measured voltage, there is nothing left for the
Galvani jumps. Consider for example the free-electron gas model of metals.
While its intrinsic chemical potential does change with temperature, {D.62},
that change is only one third of the potential change produced by the Seebeck
coefficient given in addendum {A.11}. Galvani potential changes then sum to
only a third of the measured potential. No, there is no partial credit.
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Figure 6.40: The Seebeck effect is not directly measurable.

It should also be pointed out that the Seebeck effect of a material is not
directly measurable. Figure 6.40 illustrates an attempt to directly measure the
Seebeck effect of material A. Unfortunately, the only thing that changes com-
pared to figure 6.39 is that the two leads of the voltmeter take over the place of
material B. Unless the two leads are attached to points of equal temperature,
they are an active part of the total Seebeck effect measured. (Superconductors
should have their Seebeck coefficient zero. However, finding superconductors
that still are superconductors if they are in thermal contact with real-life tem-
peratures is an obvious issue.)
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Kelvin discovered that you can find the Seebeck coefficient S from the Peltier
coefficient P simply by dividing by the absolute temperature. Unfortunately,
the Peltier coefficient is not directly measurable either. Its effect too requires
a second material to be present to compare against. It does show, however,
that good materials for the Peltier effect are also good materials for the Seebeck
effect.

You might wonder where the charges that transfer between the hot and cold
sides in the Seebeck effect end up. In thermal equilibrium, the interiors of solids
need to stay free of net electric charge, or a current would develop to eliminated
the charge difference. But in the Seebeck effect, the solids are not in thermal
equilibrium. It is therefore somewhat surprising that the interiors do remain
free of net charge. At least, they do if the temperature variations are small
enough, {A.11}. So the charges that transfer between hot and cold, and so give
rise to the Seebeck potential difference, end up at the surfaces of the solids. Not
in the interior. Even in the Seebeck effect.

Key Points

0 The Seebeck effect produces a usable voltage from temperature dif-
ferences.

0 It requires two different materials in electrical contact to span the
temperature difference.

0 The voltage is the difference in the integrals of the Seebeck coeffi-
cients of the two materials with respect to temperature.

0 The Seebeck coefficient is usually called thermopower because it is
not power.

6.28.3 Thomson effect

The “Thomson effect,” or “Kelvin heat,” describes the heat release in a mate-
rial with a current through it. This heat release is directly measurable. That
is unlike the Peltier and Seebeck effects, for which only the net effect of two
different materials can be measured. Since the Peltier and Seebeck coefficients
can be computed from the Thomson one, in principle the Thomson effect al-
lows all three thermoelectric coefficients to be found without involving a second
material.

Thomson, who later became lord Kelvin, showed that the net energy accu-
mulation per unit volume in a bar of material with a current through it can be
written as:

ė =
d

dx

(
κ
dT

dx

)
+
j2

σ
−Kj

dT

dx
(6.41)
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Here x is the position along the bar, T is the temperature, j is the current
per unit area, and κ and σ are the thermal and electrical conductivities. The
first term in the right hand side is heat accumulation due to Fourier’s law
of heat conduction. The second term is the Joule heating that keeps your
resistance heater working. The final term is the thermoelectric Thomson effect
or Kelvin heat. (The term “Kelvin effect” is not used because it is already
in common use for something else.) The coefficient K is called the “Kelvin
coefficient” or “Thomson coefficient.” A derivation from the general equations
of thermoelectrics is given in addendum {A.11}.

It may be noted that for devices in which the Thomson effect is important,
the figure of merit introduced earlier becomes less meaningful. In such cases, a
second nondimensional number based on the Kelvin coefficient will also affect
device performance.

The other two thermoelectric coefficients can be computed from the Kelvin
one using the Kelvin, or Thomson, relationships {A.11}:

dS

d lnT
= K P = ST (6.42)

By integrating K with respect to lnT you can find the Seebeck coefficient and
from that the Peltier one.

That requires of course that you find the Kelvin coefficient over the complete
temperature range. But you only need to do it for one material. As soon as
you accurately know the thermoelectric coefficients for one material, you can
use that as the reference material to find Peltier and Seebeck coefficients for
every other material. Lead is typically used as the reference material, as it has
relatively low thermoelectric coefficients.

Of course, if it turns out that the data on your reference material are not
as accurate as you thought they were, it would be very bad news. It will affect
the accuracy of the thermoelectric coefficients of every other material that you
found using this reference material. A prediction on whether such a thing was
likely to happen for lead could be derived from what is known as Murphy’s law.

Key Points

0 The Thomson effect, or Kelvin heat, describes the internal heating
in a material with a current going through it. More precisely, it
describes the part of this heating that is due to interaction of the
current with the temperature changes.

0 Unlike the Peltier and Seebeck coefficients, the Kelvin (Thomson)
coefficient can be measured without involving a second material.

0 The Kelvin (Thomson) relations allow you to compute the Peltier
and Seebeck coefficients from the Kelvin one.



Chapter 7

Time Evolution

Abstract

The evolution of systems in time is less important in quantum mechan-
ics than in classical physics, since in quantum mechanics so much can
be learned from the energy eigenvalues and eigenfunctions. Still, time
evolution is needed for such important physical processes as the creation
and absorption of light and other radiation. And many other physical
processes of practical importance are simplest to understand in terms of
classical physics. To translate a typical rough classical description into
correct quantum mechanics requires an understanding of unsteady quan-
tum mechanics.

The chapter starts with the introduction of the Schrödinger equation.
This equation is as important for quantum mechanics as Newton’s second
law is for classical mechanics. A formal solution to the equation can be
written immediately down for most systems of interest.

One direct consequence of the Schrödinger equation is energy conserva-
tion. Systems that have a definite value for their energy conserve that
energy in the simplest possible way: they just do not change at all. They
are stationary states. Systems that have uncertainty in energy do evolve
in a nontrivial way. But such systems do still conserve the probability of
each of their possible energy values.

Of course, the energy of a system is only conserved if no devious external
agent is adding or removing energy. In quantum mechanics that usually
boils down to the condition that the Hamiltonian must be independent of
time. If there is a nasty external agent that does mess things up, analysis
may still be possible if that agent is a slowpoke. Since physicists do not
know how to spell slowpoke, they call this the adiabatic approximation.
More precisely, they call it adiabatic because they know how to spell
adiabatic, but not what it means.

The Schrödinger equation is readily used to describe the evolution of ex-
pectation values of physical quantities. This makes it possible to show

315
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that Newton’s equations are really an approximation of quantum mechan-
ics valid for macroscopic systems. It also makes it possible to formulate
the popular energy-time uncertainty relationship.

Next, the Schrödinger equation does not just explain energy conserva-
tion. It also explains where other conservation laws such as conservation
of linear and angular momentum come from. For example, angular mo-
mentum conservation is a direct consequence of the fact that space has
no preferred direction.

It is then shown how these various conservation laws can be used to better
understand the emission of electromagnetic radiation by say an hydrogen
atom. In particular, they provide conditions on the emission process that
are called selection rules.

Next, the Schrödinger equation is used to describe the detailed time evo-
lution of a simple quantum system. The system alternates between two
physically equivalent states. That provides a model for how the funda-
mental forces of nature arise. It also provides a model for the emission
of radiation by an atom or an atomic nucleus.

Unfortunately, the model for emission of radiation turns out to have some
problems. These require the consideration of quantum systems involving
two states that are not physically equivalent. That analysis then finally
allows a comprehensive description of the interaction between atoms and
the electromagnetic field. It turns out that emission of radiation can be
stimulated by radiation that already exists. That allows for the operation
of masers and lasers that dump out macroscopic amounts of monochro-
matic, coherent radiation.

The final sections discuss examples of the nontrivial evolution of simple
quantum systems with infinite numbers of states. Before that can be
done, first the so-far neglected eigenfunctions of position and linear mo-
mentum must be discussed. Position eigenfunctions turn out to be spikes,
while linear momentum eigenfunctions turn out to be waves. Particles
that have significant and sustained spatial localization can be identified
as “packets” of waves. These ideas can be generalized to the motion of
conduction electrons in crystals.

The motion of such wave packets is then examined. If the forces change
slowly on quantum scales, wave packets move approximately like classical
particles do. Under such conditions, a simple theory called the WKB
approximation applies.

If the forces vary more rapidly on quantum scales, more weird effects
are observed. For example, wave packets may be repelled by attractive
forces. On the other hand, wave packets can penetrate through barriers
even though classically speaking, they do not have enough energy to do
so. That is called tunneling. It is important for various applications. A
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simple estimate for the probability that a particle will tunnel through a
barrier can be obtained from the WKB approximation.

Normally, a wave packet will be partially transmitted and partially re-
flected by a finite barrier. That produces the weird quantum situation
that the same particle is going in two different directions at the same time.
From a more practical point of view, scattering particles from objects is
a primary technique that physicists use to examine nature.

7.1 The Schrödinger Equation

In Newtonian mechanics, Newton’s second law states that the linear momentum
changes in time proportional to the applied force; dm~v/dt = m~a = ~F . The
equivalent in quantum mechanics is the Schrödinger equation, which describes
how the wave function evolves. This section discusses this equation, and a few
of its immediate consequences.

7.1.1 The equation

The Schrödinger equation says that the time derivative of the wave function is
obtained by applying the Hamiltonian on it. More precisely:

i~
∂Ψ

∂t
= HΨ (7.1)

An equivalent and earlier formulation of quantum mechanics was given by
Heisenberg, {A.12}. However, the Schrödinger equation tends to be easier to
deal with, especially in nonrelativistic applications. An integral version of the
Schrödinger equation that is sometimes convenient is in {A.13}.

The Schrödinger equations is nonrelativistic. The simplest relativistic ver-
sion is called the Klein-Gordon equation. A discussion is in addendum {A.14}.
However, relativity introduces a fundamentally new issue: following Einstein’s
mass-energy equivalence, particles may be created out of pure energy or de-
stroyed. To deal with that, you typically need a formulation of quantum me-
chanics called quantum field theory. A very brief introduction is in addendum
{A.15}.

Key Points

0 The Schrödinger equation describes the time evolution of the wave
function.

0 The time derivative is proportional to the Hamiltonian.
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7.1.2 Solution of the equation

The solution to the Schrödinger equation can immediately be given for most
cases of interest. The only condition that needs to be satisfied is that the
Hamiltonian depends only on the state the system is in, and not explicitly on
time. This condition is satisfied in all cases discussed so far, including the
particle in a box, the harmonic oscillator, the hydrogen and heavier atoms, and
the molecules, so the following solution applies to them all:

To satisfy the Schrödinger equation, write the wave function Ψ in
terms of whatever are the energy eigenfunctions ψ~n of the Hamilto-
nian,

Ψ = c~n1(t)ψ~n1 + c~n2(t)ψ~n2 + . . . =
∑

~n

c~n(t)ψ~n (7.2)

Then the coefficients c~n must evolve in time as complex exponentials:

c~n(t) = c~n(0)e
−iE~nt/~ (7.3)

for every combination of quantum numbers ~n.

In short, you get the wave function for arbitrary times by taking the initial
wave function and shoving in additional factors e−iE~nt/~. The initial values
c~n(0) of the coefficients are not determined from the Schrödinger equation, but
from whatever initial condition for the wave function is given. As always, the
appropriate set of quantum numbers ~n depends on the problem.

Consider how this works out for the electron in the hydrogen atom. Here
each spatial energy state ψnlm is characterized by the three quantum numbers
n, l, m, chapter 4.3. However, there is a spin-up version ψnlm↑ of each state in
which the electron has spin magnetic quantum numberms =

1
2
, and a spin-down

version ψnlm↓ in which ms = −1
2
, chapter 5.5.1. So the states are characterized

by the set of four quantum numbers

~n ≡ (n, l,m,ms)

The most general wave function for the hydrogen atom is then:

Ψ(r, θ, φ, Sz, t) =

∞∑

n=1

n−1∑

l=0

l∑

m=−l
cnlm 1

2
(0)e−iEnt/~ψnlm(r, θ, φ)↑+ cnlm,- 1

2
(0)e−iEnt/~ψnlm(r, θ, φ)↓

Note that each eigenfunction has been given its own coefficient that depends
exponentially on time. (The summation limits come from chapter 4.3.)

The given solution in terms of eigenfunctions covers most cases of interest,
but as noted, it is not valid if the Hamiltonian depends explicitly on time. That
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possibility arises when there are external influences on the system; in such cases
the energy does not just depend on what state the system itself is in, but also
on what the external influences are like at the time.

Key Points

0 Normally, the coefficients of the energy eigenfunctions must be pro-
portional to e−iE~nt/~.

7.1.2 Review Questions

1. The energy of a photon is ~ω where ω is the classical frequency of the
electromagnetic field produced by the photon. So what is e−iE~nt/~ for a
photon? Are you surprised by the result?

Solution schrodsol-a

2. For the one-dimensional harmonic oscillator, the energy eigenvalues are

En =
2n+ 1

2
ω

Write out the coefficients cn(0)e
−iEnt/~ for those energies.

Now classically, the harmonic oscillator has a natural frequency ω.
That means that whenever ωt is a whole multiple of 2π, the harmonic
oscillator is again in the same state as it started out with. Show that the
coefficients of the energy eigenfunctions have a natural frequency of 1

2ω;
1
2ωt must be a whole multiple of 2π for the coefficients to return to their
original values.

Solution schrodsol-b

3. Write the full wave function for a one-dimensional harmonic oscillator.
Formulae are in chapter 4.1.2.

Solution schrodsol-c

7.1.3 Energy conservation

The Schrödinger equation implies that the energy of a system is conserved,
assuming that there are no external influences on the system.

To see why, consider the general form of the wave function:

Ψ =
∑

~n

c~n(t)ψ~n c~n(t) = c~n(0)e
−iE~nt/~

According to chapter 3.4, the square magnitudes |c~n|2 of the coefficients
of the energy eigenfunctions give the probability for the corresponding energy.
While the coefficients vary with time, their square magnitudes do not:

|c~n(t)|2 ≡ c∗~n(t)c~n(t) = c∗~n(0)e
iE~nt/~c~n(0)e

−iE~nt/~ = |c~n(0)|2

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/schrodsol-a.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/schrodsol-b.html
http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/schrodsol-c.html
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So the probability of measuring a given energy level does not vary with time
either. That means that energy is conserved.

For example, a wave function for a hydrogen atom at the excited energy
level E2 might be of the form:

Ψ = e−iE2t/~ψ210↑

(This corresponds to an assumed initial condition in which all coefficients cnlmms

are zero except c2101 = 1.) The square magnitude of the exponential is one, so
the energy of this excited atom will stay E2 with 100% certainty for all time.
The energy of the atom is conserved.

This is an important example, because it also illustrates that an excited
atom will stay excited for all time if left alone. That is an apparent contradiction
because, as discussed in chapter 4.3, the above excited atom will eventually emit
a photon and transition back to the ground state. Even if you put it in a sealed
box whose interior is at absolute zero temperature, it will still decay.

The explanation for this apparent contradiction is that an atom is never truly
left alone. Simply put, even at absolute zero temperature, quantum uncertainty
in energy allows an electromagnetic photon to pop up that perturbs the atom
and causes the decay. (To describe more precisely what happens is a major
objective of this chapter.)

Returning to the unperturbed atom, you may wonder what happens to en-
ergy conservation if there is uncertainty in energy. In that case, what does not
change with time are the probabilities of measuring the possible energy levels.
As an arbitrary example, the following wave function describes a case of an un-
perturbed hydrogen atom whose energy has a 50/50 chance of being measured
as E1, (-13.6 eV), or as E2, (-3.4 eV):

Ψ =
1√
2
e−iE1t/~ψ100↓+

1√
2
e−iE2t/~ψ210↑

The 50/50 probability applies regardless how long the wait is before the mea-
surement is done.

You can turn the observations of this subsection also around. If an exter-
nal effect changes the energy of a system, then clearly the probabilities of the
individual energies must change. So then the coefficients of the energy eigen-
functions cannot be simply vary exponentially with time as they do for the
unperturbed systems discussed above.

Key Points

0 Energy conservation is a fundamental consequence of the Schrödinger
equation.

0 An isolated system that has a given energy retains that energy.
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0 Even if there is uncertainty in the energy of an isolated system, still
the probabilities of the various energies do not change with time.

7.1.4 Stationary states

The quest for the dynamical implications of the Schrödinger equation must start
with the simplest case. That is the case in which there is only a single energy
eigenfunction involved. Then the wave function is of the form

Ψ = c~n(0)e
−iE~nt/~ψ~n

Such states are called “stationary states.” Systems in their ground state are of
this type.

To see why these states are called stationary, note first of all that the energy
of the state is E~n for all time, with no uncertainty.

But energy is not the only thing that does not change in time. According to
the Born interpretation, chapter 3.1, the square magnitude of the wave function
of a particle gives the probability of finding the particle at that position and
time. Now the square magnitude of the wave function above is

|Ψ|2 = |ψ~n|2

Time has dropped out in the square magnitude; the probability of finding the
particle is the same for all time.

For example, consider the case of the particle in a pipe of chapter 3.5. If the
particle is in the ground state, its wave function is of the form

Ψ = c111(0)e
−iE111t/~ψ111

The precise form of the function ψ111 is not of particular interest here, but it
can be found in chapter 3.5.

The relative probability for where the particle may be found can be shown
as grey tones:

Figure 7.1: The ground state wave function looks the same at all times.

The bottom line is that this picture is the same for all time.
If the wave function is purely the first excited state ψ211, the corresponding

picture looks for all time like:

extrascale=3,notransparent
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Figure 7.2: The first excited state at all times.

And it is not just position that does not change. Neither do linear or an-
gular momentum, kinetic energy, etcetera. That can be easily checked. The
probability for a specific value of any physical quantity is given by

|〈α|Ψ〉|2

where α is the eigenfunction corresponding to the value. (If there is more than
one eigenfunction with that value, sum their contributions.) The exponential
drops out in the square magnitude. So the probability does not depend on time.

And if probabilities do not change, then neither do expectation values, un-
certainties, etcetera. No physically meaningful quantity changes with time.

Hence it is not really surprising that none of the energy eigenfunctions de-
rived so far had any resemblance to the classical Newtonian picture of a particle
moving around. Each energy eigenfunction by itself is a stationary state. There
is no change in the probability of finding the particle regardless of the time
that you look. So how could it possibly resemble a classical particle that is at
different positions at different times?

To get time variations of physical quantities, states of different energy must
be combined. In other words, there must be uncertainty in energy.

Key Points

0 States of definite energy are stationary states.

0 To get nontrivial time variation of a system requires uncertainty in
energy.

7.1.5 The adiabatic approximation

The previous subsections discussed the solution for systems in which the Hamil-
tonian does not explicitly depend on time. Typically that means isolated sys-
tems, unaffected by external effects, or systems for which the external effects
are relatively simple. If the external effects produce a time-dependent Hamilto-
nian, things get much messier. You cannot simply make the coefficients of the
eigenfunctions vary exponentially in time as done in the previous subsections.

However, dealing with systems with time-dependent Hamiltonians can still
be relatively easy if the Hamiltonian varies sufficiently slowly in time. Such
systems are quasi-steady ones.

extrascale=3,notransparent
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So physicists cannot call these systems quasi-steady; that would give the se-
cret away to these hated nonspecialists and pesky students. Fortunately, physi-
cists were able to find a much better name. They call these systems “adiabatic.”
That works much better because the word “adiabatic” is a well-known term in
thermodynamics: it indicates systems that evolve fast enough that heat conduc-
tion with the surroundings can be ignored. So, what better name to use also for
quantum systems that evolve slowly enough that they stay in equilibrium with
their surroundings? No one familiar with even the most basic thermodynamics
will ever guess what it means.

As a simple example of an adiabatic system, assume that you have a particle
in the ground state in a box. Now you change the volume of the box by a
significant amount. The question is, will the particle still be in the ground state
after the volume change? Normally there is no reason to assume so; after all,
either way the energy of the particle will change significantly. However, the
“adiabatic theorem” says that if the change is performed slowly enough, it will.
The particle will indeed remain in the ground state, even though that state
slowly changes into a completely different form.

If the system is in an energy state other than the ground state, the particle
will stay in that state as it evolves during an adiabatic process. The theo-
rem does assume that the energy is nondegenerate, so that the energy state
is unambiguous. More sophisticated versions of the analysis exist to deal with
degeneracy and continuous spectra.

A derivation of the theorem can be found in {D.34}. Some additional impli-
cations are in addendum {A.16}. The most important practical application of
the adiabatic theorem is without doubt the Born-Oppenheimer approximation,
which is discussed separately in chapter 9.2.

Key Points

0 If the properties of a system in its ground state are changed, but
slowly, the system will remain in the changing ground state.

0 More generally, the “adiabatic” approximation can be used to ana-
lyze slowly changing systems.

0 No, it has nothing to do with the normal use of the word “adiabatic.”

7.2 Time Variation of Expectation Values

The time evolution of systems may be found using the Schrödinger equation as
described in the previous section. However, that requires the energy eigenfunc-
tions to be found. That might not be easy.

For some systems, especially for macroscopic ones, it may be sufficient to
figure out the evolution of the expectation values. An expectation value of a
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physical quantity is the average of the possible values of that quantity, chapter
4.4. This section will show how expectation values may often be found without
finding the energy eigenfunctions. Some applications will be indicated.

The Schrödinger equation requires that the expectation value 〈a〉 of any
physical quantity a with associated operator A evolves in time as:

d〈a〉
dt

=
i

~
〈[H,A]〉+

〈
∂A

∂t

〉
(7.4)

A derivation is in {D.35}. The commutator [H,A] of A with the Hamiltonian
was defined in chapter 4.5 as HA−AH. The final term in (7.4) is usually zero,
since most (simple) operators do not explicitly depend on time.

The above evolution equation for expectation values does not require the
energy eigenfunctions, but it does require the commutator.

Note from (7.4) that if an operator A commutes with the Hamiltonian,
i.e. [H,A] = 0, then the expectation value of the corresponding quantity a will
not vary with time. Actually, that is just the start of it. Such a quantity
has eigenfunctions that are also energy eigenfunctions, so it has the same time-
conserved statistics as energy, section 7.1.4. The uncertainty, probabilities of the
individual values, etcetera, do not change with time either for such a variable.

One application of equation (7.4) is the so-called “virial theorem” that relates
the expectation potential and kinetic energies of energy eigenstates, {A.17}.
For example, it shows that harmonic oscillator states have equal potential and
kinetic energies. And that for hydrogen states, the potential energy is minus
two times the kinetic energy.

Two other important applications are discussed in the next two subsections.

Key Points

0 A relatively simple equation that describes the time evolution of
expectation values of physical quantities exists. It is fully in terms
of expectation values.

0 Variables which commute with the Hamiltonian have the same time-
independent statistics as energy.

0 The virial theorem relates the expectation kinetic and potential en-
ergies for important systems.

7.2.1 Newtonian motion

The purpose of this section is to show that even though Newton’s equations do
not apply to very small systems, they are correct for macroscopic systems.

The trick is to note that for a macroscopic particle, the position and mo-
mentum are very precisely defined. Many unavoidable physical effects, such as
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incident light, colliding air atoms, earlier history, etcetera, will narrow down po-
sition and momentum of a macroscopic particle to great accuracy. Heisenberg’s
uncertainty relationship says that they must have uncertainties big enough that
∆px∆x >

1
2
~, but ~ is far too small for that to be noticeable on a macro-

scopic scale. Normal light changes the momentum of a rocket ship in space only
immeasurably little, but it is quite capable of locating it to excellent accuracy.

With little uncertainty in position and momentum, both can be approxi-
mated accurately by their expectation values. So the evolution of macroscopic
systems can be obtained from the evolution equation (7.4) for expectation values
given in the previous subsection. Just work out the commutator that appears
in it.

Consider one-dimensional motion of a particle in a potential V (x) (the three-
dimensional case goes exactly the same way). The Hamiltonian H is:

H =
p̂2x
2m

+ V (x)

where p̂x is the linear momentum operator and m the mass of the particle.
Now according to evolution equation (7.4), the expectation position 〈x〉

changes at a rate:

d〈x〉
dt

=

〈
i

~
[H, x̂]

〉
=

〈
i

~

[
p̂2x
2m

+ V (x), x̂

]〉
(7.5)

Recalling the properties of the commutator from chapter 4.5, [V (x), x̂] = 0, since
multiplication commutes. Further, according to the rules for manipulation of
products and the canonical commutator

[p̂2x, x̂] = p̂x[p̂x, x̂] + [p̂x, x̂]p̂x = −p̂x[x̂, p̂x]− [x̂, p̂x]p̂x = −2i~p̂x

So the rate of change of expectation position becomes:

d〈x〉
dt

=
〈px
m

〉
(7.6)

This is exactly the Newtonian expression for the change in position with time,
because Newtonian mechanics defines px/m to be the velocity. However, it is in
terms of expectation values.

To figure out how the expectation value of momentum varies, the commu-
tator [H, p̂x] is needed. Now p̂x commutes, of course, with itself, but just like
it does not commute with x̂, it does not commute with the potential energy
V (x). The generalized canonical commutator (4.62) says that [V, p̂x] equals
−~∂V /i∂x. As a result, the rate of change of the expectation value of linear
momentum becomes:

d〈px〉
dt

=

〈
−∂V
∂x

〉
(7.7)
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This is Newton’s second law in terms of expectation values: Newtonian
mechanics defines the negative derivative of the potential energy to be the force,
so the right hand side is the expectation value of the force. The left hand side
is equivalent to mass times acceleration.

The fact that the expectation values satisfy the Newtonian equations is
known as “Ehrenfest’s theorem.”

For a quantum-scale system, however, it should be cautioned that even the
expectation values do not truly satisfy Newtonian equations. Newtonian equa-
tions use the force at the expectation value of position, instead of the expecta-
tion value of the force. If the force varies nonlinearly over the range of possible
positions, it makes a difference.

There is a alternative formulation of quantum mechanics due to Heisenberg
that is like the Ehrenfest theorem on steroids, {A.12}. Here the operators satisfy
the Newtonian equations.

Key Points

0 Newtonian physics is an approximate version of quantum mechanics
for macroscopic systems.

0 The equations of Newtonian physics apply to expectation values.

7.2.2 Energy-time uncertainty relation

The Heisenberg uncertainty relationship provides an intuitive way to under-
stand the various weird features of quantum mechanics. The relationship says
∆px∆x >

1
2
~, chapter 4.5.3. Here ∆px is the uncertainty in a component of

the momentum of a particle, and ∆x is the uncertainty in the corresponding
component of position.

Now special relativity considers the energy E divided by the speed of light
c to be much like a zeroth momentum coordinate, and ct to be much like a
zeroth position coordinate, chapter 1.2.4 and 1.3.1. Making such substitutions
transforms Heisenberg’s relationship into the so-called “energy-time uncertainty
relationship:”

∆E ∆t >
1

2
~ (7.8)

There is a difference, however. In Heisenberg’s original relationship, the
uncertainties in momentum and positions are mathematically well defined. In
particular, they are the standard deviations in the measurable values of these
quantities. The uncertainty in energy in the energy-time uncertainty relation-
ship can be defined similarly. The problem is what to make of that “uncertainty
in time” ∆t. The Schrödinger equation treats time fundamentally different from
space.
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One way to address the problem is to look at the typical evolution time of the
expectation values of quantities of interest. Using careful analytical arguments
along those lines, Mandelshtam and Tamm succeeded in giving a meaningful
definition of the uncertainty in time, {A.18}. Unfortunately, its usefulness is
limited.

Ignore it. Careful analytical arguments are for wimps! Take out your pen
and cross out “∆t.” Write in “any time difference you want.” Cross out “∆E”
and write in “any energy difference you want.” As long as you are at it anyway,
also cross out “>” and write in “=.” This can be justified because both are
mathematical symbols. And inequalities are so vague anyway. You have now
obtained the popular version of the Heisenberg energy-time uncertainty equality:

any energy difference you want× any time difference you want = 1
2
~ (7.9)

This is an extremely powerful equation that can explain anything in quantum
physics involving any two quantities that have dimensions of energy and time.
Be sure, however, to only publicize the cases in which it gives the right answer.

Key Points

0 The energy-time uncertainty relationship is a generalization of the
Heisenberg uncertainty relationship. It relates uncertainty in energy
to uncertainty in time. What uncertainty in time means is not obvi-
ous.

0 If you are not a wimp, the answer to that problem is easy.

7.3 Conservation Laws and Symmetries

Physical laws like conservation of linear and angular momentum are important.
For example, angular momentum was key to the solution of the hydrogen atom
in chapter 4.3. More generally, conservation laws are often the central element
in the explanation for how simple systems work. And conservation laws are
normally the most trusted and valuable source of information about complex,
poorly understood, systems like atomic nuclei.

It turns out that conservation laws are related to fundamental “symmetries”
of physics. A symmetry means that you can do something that does not make
a difference. For example, if you place a system of particles in empty space, far
from anything that might affect it, it does not make a difference where exactly
you put it. There are no preferred locations in empty space; all locations are
equivalent. That symmetry leads to the law of conservation of linear momentum.
A system of particles in otherwise empty space conserves its total amount of
linear momentum. Similarly, if you place a system of particles in empty space, it
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does not make a difference under what angle you put it. There are no preferred
directions in empty space. That leads to conservation of angular momentum.
See addendum {A.19} for the details.

Why is the relationship between conservation laws and symmetries impor-
tant? One reason is that it allows for other conservation laws to be formulated.
For example, for conduction electrons in solids all locations in the solid are not
equivalent. For one, some locations are closer to nuclei than others. Therefore
linear momentum of the electrons is not conserved. (The total linear momen-
tum of the complete solid is conserved in the absence of external forces. In
other words, if the solid is in otherwise empty space, it conserves its total lin-
ear momentum. But that does not really help for describing the motion of the
conduction electrons.) However, if the solid is crystalline, its atomic structure
is periodic. Periodicity is a symmetry too. If you shift a system of conduction
electrons in the interior of the crystal over a whole number of periods, it makes
no difference. That leads to a conserved quantity called “crystal momentum,”
{A.19}. It is important for optical applications of semiconductors.

Even in empty space there are additional symmetries that lead to important
conservation laws. The most important example of all is that it does not make
a difference at what time you start an experiment with a system of particles in
empty space. The results will be the same. That symmetry with respect to time
shift gives rise to the law of conservation of energy, maybe the most important
conservation law in physics.

In a sense, time-shift symmetry is already “built-in” into the Schrödinger
equation. The equation does not depend on what time you take to be zero.
Any solution of the equation can be shifted in time, assuming a Hamiltonian
that does not depend explicitly on time. So it is not really surprising that energy
conservation came rolling out of the Schrödinger equation so easily in section
7.1.3. The time shift symmetry is also evident in the fact that states of definite
energy are stationary states, section 7.1.4. They change only trivially in time
shifts. Despite all that, the symmetry of nature with respect to time shifts is a
bit less self-evident than that with respect to spatial shifts, {A.19}.

As a second example of an additional symmetry in empty space, physics
works, normally, the same when seen in the mirror. That leads to a very useful
conserved quantity called “parity.” Parity is somewhat different from momen-
tum. While a component of linear or angular momentum can have any value,
parity can only be 1, called “even,” or −1, called “odd.” Also, while the con-
tributions of the parts of a system to the total momentum components add
together, their contributions to parity multiply together, {A.19}. That is why
the ±1 parities of the parts of a system can combine together into a correspond-
ing system parity that is still either 1 or −1.

(Of course, there can be uncertainty in parity just like there can be uncer-
tainty in other quantities. But the measurable values are either 1 or −1.)

Despite having only two possible values, parity is still very important. In the
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emission and absorption of electromagnetic radiation by atoms and molecules,
parity conservation provides a very strong restriction on which electronic tran-
sitions are possible. And in nuclear physics, it greatly restricts what nuclear
decays and nuclear reactions are possible.

Another reason why the relation between conservation laws and symmetries
is important is for the information that it produces about physical properties.
For example, consider a nucleus that has zero net angular momentum. Because
of the relationship between angular momentum and angular symmetry, such a
nucleus looks the same from all directions. It is spherically symmetric. Therefore
such a nucleus does not respond in magnetic resonance imaging. That can be
said without knowing all the complicated details of the motion of the protons
and neutrons inside the nucleus. So-called spin 1/2 nuclei have the smallest
possible nonzero net angular momentum allowed by quantum mechanics, with
components that can be ±1

2
~ in a given direction. These nuclei do respond in

magnetic resonance imaging. But because they depend in a relatively simple
way on the direction from which they are viewed, their response is relatively
simple.

Similar observations apply for complete atoms. The hydrogen atom is spher-
ically symmetric in its ground state, figure 4.9. Although that result was derived
ignoring the motion and spin of the proton and the spin of the electron, the hy-
drogen atom remains spherically symmetric even if these effects are included.
Similarly, the normal helium atom, with two electrons, two protons, and two
neutrons, is spherically symmetric in its ground state. That is very useful infor-
mation if you want, say, an ideal gas that is easy to analyze. For heavier noble
gases, the spherical symmetry is related to the “Ramsauer effect” that makes
the atoms almost completely transparent to electrons of a certain wave length.

As you may guess from the fact that energy eigenstates are stationary, con-
served quantities normally have definite values in energy eigenstates, {A.19.3}.
(An exception may occur when the energy does not depend on the value of
the conserved quantity.) For example, nuclei, lone atoms, and lone molecules
normally have definite net angular momentum and parity in their ground state.
Excited states too will have definite angular momentum and parity, although
the values may be different from the ground state.

It is also possible to derive physical properties of particles from their sym-
metry properties. As an example, addendum {A.20} derives the spin and parity
of an important class of particles, including photons, that way.

Finally, the relation between conservation laws and symmetries gives more
confidence in the conservation laws. For example, as mentioned nuclei are still
poorly understood. It might therefore seem reasonable enough to conjecture
that maybe the nuclear forces do not conserve angular momentum. And in-
deed, the force between the proton and neutron in a deuteron nucleus does not
conserve orbital angular momentum. But it is quite another matter to suppose
that the forces do not conserve the net angular momentum of the nucleus, in-
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cluding the spins of the proton and neutron. That would imply that empty space
has some inherent preferred direction. That is much harder to swallow. Such a
preferred direction has never been observed, and there is no known mechanism
or cause that would give rise to it. So physicists are in fact quite confident
that nuclei do conserve angular momentum just like everything else does. The
deuteron conserves its net angular momentum if you include the proton and
neutron spins in the total.

It goes both ways. If there is unambiguous evidence that a supposedly con-
served quantity is not truly conserved, then nature does not have the correspond-
ing symmetry. That says something important about nature. This happened
for the mirror symmetry of nature. If you look at a person in a mirror, the heart
is on the other side of the chest. On a smaller scale, the molecules that make
up the person change in their mirror images. But physically the person in the
mirror would function just fine. (As long as you do not try to mix mirror images
of biological molecules with nonmirror images, that is.) In principle, evolution
could have created the mirror image of the biological systems that exist today.
Maybe it did on a different planet. The electromagnetic forces that govern the
mechanics of biological systems obey the exact same laws when nature is seen
in the mirror. So does the force of gravity that keeps the systems on earth. And
so does the so-called strong force that keeps the atomic nuclei together.

Therefore it was long believed that nature behaved in exactly the same way
when seen in the mirror. That then leads to the conserved quantity called parity.
But eventually, in 1956, Lee and Yang realized that the decay of a certain nuclear
particle by means of the so-called weak force does not conserve parity. As a
result, it had to be accepted also that nature does not always behave in exactly
the same way when seen in the mirror. That was confirmed experimentally
by Wu and her coworkers in 1957. (In fact, while other experimentalists like
Lederman laughed at the ideas of Lee and Yang, Wu spend eight months of
hard work on the risky proposition of confirming them. If she had been a man,
she would have been given the Nobel Prize along with Lee and Yang. However,
Nobel Prize committees have usually recognized that giving Nobel Prizes to
women might interfere with their domestic duties.)

Fortunately, the weak force is not important for most applications, not even
for many involving nuclei. Therefore conservation of parity usually remains
valid to an excellent approximation.

Mirroring corresponds mathematically to an inversion of a spatial coordi-
nate. But it is mathematically much cleaner to invert the direction of all three
coordinates, replacing every position vector ~r by −~r. That is called “spatial in-
version.” Spatial inversion is cleaner since no choice of mirror is required. That
is why many physicists reserve the term “parity transformation” exclusively to
spatial inversion. (Mathematicians do not, since inversion does not work in
strictly two-dimensional systems, {A.19}.) A normal mirroring is equivalent to
spatial inversion followed by a rotation of 180◦ around the axis normal to the
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chosen mirror.
Inversion of the time coordinate is called “time reversal.” That can be

thought of as making a movie of a physical process and playing the movie back
in reverse. Now if you make a movie of a macroscopic process and play it back-
wards, the physics will definitely not be right. However, it used to be generally
believed that if you made a movie of the microscopic physics and played it
backwards, it would look fine. The difference is really not well understood. But
presumably it is related to that evil demon of quantum mechanics, the collapse
of the wave function, and its equally evil macroscopic alter ego, called the sec-
ond law of thermodynamics. In any case, as you might guess it is somewhat
academic. If physics is not completely symmetric under reversal of a spatial co-
ordinate, why would it be under reversal of time? Special relativity has shown
the close relationship between spatial and time coordinates. And indeed, it was
found that nature is not completely symmetric under time reversal either, even
on a microscopic scale.

There is a third symmetry involved in this story of inversion. It involves
replacing every particle in a system by the corresponding antiparticle. For ev-
ery elementary particle, there is a corresponding antiparticle that is its exact
opposite. For example, the electron, with electric charge −e and lepton number
1, has an antiparticle, the positron, with charge e and lepton number −1. (Lep-
ton number is a conserved quantity much like charge is.) Bring an electron and
a positron together, and they can totally annihilate each other, producing two
photons. The net charge was zero, and is still zero. Photons have no charge.
The net lepton number was zero, and is still zero. Photons are not leptons and
have zero lepton number.

All particles have antiparticles. Protons have antiprotons, neutrons antineu-
trons, etcetera. Replacing every particle in a system by its antiparticle produces
almost the same physics. You can create an antihydrogen atom out of an an-
tiproton and a positron that seems to behave just like a normal hydrogen atom
does.

Replacing every particle by its antiparticle is not called particle inversion,
as you might think, but “charge conjugation.” That is because physicists recog-
nized that “charge inversion” would be all wrong; a lot more changes than just
the charge. And the particle involved might not even have a charge, like the
neutron, with no net charge but a baryon number that inverts, or the neutrino,
with no charge but a lepton number that inverts. So physicists figured that
if “charge inversion” is wrong anyway, you may as well replace “inversion” by
“conjugation.” That is not the same as inversion, but it was wrong anyway, and
conjugation sounds much more sophisticated and it alliterates.

The bottom line is that physics is almost, but not fully, symmetric under
spatial inversion, time inversion, and particle inversion. However, physicists
currently believe that if you apply all three of these operations together, then
the resulting physics is indeed truly the same. There is a theorem called the CPT
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theorem, (charge, parity, time), that says so under relatively mild assumptions.
One way to look at it is to say that systems of antiparticles are the mirror
images of systems of normal particles that move backwards in time.

At the time of writing, there is a lot of interest in the possibility that nature
may in fact not be exactly the same when the CPT transformations are ap-
plied. It is hoped that this may explain why nature ended up consisting almost
exclusively of particles, rather than antiparticles.

Symmetry transformations like the ones discussed above form mathematical
“groups.” There are infinitely many different angles that you can rotate a sys-
tem over or distances that you can translate it over. What is mathematically
particularly interesting is how group members combine together into different
group members. For example, a rotation followed by another rotation is equiv-
alent to a single rotation over a combined angle. You can even eliminate a
rotation by following it by one in the opposite direction. All that is nectar to
mathematicians.

The inversion transformations are somewhat different in that they form finite
groups. You can either invert or not invert. These finite groups provide much
less detailed constraints on the physics. Parity can only be 1 or −1. On the
other hand, a component of linear or angular momentum must maintain one
specific value out of infinitely many possibilities. But even these constraints
remain restricted to the total system. It is the complete system that must
maintain the same linear and angular momentum, not the individual parts of
it. That reflects that the same rotation angle or translation distance applies for
all parts of the system.

Advanced relativistic theories of quantum mechanics postulate symmetries
that apply on a local (point by point) basis. A simple example relevant to
quantum electrodynamics can be found in addendum {A.19}. Such symmetries
narrow down what the physics can do much more because they involve sepa-
rate parameters at each individual point. Combined with the massive antisym-
metrization requirements for fermions, they allow the physics to be deduced in
terms of a few remaining numerical parameters. The so-called “standard model”
of relativistic quantum mechanics postulates a combination of three symmetries
of the form

U(1)× SU(2)× SU(3)

In terms of linear algebra, these are complex matrices that describe rotations of
complex vectors in 1, 2, respectively 3 dimensions. The “S” on the latter two
matrices indicates that they are special in the sense that their determinant is
1. The first matrix is characterized by 1 parameter, the angle that the single
complex numbers are rotated over. It gives rise to the photon that is the sin-
gle carrier of the electromagnetic force. The second matrix has 3 parameters,
corresponding to the 3 so-called “vector bosons” that are the carriers of the
weak nuclear force. The third matrix has 8 parameters, corresponding to the 8



7.4. CONSERVATION LAWS IN EMISSION 333

“gluons” that are the carriers of the strong nuclear force.
There is an entire branch of mathematics, “group theory,” devoted to how

group properties relate to the solutions of equations. It is essential to advanced
quantum mechanics, but far beyond the scope of this book.

Key Points

0 Symmetries of physics give rise to conserved quantities.

0 These are of particular interest in obtaining an understanding of com-
plicated and relativistic systems. They can also aid in the solution
of simple systems.

0 Translational symmetry gives rise to conservation of linear momen-
tum. Rotational symmetry gives rise to conservation of angular mo-
mentum.

0 Spatial inversion replaces every position vector ~r by −~r. It produces
a conserved quantity called parity.

0 There are kinks in the armor of the symmetries under spatial inver-
sion, time reversal, and “charge conjugation.” However, it is believed
that nature is symmetric under the combination of all three.

7.4 Conservation Laws in Emission

Conservation laws are very useful for understanding emission or absorption of ra-
diation of various kinds, as well as nuclear reactions, collision processes, etcetera.
As an example, this section will examine what conservation laws say about the
spontaneous emission of a photon of light by an excited atom. While this ex-
ample is relatively simple, the concepts discussed here apply in essentially the
same way to more complex systems.

State ψ1

excited
atom

ψH

decayed
atom

ψL

✲

State ψ2

photon

Eγ = ~ω

Figure 7.3: Crude concept sketch of the emission of an electromagnetic photon
by an atom. The initial state is left and the final state is right.

Figure 7.3 gives a sketch of the emission process. The atom is initially in
an high energy, or excited, state that will be called ψH. After some time, the
atom releases a photon and returns a lower energy state that will be called ψL.
As a simple example, take an hydrogen atom. Then the excited atomic state
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could be the “2pz” ψ210 state, chapter 4.3. The final atomic state will then be
the “1s” ground state ψ100.

The emitted photon has an energy given by the Planck-Einstein relation

Eγ = ~ω

where ω is the frequency of the electromagnetic radiation corresponding to the
photon. Note that γ (gamma, think gamma decay) is the standard symbol used
to indicate a photon.

Key Points

0 Atoms can transition to a lower electronic energy level while emitting
a photon of electromagnetic radiation.

0 The Planck-Einstein relation gives the energy of a photon in terms
of its frequency.

7.4.1 Conservation of energy

The first conservation law that is very useful for understanding the emission
process is conservation of energy. The final atom and photon should have the
exact same energy as the initial excited atom. So the difference between the
atomic energies EH and EL must be the energy ~ω of the photon. Therefore,
the emitted photon must have a very precise frequency ω. That means that it
has a very precise color. For example, for the 2pz to 1s transition of a hydrogen
atom, the emitted photon is a very specific ultraviolet color.

It should be pointed out that the frequency of the emitted photon does have
a very slight variation. The reason can be understood from the fact that the
excited state decays at all. Energy eigenstates should be stationary, section
7.1.4.

The very fact that a state decays shows that it is not truly an energy
eigenstate.

The big problem with the analysis of the hydrogen atom in chapter 4.3 was
that it ignored any ambient radiation that the electron might be exposed to.
It turns out that there is always some perturbing ambient radiation, even if
the atom is inside a black box at absolute zero temperature. This is related
to the fact that the electromagnetic field has quantum uncertainty. Advanced
quantum analysis is needed to take that into account, {A.23}. Fortunately, the
uncertainty in energy is extremely small for the typical applications considered
here.
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As a measure of the uncertainty in energy of a state, physicists often use the
so-called “natural width”

Γ =
~

τ
(7.10)

Here τ is the mean lifetime of the state, the average time it takes for the photon
to be emitted.

The claim that this width gives the uncertainty in energy of the state is
usually justified using the all-powerful energy-time uncertainty equality (7.9).
A different argument will be given at the end of section 7.6.1. In any case, the
bottom line is that Γ does indeed give the observed uncertainty in energy for
isolated atoms, [52, p. 139], and for nuclei, [31, p. 40, 167].

As an example, the hydrogen atom 2pz state has a lifetime of 1.6 nanosec-
onds. (The lifetime can be computed using the data in addendum {A.25.8}.)
That makes its width about 4 10−7 eV. Compared to the 10 eV energy of
the emitted photon, that is obviously extremely small. Energy conservation
in atomic transitions may not be truly exact, but it is definitely an excellent
approximation.

Still, since a small range of frequencies can be emitted, the observed line in
the emission spectrum is not going to be a mathematically exact line, but will
have a small width. Such an effect is known as “spectral line broadening.”

The natural width of a state is usually only a small part of the actual line
broadening. If the atom is exposed to an incoherent ambient electromagnetic
field, it will increase the uncertainty in energy. (The evolution of atoms in an
incoherent electromagnetic field will be analyzed in {D.41}.) Frequent inter-
actions with surrounding atoms or other perturbations will also increase the
uncertainty in energy, in part for reasons discussed at the end of section 7.6.1.
And anything else that changes the atomic energy levels will of course also
change the emitted frequencies.

An important further effect that causes spectral line deviations is atom mo-
tion, either thermal motion or global gas motion. It produces a Doppler shift in
the radiation. This is not necessarily bad news in astronomy; line broadening
can provide an hint about the temperature of the gas you are looking at, while
line displacement can provide a hint of its overall motion away from you.

It may also be mentioned that the natural width is not always small. If
you start looking at excited nuclear particles, the uncertainty in energy can be
enormous. Such particles may have an uncertainty in energy that is of the order
of 10% of their relativistic rest mass energy. And as you might therefore guess,
they are hardly stationary states. Typically, they survive for only about 10−23

seconds after they are created. Even moving at a speed comparable to the speed
of light, such particles will travel only a distance comparable to the diameter of
a proton before disintegrating.
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Generally speaking, the shorter the lifetime of a state, the larger its
uncertainty in energy, and vice-versa.

(To be fair, physicists do not actually manage to see these particles during their
infinitesimal lifetime. Instead they infer the lifetime from the variation in energy
of the resulting state.)

Key Points

0 In a transition, the difference in atomic energy levels gives the energy,
and so the frequency, of the emitted photon.

0 Unstable states have some uncertainty in energy, but it is usually
very small. For extremely unstable particles, the uncertainty can be
a lot.

0 The width of a state is Γ = ~/τ with τ the mean lifetime. It is a
measure for the minimum observed variation in energy of the final
state.

7.4.2 Combining angular momenta and parities

Conservation of angular momentum and parity is easily stated:

The angular momentum and parity of the initial atomic state must
be the same as the combined angular momentum and parity of the
final atomic state and photon.

The question is however, how do you combine angular momenta and parity val-
ues? Even combining angular momenta is not trivial, because angular momenta
are quantized.

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿
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✁
✁
✁
✁
✁✁✕

A
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C
~JH

~JL

~Jγ

Figure 7.4: Addition of angular momenta in classical physics.

To get an idea of how angular momenta combine, first consider what would
happen in classical physics. Conservation of angular momentum would say that

~JH = ~JL + ~Jγ
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✲✛
~JH ~Jγ ✲✲

~JH
~Jγ

Figure 7.5: Longest and shortest possible final atomic angular momenta in
classical physics.

Here ~JH is the angular momentum vector of the initial high energy atomic state,
and ~JL and ~Jγ are those of the final low energy atomic state and the emitted
photon. The conservation law is shown graphically in figure 7.4.

Now consider what possible lengths the vector ~JL of the final atomic state
can have. As figure 7.4 shows, the length of ~JL is the distance between the
starting points of the other two vectors. So the maximum length occurs when
the two vectors point in opposite direction, with their noses touching, like to
the left in figure 7.5. In that case, the length of ~JL is the sum of the lengths
of the other two vectors. The minimum length for ~JL occurs when the other
two vectors are in the same direction, still pointing at the same point, like to
the right in figure 7.5. In that case the length of ~JL is the difference in length
between the other two vectors.

All together:

classical physics: |JH − Jγ| 6 JL 6 JH + Jγ

Note that the omission of a vector symbol indicates that the length of the vector
is meant, rather than the vector itself. The second inequality is the famous
“triangle inequality.” (The first inequality is a rewritten triangle inequality for
the longer of the two vectors in the absolute value.) The bottom line is that
according to classical physics, the length of the final atomic angular momentum
can take any value in the range given above.

However, in quantum mechanics angular momentum is quantized. The
length of an angular momentum vector ~J must be

√
j(j + 1)~. Here the “az-

imuthal quantum number” j must be a nonnegative integer or half of one.
Fortunately, the triangle inequality above still works if you replace lengths by
azimuthal quantum numbers. To be precise, the possible values of the final
atomic angular momentum quantum number are:

jL = |jH−jγ|, |jH−jγ|+ 1, . . . , jH+jγ−1, or jH+jγ (7.11)

In other words, the possible values of jL increase from |jH−jγ| to jH+jγ in steps
of 1. To show that angular momentum quantum numbers satisfy the triangle
inequality in this way is not trivial; that is a major topic of chapter 12.

Classical physics also says that components of vectors can be added and
subtracted as ordinary numbers. Quantum physics agrees, but adds that for
nonzero angular momentum only one component can be certain at a time. That
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is usually taken to be the z-component. Also, the component cannot have any
arbitrary value; it must have a value of the form m~. Here the “magnetic
quantum number”m can only have values that range from −j to j in increments
of 1.

If you can add and subtract components of angular momentum, then you
can also add and subtract magnetic quantum numbers. After all, they are only
different from components by a factor ~. Therefore, the conservation of angular
momentum in the z-direction becomes

mL = mH −mγ

Putting in the possible values of the magnetic quantum number of the photon
gives for the final atomic magnetic quantum number:

mL = mH−jγ, mH−jγ+1, . . . , mH+jγ−1, or mH+jγ (7.12)

To be sure, mL is also constrained by the fact that its magnitude cannot exceed
jL.

Next consider conservation of parity. Recall from section 7.3 that parity is
the factor by which the wave function changes when the positive direction of
all three coordinate axes is inverted. That replaces every position vector ~r by
−~r. Parity can have only two values, 1 or −1. Parity is commonly indicated
by π, which is the Greek letter for “p.” Parity starts with a p and may well be
Greek. Also, the symbol avoids confusion, assuming that π is not yet used for
anything else in science.

Conservation of parity means that the initial and final parities must be equal.
The parity of the initial high energy atom must be the same as the combined
parity of the final low energy atom and photon:

πH = πLπγ

Note that parity is a multiplicative quantity. You get the combined parity of
the final state by multiplying the parities of atom and photon; you do not add
them.

(Just think of the simplest possible wave function of two particles, Ψ =
ψ1(~r1)ψ2(~r2). If ψ1 changes by a factor π1 when ~r1 → −~r1 and ψ2 changes by a
factor π2 when ~r2 → −~r2, then the total wave function Ψ changes by a factor
π1π2. Actually, it is angular momentum, not parity, that is the weird case.
The reason that angular momenta must be added together instead of multiplied
together is because angular momentum is defined by taking a logarithm of the
“natural” conserved quantity. For details, see addendum {A.19}.)

The parity of the atom is related to the orbital angular momentum of the
electron, and in particular to its azimuthal quantum number l. If you check
out the example spherical harmonics in table 4.3, you see that those with even
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values of l only contain terms that are square in the position coordinates. So
these states do not change when ~r is replaced by −~r. In other words, they
change by a trivial factor 1. That makes the parity 1, or even, or positive. The
spherical harmonics for odd l change sign when ~r is replaced by −~r. In other
words, they get multiplied by a factor −1. That makes the parity −1, or odd,
or negative. These observations apply for all values of l, {D.14}.

The parity can therefore be written for any value of l as

π = (−1)l (7.13)

This is just the parity due to orbital angular momentum. If the particle has
negative intrinsic parity, you need to multiply by another factor −1. However,
an electron has positive parity, as does a proton. (Positrons and antiprotons
have negative parity. That is partly a matter of convention. Conservation of
parity would still work if it was the other way around.)

It follows that parity conservation in the emission process can be written as

(−1)lH = (−1)lLπγ (7.14)

Therefore, if the parity of the photon is even, (i.e. 1), then lH and lL are both
even or both odd. In other words, the atomic parity stays unchanged. If the
parity of the photon is odd, (i.e. −1), then one of lH and lL is even and the other
odd. The atomic parity flips over.

To apply the obtained conservation laws, the next step must be to figure out
the angular momentum and parity of the photon.

Key Points

0 The rules for combining angular momenta and parities were dis-
cussed.

0 Angular momentum and parity conservation lead to constraints on
the atomic emission process given by (7.11), (7.12), and (7.14).

7.4.3 Transition types and their photons

The conservation laws of angular momentum and parity restrict the emission of
a photon by an excited atom. But for these laws to be useful, there must be
information about the spin and parity of the photon.

This section will just state various needed photon properties. Derivations
are given in {A.21.7} for the brave. In any case, the main conclusions reached
about the photons associated with atomic transitions will be verified by more
detailed analysis of transitions in later sections.
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There are two types of transitions, electric ones and magnetic ones. In
electric transitions, the electromagnetic field produced by the photon at the
atom is primarily electric, {A.21.7}. In magnetic transitions, it is primarily
magnetic. Electric transitions are easiest to understand physically, and will be
discussed first.

A photon is a particle with spin sγ = 1 and intrinsic parity −1. Also,
assuming that the size of the atom is negligible, in the simplest model the photon
will have zero orbital angular momentum around the center of the atom. That
is most easily understood using classical physics: a particle that travels along a
line that comes out of a point has zero angular momentum around that point.
For equivalent quantum arguments, see {N.10} or {A.21.7}. It means in terms
of quantum mechanics that the photon has a quantum number lγ of orbital
angular momentum that is zero. That makes the total angular momentum
quantum number jγ of the photon equal to the spin sγ, 1.

The normal, efficient kind of atomic transition does in fact produce a photon
like that. Since the term “normal” is too normal, such a transition is called
“allowed.” For reasons that will eventually be excused for in section 7.7.2,
allowed transitions are also more technically called “electric dipole” transitions.
According to the above, then, the photon net angular momentum and parity
are:

for electric dipole transitions: jγ = 1 πγ = −1 (7.15)

Transitions that cannot happen according to the electric dipole mechanism
are called “forbidden.” That does not mean that these transitions cannot occur
at all; just forbid your kids something. But they are much more awkward, and
therefore normally very much slower, than allowed transitions.

One important case of a forbidden transition is one in which the atomic
angular momentum changes by 2 or more units. Since the photon has only 1
unit of spin, in such a transition the photon must have nonzero orbital angular
momentum. Transitions in which the photon has more than 1 unit of net angular
momentum are called “multipole transitions.” For example, in a “quadrupole”
transition, the net angular momentum of the photon jγ = 2. In an “octupole”
transition, jγ = 3 etcetera. In all these transitions, the photon has at least jγ−1
units of orbital angular momentum.

To roughly understand how orbital angular momentum arises, reconsider the
sketch of the emission process in figure 7.3. As shown, the photon has no orbital
angular momentum around the center of the atom, classically speaking. But the
photon does not have to come from exactly the center of the atom. If the atom
has a typical radius R, then the photon could come from a point at a distance
comparable to R away from the center. That will give it an orbital angular
momentum of order Rp around the center, where p is the linear momentum
of the photon. And according to relativity, (1.2), the photon’s momentum is
related to its energy, which is in turn related to its frequency by the Planck-
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Einstein relation. That makes the classical orbital angular momentum of the
photon of order R~ω/c. But c/ω is the wave length λ of the photon, within a
factor 2π. That factor is not important for a rough estimate. So the typical
classical orbital angular momentum of the photon is

L ∼ R

λ
~

The fraction is typically small. For example, the wave length λ of visible light is
about 5 000 Å and the size R of an atom is about an Å. So the orbital angular
momentum above is a very small fraction of ~.

But according to quantum mechanics, the orbital angular momentum cannot
be a small fraction of ~. If the quantum number lγ is zero, then so is the orbital
angular momentum. And if lγ is 1, then the orbital angular momentum is

√
2~.

There is nothing in between. The above classical orbital angular momentum
should be understood to mean that there is quantum uncertainty in orbital
angular momentum. That the photon has almost certainly zero orbital angular
momentum, but that there remains a small probability of lγ = 1. In particular,
if you take the ratio R/λ to be the coefficient of the lγ = 1 state, then the
probability of the photon coming out with lγ = 1 is the square of that, (R/λ)2.
That will be a very small probability. But still, there is a slight probability
that the net photon angular momentum jγ will be increased from 1 to 2 by a
unit’s worth of orbital angular momentum. That will then produce a quadrupole
transition. And of course, two units of orbital angular momentum can increase
the net photon angular momentum to jγ = 3, the octupole level. But that
reduces the probability by another factor (Rλ)2, so don’t hold you breath for
these higher order multipole transitions to occur.

(If the above random mixture of unjustified classical and quantum argu-
ments is too unconvincing, there is a quantum argument in {N.10} that may be
more believable. If you are brave, see {A.21.7} for a precise analysis of the rele-
vant photon momenta and their probabilities in an interaction with an atom or
nucleus. But the bottom line is that the above ideas do describe what happens
in transition processes. That follows from a complete analysis of the transition
process, as discussed in later sections and notes like {A.25} and {D.39}.)

So far, only electric multipole transitions have been discussed, in which the
electromagnetic field at the atom is primarily electric. In magnetic multipole
transitions however, it is primarily magnetic. In a “magnetic dipole” transition,
the photon comes out with one unit of net angular momentum just like in an
electric dipole one. However, the parity of the photon is now even:

for magnetic dipole transitions: jγ = 1 πγ = 1 (7.16)

You might wonder how the positive parity is possible if the photon has
negative intrinsic parity and no orbital angular momentum. The reason is that
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in a magnetic dipole transition, the photon does have a unit of orbital angular
momentum. Recall from the previous subsection that it is quite possible for
one unit of spin and one unit of orbital angular momentum to combine into still
only one unit of net angular momentum.

In view of the crude discussion of orbital angular momentum given above,
this may still seem weird. How come that an atom of vanishing size does sud-
denly manage to readily produce a unit of orbital angular momentum in a mag-
netic dipole transition? The basic reason is that the magnetic field acts in some
way as if it has one unit of orbital angular momentum less than the photon,
{A.21.7}. It is unpexpectedly strong at the atom. This allows a magnetic atom
state to “get a solid grip” on a photon state of unit orbital angular momentum.
It is somewhat like hitting a rapidly spinning ball with a bat in baseball; the
resulting motion of the ball can be weird. And in a sense the orbital angular
momentum comes at the expense of the spin; the net angular momentum jγ of a
photon in a magnetic dipole transition will not be 2 despite the orbital angular
momentum.

Certainly this sort of complications would not arise if the photon had no spin.
Without discussion, the photon is one of the most basic particles in physics. But
it is surprisingly complex for such an elementary particle. This also seems the
right place to confess to the fact that electric multipole photons have uncertainty
in orbital angular momentum. For example, an electric dipole photon has a
probability for lγ = 2 in addition to lγ = 0. However, this additional orbital
angular momentum comes courtesy of the internal mechanics, and especially the
spin, of the photon. It does not give the photon a probability for net angular
momentum jγ = 2. So it does not really change the given discussion.

All else being the same, the probability of a magnetic dipole transition is
normally much smaller than an electric dipole one. The principal reason is
that the magnetic field is really a relativistic effect. That can be understood,
for example, from how the magnetic field popped up in the description of the
relativistic motion of charged particles, chapter 1.3.2. So you would expect the
effect of the magnetic field to be minor unless the atomic electron or nucleon
involved in the transition has a kinetic energy comparable to its rest mass energy.
Indeed, it turns out that the probability of a magnetic transition is smaller than
an electric one by a factor of order T/mc2, where T is the kinetic energy of the
particle and mc2 its rest mass energy, {A.25.4}. For the electron in a hydrogen
atom, and for the outer electrons in atoms in general, this ratio is very much less
than one. The same holds for the nucleons in nuclei. It follows that magnetic
dipole transitions will normally take place much slower than electric dipole ones.

In magnetic multipole transitions, the photon receives additional angular
momentum. Like for electric multipole transitions, there is one additional unit
of angular momentum for each additional multipole order. And there is a cor-
responding slow down of the transitions.

Table 7.1 gives a summary of the photon properties in multipole transitions.
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jγ πγ slow down

Eℓ : ℓ (−1)ℓ (R/λ)2ℓ−2

Mℓ : ℓ (−1)ℓ−1 (T/mc2)(R/λ)2ℓ−2

photons do not have zero net angular momentum; ℓ = jγ > 1

Table 7.1: Properties of photons emitted in electric and magnetic multipole
transitions.

It is conventional to write electric multipole transitions as Eℓ and magnetic ones
as Mℓ where ℓ, (or L, but never j), is the net photon angular momentum jγ. So
an electric dipole transition is E1 and a magnetic dipole one M1. In agreement
with the previous section, each unit increase in the orbital angular momentum
produces an additional factor −1 in parity.

The column “slow down” gives an order of magnitude estimate by what
factor a transition is slower than an electric dipole one, all else being equal.
Note however that all else is definitely not equal, so these factors should not be
used even for ballparks.

There are some official ballparks for atomic nuclei based on a more detailed
analysis. These are called the Weisskopf and Moszkowski estimates, chapter
14.20.4 and in particular addendum {A.25.8}. But even there you should not
be surprised if the ballpark is off by orders of magnitude. These estimates do
happen to work fine for the nonrelativistic hydrogen atom, with appropriate
adjustments, {A.25.8}.

The slow down factors T/mc2 and (R/λ)2 are often quite comparable. That
makes the order of slow down of magnetic dipole transitions similar to that of
electric quadrupole transitions. To see the equivalence of the slow-down factors,
rewrite them as

(
R

λ

)2

=
1

~2c2
R2(~ω)2 ⇐⇒ T

mc2
=

1

~2c2
R2T

~
2

mR2

where the 2π in the wave length was again put back. For an atom, the energy
of the emitted photon ~ω is often comparable to the kinetic energy T of the
outer electrons, and the final ratio in the equations above is a rough estimate for
that kinetic energy. It follows that the two slow down factors are comparable.
Another way of looking at the similarity between magnetic dipole and electric
quadrupole transitions will be given in {D.39}.

Note from the table that electric quadrupole and magnetic dipole transitions
have the same parity. That means that they may compete directly with each
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other on the same transition, provided that the atomic angular momentum does
not change more than one unit in that transition.

For nuclei, the photon energy tends to be significantly less than the nucleon
kinetic energy. That is one reason that the Weisskopf estimates have the elec-
tric quadrupole transitions a lot slower than magnetic dipole ones for typical
transitions. Also note that the kinetic energy estimate above does not include
the effect of the exclusion principle. Exclusion raises the true kinetic energy if
there are multiple identical particles in a given volume.

There is another issue that should be mentioned here. Magnetic transitions
have a tendency to underperform for simple systems like the hydrogen atom.
For these systems, the magnetic field has difficulty making effective use of spin
in changing the atomic or nuclear structure. That is discussed in more detail in
the next subsection.

One very important additional property must still be mentioned. The photon
cannot have zero net angular momentum. Normally it is certainly possible for
a particle with spin s = 1 and orbital angular momentum quantum number l
= 1 to be in a state that has zero net angular momentum, j = 0. However, a
photon is not a normal particle; it is a relativistic particle with zero rest mass
that can only move at the speed of light. It turns out that for a photon, spin and
orbital angular momentum are not independent, but intrinsically linked. This
limitation prevents a state where the photon has zero net angular momentum,
{A.21.3}.

There are some effects in classical physics that are related to this limitation.
First of all, consider a photon with definite linear momentum. That corresponds
to a light wave propagating in a particular direction. Now linear and angular
momentum do not commute, so such a photon will not have definite angular
momentum. However, the angular momentum component in the direction of
motion is still well defined. The limitation on photons is in this case that the
photon must either have angular momentum ~ or −~ along the direction of
motion. A normal particle of spin 1 could also have zero angular momentum in
the direction of motion, but a photon cannot. The two states of definite angu-
lar momentum in the direction of motion are called “right- and left-circularly
polarized” light, respectively.

Second, for the same type of photon, there are two equivalent states that
have definite directions of the electric and magnetic fields. These states have
uncertainty in angular momentum in the direction of motion. They are called
“linearly polarized” light. These states illustrate that there cannot be an elec-
tric or magnetic field component in the direction of motion. The electric and
magnetic fields are normal to the direction of motion, and to each other.

More general photons of definite linear momentum may have uncertainty in
both of the mentioned properties. But still there is zero probability for zero
angular momentum in the direction of motion, and zero probability for a field
in the direction of motion.
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Third, directly related to the previous case. Suppose you have a charge
distribution that is spherically symmetric, but pulsating in the radial direction.
You would expect that you would get a fluctuating radial electrical field out-
side this pulsating charge. But you do not, it does not radiate energy. Such
radiation would have the electric field in the direction of motion, and that does
not happen. Now consider the transition from the spherically symmetric “2s”
state of a hydrogen atom to the spherical symmetric “1s” state. Because of the
lack of spherically symmetric radiation, you might guess that this transition is
in trouble. And it is; that is discussed in the next subsection.

In fact, the last example is directly related to the missing state of zero angular
momentum of the photon. Recall from section 7.3 that angular momentum is
related to angular symmetry. In particular, a state of zero angular momentum
(if exact to quantum accuracy) looks the same when seen from all directions.
The fact that there is no spherically symmetric radiation is then just another
way of saying that the photon cannot have zero angular momentum.

Key Points

0 Normal atomic transitions are called allowed or electric dipole ones.
All others are called forbidden but can occur just fine.

0 In electric dipole transitions the emitted photon has angular momen-
tum quantum number jγ = 1 and negative parity πγ = −1.

0 In the slower magnetic dipole transitions the photon parity is posi-
tive, πγ = 1.

0 Each higher multipole order adds a unit to the photon angular mo-
mentum quantum number jγ and flips over the parity πγ .

0 The higher the multipole order, the slower the transition will be.

7.4.4 Selection rules

As discussed, a given excited atomic state may be able to transition to a lower
energy state by emitting a photon. But many transitions from a higher en-
ergy state to a lower one simply do not happen. There are so-called “selection
rules” that predict whether or not a given transition process is possible. This
subsection gives a brief introduction to these rules.

The primary considered system will be the hydrogen atom. However, some
generally valid rules are given at the end. It will usually be assumed that the
effect of the spin of the electron on its motion can be ignored. That is the same
approximation as used in chapter 4.3, and it is quite accurate. Basically, the
model system studied is a spinless charged electron going around a stationary
proton. Spin will be tacked on after the fact.
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The selection rules result from the conservation laws and photon properties
as discussed in the previous two subsections. Since the conservation laws are
applied to a spinless electron, the angular momentum of the electron is simply
its orbital angular momentum. That means that for the atomic states, the
angular momentum quantum number j becomes the orbital angular momentum
quantum number l. For the emitted photon, the true net angular momentum
quantum number ℓ must be used.

Now suppose that the initial high-energy atomic state has an orbital angu-
lar momentum quantum number lH and that it emits a photon with angular
momentum quantum number ℓ. The question is then what can be said about
the orbital angular momentum lL of the atomic state of lower energy after the
transition. The answer is given by subsection 7.4.2 (7.11):

lL = |lH−ℓ|, |lH−ℓ|+1, . . . , lH+ℓ−1, or lH+ℓ (7.17)

That leads immediately to a stunning conclusion for the decay of the hydro-
gen ψ200 “2s” state. This state has angular momentum lH = 0, as any s state.
So the requirement above simplifies to lL = ℓ. Now recall from the previous
subsection that a photon must have ℓ at least equal to 1. So lL must be at least
1. But lL cannot be at least 1. The only lower energy state that exists is the
ψ100 “1s” ground state. It has lL = 0. So the 2s state cannot decay!

Never say never, of course. It turns out that if left alone, the 2s state will
eventually decay through the emission of two photons, rather than a single one.
This takes forever on quantum scales; the 2s state survives for about a tenth
of a second rather than maybe a nanosecond for a normal transition. Also, to
actually observe the two-photon emission process, the atom must be in high
vacuum. Otherwise the 2s state would be messed up by collisions with other
particles long before it could decay. Now you see why the introduction to this
section gave a 2p state, and not the seemingly more simple 2s one, as a simple
example of an atomic state that decays by emitting a photon.

Based on the previous subsection, you might wonder why a second photon
can succeed where a unit of photon orbital angular momentum cannot. After all,
photons have only two independent spin states, while a unit of orbital angular
momentum has the full set of three. The explanation is that in reality you cannot
add a suitable unit of orbital angular momentum to a photon; the orbital and
spin angular momentum of a photon are intrinsically linked. But photons do
have complete sets of states with angular momentum ℓ = 1, {A.21.7}. For two
photons, these can combine into zero net angular momentum.

It is customary to “explain” photons in terms of states of definite linear
momentum. That is in fact what was done in the final paragraphs of the previous
subsection. But it is simplistic. It is definitely impossible to understand how
two photons, each missing the state of zero angular momentum along their
direction of motion, could combine into a state of zero net angular momentum.
In fact, they simply cannot. Linear and orbital angular momentum do not
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commute. But photons do not have to be in quantum states of definite linear
momentum. They can be, and often are, in quantum superpositions of such
states. The states of definite angular momentum are quantum superpositions of
infinitely many states of linear momentum in all directions. To make sense out
of that, you need to switch to a description in terms of photon states of definite
angular, rather than linear, momentum. Those states are listed in {A.21.7}.
Unfortunately, they are much more difficult to describe physically than states
of definite linear momentum.

It should also be noted that if you include relativistic effects, the 2s state
can actually decay to the 2p state that has net angular momentum (spin plus
orbital) 1/2. This 2p state has very slightly lower energy than the 2s state due
to a tiny relativistic effect called “Lamb shift,” {A.39.4}. But because of the
negligible difference in energy, such a transition is even slower than two-photon
emission. It takes over 100 years to have a 50/50 probability for the transition.

Also, including relativistic efects, a magnetic dipole transition is possible.
An atomic state with net angular momentum 1/2 (due to the spin) can decay
to a state with again net angular momentum 1/2 by emitting a photon with
angular momentum ℓ = 1, subsection 7.4.2. A magnetic M1 transition is needed
in order that the parity stays the same. Unfortunately, in the nonrelativistic
approximation an M1 transition does not change the orbital motion; it just flips
over the spin. Also, without any energy change the theoretical transition rate
will be zero, section 7.6.1.

Relativistic effects remove these obstacles. But since these effects are very
small, the one-photon transition does take several days, so it is again much
slower than two-photon emission. In this case, it may be useful to think in
terms of the complete atom, including the proton spin. The electron and proton
can combine their spins into a singlet state with zero net angular momentum
or a triplet state with one unit of net momentum. The photon takes one unit
of angular momentum away, turning a triplet state into a singlet state or vice-
versa. If the atom ends up in a 1s triplet state, it will take another 10 million
year or so to decay to the singlet state, the true ground state.

For excited atomic states in general, different types of transitions may be
possible. As discussed in the previous subsection, the normal type is called an
“allowed,” “electric dipole,” or E1 transition.

Yes, every one of these three names is confusing. Nonallowed transitions,
called “forbidden” transitions, are perfectly allowed and they do occur. They
are typically just a lot slower. The atomic states between which the transitions
occur do not have electric dipole moments. And how many people really know
what an electric dipole is? And E1 is just cryptic. E0 would have been more
intuitive, as it indicates the level to which the transition is forbidden. Who
cares about photon angular momentum?

The one good thing that can be said is that in the electric dipole approxima-
tion, the atom does indeed respond to the electric part of the electromagnetic
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field. In such transitions the photon comes out with one unit of angular mo-
mentum, i.e. ℓ = 1, and negative parity. Then the selection rules are:

E1: lL = lH±1 ml,L = ml,H or ml,H±1 ms,L = ms,H (7.18)

The first rule reflects the possible orbital angular momentum values as given
above. To be sure, these values also allow l to stay the same. However, since
the parity of the photon is negative, parity conservation requires that the parity
of the atom must change, subsection 7.4.2. And that means that the orbital
angular momentum quantum number l must change from odd to even or vice-
versa. It cannot stay the same.

The second rule gives the possible magnetic quantum numbers. Recall that
these are a direct measure for the angular momentum in the chosen z-direction.
Since the photon momentum ℓ = 1, the photon z momentum mγ can be −1,
0, or 1. So the photon can change the atomic z momentum by up to one
unit, as the selection rule says. Note that while the photon angular momentum
cannot be zero in the direction of its motion, the direction of motion is not
necessarily the z-direction. In essence the photon may be coming off sideways.
(The better way of thinking about this is in terms of photon states of definite
angular momentum. These can have the angular momentum zero in the z-
direction, while the direction of photon motion is uncertain.)

The final selection rule says that the electron spin in the z-direction does
not change. That reflects the fact that the electron spin does not respond to
an electric field in a nonrelativistic approximation. (Of course, you might argue
that in a nonrelativistic approximation, the electron should not have spin in the
first place, chapter 12.12.)

Note that ignoring relativistic effects in transitions is a tricky business. Even
a small effect, given enough time to build up, might produce a transition where
one was not possible before. In a more sophisticated analysis of the hydrogen
atom, addendum {A.39}, there is a slight interaction between the orbital angular
momentum of the electron and its spin. That is known as spin-orbit interaction.
Note that the s states have no orbital angular momentum for the spin to interact
with.

As a result of spin-orbit interaction the correct energy eigenfunctions, except
the s states, develop uncertainty in the values of both ml and ms. In other
words, the z components of both the orbital and the spin angular momenta have
uncertainty. That implies that the above rules are no longer really right. The
energy eigenfunctions do keep definite values for l, representing the magnitude
of orbital angular momentum, for j, representing the magnitude of net angular
momentum, orbital plus spin, and mj representing the net angular momentum
in the z-direction. In those terms the modified selection rules become

E1so: lL = lH ± 1 jL = jH or jH ± 1 mj,L = mj,H or mj,H ± 1

(7.19)
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The last two selection rules above are a direct consequence of angular momentum
conservation; since the photon has ℓ = 1, it can change each atomic quantum
number by at most one unit. In the first selection rule, angular momentum
conservation could in principle allow a change in l by 2 units. A change in elec-
tron spin could add to the photon angular momentum. But parity conservation
requires that l changes by an odd amount and 2 is not odd.

If the selection rules are not satisfied, the transition is called forbidden.
However, the transition may still occur through a different mechanism. One
possibility is a slower magnetic dipole transition, in which the electron interacts
with the magnetic part of the electromagnetic field. That interaction occurs
because an electron has spin and orbital angular momentum. A charged particle
with angular momentum behaves like a little electromagnet and wants to align
itself with an ambient magnetic field, chapter 13.4. The selection rules in this
case are

M1: lL = lH ml,L = ml,H or ml,H ± 1 ms,L = ms,H or ms,H ± 1

(7.20)
The reasons are similar to the electric dipole case, taking into account that the
photon comes out with positive parity rather than negative. Also, the electron
spin definitely interacts with a magnetic field. A more detailed analysis will
show that exactly one of the two magnetic quantum numbers ml and ms must
change, {D.39}.

It must be pointed out that an M1 transition is trivial for an hydrogen
atom in the nonrelativistic approximation. All the transition does is change the
direction of the orbital or spin angular momentum vector, {D.39}. Not only is
this ho-hum, the rate of transitions will be vanishingly small since it depends on
the energy release in the transition. The same problem exists more generally for
charged particles in radial potentials that only depend on position, {A.25.8}.

Relativistic effects can change this. In particular, in the presence of spin-
orbit coupling, the selection rules become

M1so: lL = lH jL = jH or jH±1 mj,L = mj,H or mj,H±1 (7.21)

In this case, it is less obvious why l could not change by 2 units. The basic
reason is that the magnetic field wants to rotate the orbital angular momentum
vector, rather than change its magnitude, {D.39}. (Note however that that
derivation, and this book in general, uses a nonrelativistic Hamiltonian for the
interaction between the spin and the magnetic field.) Similar limitations apply
for magnetic transitions of higher multipole order, {A.25.5} (A.175).

In higher-order multipole transitions the photon comes out with angular
momentum ℓ greater than 1. As the previous subsection noted, this slows down
the transitions. The fastest multipole transitions are the electric quadrupole
ones. In these transitions the emitted photon has ℓ = 2 and positive parity.
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The selection rules are then

E2: lL = lH or lH±2 ml,L = ml,H or ml,H±1 or ml,H±2 ms,L = ms,H

(7.22)
In addition lH = lL = 0 is not possible for such transitions. Neither is lH = 1
and lL = 0 or vice-versa. Including electron spin, jH = jL = 1

2
is not possible.

The reasons are similar to the ones before.
Magnetic transitions at higher multipole orders have similar problems as

the magnetic dipole one. In particular, consider the orbital angular momen-
tum selection rule (7.17) above. The lowest possible multipole order in the
nonrelativistic case is

ℓmin = |lH − lL|
Because of parity, that is always an electric multipole transition. (This excludes
the case that the orbital angular momenta are equal, in which case the lowest
transition is the already discussed trivial magnetic dipole one.)

The bottom line is that magnetic transitions simply cannot compete. Of
course, conservation of net angular momentum might forbid the electric tran-
sition to a given final state. But in that case there will be an equivalent state
that differs only in spin to which the electric transition can proceed just fine.

However, for a multi-electron atom or nucleus in an independent-particle
model, that equivalent state might already be occupied by another particle. Or
there may be enough spin-orbit interaction to raise the energy of the equivalent
state to a level that transition to it becomes impossible. In that case, the lowest
possible transition will be a magnetic one.

Consider now more general systems than hydrogen atoms. General selection
rules for electric Eℓ and magnetic Mℓ transitions are:

Eℓ: |jH − ℓ| 6 jL 6 jH + ℓ and πL = πH(−1)ℓ (ℓ > 1) (7.23)

Mℓ: |jH − ℓ| 6 jL 6 jH + ℓ and πL = πH(−1)ℓ−1 (ℓ > 1) (7.24)

These rules rely only on the spin and parity of the emitted photon. So they are
quite generally valid for one-photon emission.

If a normal electric dipole transition is possible for an atomic or nuclear state,
it will most likely decay that way before any other type of transition can occur.
But if an electric dipole transition is forbidden, other types of transitions may
appear in significant amounts. If both electric quadrupole and magnetic dipole
transitions are possible, they may be competitive. And electric quadrupole
transitions can produce two units of change in the atomic angular momentum,
rather than just one like the magnetic dipole ones.

Given the initial state, often the question is not what final states are possible,
but what transition types are possible given the final state. In that case, the
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general selection rules can be written as

|jH − jL| 6 ℓ 6 jH + jL and ℓ > 1 and πLπH(−1)ℓ =
{

1: electric
−1: magnetic

(7.25)
Since transition rates decrease rapidly with increasing multipole order ℓ,

normally the lowest value of ℓ allowed will be the important one. That is

ℓmin = |jH − jL| or 1 if jH = jL and jH = jL = 0 is not possible.

(7.26)
If parity makes the corresponding transition magnetic, the next-higher order
electric transition may well be of importance too.

Key Points

0 Normal atomic transitions are called electric dipole ones, or allowed
ones, or E1 ones. Unfortunately.

0 The quantum numbers of the initial and final atomic states in tran-
sitions must satisfy certain selection rules in order for transitions of
a given type to be possible.

0 If a transition does not satisfy the rules of electric dipole transi-
tions, it will have to proceed by a slower mechanism. That could
be a magnetic dipole transition or an electric or magnetic multipole
transition.

0 A state of zero angular momentum cannot decay to another state of
zero angular momentum through any of these mechanisms. For such
transitions, two-photon emission is an option.

7.5 Symmetric Two-State Systems

This section will look at the simplest quantum systems that can have nontrivial
time variation. They are called symmetric two-state systems. Despite their
simplicity, a lot can be learned from them.

Symmetric two-state systems were encountered before in chapter 5.3. They
describe such systems as the hydrogen molecule and molecular ion, chemical
bonds, and ammonia. This section will show that they can also be used as a
model for the fundamental forces of nature. And for the spontaneous emission
of radiation by say excited atoms or atomic nuclei.

Two-state systems are characterized by just two basic states; these states
will be called ψ1 and ψ2. For symmetric two-state systems, these two states
must be physically equivalent. Or at least they must have the same expectation
energy. And the Hamiltonian must be independent of time.
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For example, for the hydrogen molecular ion ψ1 is the state where the elec-
tron is in the ground state around the first proton. And ψ2 is the state in
which it is in the ground state around the second proton. Since the two protons
are identical in their properties, there is no physical difference between the two
states. So they have the same expectation energy.

The interesting quantum mechanics arises from the fact that the two states
ψ1 and ψ2 are not energy eigenstates. The ground state of the system, call it
ψgs, is a symmetric combination of the two states. And there is also an excited
energy eigenstate ψas that is an antisymmetric combination, chapter 5.3, {N.11}:

ψgs =
ψ1 + ψ2√

2
ψas =

ψ1 − ψ2√
2

The above expressions may be inverted to give the states ψ1 and ψ2 in terms
of the energy states:

ψ1 =
ψgs + ψas√

2
ψ2 =

ψgs − ψas√
2

It follows that ψ1 and ψ2 are a 50/50 mixture of the low and high energy states.
That means that they have uncertainty in energy. In particular they have a
50% chance for the ground state energy Egs and a 50% chance for the elevated
energy Eas.

That makes their expectation energy 〈E〉 equal to the average of the two
energies, and their uncertainty in energy ∆E equal to half the difference:

〈E〉 = Egs + Eas

2
∆E =

Eas − Egs

2

The question in this section is how the system evolves in time. In general
the wave function is, section 7.1,

Ψ = cgse
−iEgst/~ψgs + case

−iEast/~ψas

Here cgs and cas are constants that are arbitrary except for the normalization
requirement.

However, this section will be more concerned with what happens to the basic
states ψ1 and ψ2, rather than to the energy eigenstates. So, it is desirable to
rewrite the wave function above in terms of ψ1 and ψ2 and their properties.
That produces:

Ψ = e−i〈E〉t/~
[
cgse

i∆Et/~ψ1 + ψ2√
2

+ case
−i∆Et/~ψ1 − ψ2√

2

]

This expression is of the general form

Ψ = c1ψ1 + c2ψ2
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According to the ideas of quantum mechanics, |c1|2 gives the probability that
the system is in state ψ1 and |c2|2 that it is in state ψ2.

The most interesting case is the one in which the system is in the state ψ1

at time zero. In that case the probabilities of the states ψ1 and ψ2 vary with
time as

|c1|2 = cos2(∆E t/~) |c2|2 = sin2(∆E t/~) (7.27)

To verify this, first note from the general wave function that if the system is in
state ψ1 at time zero, the coefficients cgs and cas must be equal. Then identify
what c1 and c2 are and compute their square magnitudes using the Euler formula
(2.5).

At time zero, the above probabilities produce state ψ1 with 100% probability
as they should. And so they do whenever the sine in the second expressions is
zero. However, at times at which the cosine is zero, the system is fully in state
ψ2. It follows that the system is oscillating between the states ψ1 and ψ2.

Key Points

0 Symmetric two-state systems are described by two quantum states
ψ1 and ψ2 that have the same expectation energy 〈E〉.

0 The two states have an uncertainty in energy ∆E that is not zero.

0 The probabilities of the two states are given in (7.27). This assumes
that the system is initially in state ψ1.

0 The system oscillates between states ψ1 and ψ2.

7.5.1 A graphical example

Consider a simple example of the oscillatory behavior of symmetric two-state
systems. The example system is the particle inside a closed pipe as discussed
in chapter 3.5. It will be assumed that the wave function is of the form

Ψ =
√

4
5
e−iE111t/~ψ111 +

√
1
5
e−iE211t/~ψ211

Here ψ111 and ψ211 are the ground state and the second lowest energy state, and
E111 and E211 are the corresponding energies, as given in chapter 3.5.

The above wave function is a valid solution of the Schrödinger equation since
the two terms have the correct exponential dependence on time. And since the
two terms have different energies, there is uncertainty in energy.

The relative probability to find the particle at a given position is given by
the square magnitude of the wave function. That works out to

|Ψ|2 = Ψ∗Ψ = 4
5
|ψ111|2 + 4

5
cos
(
(E111 − E211)t/~

)
ψ111ψ211 +

1
5
|ψ211|2
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Note that this result is time dependent. If there was no uncertainty in en-
ergy, which would be true if E111 = E211, the square wave function would be
independent of time.

(a)

(b)

(c)

(d)

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/pipemv.gif

Figure 7.6: A combination of two energy eigenfunctions seen at some typical
times.

The probability for finding the particle is plotted at four representative times
in figure 7.6. After time (d) the evolution repeats at (a). The wave function blob
is sloshing back and forth in the pipe. That is much like a classical frictionless
particle with kinetic energy would bounce back and forth between the ends of
the pipe.

In terms of symmetric two-state systems, you can take the state ψ1 to be
the one in which the blob is at its leftmost position, figure 7.6(a). Then ψ2

is the state in which the blob is at its rightmost position, figure 7.6(c). Note
from the figure that these two states are physically equivalent. And they have
uncertainty in energy.

Key Points

0 A graphical example of a simple two-state system was give.

7.5.2 Particle exchange and forces

An important two-state system very similar to the simple example in the previ-
ous subsection is the hydrogen molecular ion. This ion consists of two protons
and one electron.

The molecular ion can show oscillatory behavior very similar to that of the
example. In particular, assume that the electron is initially in the ground state
around the first proton, corresponding to state ψ1. In that case, after some time
interval ∆t, the electron will be found in the ground state around the second

http://www.eng.famu.fsu.edu/~dommelen/quansup/pipemv.gif
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proton, corresponding to state ψ2. After another time interval ∆t, the electron
will be back around the first proton, and the cycle repeats. In effect, the two
protons play catch with the electron!

That may be fun, but there is something more serious that can be learned.
As is, there is no (significant) force between the two protons. However, there
is a second similar play-catch solution in which the electron is initially around
the second proton instead of around the first. If these two solutions are sym-
metrically combined, the result is the ground state of the molecular ion. In this
state of lowered energy, the protons are bound together. In other words, there
is now a force that holds the two protons together:

If two particles play catch, it can produce forces between these two
particles.

A “play catch” mechanism as described above is used in more advanced
quantum mechanics to explain the forces of nature. For example, consider
the correct, relativistic, description of electromagnetism, given by “quantum
electrodynamics”. In it, the electromagnetic interaction between two charged
particles comes about largely through processes in which one particle creates a
photon that the other particle absorbs and vice versa. Charged particles play
catch using photons.

That is much like how the protons in the molecular ion get bound together
by exchanging the electron. Note however that the solution for the ion was
based on the Coulomb potential. This potential implies instantaneous interac-
tion at a distance: if, say, the first proton is moved, the electron and the other
proton notice this instantaneously in the force that they experience. Classi-
cal relativity, however, does not allow effects that propagate at infinite speed.
The highest possible propagation speed is the speed of light. In classical elec-
tromagnetics, charged particles do not really interact instantaneously. Instead
charged particles interact with the electromagnetic field at their location. The
electromagnetic field then communicates this to the other charged particles, at
the speed of light. The Coulomb potential is merely a simple approximation,
for cases in which the particle velocities are much less than the speed of light.

In a relativistic quantum description, the electromagnetic field is quantized
into photons. (A concise introduction to this advanced topic is in addendum
{A.23}.) Photons are bosons with spin 1. Similarly to classical electrodynamics,
in the quantum description charged particles interact with photons at their
location. They do not interact directly with other charged particles.

These are three-particle interactions, a boson and two fermions. For exam-
ple, if an electron absorbs a photon, the three particles involved are the photon,
the electron before the absorption, and the electron after the absorption. (Since
in relativistic applications particles may be created or destroyed, a particle after
an interaction should be counted separately from an identical particle that may
exist before it.)
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The ideas of quantum electrodynamics trace back to the early days of quan-
tum mechanics. Unfortunately, there was the practical problem that the compu-
tations came up with infinite values. A theory that got around this problem was
formulated in 1948 independently by Julian Schwinger and Sin-Itiro Tomonaga.
A different theory was proposed that same year by Richard Feynman based on
a more pictorial approach. Freeman Dyson showed that the two theories were in
fact equivalent. Feynman, Schwinger, and Tomonaga received the Nobel prize
in 1965 for this work, Dyson was not included. (The Nobel prize in physics is
limited to a maximum of three recipients.)

Following the ideas of quantum electrodynamics and pioneering work by
Sheldon Glashow, Steven Weinberg and Abdus Salam in 1967 independently
developed a particle exchange model for the so called “weak force.” All three
received the Nobel prize for that work in 1979. Gerardus ’t Hooft and Martinus
Veltman received the 1999 Nobel Prize for a final formulation of this theory that
allows meaningful computations.

The weak force is responsible for the beta decay of atomic nuclei, among
other things. It is of key importance for such nuclear reactions as the hydrogen
fusion that keeps our sun going. In weak interactions, the exchanged particles
are not photons, but one of three different bosons of spin 1: the negatively
charged W−, (think W for weak force), the positively charged W+, and the neu-
tral Z0 (think Z for zero charge). You might call them the “massives” because
they have a nonzero rest mass, unlike the photons of electromagnetic interac-
tions. In fact, they have gigantic rest masses. The W± have an experimental
rest mass energy of about 80 GeV (giga-electron-volt) and the Z0 about 91 GeV.
Compare that with the rest mass energy of a proton or neutron, less than a GeV,
or an electron, less than a thousandth of a GeV. However, a memorable name
like “massives” is of course completely unacceptable in physics. And neither
would be “weak-force carriers,” because it is accurate and to the point. So
physicists call them the “intermediate vector bosons.” That is also three words,
but completely meaningless to most people and almost meaningless to the rest,
{A.20}. It meets the requirements of physics well.

A typical weak interaction might involve the creation of say a W− by a
quark inside a neutron and its absorption in the creation of an electron and an
antineutrino. Now for massive particles like the intermediate vector bosons to
be created out of nothing requires a gigantic quantum uncertainty in energy.
Following the idea of the energy-time equality (7.9), such particles can only
exist for extremely short times. And that makes the weak force of extremely
short range.

The theory of “quantum chromedynamics” describes the so-called “strong
force” or “color force.” This force is responsible for such things as keeping
atomic nuclei together.

The color force acts between “quarks.” Quarks are the constituents of
“baryons” like the proton and the neutron, and of “mesons” like the pions.
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In particular, baryons consist of three quarks, while mesons consist of a quark
and an antiquark. For example, a proton consists of two so-called “up quarks”
and a third “down quark.” Since up quarks have electric charge 2

3
e and down

quarks −1
3
e, the net charge of the proton 2

3
e+ 2

3
e− 1

3
e equals e. Similarly, a neu-

tron consists of one up quark and two down quarks. That makes its net charge
2
3
e− 1

3
e− 1

3
e equal to zero. As another example, a so-called π+ meson consists

of an up quark and an antidown quark. An antiparticle has the opposite charge
from the corresponding particle, so the charge of the π+ meson 2

3
e+ 1

3
e equals e,

the same as the proton. Three antiquarks make up an antibaryon. That gives
an antibaryon the opposite charge of the corresponding baryon. More exotic
baryons and mesons may involve the strange, charm, bottom, and top flavors of
quarks. (Yes, there are six of them. You might well ask, “Who ordered that?”
as the physicist Rabi did in 1936 upon the discovery of the muon, a heavier
version of the electron. He did not know the least of it.)

Quarks are fermions with spin 1/2 like electrons. However, quarks have an
additional property called “color charge.” (This color charge has nothing to do
with the colors you can see. There are just a few superficial similarities. Physi-
cists love to give complete different things identical names because it promotes
such hilarious confusion.) There are three quark “colors” called, you guessed
it, red, green and blue. There are also three corresponding “anticolors” called
cyan, magenta, and yellow.

Now the electric charge of quarks can be observed, for example in the form
of the charge of the proton. But their color charge cannot be observed in our
macroscopic world. The reason is that quarks can only be found in “colorless”
combinations. In particular, in baryons each of the three quarks takes a different
color. (For comparison, on a video screen full-blast red, green and blue produces
a colorless white.) Similarly, in antibaryons, each of the antiquarks takes on a
different anticolor. In mesons the quark takes on a color and the antiquark the
corresponding anticolor. (For example on a video screen, if you define antigreen
as magenta, i.e. full-blast red plus blue, then green and antigreen produces again
white.)

Actually, it is a bit more complicated still than that. If you had a green
and magenta flag, you might call it color-balanced, but you would definitely not
call it colorless. At least not in this book. Similarly, a green-antigreen meson
would not be colorless, and such a meson does not exist. An actual meson is
an quantum superposition of the three possibilities red-antired, green-antigreen,
and blue-antiblue. The meson color state is

1√
3
(rr̄ + gḡ + bb̄)

where a bar indicates an anticolor. Note that the quark has equal probabilities
of being observed as red, green, or blue. Similarly the antiquark has equal
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probabilities of being observed antired, antigreen, or antiblue, but always the
anticolor of the quark.

In addition, the meson color state above is a one-of-a-kind, or “singlet” state.
To see why, suppose that, say, the final bb̄ term had a minus sign instead of a
plus sign. Then surely, based on symmetry arguments, there should also be
states where the gḡ or rr̄ has the minus sign. And that cannot be true because
linear combinations of such states would produce states like the green-antigreen
meson that are not colorless. So the only true colorless possibility is the state
above, where all three color-anticolor states have the same coefficient. (Do recall
that a constant of magnitude one is indeterminate in quantum states. So if all
three color-anticolor states had a minus sign, it would still be the same state.)

Similarly, an “rgb” baryon with the first quark red, the second green, and
the third blue would be color-balanced but not colorless. So such a baryon
does not exist. For baryons there are six different possible color combinations:
there are three possibilities for which of the three quarks is red, times two
possibilities which of the remaining two quarks is green. An actual baryon is a
quantum superposition of these six possibilities. Moreover, the combination is
antisymmetric under color exchange:

1√
6
(rgb− rbg + gbr − grb+ brg − bgr)

Equivalently, the combination is antisymmetric under quark exchange. That
explains why the so-called ∆++ delta baryon can exist. This baryon consists of
three up quarks in a symmetric spatial ground state and a symmetric spin 3/2
state, like ↑↑↑. Because of the antisymmetric color state, the antisymmetrization
requirements for the three quarks can be satisfied. The color state above is again
a singlet one. In terms of chapter 5.7, it is the unique Slater determinant that
can be formed from three states for three particles.

It is believed that baryons and mesons cannot be taken apart into separate
quarks to study quarks in isolation. In other words, quarks are subject to
“confinement” inside colorless baryons and mesons. The problem with trying
to take these apart is that the force between quarks does not become zero with
distance like other forces. If you try to take a quark out of a baryon or meson,
presumably eventually you will put in enough energy to create a quark-antiquark
pair in between. That kills off the quark separation that you thought you had
achieved.

The color force between quarks is due to the exchange of so-called “gluons.”
Gluons are massless bosons with spin 1 like photons. However, photons do not
carry electric charge. Gluons do carry color/anticolor combinations. That is one
reason that quantum chromedynamics is enormously more difficult than quan-
tum electrodynamics. Photons cannot move electric charge from one fermion
to the next. But gluons allow the interchange of colors between quarks.
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Also, because photons have no charge, they do not interact with other pho-
tons. But since gluons themselves carry color, gluons do interact with other
gluons. In fact, both three-gluon and four-gluon interactions are possible. In
principle, this makes it conceivable that “glueballs,” colorless combinations of
gluons, might exist. However, at the time of writing, 2012, only baryons, an-
tibaryons, and mesons have been solidly established.

Gluon-gluon interactions are related to an effective strengthening of the color
force at larger distances. Or as physicists prefer to say, to an effective weakening
of the interactions at short distances called “asymptotic freedom.” This helps
a bit because it allows some analysis to be done at very short distances, i.e. at
very high energies.

Normally you would expect nine independent color/anticolor gluon states:
there are three colors times three anticolors. But in fact only eight independent
gluon states are believed to exist. Recall the colorless meson state described
above. If a gluon could be in such a colorless state, it would not be subject to
confinement. It could then be exchanged between distant protons and neutrons,
giving rise to a long-range nuclear force. Since such a force is not observed, it
must be concluded that gluons cannot be in the colorless state. So if the nine
independent orthonormal color states are taken to be the colorless state plus
eight more states orthogonal to it, then only the latter eight states can be
observable. In terms of section 7.3, the relevant symmetry of the color force
must be SU(3), not U(3).

Many people contributed to the theory of quantum chromedynamics. How-
ever Murray Gell-Mann seemed to be involved in pretty much every stage. He
received the 1969 Nobel Prize at least in part for his work on quantum chrom-
edynamics. It is also he who came up with the name “quark.” The name is
really not bad compared to many other terms in physics. However, Gell-Mann
is also responsible for not spelling “color” as “qolor.” That would have saved
countless feeble explanations that, “No, this color has absolutely nothing to do
with the color that you see in nature.” So far nobody has been able to solve that
problem, but David Gross, David Politzer and Frank Wilczek did manage to
discover the asymptotic freedom mentioned above. For that they were awarded
the 2004 Nobel Prize in Physics.

It may be noted that Gell-Mann initially called the three colors red, white,
and blue. Just like the colors of the US flag, in short. Or of the Netherlands
and Taiwan, to mention a few others. Huang, [27, p. 167], born in China, with
a red and yellow flag, claims red, yellow and green are now the conventional
choice. He must live in a world different from ours. Sorry, but the honor of
having the color-balanced, (but not colorless), flag goes to Azerbaijan.

The force of gravity is supposedly due to the exchange of particles called
“gravitons.” They should be massless bosons with spin 2. However, it is hard to
experiment with gravity because of its weakness on human scales. The graviton
remains unconfirmed. Worse, the exact place of gravity in quantum mechanics
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remains very controversial.

Key Points

0 The fundamental forces are due to the exchange of particles.

0 The particles are photons for electromagnetism, intermediate vector
bosons for the weak force, gluons for the color force, and presumably
gravitons for gravity.

7.5.3 Spontaneous emission

Symmetric two state systems provide the simplest model for spontaneous emis-
sion of radiation by atoms or atomic nuclei. The general ideas are the same
whether it is an atom or nucleus, and whether the radiation is electromagnetic
(like visible light) or nuclear alpha or beta radiation. But to be specific, this
subsection will use the example of an excited atomic state that decays to a lower
energy state by releasing a photon of electromagnetic radiation. The conserva-
tion laws applicable to this process were discussed earlier in section 7.4. This
subsection wants to examine the actual mechanics of the emission process.

First, there are some important terms and concepts that must be mentioned.
You will encounter them all the time in decay processes.

The big thing is that decay processes are random. A typical atom in an
excited state ψH will after some time transition to a state of lower energy ψL

while releasing a photon. But if you take a second identical atom in the exact
same excited state, the time after which this atom transitions will be different.

Still, the decay process is not completely unpredictable. Averages over large
numbers of atoms have meaningful values. In particular, suppose that you have
a very large number I of identical excited atoms. Then the “decay rate” is by
definition

λ = −1

I

dI

dt
(7.28)

It is the relative fraction −dI/I of excited atoms that disappears per unit time
through transitions to a lower energy state. The decay rate has a precise value
for a given atomic state. It is not a random number.

To be precise, the above decay rate is better called the specific decay rate.
The actual decay rate is usually defined to be simply −dI/dt. But anyway,
decay rate is not a good term to use in physics. It is much too clear. Sometimes
the term “spontaneous emission rate” or “transition rate” is used, especially in
the context of atoms. But that is even worse. A better and very popular choice
is “decay constant.” But, while “constant” is a term that can mean anything,
it really is still far too transparent. How does “disintegration constant” sound?
Especially since the atom hardly disintegrates in the transition? Why not call
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it the [specific] “activity,” come to think of it? Activity is another of these
vague terms. Another good one is “transition probability,” because a probability
should be nondimensional and λ is per unit time. May as well call it “radiation
probability” then. Actually, many references will use a bunch of these terms
interchangeably on the same page.

In fact, would it not be a good thing to take the inverse of the decay rate?
That allows another term to be defined for essentially the same thing: the [mean]
“lifetime” of the excited state:

τ ≡ 1

λ
(7.29)

Do remember that this is not really a lifetime. Each individual atom has its own
lifetime. (However, if you average the lifetimes of a large number of identical
atoms, you will in fact get the mean lifetime above.)

Also, remember, if more than one decay process occurs for the excited state,

Add decay rates, not lifetimes.

The sum of the decay rates gives the total decay rate of the atomic state. The
reciprocal of that total is the correct lifetime.

Now suppose that initially there is a large number I0 of excited atoms. Then
the number of excited atoms I left at a later time t is

I = I0e
−λt (7.30)

So the number of excited atoms left decays exponentially in time. To check this
expression, just check that it is right at time zero and plug it into the definition
for the decay rate.

A quantity with a clearer physical meaning than lifetime is the time for
about half the nuclei in a given large sample of excited atoms to decay. This
time is called the “half-life” τ1/2. From (7.30) and (7.29) above, it follow that
the half-life is shorter than the lifetime by a factor ln 2:

τ1/2 = τ ln 2 (7.31)

Note that ln 2 is less than one.
The purpose in this subsection is now to understand some of the above

concepts in decays using the model of a symmetric two-state system.
The initial state ψ1 of the system is taken to be an atom in a high-energy

atomic state ψH, figure 7.3. The state seems to be an state of definite energy.
That would make it a stationary state, section 7.1.4, and hence it would not
decay. However, ψ1 is not really an energy eigenstate, because an atom is always
perturbed by a certain amount of ambient electromagnetic radiation. The actual
state ψ1 has therefore some uncertainty in energy ∆E.

The decayed state ψ2 consists of an atomic state of lowered energy ψL plus
an emitted photon. This state seems to have the same combined energy as the
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initial state ψ1. It too, however, is not really an energy eigenstate. Otherwise
it would always have existed. In fact, it has the same expectation energy and
uncertainty in energy as the initial state, section 7.1.3.

The probabilities of the two states were given at the start of this section.
They were:

|c1|2 = cos2(∆E t/~) |c2|2 = sin2(∆E t/~) (7.32)

At time zero, the system is in state ψ1 for sure, but after a time interval ∆t
it is in state ψ2 for sure. The atom has emitted a photon and decayed. An
expression for the time that this takes can be found by setting the angle in the
sine equal to 1

2
π. That gives:

∆t = 1
2
π~/∆E

But note that there is a problem. According to (7.32), after another time
interval ∆t the probabilities of the two states will revert back to the initial ones.
That means that the low energy atomic state absorbs the photon again and so
returns to the excited state!

Effects like that do occur in nuclear magnetic resonance, chapter 13.6, or for
atoms in strong laser light and high vacuum, [52, pp. 147-152]. But normally,
decayed atoms stay decayed.

To explain that, it must be assumed that the state of the system is “mea-
sured” according to the rules of quantum mechanics, chapter 3.4. The macro-
scopic surroundings “observes” that a photon is released well before the origi-
nal state can be restored. In the presence of such significant interaction with
the macroscopic surroundings, the two-state evolution as described above is no
longer valid. In fact, the macroscopic surroundings will have become firmly
committed to the fact that the photon has been emitted. Little chance for the
atom to get it back under such conditions.

In an improved model of the transition process, section 7.6.1, the need for
measurement remains. However, the reasons get more complex.

Interactions with the surroundings are generically called “collisions.” For
example, a real-life atom in a gas will periodically collide with neighboring
atoms and other particles. If a process is fast enough that no interactions with
the surroundings occur during the time interval of interest, then the process
takes place in the so-called “collisionless regime.” Nuclear magnetic resonance
and atoms in strong laser light and high vacuum may be in this regime.

However, normal atomic decays take place in the so-called “collision-domi-
nated regime.” Here collisions with the surroundings occur almost immediately.

To model that, take the time interval between collisions to be tc. Assume
that the atom evolves as an unperturbed two-state system until time tc. At that
time however, the atom is “measured” by its surroundings and it is either found
to be in the initial excited state ψ1 or in the decayed state with photon ψ2.
According to the rules of quantum mechanics the result is random. However,
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they are not completely random. The probability P1→2 for the atom to be found
to be decayed is the square magnitude |c2|2 of the state ψ2.

That square magnitude was given in (7.32). But it may be approximated
to:

P1→2 =
|∆E|2
~2

t2c

This approximated the sine in (7.32) by its argument, since the time tc is as-
sumed small enough that the argument is small.

Note that the decay process has become probabilistic. You cannot say for
sure whether the atom will be decayed or not at time tc. You can only give the
chances. See chapter 8.6 for a further discussion of that philosophical issue.

However, if you have not just one excited atom, but a large number I of
them, then P1→2 above is the relative fraction that will be found to be decayed
at time tc. The remaining atoms, which are found to be in the excited state,
(or rather, have been pushed back into the excited state), start from scratch.
Then at time 2tc, a fraction P1→2 of these will be found to be decayed. And so
on. Over time the number I of excited atoms decreases to zero.

As mentioned earlier, the relative fraction of excited atoms that disappears
per unit time is called the decay rate λ. That can be found by simply dividing
the decay probability P1→2 above by the time tc that the evolution took. So

λ1→2 =
|H21|2
~2

tc H21 = ∆E = 〈ψ2|H|ψ1〉.

Here the uncertainty in energy ∆E was identified in terms of the Hamiltonian
H using the analysis of chapter 5.3.

Physicists callH21 the “matrix element.” That is well below their usual form,
because it really is a matrix element. But before you start seriously doubting
the capability of physicists to invariably come up with confusing terms, note
that there are lots of different matrices in any advanced physical analysis. So
the name does not give its secret away to nonspecialists. To enforce that, many
physicists write matrix elements in the formM21, because, hey, the word matrix
starts with an m. That hides the fact that it is an element of a Hamiltonian
matrix pretty well.

The good news is that the assumption of collisions has solved the problem of
decayed atoms undecaying again. Also, the decay process is now probabilistic.
And the decay rate λ1→2 above is a normal number, not a random one.

Unfortunately, there are a couple of major new problems. One problem is
that the state ψ2 has one more particle than state ψ1; the emitted photon.
That makes it impossible to evaluate the matrix element using nonrelativistic
quantum mechanics as covered in this book. Nonrelativistic quantum mechanics
does not allow for new particles to be created or old ones to be destroyed. To
evaluate the matrix element, you need relativistic quantum mechanics. Section
7.8 will eventually manage to work around that limitation using a dirty trick.
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Addendum {A.24} gives the actual relativistic derivation of the matrix element.
However, to really understand that addendum, you may have to read a couple
of others.

An even bigger problem is that the decay rate above is proportional to
the collision time tc. That makes it completely dependent on the details of
the surroundings of the atom. But that is wrong. Atoms have very specific
decay rates. These rates are the same under a wide variety of environmental
conditions.

The basic problem is that in reality there is not just a single decay process for
an excited atom; there are infinitely many. The derivation above assumed that
the photon has an energy exactly given by the difference between the atomic
states. However, there is uncertainty in energy one way or the other. Decays
that produce photons whose frequency is ever so slightly different will occur
too. To deal with that complication, asymmetric two-state systems must be
considered. That is done in the next section.

Finally, a few words should probably be said about what collisions really
are. Darn. Typically, they are pictured as atomic collisions. But that may be
in a large part because atomic collisions are quite well understood from classical
physics. Atomic collisions do occur, and definitely need to be taken into account,
like later in the derivations of {D.41}. But in the above description, collisions
take on a second role as doing quantum mechanical “measurements.” In that
second role, a collision has occurred if the system has been “measured” to be
in one state or the other. Following the analysis of chapter 8.6, measurement
should be taken to mean that the surroundings has become firmly committed
that the system has decayed. In principle, that does not require any actual
collision with the atom; the surroundings could simply observe that the photon
is present. The bad news is that the entire process of measurement is really not
well understood at all. In any case, the bottom line to remember is that collisions
do not necessarily represent what you would intuitively call collisions. Their
dual role is to represent the typical moment that the surroundings commits
itself that a transition has occurred.

Key Points

0 The two-state system provides a model for the decay of excited atoms
or nuclei.

0 Interaction with the surroundings is needed to make the decay per-
manent. That makes decays probabilistic.

0 The [specific] decay rate, λ is the relative fraction of particles that
decays per unit time. Its inverse is the mean lifetime τ of the parti-
cles. The half-life τ1/2 is the time it takes for half the particles in a
big sample to decay. It is shorter than the mean lifetime by a factor
ln 2.
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0 Always add decay rates, not lifetimes.

7.6 Asymmetric Two-State Systems

Two-state systems are quantum systems for which just two states ψ1 and ψ2 are
relevant. If the two states have different expectation energy, or if the Hamilto-
nian depends on time, the two-state system is asymmetric. Such systems must
be considered to fix the problems in the description of spontaneous emission
that turned up in the previous section.

The wave function of a two state system is of the form

Ψ = c1ψ1 + c2ψ2 (7.33)

where |c1|2 and |c2|2 are the probabilities that the system is in state ψ1, respec-
tively ψ2.

The coefficients c1 and c2 evolve in time according to

i~ċ1 = 〈E1〉c1 +H12c2 i~Ċ2 = H21c1 + 〈E2〉c2 (7.34)

where

〈E1〉 = 〈ψ1|Hψ1〉, H12 = 〈ψ1|Hψ2〉, H21 = 〈ψ2|Hψ1〉, 〈E2〉 = 〈ψ2|Hψ2〉

with H the Hamiltonian. The Hamiltonian coefficients 〈E1〉 and 〈E2〉 are the
expectation energies of states ψ1 and ψ2. The Hamiltonian coefficients H12 and
H21 are complex conjugates. Either one is often referred to as the “matrix
element.” To derive the above evolution equations, plug the two-state wave
function Ψ into the Schrödinger equation and take inner products with 〈ψ1| and
〈ψ2|, using orthonormality of the states.

It will be assumed that the Hamiltonian is independent of time. In that
case the evolution equations can be solved analytically. To do so, the analysis
of chapter 5.3 can be used to find the energy eigenstates and then the solution
is given by the Schrödinger equation, section 7.1.2. However, the final solution
is messy. The discussion here will restrict itself to some general observations
about it.

It will be assumed that the solution starts out in the state ψ1. That means
that initially |c1|2 = 1 and |c2|2 = 0. Then in the symmetric case discussed
in the previous section, the system oscillates between the two states. But that
requires that the states have the same expectation energy.

This section addresses the asymmetric case, in which there is a nonzero
difference E21 between the two expectation energies:

E21 ≡ 〈E2〉 − 〈E1〉 (7.35)
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In the asymmetric case, the system never gets into state ψ2 completely. There
is always some probability for state ψ1 left. That can be seen from energy
conservation: the expectation value of energy must stay the same during the
evolution, and it would not if the system went fully into state 2. However, the
system will periodically return fully to the state ψ1. That is all that will be said
about the exact solution here.

The remainder of this section will use an approximation called “time-depen-
dent perturbation theory.” It assumes that the system stays close to a given
state. In particular, it will be assumed that the system starts out in state ψ1

and stays close to it.
That assumption results in the following probability for the system to be in

the state ψ2, {D.38}:

|c2|2 ≈
( |H21|t

~

)2
sin2(E21t/2~)

(E21t/2~)2
(7.36)

For this expression to be a valid approximation, the parenthetical ratio must be
small. Note that the final factor shows the effect of the asymmetry of the two
state system; E21 is the difference in expectation energy between the states. For
a symmetric two-state system, the final factor would be 1, (using l’Hôpital).

Key Points

0 If the states in a two-state system have different expectation energies,
the system is asymmetric.

0 If the system is initially in the state ψ1, it will never fully get into
the state ψ2.

0 If the system is initially in the state ψ1 and remains close to it, then
the probability of the state ψ2 is given by (7.36)

7.6.1 Spontaneous emission revisited

Decay of excited atomic or nuclear states was addressed in the previous section
using symmetric two-state systems. But there were some issues. They can now
be addressed.

The example is again an excited atomic state that transitions to a lower
energy state by emitting a photon. The state ψ1 is the excited atomic state.
The state ψ2 is the atomic state of lowered energy plus the emitted photon.
These states seem states of definite energy, but if they really were, there would
not be any decay. Energy states are stationary. There is a slight uncertainty in
energy in the states.

Since there is, clearly it does not make much sense to say that the initial
and final expectation energies must be the same exactly.
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In decay processes, a bit of energy slop E21 must be allowed between
the initial and final expectation values of energy.

In practical terms, that means that the energy of the emitted photon can vary
a bit. So its frequency can vary a bit.

Now in infinite space, the possible photon frequencies are infinitely close
together. So you are now suddenly dealing with not just one possible decay
process, but infinitely many. That would require messy, poorly justified math-
ematics full of so-called delta functions.

Instead, in this subsection it will be assumed that the atom is not in infi-
nite space, but in a very large periodic box, chapter 6.17. The decay rate in
infinite space can then be found by taking the limit that the box size becomes
infinite. The advantage of a finite box is that the photon frequencies, and so
the corresponding energies, are discrete. So you can sum over them rather than
integrate.

Each possible photon state corresponds to a different final state ψ2, each
with its own coefficient c2. The square magnitude of that coefficient gives the
probability that the system can be found in that state ψ2. And in the ap-
proximation of time-dependent perturbation theory, the coefficients c2 do not
interact; the square magnitude of each is given by (7.36). The total probability
that the system can be found in some decayed state at a time tc is then

P1→all 2 =
∑

all states 2

( |H21|tc
~

)2
sin2(E21tc/2~)

(E21tc/2~)2

The time tc will again model the time between “collisions,” interactions with
the surroundings that “measure” whether the atom has decayed or not. The
decay rate, the number of transitions per unit time, is found from dividing by
the time:

λ =
∑

all states 2

|H21|2
~2

tc
sin2(E21tc/2~)

(E21tc/2~)2

The final factor in the sum for the decay rate depends on the energy slop E21.
This factor is plotted graphically in figure 7.7. Notice that only a limited range
around the point of zero slop contributes much to the decay rate. The spikes in
the figure are intended to qualitatively indicate the discrete photon frequencies
that are possible in the box that the atom is in. If the box is extremely big,
then these spikes will be extremely close together.

Now suppose that you plot the energy slop diagram against the actual pho-
ton energy instead of the scaled energy slop E21tc/2~. Then the center of the
diagram will be at the nominal energy of the emitted photon and E21 will be
the deviation from that nominal energy. The spike at the center then represents
the transition of atoms where the photon comes out with exactly the nominal
energy. And those surrounding spikes whose height is not negligible represent
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0−π π E21tc/2~

sin2(E21tc/2~)

(E21tc/2~)2

Figure 7.7: Energy slop diagram.

slightly different photon energies that have a reasonable probability of being ob-
served. So the energy slop diagram, plotted against photon energy, graphically
represents the uncertainty in energy of the final state that will be observed.

Normally, the observed uncertainty in energy is very small in physical terms.
The energy of the emitted photon is almost exactly the nominal one; that allows
spectral analysis to identify atoms so well. So the entire diagram figure 7.7 is
extremely narrow horizontally when plotted against the photon energy.

−1
2π 0 1

2π E21tc/2~

0

1

0

Figure 7.8: Schematized energy slop diagram.

That suggests that you can simplify things by replacing the energy slop
diagram by the schematized one of figure 7.8. This diagram is zero if the energy
slop is greater than π~/tc, and otherwise it is one. And it integrates to the same
value as the original function. So, if the spikes are very closely spaced, they still
sum to the same value as before. To be sure, if the square matrix element
|H21|2 varied nonlinearly over the typical width of the diagram, the transition
rate would now sum to something else. But it should not; if the variation in
photon energy is negligible, then so should the one in the matrix element be.

Using the schematized energy slop diagram, you only need to sum over the
states whose spikes are equal to 1. That are the states 2 whose expectation
energy is no more than π~/tc different from the initial expectation energy. And
inside this summation range, the final factor can be dropped because it is now
1. That gives:

λ =
∑

all states 2 with

|〈E2〉−〈E1〉|<π~/tc

|H21|2
~2

tc (7.37)
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This can be cleaned up further, assuming that H21 is constant and can be
taken out of the sum:

λ = 2π
|H21|2
~

dN

d〈E2〉
(7.38)

This formula is known as “Fermi’s golden rule.” The final factor is the number
of photon states per unit energy range. It is to be evaluated at the nominal
photon energy. The formula simply observes that the number of terms in the
sum is the number of photon states per unit energy range times the energy
range. The equation is considered to originate from Dirac, but Fermi is the one
who named it “golden rule number two.”

Actually, the original sum (7.37) may be easier to handle in practice since
the number of photon states per unit energy range is not needed. But Fermi’s
rule is important because it shows that the big problem of the previous section
with decays has been resolved. The decay rate does no longer depend on the
time between collisions tc. Atoms can have specific values for their decay rates
despite the minute details of their surroundings. Shorter collision times do
produce less transitions per unit time for a given state. But they also allow
more slop in energy, so the number of states that achieve a significant amount
of transitions per unit time goes up. The net effect is that the decay rate stays
the same, though the uncertainty in energy goes up.

The other problem remains; the evaluation of the matrix element H21 re-
quires relativistic quantum mechanics. But it is not hard to guess the general
ideas. When the size of the periodic box that holds the system increases, the
electromagnetic field of the photons decreases; they have the same energy in
a larger volume. That results in smaller values for the matrix element H21.
On the other hand, the number of photons per unit energy range dN/d〈E2〉
increases, chapter 6.3. The net result will be that the decay rate remains finite
when the box becomes infinite.

That is verified by the relativistic analysis in addendum {A.24}. That ad-
dendum completes the analysis in this section by computing the matrix element
using relativistic quantum mechanics. Using a description in terms of photon
states of definite linear momentum, the matrix element is inversely proportional
to the volume of the box, but the density of states is directly proportional to
it. (It is somewhat different using a description in terms of photon states of
definite angular momentum, {A.25}. But the idea remains the same.)

One problem of section 7.5.3 that has now disappeared is the photon being
reabsorbed again. For each individual transition process, the interaction is too
weak to produce a finite reversal time. But quantum “measurement” remains
required to explain the experiments. The time-dependent perturbation theory
used does not apply if the quantum system is allowed to evolve undisturbed
over a time long enough for a significant transition probability (to any state)
to evolve, {D.38}. That would affect the specific decay rate. If you are merely
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interested in the average emission and absorption of a large number of atoms,
it is not a big problem. Then you can substitute a classical description in terms
of random collisions for the quantum measurement process. That will be done
in derivation {D.41}. But to describe what happens to individual atoms one at
a time, while still explaining the observed statistics of many of such individual
atoms, is another matter.

So far it has been assumed that there is only one atomic initial state of
interest and only one final state. However, either state might have a net angular
momentum quantum number j that is not zero. In that case, there are 2j +
1 atomic states that differ only in magnetic quantum number. The magnetic
quantum number describes the component of the angular momentum in the
chosen z-direction. Now if the atom is in empty space, the direction of the z-
axis should not make a difference. Then these 2j + 1 states will have the same
energy. So you cannot include one and not the other. If this happens to the
initial atomic state, you will need to average the decay rates over the magnetic
states. The physical reason is that if you have a large number I of excited atoms
in the given energy state, their magnetic quantum numbers will be randomly
distributed. So the average decay rate of the total sample is the average over
the initial magnetic quantum numbers. But if it happens to the final state, you
have to sum over the final magnetic quantum numbers. Each final magnetic
quantum number gives an initial excited atom one more state that it can decay
to. The general rule is:

Sum over the final atomic states, then average over the initial atomic
states.

The averaging over the initial states is typically trivial. Without a preferred
direction, the decay rate will not depend on the initial orientation.

It is interesting to examine the limitations of the analysis in this subsection.
First, time-dependent perturbation theory has to be valid. It might seem that
the requirement of (7.36) thatH21tc/~ is small is automatically satisfied, because
the matrix element H21 goes to zero for infinite box size. But then the number
of states 2 goes to infinity. And if you look a bit closer at the analysis, {D.38},
the requirement is really that there is little probability of any transition in
time interval tc. So the time between collisions must be small compared to the
lifetime of the state. With typical lifetimes in the range of nanoseconds, atomic
collisions are typically a few orders of magnitude more rapid. However, that
depends on the relative vacuum.

Second, the energy slop diagram figure 7.7 has to be narrow on the scale of
the photon energy. It can be seen that this is true if the time between collisions
tc is large compared to the inverse of the photon frequency. For emission of
visible light, that means that the collision time must be large when expressed
in femtoseconds. Collisions between atoms will easily meet that requirement.
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The width of the energy slop diagram figure 7.7 should give the observed
variation E21 in the energy of the final state. The diagram shows that roughly

E21tc ∼ π~

Note that this takes the form of the all-powerful energy-time uncertainty equal-
ity (7.9). To be sure, the equality above involves the artificial time between
collisions, or “measurements,” tc. But you could assume that this time is com-
parable to the mean lifetime τ of the state. Essentially that supposes that
interactions with the surroundings are infrequent enough that the atomic evolu-
tion can evolve undisturbed for about the typical decay time. But that nature
will definitely commit itself whether or not a decay has occurred as soon as
there is a fairly reasonable probability that a photon has been emitted.

That argument then leads to the definition of the typical uncertainty in
energy, or “width,”of a state as Γ = ~/τ , as mentioned in section 7.4.1. In addi-
tion, if there are frequent interactions between the atom and its surroundings,
the shorter collision time tc should be expected to increase the uncertainty in
energy to more than the width.

Note that the wavy nature of the energy slop diagram figure 7.7 is due to
the assumption that the time between “collisions” is always the same. If you
start averaging over a more physical random set of collision times, the waves
will smooth out. The actual energy slop diagram as usually given is of the form

1

1 + (E21/Γ)2
(7.39)

That is commonly called a [Cauchy] “Lorentz[ian] profile” or distribution or
function, or a “Breit-Wigner distribution.” Hey, don’t blame the messenger. In
any case, it still has the same inverse quadratic decay for large energy slop as
the diagram figure 7.7. That means that if you start computing the standard
deviation in energy, you end up with infinity. That would be a real problem
for versions of the energy-time relationship like the one of Mandelshtam and
Tamm. Such versions take the uncertainty in energy to be the standard devia-
tion in energy. But it is no problem for the all-powerful energy-time uncertainty
equality (7.9), because the standard deviation in energy is not needed.

Key Points

0 Some energy slop occurs in decays.

0 Taking that into account, meaningful decay rates may be computed
following Fermi’s golden rule.
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7.7 Absorption and Stimulated Emission

This section will address the basic physic of absorption and emission of radiation
by a gas of atoms in an electromagnetic field. The next section will give practical
formulae.

(a) Spontaneous emission:

ψH

=⇒
ψL

+
Eγ = ~ω

(b) Absorption:

+
ψL

=⇒
ψH

+ −
Eγ = ~ω

(c) Stimulated emission:

+
ψH

=⇒
ψL

+ +
Eγ = ~ω

Figure 7.9: Emission and absorption of radiation by an atom.

Figure 7.9 shows the three different processes of interest. The previous
sections already discussed the process of spontaneous emission. Here an atom
in a state ψH of high energy emits a photon of electromagnetic radiation and
returns to an atomic state ψL of lower energy. For example, for a hydrogen
atom the excited state ψH might be the ψ210 “2pz” state, and the lower energy
state ψL the ψ100 “1s” ground state, as defined in chapter 4.3.

To a superb approximation, the photon carries off the difference in energy
between the atomic states. In view of the Planck-Einstein relation, that means
that its frequency ω is given by

~ω = EH − EL

Unfortunately, the discussion of spontaneous emission in the previous sec-
tions had to remain incomplete. Nonrelativistic quantum mechanics as covered
in this book cannot accommodate the creation of new particles like the photon
in this case. The number of particles has to stay the same.

The second process of interest in figure 7.9 is absorption. Here an atom in a
low energy state ψL interacts with an external electromagnetic field. The atom
picks up a photon from the field, which allows it to enter an excited energy state
ψH. Unlike spontaneous emission, this process can reasonably be described using
nonrelativistic quantum mechanics. The trick is to ignore the photon absorbed
from the electromagnetic field. In that case, the electromagnetic field can be
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approximated as a known one, using classical electromagnetics. After all, if the
field has many photons, one more or less is not going to make a difference.

The third process is stimulated emission. In this case an atom in an excited
state ψH interacts with an electromagnetic field. And now the atom does not
do the logical thing; it does not pick up a photon to go to a still more excited
state. Instead it uses the presence of the electromagnetic field as an excuse to
dump a photon and return to a lower energy state ψL.

This process is the operating principle of lasers. Suppose that you bring a
large number of atoms into a relatively stable excited state. Then suppose that
one of the atoms performs a spontaneous emission. The photon released by
that atom can stimulate another excited atom to release a photon too. Then
there are two coherent photons, which can go on to stimulate still more excited
atoms to release still more photons. And so on in an avalanche effect. It can
produce a runaway process of photon release in which a macroscopic amount of
monochromatic, coherent light is created.

Masers work on the same principle, but the radiation is of much lower energy
than visible light. It is therefore usually referred to as microwaves instead of
light. The ammonia molecule is one possible source of such low energy radiation,
chapter 5.3.

The analysis in this section will illuminate some of the details of stimulated
emission. For example, it turns out that photon absorption by the lower energy
atoms, figure 7.9(b), competes on a perfectly equal footing with stimulated
emission, figure 7.9(c). If you have a 50/50 mixture of atoms in the excited
state ψH and the lower energy state ψL, just as many photons will be created by
stimulated emission as will be absorbed. So no net light will be produced. To
get a laser to work, you must initially have a “population inversion;” you must
have more excited atoms than lower energy ones.

(Note that the lower energy state is not necessarily the same as the ground
state. All else being the same, it obviously helps to have the lower energy state
itself decay rapidly to a state of still lower energy. To a considerable extent, you
can pick and choose decay rates, because decay rates can vary greatly depending
on the amount to which they are forbidden, section 7.4.)

Key Points

0 An electromagnetic field can cause atoms to absorb photons.

0 However, it can also cause excited atoms to release photons. That is
called stimulated emission.

0 In lasers and masers, an avalanche effect of stimulated emission pro-
duces coherent, monochromatic light.
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7.7.1 The Hamiltonian

To describe the effect of an electromagnetic field on an atom using quantum
mechanics, as always the Hamiltonian operator is needed.

The atom will be taken to be a hydrogen atom for simplicity. Since the
proton is heavy, the electromagnetic field interacts mainly with the electron.
The proton will be assumed to be at rest.

It is also necessary to simplify the electromagnetic field. That can be done
by decomposing the field into separate “plane waves.” The total interaction can
usually be obtained by simply summing the effects produced by the separate
waves.

A single plane wave has an electric field ~E and a magnetic field ~B that can
be written in the form, (13.10):

~E = k̂Ef cos
(
ω(t− y/c)− α

)
~B = ı̂

1

c
Ef cos

(
ω(t− y/c)− α

)

For convenience the y-axis was taken in the direction of propagation of the wave.
Also the z-axis was taken in the direction of the electric field. Since there is
just a single frequency ω, the wave is monochromatic; it is a single color. And
because of the direction of the electric field, the wave is said to be polarized in
the z-direction. Note that the electric and magnetic fields for plane waves are
normal to the direction of propagation and to each other. The constant c is the
speed of light, Ef the amplitude of the electric field, and α is some unimportant
phase angle.

Fortunately, the expression for the wave can be greatly simplified. The
electron reacts primarily to the electric field, provided that its kinetic energy is
small compared to its rest mass energy. That is certainly true for the electron
in a hydrogen atom and for the outer electrons of atoms in general. Therefore
the magnetic field can be ignored. (The error made in doing so is described
more precisely in {D.39}.) Also, the wave length of the electromagnetic wave
is usually much larger than the size of the atom. For example, the Lyman-
transition wave lengths are of the order of a thousand Å, while the atom is
about one Å. So, as far as the light wave is concerned, the atom is just a tiny
speck at the origin. That means that y can be put to zero in the expression for
the plane wave. Then the wave simplifies to just:

~E = k̂Ef cos(ωt− α) (7.40)

This may not be applicable to highly energetic radiation like X-rays.
Now the question is how this field changes the Hamiltonian of the electron.

Ignoring the time dependence of the electric field, that is easy. The Hamiltonian
is

H = Hatom + eEf cos(ωt− α)z (7.41)
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where Hatom is the Hamiltonian of the hydrogen atom without the external
electromagnetic field. The expression for Hatom was given in chapter 4.3, but it
is not of any interest here.

The interesting term is the second one, the perturbation caused by the elec-
tromagnetic field. In this term z is the z-position of the electron. It is just like
the mgh potential energy of gravity, with the charge e playing the part of the
mass m, the electric field strength Ef cos(ωt−α) that of the gravity strength g,
and z that of the height h.

To be sure, the electric field is time dependent. The above perturbation
potential really assumes that “the electron moves so fast that the field seems
steady to it.” Indeed, if an electron “speed” is ballparked from its kinetic energy,
the electron does seem to travel through the atom relatively fast compared to the
frequency of the electric field. Of course, it is much better to write the correct
unsteady Hamiltonian and then show it works out pretty much the same as the
quasi-steady one above. That is done in {D.39}.

Key Points

0 An approximate Hamiltonian was written down for the interaction
of an atom with an electromagnetic wave.

0 By approximation the atom sees a uniform, quasi-steady electric field.

7.7.2 The two-state model

The big question is how the electromagnetic field affects transitions between a
typical atomic state ψL of lower energy and one of higher energy ψH.

The answer depends critically on various Hamiltonian coefficients. In partic-
ular, the expectation values of the energies of the two states are needed. They
are

EL = 〈ψL|H|ψL〉 EH = 〈ψH|H|ψH〉
Here the Hamiltonian to use is (7.41) of the previous subsection; it includes the
electric field. But it can be seen that the energies are unaffected by the electric
field. They are the unperturbed atomic energies of the states. That follows from
symmetry; if you write out the inner products above using (7.41), the square
wave function is the same at any two positions ~r and −~r, but z in the electric
field term changes sign. So integration values pairwise cancel each other.

Note however that the two energies are now expectation values of energy;
due to the electric field the atomic states develop uncertainty in energy. That
is why they are no longer stationary states.

The other key Hamiltonian coefficient is

HHL = 〈ψH|H|ψL〉
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Plugging in the Hamiltonian (7.41), it is seen that the atomic part Hatom does
not contribute. The states ψH and ψL are orthogonal, and the atomic Hamilto-
nian just multiplies ψL by EL. But the electric field gives

HHL = Ef〈ψH|ez|ψL〉
ei(ωt−α) + e−i(ωt−α)

2

Here the cosine in (7.41) was taken apart into two exponentials using the Euler
formula (2.5).

The next question is what these coeffients mean for the transitions between
two atomic states ψL and ψH. First, since the atomic states are complete, the
wave function can always be written as

Ψ = cLψL + cHψH + . . .

where the dots stand for other atomic states. The coefficients cL and cH are the
key, because their square magnitudes give the probabilities of the states ψL and
ψH. So they determine whether transitions occur between them.

Evolution equations for these coefficients follow from the Schrödinger equa-
tion. The way to find them was described in section 7.6, with additional ma-
nipulations in derivation {D.38}. The resulting evolution equations are:

i~ ˙̄cL = HLHc̄H + . . . i~ ˙̄cH = HHLc̄L + . . . (7.42)

where the dots represent terms involving states other than ψL and ψH. These
equations use the modified coefficients

c̄L = cLe
iELt/~ c̄H = cHe

iEHt/~ (7.43)

The modified coefficients have the same square magnitudes as the original ones
and the same values at time zero. That makes them fully equivalent to the
original ones. The modified Hamiltonian coefficient in the evolution equations
is

HHL = H
∗
LH = 1

2
Ef〈ψH|ez|ψL〉ei(ω0−ω)t+α + 1

2
Ef〈ψH|ez|ψL〉ei(ω0+ω)t−α (7.44)

where ω0 is the frequency of a photon that has the exact energy EH − EL.
Note that this modified Hamiltonian coefficient is responsible for the inter-

action between the states ψL and ψH. If this Hamiltonian coefficient is zero, the
electromagnetic wave cannot cause transitions between the two states. At least
not within the approximations made.

Whether this happens depends on whether the inner product 〈ψH|ez|ψL〉
is zero. This inner product is called the “atomic matrix element” because it
depends only on the atomic states, not on the strength and frequency of the
electric wave.
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However, it does depend on the direction of the electric field. The assumed
plane wave had its electric field in the z-direction. Different waves can have their
electric fields in other directions. Therefore, waves can cause transitions as long
as there is at least one nonzero atomic matrix element of the form 〈ψL|eri|ψH〉,
with ri equal to x, y, or z. If there is such a nonzero matrix element, the
transition is called allowed. Conversely, if all three matrix elements are zero,
then transitions between the states ψL and ψH are called forbidden.

Note however that so-called forbidden transitions often occur just fine. The
derivation in the previous subsection made several approximations, including
that the magnetic field can be ignored and that the electric field is independent
of position. If these ignored effects are corrected for, many forbidden transitions
turn out to be possible after all; they are just much slower.

The approximations made to arrive at the atomic matrix element 〈ψH|ez|ψL〉
are known as the “electric dipole approximation.” The corresponding transitions
are called “electric dipole transitions.” If you want to know where the term
comes from, why? Anyway, in that case note first that if the electron charge
distribution is symmetric around the proton, the expectation value of ez will be
zero by symmetry. Negative z values will cancel positive ones. But the electron
charge distribution might get somewhat shifted to the positive z side, say. The
total atom is then still electrically neutral, but it behaves a bit like a combination
of a negative charge at a positive value of z and an equal and opposite positive
charge at a negative value of z. Such a combination of two opposite charges
is called a dipole in classical electromagnetics, chapter 13.3. So in quantum
mechanics the operator ez gives the dipole strength in the z-direction. And
if the above atomic matrix element is nonzero, it can be seen that nontrivial
combinations of ψL and ψH have a nonzero expectation dipole strength. So
the name “electric dipole transitions” is justified, especially since “basic electric
transitions” would be understandable by far too many nonexperts.

Allowed and forbidden transitions were discussed earlier in section 7.4. How-
ever, that was based on assumed properties of the emitted photon. The allowed
atomic matrix elements above, and similar forbidden ones, make it possible to
check the various most important results directly from the governing equations.
That is done in derivation {D.39}.

There is another requirement to get a decent transition probability. The
exponentials in the modified Hamiltonian coefficient (7.44) must not oscillate too
rapidly in time. Otherwise opposite values of the exponentials will average away
against each other. So no significant transition probability can build up. (This
is similar to the cancelation that gives rise to the adiabatic theorem, {D.34}.)
Now under real-life conditions, the second exponential in (7.44) will always
oscillate rapidly. Normal electromagnetic frequencies are very high. Therefore
the second term in (7.44) can normally be ignored.

And in order for the first exponential not too oscillate too rapidly requires
a pretty good match between the frequencies ω and ω0. Recall that ω is the
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frequency of the electromagnetic wave, while ω0 is the frequency of a photon
whose energy is the difference between the atomic energies EH and EL. If the
electric field does not match the frequency of that photon, it will not do much.
Using the Planck-Einstein relation, that means that

ω ≈ ω0 ≡ (EH − EL)/~

One consequence is that in transitions between two atomic states ψL and ψH,
other states usually do not need to be considered. Unless an other state matches
either the energy EH or EL, it will give rise to rapidly oscillating exponentials
that can be ignored.

In addition, the interest is often in the so-called collision-dominated regime
in which the atom evolves for only a short time before being disturbed by “col-
lisions” with its surroundings. In that case, the short evolution time prevents
nontrivial interactions between different transition processes to build up. Tran-
sition rates for the individual transition processes can be found separately and
simply added together.

The obtained evolution equations (7.42) can explain why absorption and
stimulated emission compete on an equal footing in the operation of lasers. The
reason is that the equations have a remarkable symmetry: for every solution c̄L,
c̄H there is a second solution c̄L,2 = c̄ ∗H, c̄H,2 = −c̄ ∗L that has the probabilities of
the low and high energy states exactly reversed. It means that

An electromagnetic field that takes an atom out of the low energy
state ψL towards the high energy state ψH will equally take that atom
out of the high energy state ψH towards the low energy state ψL.

It is a consequence of the Hermitian nature of the Hamiltonian; it would not
apply if HLH was not equal to H

∗
HL.

Key Points

0 The governing evolution equations for the probabilities of two atomic
states ψL and ψH in an electromagnetic wave have been found.

0 The equations have a symmetry property that makes electromagnetic
waves equally effective for absorption and stimulated emission.

0 Normally the electromagnetic field has no significant effect on tran-
sitions between the states unless its frequency ω closely matches the
frequency ω0 of a photon with energy EH − EL.

0 The governing equations can explain why some transitions are al-
lowed and others are forbidden. The key are so-called “atomic matrix
elements.”
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7.8 General Interaction with Radiation

Under typical conditions, a collection of atoms is not just subjected to a single
electromagnetic wave, as described in the previous section, but to “broadband”
incoherent radiation of all frequencies moving in all directions. Also, the in-
teractions of the atoms with their surroundings tend to be rare compared to
the frequency of the radiation but frequent compared to the typical life time of
the various excited atomic states. In other words, the evolution of the atomic
states is collision-dominated. The question in this subsection is what can be
said about the emission and absorption of radiation by the atoms under such
conditions.

Since both the electromagnetic field and the collisions are random, a statis-
tical rather than a determinate treatment is needed. In it, the probability that
a randomly chosen atom can be found in a typical atomic state ψL of low energy
will be called PL. Similarly, the probability that an atom can be found in an
atomic state ψH of higher energy will be called PH. More simplistic, PL can be
called the fraction of atoms in the low energy state and PH the fraction in the
high energy state.

The energy of the electromagnetic radiation, per unit volume and per unit
frequency range, will be indicated by ρ(ω). The particular frequency ω0 that is
relevant to transitions between two atomic states ψL and ψH is related to the
energy difference between the states. In particular,

ω0 = (EH − EL)/~

is the nominal frequency of the photon released or absorbed in a transition
between the two states.

In those terms, the fractions PL and PH of atoms in the two states evolve in
time according to the evolution equations, {D.41},

dPL

dt
= − BL→Hρ(ω0) PL + BH→Lρ(ω0) PH + AH→L PH + . . . (7.45)

dPH

dt
= + BL→Hρ(ω0) PL − BH→Lρ(ω0) PH − AH→L PH + . . . (7.46)

In the first equation, the first term in the right hand side reflects atoms that
are excited from the low energy state to the high energy state. That decreases
the number of low energy atoms, explaining the minus sign. The effect is of
course proportional to the fraction PL of low energy atoms that is available to
be excited. It is also proportional to the energy ρ(ω0) of the electromagnetic
waves that do the actual exciting.

Similarly, the second term in the right hand side of the first equation reflects
the fraction of low energy atoms that is created through de-excitation of excited
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atoms by the electromagnetic radiation. The final term reflects the low energy
atoms created by spontaneous decay of excited atoms. The constant AH→L is
the spontaneous emission rate. (It is really the decay rate λ as defined earlier
in section 7.5.3, but in the present context the term spontaneous emission rate
and symbol A tend to be used.)

The second equation can be understood similarly as the first. If there are
transitions with states other than ψL and ψH, all their effects should be summed
together; that is indicated by the dots in (7.45) and (7.46).

The constants in the equations are collectively referred to as the “Einstein
A and B coefficients.” Imagine that some big shot in engineering was too lazy
to select appropriate symbols for the quantities used in a paper and just called
them A and B. Referees and standards committees would be on his/her back,
big shot or not. However, in physics they still stick with the stupid symbols
almost a century later. At least in this context.

Anyway, the B coefficients are, {D.41},

BL→H = BH→L =
π

~2ǫ0

|〈ψL|e~r|ψH〉|2
3

(7.47)

Here ǫ0 = 8.854 19 10−12 C2/J m is the permittivity of space. Note from the
appearance of the Planck constant that the emission and absorption of radiation
is truly a quantum effect. The second ratio is the average atomic matrix element
discussed in the previous section. The fact that BL→H equals BH→L reflects that
the electric field is equally effective for absorption as for stimulated emission. It
is a consequence of the symmetry property of two-state systems mentioned in
the previous section.

The spontaneous emission rate was found by Einstein using a dirty trick,
{D.42}. It is

AH→L = BH→Lρequiv(ω0) ρequiv(ω) =
~ω3

π2c3
(7.48)

One way of thinking of the mechanism of spontaneous emission is that it is an
effect of the ground state electromagnetic field. Just like normal particle systems
still have nonzero energy left in their ground state, so does the electromagnetic
field. You could therefore think of this ground state electromagnetic field as the
source of the atomic perturbations that cause the atomic decay. If that picture
is right, then the term ρequiv in the expression above should be the energy of
the field in the ground state. In terms of the analysis of chapter 6.8, that would
mean that in the ground state, there is exactly one photon left in each radiation
mode. Just drop the factor (6.10) from (6.11).

It is a pretty reasonable description, but it is not quite true. In the ground
state of the electromagnetic field there is half a photon in each mode, not one.
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It is just like a harmonic oscillator, which has half an energy quantum ~ω left
in its ground state, chapter 4.1. Also, a ground state energy should not make
a difference for the evolution of a system. Instead, because of a twilight effect,
the photon that the excited atom interacts with is the one that it will emit,
addendum {A.24}.

As a special example of the given evolution equations, consider a closed
box whose inside is at absolute zero temperature. Then there is no ambient
blackbody radiation, ρ = 0. Now assume that initially there is a thin gas of
atoms in the box in an excited state ψH. These atoms will decay to whatever are
the available atomic states of lower energy. In particular, according to (7.46)
the fraction PH of excited atoms left will evolve as

dPH

dt
= − [AH→L1 + AH→L2 + AH→L3 + . . .]PH

where the sum is over all the lower energy states that exist. It describes the
effect of all possible spontaneous emission processes that the excited state is
subject to. (The above equation is a rewrite of (7.28) of section 7.5.3 in the
present notations.)

The above expression assumed that the excited atoms are in a box that is
at absolute zero temperature. Atoms in a box that is at room temperature are
bathed in thermal blackbody radiation. In principle you would then have to use
the full equations (7.45) and (7.46) to figure out what happens to the number of
excited atoms. Stimulated emission will add to spontaneous emission and new
excited atoms will be created by absorption. However, at room temperature
blackbody radiation has negligible energy in the visible light range, chapter 6.8
(6.10). Transitions in this range will not really be affected.

Key Points

0 This section described the general evolution equations for a system
of atoms in an incoherent ambient electromagnetic field.

0 The constants in the equations are called the Einstein A and B co-
efficients.

0 The B coefficients describe the relative response of transitions to
incoherent radiation. They are given by (7.47).

0 The A coefficients describe the spontaneous emission rate. They are
given by (7.48).

7.9 Position and Linear Momentum

The subsequent sections will be looking at the time evolution of various quantum
systems, as predicted by the Schrödinger equation. However, before that can
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be done, first the eigenfunctions of position and linear momentum must be
found. That is something that the book has been studiously avoiding so far.
The problem is that the position and linear momentum eigenfunctions have
awkward issues with normalizing them.

These normalization problems have consequences for the coefficients of the
eigenfunctions. In the orthodox interpretation, the square magnitudes of the
coefficients should give the probabilities of getting the corresponding values of
position and linear momentum. But this statement will have to be modified a
bit.

One good thing is that unlike the Hamiltonian, which is specific to a given
system, the position operator

~̂r = (x̂, ŷ, ẑ)

and the linear momentum operator

~̂p = (p̂x, p̂y, p̂z) =
~

i

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

are the same for all systems. So, you only need to find their eigenfunctions once.

7.9.1 The position eigenfunction

The eigenfunction that corresponds to the particle being at a precise x-position
x, y-position y, and z-position z will be denoted by Rxyz(x, y, z). The eigenvalue
problem is:

x̂Rxyz(x, y, z) = xRxyz(x, y, z)

ŷRxyz(x, y, z) = yRxyz(x, y, z)

ẑRxyz(x, y, z) = zRxyz(x, y, z)

(Note the need in this analysis to use (x, y, z) for the measurable particle posi-
tion, since (x, y, z) are already used for the eigenfunction arguments.)

To solve this eigenvalue problem, try again separation of variables, where it
is assumed that Rxyz(x, y, z) is of the form X(x)Y (y)Z(z). Substitution gives
the partial problem for X as

xX(x) = xX(x)

This equation implies that at all points x not equal to x, X(x) will have to be
zero, otherwise there is no way that the two sides can be equal. So, function
X(x) can only be nonzero at the single point x. At that one point, it can be
anything, though.
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To resolve the ambiguity, the function X(x) is taken to be the “Dirac delta
function,”

X(x) = δ(x− x)
The delta function is, loosely speaking, sufficiently strongly infinite at the single
point x = x that its integral over that single point is one. More precisely, the
delta function is defined as the limiting case of the function shown in the left
hand side of figure 7.10.

0 x x

δε(x− x)

0 x x

δ(x− x)

✲✛ width: ε

✻

❄

height:
1

ε

Figure 7.10: Approximate Dirac delta function δε(x−x) is shown left. The true
delta function δ(x − x) is the limit when ε becomes zero, and is an infinitely
high, infinitely thin spike, shown right. It is the eigenfunction corresponding to
a position x.

The fact that the integral is one leads to a very useful mathematical property
of delta functions: they are able to pick out one specific value of any arbitrary
given function f(x). Just take an inner product of the delta function δ(x − x)
with f(x). It will produce the value of f(x) at the point x, in other words, f(x):

〈δ(x− x)|f(x)〉 =
∫ ∞

x=−∞
δ(x− x)f(x) dx =

∫ ∞

x=−∞
δ(x− x)f(x) dx = f(x)

(7.49)
(Since the delta function is zero at all points except x, it does not make a
difference whether f(x) or f(x) is used in the integral.) This is sometimes
called the “filtering property” of the delta function.

The problems for the position eigenfunctions Y and Z are the same as the one
for X, and have a similar solution. The complete eigenfunction corresponding
to a measured position (x, y, z) is therefore:

Rxyz(x, y, z) = δ(x− x)δ(y − y)δ(z − z) ≡ δ3(~r −~r) (7.50)
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Here δ3(~r − ~r) is the three-dimensional delta function, a spike at position ~r
whose volume integral equals one.

According to the orthodox interpretation, the probability of finding the par-
ticle at (x, y, z) for a given wave function Ψ should be the square magnitude
of the coefficient cxyz of the eigenfunction. This coefficient can be found as an
inner product:

cxyz(t) = 〈δ(x− x)δ(y − y)δ(z − z)|Ψ〉

It can be simplified to

cxyz(t) = Ψ(x, y, z; t) (7.51)

because of the property of the delta functions to pick out the corresponding
function value.

However, the apparent conclusion that |Ψ(x, y, z; t)|2 gives the probability of
finding the particle at (x, y, z) is wrong. The reason it fails is that eigenfunctions
should be normalized; the integral of their square should be one. The integral
of the square of a delta function is infinite, not one. That is OK, however; ~r
is a continuously varying variable, and the chances of finding the particle at
(x, y, z) to an infinite number of digits accurate would be zero. So, the properly
normalized eigenfunctions would have been useless anyway.

Instead, according to Born’s statistical interpretation of chapter 3.1, the
expression

|Ψ(x, y, z; t)|2 dxdydz

gives the probability of finding the particle in an infinitesimal volume dxdydz
around (x, y, z). In other words, |Ψ(x, y, z; t)|2 gives the probability of finding
the particle near location (x, y, z) per unit volume. (The underlines below the
position coordinates are no longer needed to avoid ambiguity and have been
dropped.)

Besides the normalization issue, another idea that needs to be somewhat
modified is a strict collapse of the wave function. Any position measurement
that can be done will leave some uncertainty about the precise location of the
particle: it will leave Ψ(x, y, z; t) nonzero over a small range of positions, rather
than just one position. Moreover, unlike energy eigenstates, position eigenstates
are not stationary: after a position measurement, Ψ will again spread out as
time increases.

Key Points

0 Position eigenfunctions are delta functions.

0 They are not properly normalized.

0 The coefficient of the position eigenfunction for a position (x, y, z) is
the good old wave function Ψ(x, y, z; t).



7.9. POSITION AND LINEAR MOMENTUM 385

0 Because of the fact that the delta functions are not normalized, the
square magnitude of Ψ(x, y, z; t) does not give the probability that
the particle is at position (x, y, z).

0 Instead the square magnitude of Ψ(x, y, z; t) gives the probability
that the particle is near position (x, y, z) per unit volume.

0 Position eigenfunctions are not stationary, so localized particle wave
functions will spread out over time.

7.9.2 The linear momentum eigenfunction

Turning now to linear momentum, the eigenfunction that corresponds to a pre-
cise linear momentum (px, py, pz) will be indicated as Ppxpypz(x, y, z). If you
again assume that this eigenfunction is of the form X(x)Y (y)Z(z), the partial
problem for X is found to be:

~

i

∂X(x)

∂x
= pxX(x)

The solution is a complex exponential:

X(x) = Aeipxx/~

where A is a constant.
Just like the position eigenfunction earlier, the linear momentum eigenfunc-

tion has a normalization problem. In particular, since it does not become small
at large |x|, the integral of its square is infinite, not one. The solution is to ig-
nore the problem and to just take a nonzero value for A; the choice that works
out best is to take:

A =
1√
2π~

(However, other books, in particular nonquantum ones, are likely to make a
different choice.)

The problems for the y and z linear momenta have similar solutions, so the
full eigenfunction for linear momentum takes the form:

Ppxpypz(x, y, z) =
1

√
2π~

3 e
i(pxx+pyy+pzz)/~ (7.52)

The coefficient cpxpypz(t) of the momentum eigenfunction is very important
in quantum analysis. It is indicated by the special symbol Φ(px, py, pz; t) and
called the “momentum space wave function.” Like all coefficients, it can be
found by taking an inner product of the eigenfunction with the wave function:

Φ(px, py, pz; t) =
1

√
2π~

3 〈ei(pxx+pyy+pzz)/~|Ψ〉 (7.53)
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The momentum space wave function does not quite give the probability for
the momentum to be (px, py, pz). Instead it turns out that

|Φ(px, py, pz; t)|2dpxdpydpz
gives the probability of finding the linear momentum within a small momen-
tum range dpxdpydpz around (px, py, pz). In other words, |Φ(px, py, pz; t)|2 gives
the probability of finding the particle with a momentum near (px, py, pz) per
unit “momentum space volume.” That is much like the square magnitude
|Ψ(x, y, z; t)|2 of the normal wave function gives the probability of finding the
particle near location (x, y, z) per unit physical volume. The momentum space
wave function Φ is in the momentum space (px, py, pz) what the normal wave
function Ψ is in the physical space (x, y, z).

There is even an inverse relationship to recover Ψ from Φ, and it is easy to
remember:

Ψ(x, y, z; t) =
1

√
2π~

3 〈e−i(pxx+pyy+pzz)/~|Φ〉~p (7.54)

where the subscript on the inner product indicates that the integration is over
momentum space rather than physical space.

If this inner product is written out, it reads:

Ψ(x, y, z; t) =
1

√
2π~

3

∫∫∫

all ~p

Φ(px, py, pz; t) e
i(pxx+pyy+pzz)/~ dpxdpydpz (7.55)

Mathematicians prove this formula under the name “Fourier Inversion Theo-
rem”, {A.26}. But it really is just the same sort of idea as writing Ψ as a sum
of eigenfunctions ψn times their coefficients cn, as in Ψ =

∑
n cnψn. In this

case, the coefficients are given by Φ and the eigenfunctions by the exponential
(7.52). The only real difference is that the sum has become an integral since ~p
has continuous values, not discrete ones.

Key Points

0 The linear momentum eigenfunctions are complex exponentials of
the form:

1
√
2π~

3 e
i(pxx+pyy+pzz)/~

0 They are not properly normalized.

0 The coefficient of the linear momentum eigenfunction for a momen-
tum (px, py, pz) is indicated by Φ(px, py, pz; t). It is called the mo-
mentum space wave function.

0 Because of the fact that the momentum eigenfunctions are not nor-
malized, the square magnitude of Φ(px, py, pz; t) does not give the
probability that the particle has momentum (px, py, pz).
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0 Instead the square magnitude of Φ(px, py, pz; t) gives the probabil-
ity that the particle has a momentum close to (px, py, pz) per unit
momentum space volume.

0 In writing the complete wave function in terms of the momentum
eigenfunctions, you must integrate over the momentum instead of
sum.

0 The transformation between the physical space wave function Ψ and
the momentum space wave function Φ is called the Fourier transform.
It is invertible.

7.10 Wave Packets

This section gives a full description of the motion of a particle according to
quantum mechanics. It will be assumed that the particle is in free space, so
that the potential energy is zero. In addition, to keep the analysis concise and
the results easy to graph, it will be assumed that the motion is only in the
x-direction. The results may easily be extended to three dimensions by using
separation of variables.

One thing that the analysis will show is how limiting the uncertainty in both
momentum and position produces the various features of classical Newtonian
motion. It may be recalled that in Newtonian motion through free space, the
linear momentum p is constant. In addition, since p/m is the velocity v, the
classical particle will move at constant speed. So classical Newtonian motion
would say:

v =
p

m
= constant x = vt+ x0 for Newtonian motion in free space

(Note that p is used to indicate px in this and the following sections.)

7.10.1 Solution of the Schrödinger equation.

As discussed in section 7.1, the unsteady evolution of a quantum system may be
determined by finding the eigenfunctions of the Hamiltonian and giving them
coefficients that are proportional to e−iEt/~. This will be worked out in this
subsection.

For a free particle, there is only kinetic energy, so in one dimension the
Hamiltonian eigenvalue problem is:

− ~
2

2m

∂2ψ

∂x2
= Eψ (7.56)

Solutions to this equation take the form of exponentials

ψE = Ae±i
√
2mEx/~
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where A is a constant.
Note that E must be positive: if the square root would be imaginary, the

solution would blow up exponentially at large positive or negative x. Since the
square magnitude of ψ at a point gives the probability of finding the particle
near that position, blow up at infinity would imply that the particle must be at
infinity with certainty.

The energy eigenfunction above is really the same as the eigenfunction of
the x-momentum operator p̂x derived in the previous section:

ψE =
1√
2π~

eipx/~ with p = ±
√
2mE (7.57)

The reason that the momentum eigenfunctions are also energy eigenfunctions is
that the energy is all kinetic energy, and the kinetic operator equals T̂ = p̂2/2m.
So eigenfunctions with precise momentum p have precise energy p2/2m.

As shown by (7.55) in the previous section, combinations of momentum
eigenfunctions take the form of an integral rather than a sum. In the one-di-
mensional case that integral is:

Ψ(x, t) =
1√
2π~

∫ ∞

−∞
Φ(p, t)eipx/~ dp

where Φ(p, t) is called the momentum space wave function.
Whether a sum or an integral, the Schrödinger equation still requires that

the coefficient of each energy eigenfunction varies in time proportional to e−iEt/~.
The coefficient here is the momentum space wave function Φ, and the energy is
E = p2/2m, so the solution of the Schrödinger equation must be:

Ψ(x, t) =
1√
2π~

∫ ∞

−∞
Φ0(p) e

ip(x− p
2m

t)/~ dp (7.58)

Here Φ0(p) ≡ Φ(p, 0) is determined by whatever initial conditions are relevant
to the situation that is to be described. The above integral is the final solution
for a particle in free space.

Key Points

0 In free space, momentum eigenfunctions are also energy eigenfunc-
tions.

0 The one-dimensional wave function for a particle in free space is given
by (7.58).

0 The function Φ0 is still to be chosen to produce whatever physical
situation is to be described.
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7.10.2 Component wave solutions

Before trying to interpret the complete obtained solution (7.58) for the wave
function of a particle in free space, it is instructive first to have a look at the
component solutions, defined by

ψw ≡ eip(x−
p

2m
t)/~ (7.59)

These solutions will be called component waves; both their real and imaginary
parts are sinusoidal, as can be seen from the Euler formula (2.5).

ψw = cos
(
p
(
x− p

2m
t
)
/~
)
+ i sin

(
p
(
x− p

2m
t
)
/~
)

In figure 7.11, the real part of the wave (in other words, the cosine), is
sketched as the red curve; also the magnitude of the wave (which is unity) is
shown as the top black line, and minus the magnitude is drawn as the bottom
black line. The black lines enclose the real part of the wave, and will be called

Figure 7.11: The real part (red) and envelope (black) of an example wave.

the “envelope.” Since their vertical separation is twice the magnitude of the
wave function, the vertical separation between the black lines at a point is a
measure for the probability of finding the particle near that point.

The constant separation between the black lines shows that there is abso-
lutely no localization of the particle to any particular region. The particle is
equally likely to be found at every point in the infinite range. This also graphi-
cally demonstrates the normalization problem of the momentum eigenfunctions
discussed in the previous section: the total probability of finding the particle
just keeps getting bigger and bigger, the larger the range you look in. So there
is no way that the total probability of finding the particle can be limited to one
as it should be.

The reason for the complete lack of localization is the fact that the com-
ponent wave solutions have an exact momentum p. With zero uncertainty in
momentum, Heisenberg’s uncertainty relationship says that there must be infi-
nite uncertainty in position. There is.

There is another funny thing about the component waves: when plotted for
different times, it is seen that the real part of the wave moves towards the right
with a speed p/2m = 1

2
v, as illustrated in figure 7.12.

This is unexpected, because classically the particle moves with speed v, not
1
2
v. The problem is that the speed with which the wave moves, called the “phase

speed,” is not meaningful physically. In fact, without anything like a location
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Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/wavemv.gif

Figure 7.12: The wave moves with the phase speed.

for the particle, there is no way to define a physical velocity for a component
wave.

Key Points

0 Component waves provide no localization of the particle at all.

0 Their real part is a moving cosine. Similarly their imaginary part is
a moving sine.

0 The speed of motion of the cosine or sine is half the speed of a classical
particle with that momentum.

0 This speed is called the phase speed and is not relevant physically.

7.10.3 Wave packets

As Heisenberg’s principle indicates, in order to get some localization of the
position of a particle, some uncertainty must be allowed in momentum. That
means that you must take the initial momentum space wave function Φ0 in
(7.58) to be nonzero over at least some small interval of different momentum
values p. Such a combination of component waves is called a “wave packet”.

The wave function for a typical wave packet is sketched in figure 7.13. The
red line is again the real part of the wave function, and the black lines are the
envelope enclosing the wave; they equal plus and minus the magnitude of the
wave function.

Figure 7.13: The real part (red) and magnitude or envelope (black) of a wave
packet. (Schematic).

The vertical separation between the black lines is again a measure of the
probability of finding the particle near that location. It is seen that the possible

http://www.eng.famu.fsu.edu/~dommelen/quansup/wavemv.gif
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locations of the particle are now restricted to a finite region, the region in which
the vertical distance between the black lines is nonzero.

If the envelope changes location with time, and it does, then so does the
region where the particle can be found. This then finally is the correct picture
of motion in quantum mechanics: the region in which the particle can be found
propagates through space.

The limiting case of the motion of a macroscopic Newtonian point mass can
now be better understood. As noted in section 7.2.1, for such a particle the
uncertainty in position is negligible. The wave packet in which the particle can
be found, as sketched in figure 7.13, is so small that it can be considered to be
a point. To that approximation the particle then has a point position, which is
the normal classical description.

The classical description also requires that the particle moves with velocity
u = p/m, which is twice the speed p/2m of the wave. So the envelope should
move twice as fast as the wave. This is indicated in figure 7.14 by the length of
the bars, which show the motion of a point on the envelope and of a point on
the wave during a small time interval.

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/packetmv.gif

Figure 7.14: The velocities of wave and envelope are not equal.

That the envelope does indeed move at speed p/m can be seen if you define
the representative position of the envelope to be the expectation value of posi-
tion. That position must be somewhere in the middle of the wave packet. The
expectation value of position moves according to Ehrenfest’s theorem of section
7.2.1 with a speed 〈p〉/m, where 〈p〉 is the expectation value of momentum,
which must be constant since there is no force. Since the uncertainty in mo-
mentum is small for a macroscopic particle, the expectation value of momentum
〈p〉 can be taken to be “the” momentum p.

Key Points

0 A wave packet is a combination of waves with about the same mo-
mentum.

0 Combining waves into wave packets can provide localization of par-
ticles.

0 The envelope of the wave packet shows the region where the particle
is likely to be found.

http://www.eng.famu.fsu.edu/~dommelen/quansup/packetmv.gif
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0 This region propagates with the classical particle velocity.

7.10.4 Group velocity

As the previous subsection explained, particle motion in classical mechanics is
equivalent to the motion of wave packets in quantum mechanics. Motion of a
wave packet implies that the region in which the particle can be found changes
position.

Motion of wave packets is not just important for understanding where par-
ticles in free space end up. It is also critical for the quantum mechanics of for
example solids, in which electrons, photons, and phonons (quanta of crystal vi-
brations) move around in an environment that is cluttered with other particles.
And it is also of great importance in classical applications, such as acoustics
in solids and fluids, water waves, stability theory of flows, electromagnetody-
namics, etcetera. This section explains how wave packets move in such more
general systems. Only the one-dimensional case will be considered, but the
generalization to three dimensions is straightforward.

The systems of interest have component wave solutions of the general form:

component wave: ψw = ei(kx−ωt) (7.60)

The constant k is called the “wave number,” and ω the “angular frequency.” The
wave number and frequency must be real for the analysis in this section to apply.
That means that the magnitude of the component waves must not change with
space nor time. Such systems are called nondissipative: although a combination
of waves may get dispersed over space, its square magnitude integral will be
conserved. (This is true on account of Parseval’s relation, {A.26}.)

For a particle in free space according to the previous subsection:

k =
p

~
ω =

p2

2m~

Therefore, for a particle in free space the wave number k is just a rescaled linear
momentum, and the frequency ω is just a rescaled kinetic energy. This will be
different for a particle in a nontrivial surroundings.

Regardless of what kind of system it is, the relationship between the fre-
quency and the wave number is called the

dispersion relation: ω = ω(k) (7.61)

It really defines the physics of the wave propagation.
Since the waves are of the form eik(x−

ω
k
t), the wave is constant if x = (ω/k)t

plus any constant. Such points move with the

phase velocity: vp ≡
ω

k
(7.62)
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In free space, the phase velocity is half the classical velocity.

However, as noted in the previous subsection, wave packets do not normally
move with the phase velocity. The velocity that they do move with is called
the “group velocity.” For a particle in free space, you can infer that the group
velocity is the same as the classical velocity from Ehrenfest’s theorem, but that
does not work for more general systems. The approach will therefore be to
simply define the group velocity as

group velocity: vg ≡
dω

dk
(7.63)

and then to explore how the so-defined group velocity relates to the motion of
wave packets.

Wave packets are combinations of component waves, and the most general
combination of waves takes the form

Ψ(x, t) =
1√
2π

∫ ∞

−∞
Φ0(k)e

i(kx−ωt) dk (7.64)

Here Φ0 is the complex amplitude of the waves. The combination Φ0e
−iωt is

called the “Fourier transform” of Ψ. The factor
√
2π is just a normalization

factor that might be chosen differently in another book. Wave packets corre-
spond to combinations in which the complex amplitude Φ0(k) is only nonzero
in a small range of wave numbers k. More general combinations of waves may
of course always be split up into such wave packets.

To describe the motion of wave packets is not quite as straightforward as
it may seem: the envelope of a wave packet extends over a finite region, and
different points on it actually move at somewhat different speeds. So what do
you take as the point that defines the motion if you want to be precise? There is
a trick here: consider very long times. For large times, the propagation distance
is so large that it dwarfs the ambiguity about what point to take as the position
of the envelope.

Finding the wave function Ψ for large time is a messy exercise banned to
derivation {D.44}. But the conclusions are fairly straightforward. Assume that
the range of waves in the packet is restricted to some small interval k1 < k < k2.
In particular, assume that the variation in group velocity is relatively small and
monotonous. In that case, for large times the wave function will be negligibly
small except in the region

vg1t < x < vg2t

(In case vg1 > vg2, invert these inequalities.) Since the variation in group veloc-
ity is small for the packet, it therefore definitely does move with “the” group
velocity.
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It is not just possible to say where the wave function is nonzero at large
times. It is also possible to write a complete approximate wave function for
large times:

Ψ(x, t) ∼ e∓iπ/4√
|v′g0|t

Φ0(k0)e
i(k0x−ω0t) vg0 =

x

t

Here k0 is the wave number at which the group speed is exactly equal to x/t, ω0

is the corresponding frequency, v′g0 is the derivative of the group speed at that
point, and ∓ stands for the sign of −v′g0.

While this precise expression may not be that important, it is interesting to
note that Ψ decreases in magnitude proportional to 1/

√
t. That can be under-

stood from conservation of the probability to find the particle. The wave packet
spreads out proportional to time because of the small but nonzero variation in
group velocity. Therefore Ψ must be proportional to 1/

√
t if its square integral

is to remain unchanged.
One other interesting feature may be deduced from the above expression for

Ψ. If you examine the wave function on the scale of a few oscillations, it looks
as if it was a single component wave of wave number k0 and frequency ω0. Only
if you look on a bigger scale do you see that it really is a wave packet. To
understand why, just look at the differential

d(k0x− ω0t) = k0dx− ω0dt+ xdk0 − tdω0

and observe that the final two terms cancel because dω0/dk0 is the group ve-
locity, which equals x/t. Therefore changes in k0 and ω0 do not show up on a
small scale.

For the particle in free space, the result for the large time wave function can
be written out further to give

Ψ(x, t) ∼ e−iπ/4
√
m

t
Φ0

(mx
t

)
eimx

2/2~t

Since the group speed p/m in this case is monotonously increasing, the wave
packets have negligible overlap, and this is in fact the large time solution for
any combination of waves, not just narrow wave packets.

In a typical true quantum mechanics case, Φ0 will extend over a range of
wave numbers that is not small, and may include both positive and negative
values of the momentum p. So, there is no longer a meaningful velocity for
the wave function: the wave function spreads out in all directions at velocities
ranging from negative to positive. For example, if the momentum space wave
function Φ0 consists of two narrow nonzero regions, one at a positive value of p
and one at a negative value, then the wave function in normal space splits into
two separate wave packets. One packet moves with constant speed towards the
left, the other with constant speed towards the right. The same particle is now
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going in two completely different directions at the same time. That would be
unheard of in classical Newtonian mechanics.

Key Points

0 Component waves have the generic form ei(kx−ωt).

0 The constant k is the wave number.

0 The constant ω is the angular frequency.

0 The relation between ω and k is called the dispersion relation.

0 The phase velocity is ω/k. It describes how fast the wave moves.

0 The group velocity is dω/dk. It describes how fast wave packets
move.

0 Relatively simple expressions exist for the wave function of wave
packets at large times.

7.10.5 Electron motion through crystals

One important application of group velocity is the motion of conduction elec-
trons through crystalline solids. This subsection discusses it.

Conduction electrons in solids must move around the atoms that make up
the solid. You cannot just forget about these atoms in discussing the motion
of the conduction electrons. Even semi-classically speaking, the electrons in a
solid move in a roller-coaster ride around the atoms. Any external force on the
electrons is on top of the large forces that the crystal already exerts. So it is
simply wrong to say that the external force gives mass times acceleration of the
electrons. Only the total force would do that.

Typically, on a microscopic scale the solid is crystalline; in other words,
the atoms are arranged in a periodic pattern. That means that the forces on
the electrons have a periodic nature. As usual, any direct interactions between
particles will be ignored as too complex to analyze. Therefore, it will be assumed
that the potential energy seen by an electron is a given periodic function of
position.

It will also again be assumed that the motion is one-dimensional. In that case
the energy eigenfunctions are determined from a one-dimensional Hamiltonian
eigenvalue problem of the form

− ~
2

2me

∂2ψ

∂x2
+ V (x)ψ = Eψ (7.65)

Here V (x) is a periodic potential energy, with some given atomic-scale period
d.
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Three-dimensional energy eigenfunctions may be found as products of one-
dimensional ones; compare chapter 3.5.8. Unfortunately however, that only
works here if the three-dimensional potential is some sum of one-dimensional
ones, as in

V (x, y, z) = Vx(x) + Vy(y) + Vz(z)

That is really quite limiting. The general conclusions that will be reached in
this subsection continue to apply for any periodic potential, not just a sum of
one-dimensional ones.

The energy eigenfunction solutions to (7.65) take the form of “Bloch waves:”

ψp
k(x) = ψp

p,k(x)e
ikx (7.66)

where ψp
p,k is a periodic function of period d like the potential.

The reason that the energy eigenfunctions take the form of Bloch waves is
not that difficult to understand. It is a consequence of the fact that commuting
operators have common eigenfunctions, chapter 4.5.1. Consider the “translation
operator” Td that shifts wave functions over one atomic period d. Since the
potential is exactly the same after a wave function is shifted over an atomic
period, the Hamiltonian commutes with the translation operator. It makes no
difference whether you apply the Hamiltonian before or after you shift a wave
function over an atomic period. Therefore, the energy eigenfunctions can be
taken to be also eigenfunctions of the translation operator. The translation
eigenvalue must have magnitude one, since the magnitude of a wave function
does not change when you merely shift it. Therefore the eigenvalue can always
be written as eikd for some real value k. And that means that if you write the
eigenfunction in the Bloch form (7.66), then the exponential will produce the
eigenvalue during a shift. So the part ψp

p,k must be the same after the shift.
Which means that it is periodic of period d. (Note that you can always write
any wave function in Bloch form; the nontrivial part is that ψp

p,k is periodic for
actual Bloch waves.)

If the crystal is infinite in size, the wave number k can take any value. (For
a crystal in a finite-size periodic box as studied in chapter 6.22, the values of k
are discrete. However, this subsection will assume an infinite crystal.)

To understand what the Bloch form means for the electron motion, first
consider the case that the periodic factor ψp

p,k is just a trivial constant. In
that case the Bloch waves are eigenfunctions of linear momentum. The linear
momentum p is then ~k. That case applies if the crystal potential is just a
trivial constant. In particular, it is true if the electron is in free space.

Even if there is a nontrivial crystal potential, the so-called “crystal momen-
tum” is still defined as:

pcm = ~k (7.67)

(In three dimensions, substitute the vectors ~p and ~k). But crystal momentum
is not normal momentum. In particular, for an electron in a crystal you can no
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longer get the propagation velocity by dividing the crystal momentum by the
mass.

Instead you can get the propagation velocity by differentiating the energy
with respect to the crystal momentum, {D.45}:

v =
dEp

dpcm
pcm = ~k (7.68)

(In three dimensions, replace the p-derivative by 1/~ times the gradient with

respect to ~k.) In free space, Ep = ~ω and pcm = ~k, so the above expression for
the electron velocity is just the expression for the group velocity.

One conclusion that can be drawn is that electrons in an ideal crystal keep
moving with the same speed for all times like they do in free space. They do
not get scattered at all. The reason is that energy eigenfunctions are stationary.
Each eigenfunction corresponds to a single value of k and so to a corresponding
single value of the propagation speed v above. An electron wave packet will
involve a small range of energy eigenfunctions, and a corresponding small range
of velocities. But since the range of energy eigenfunctions does not change with
time, neither does the range of velocities. Scattering, which implies a change in
velocity, does not occur.

This perfectly organized motion of electrons through crystals is quite sur-
prising. If you make up a classical picture of an electron moving through a
crystal, you would expect that the electron would pretty much bounce off ev-
ery atom it encountered. It would then perform a drunkard’s walk from atom
to atom. That would really slow down electrical conduction. But it does not
happen. And indeed, experimentally electrons in metals may move past many
thousands of atoms without getting scattered. In very pure copper at very low
cryogenic temperatures electrons may even move past many millions of atoms
before getting scattered.

Note that a total lack of scattering only applies to truly ideal crystals. Elec-
trons can still get scattered by impurities or other crystal defects. More im-
portantly, at normal temperatures the atoms in the crystal are not exactly in
their right positions due to thermal motion. That too can scatter electrons. In
quantum terms, the electrons then collide with the phonons of the crystal vibra-
tions. The details are too complex to be treated here, but it explains why metals
conduct much better still at cryogenic temperatures than at room temperature.

The next question is how does the propagation velocity of the electron change
if an external force Fext is applied? It turns out that Newton’s second law, in
terms of momentum, still works if you substitute the crystal momentum ~k for
the normal momentum, {D.45}:

dpcm
dt

= Fext pcm = ~k (7.69)
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However, since the velocity is not just the crystal momentum divided by the
mass, you cannot convert the left hand side to the usual mass times acceleration.
The acceleration is instead, using the chain rule of differentiation,

dv

dt
=

d2Ep

dp2cm

dpcm
dt

=
d2Ep

dp2cm
Fext

For mass times acceleration to be the force, the factor multiplying the force in
the final expression would have to be the reciprocal of the electron mass. It
clearly is not; in general it is not even a constant.

But physicists still like to think of the effect of force as mass times accelera-
tion of the electrons. So they cheat. They ignore the true mass of the electron.
Instead they simply define a new “effective mass” for the electron so that the
external force equals that effective mass times the acceleration:

meff ≡ 1

/
d2Ep

dp2cm
pcm = ~k (7.70)

Unfortunately, the effective mass is often a completely different number than
the true mass of the electron. Indeed, it is quite possible for this “mass” to
become negative for some range of wave numbers. Physically that means that
if you put a force on the electron that pushes it one way, it will accelerate in
the opposite direction! That can really happen. It is a consequence of the
wave nature of quantum mechanics. Waves in crystals can be reflected just like
electromagnetic waves can, and a force on the electron may move it towards
stronger reflection.

For electrons near the bottom of the conduction band, the effective mass
idea may be a bit more intuitive. At the bottom of the conduction band, the
energy has a minimum. From calculus, if the energy Ep has a minimum at some
wave number vector, then in a suitably oriented axis system it can be written
as the Taylor series

E
p
= E

p
min +

1
2

∂2Ep

∂k2x
k2x +

1
2

∂2Ep

∂k2y
k2y +

1
2

∂2Ep

∂k2z
k2z + . . .

Here the wave number values are measured from the position of the minimum.
This can be rewritten in terms of the crystal momenta and effective masses in
each direction as

E
p
= E

p
min +

1
2

1

meff,x

p2cm,x +
1
2

1

meff,y

p2cm,y +
1
2

1

meff,z

p2cm,z + . . . (7.71)

In this case the effective masses are indeed positive, since second derivatives
must be positive near a minimum. These electrons act much like classical parti-
cles. They move in the right direction if you put a force on them. Unfortunately,
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the effective masses are not necessarily similar to the true electron mass, or even
the same in each direction.

For the effective mass of the holes at the top of a valence band things get
much messier still. For typical semiconductors, the energy no longer behaves as
an analytic function, even though the energy in a specific direction continues
to vary quadratically with the magnitude of the wave number. So the Taylor
series is no longer valid. You then end up with such animals as “heavy holes,”
“light holes,” and “split-off holes.” Such effects will be ignored in this book.

Key Points

0 The energy eigenfunctions for periodic potentials take the form of
Bloch waves, involving a wave number k.

0 The crystal momentum is defined as ~k.

0 The first derivative of the electron energy with respect to the crystal
momentum gives the propagation velocity.

0 The second derivative of the electron energy with respect to the crys-
tal momentum gives the reciprocal of the effective mass of the elec-
tron.

7.11 Almost Classical Motion

This section examines the motion of a particle in the presence of a single external
force. Just like in the previous section, it will be assumed that the initial position
and momentum are narrowed down sufficiently that the particle is restricted to
a relatively small, coherent, region. Solutions of this type are called “wave
packets.”

In addition, for the examples in this section the forces vary slowly enough
that they are approximately constant over the spatial extent of the wave packet.
Hence, according to Ehrenfest’s theorem, section 7.2.1, the wave packet should
move according to the classical Newtonian equations.

The examples in this section were obtained on a computer, and should be
numerically exact. Details about how they were computed can be found in ad-
dendum {A.27}, if you want to understand them better, or create some yourself.

There is an easy general way to find approximate energy eigenfunctions and
eigenvalues applicable under the conditions used in this section. It is called the
WKB method. Addendum {A.28} has a description.

7.11.1 Motion through free space

First consider the trivial case that there are no forces; a particle in free space.
This will provide the basis against which the motion with forces in the next
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subsections can be compared to.
Classically, a particle in free space moves at a constant velocity. In quantum

mechanics, the wave packet does too; figure 7.15 shows it at two different times.

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/free.gif

Hi-res: http://www.eng.famu.fsu.edu/~dommelen/quansup/freehi.html

Figure 7.15: A particle in free space.

If you step back far enough that the wave packet in the figures begins to
resemble just a dot, you have classical motion. The blue point indicates the
position of maximum wave function magnitude, as a visual anchor. It provides
a reasonable approximation to the expectation value of position whenever the
wave packet contour is more or less symmetric. A closer examination shows that
the wave packet is actually changing a bit in size in addition to translating.

7.11.2 Accelerated motion

Figure 7.16 shows the motion when the potential energy (shown in green) ramps
down starting from the middle of the plotted range. Physically this corresponds
to a constant accelerating force beyond that point. A classical point particle
would move at constant speed until it encounters the ramp, after which it would
start accelerating at a constant rate. The quantum mechanical solution shows a
corresponding acceleration of the wave packet, but in addition the wave packet
stretches a lot.

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/acc.gif

Hi-res: http://www.eng.famu.fsu.edu/~dommelen/quansup/acchi.html

Figure 7.16: An accelerating particle.

http://www.eng.famu.fsu.edu/~dommelen/quansup/free.gif
http://www.eng.famu.fsu.edu/~dommelen/quansup/freehi.html
http://www.eng.famu.fsu.edu/~dommelen/quansup/acc.gif
http://www.eng.famu.fsu.edu/~dommelen/quansup/acchi.html


7.11. ALMOST CLASSICAL MOTION 401

7.11.3 Decelerated motion

Figure 7.17 shows the motion when the potential energy (shown in green) ramps
up starting from the center of the plotting range. Physically this corresponds
to a constant decelerating force beyond that point. A classical point particle
would move at constant speed until it encounters the ramp, after which it would
start decelerating until it runs out of kinetic energy; then it would be turned
back, returning to where it came from.

The quantum mechanical solution shows a corresponding reflection of the
wave packet back to where it came from. The black dot on the potential energy
line shows the “turning point” where the potential energy becomes equal to
the nominal energy of the wave packet. That is the point where classically the
particle runs out of kinetic energy and is turned back.

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/bounce.gif

Hi-res: http://www.eng.famu.fsu.edu/~dommelen/quansup/bouncehi.html

Figure 7.17: A decelerating particle.

7.11.4 The harmonic oscillator

The harmonic oscillator describes a particle caught in a force field that prevents
it from escaping in either direction. In all three previous examples the particle
could at least escape towards the far left. The harmonic oscillator was the first
real quantum system that was solved, in chapter 4.1, but only now, near the
end of part I, can the classical picture of a particle oscillating back and forward
actually be created.

There are some mathematical differences from the previous cases, because
the energy levels of the harmonic oscillator are discrete, unlike those of the
particles that are able to escape. But if the energy levels are far enough above
the ground state, localized wave packets similar to the ones in free space may
be formed, {A.27}. The animation in figure 7.18 gives the motion of a wave
packet whose nominal energy is hundred times the ground state energy.

http://www.eng.famu.fsu.edu/~dommelen/quansup/bounce.gif
http://www.eng.famu.fsu.edu/~dommelen/quansup/bouncehi.html
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Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/harmmv.gif

Hi-res: http://www.eng.famu.fsu.edu/~dommelen/quansup/harmhi.html

Figure 7.18: Unsteady solution for the harmonic oscillator. The third picture
shows the maximum distance from the nominal position that the wave packet
reaches.

The wave packet performs a periodic oscillation back and forth just like a
classical point particle would. In addition, it oscillates at the correct classical
frequency ω. Finally, the point of maximum wave function, shown in blue, fairly
closely obeys the classical limits of motion, shown as black dots.

Curiously, the wave function does not return to the same values after one
period: it has changed sign after one period and it takes two periods for the
wave function to return to the same values. It is because the sign of the wave
function cannot be observed physically that classically the particle oscillates at
frequency ω, and not at 1

2
ω like the wave function does.

Key Points

0 When the forces change slowly enough on quantum scales, wave pack-
ets move just like classical particles do.

0 Examined in detail, wave packets may also change shape over time.

7.12 Scattering

The motion of the wave packets in section 7.11 approximated that of classical
Newtonian particles. However, if the potential starts varying nontrivially over
distances short enough to be comparable to a quantum wave length, much more
interesting behavior results, for which there is no classical equivalent. This
section gives a couple of important examples.

http://www.eng.famu.fsu.edu/~dommelen/quansup/harmmv.gif
http://www.eng.famu.fsu.edu/~dommelen/quansup/harmhi.html
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7.12.1 Partial reflection

A classical particle entering a region of changing potential will keep going as
long as its total energy exceeds the potential energy. Consider the potential
shown in green in figure 7.19; it drops off to a lower level and then stays there.
A classical particle would accelerate to a higher speed in the region of drop off
and maintain that higher speed from there on.

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/drop.gif

Hi-res: http://www.eng.famu.fsu.edu/~dommelen/quansup/drophi.html

Figure 7.19: A partial reflection.

However, the potential in this example varies so rapidly on quantum scales
that the classical Newtonian picture is completely wrong. What actually hap-
pens is that the wave packet splits into two, as shown in the bottom figure. One
part returns to where the packet came from, the other keeps on going.

One hypothetical example used in chapter 3.1 was that of sending a single
particle both to Venus and to Mars. As this example shows, a scattering setup
gives a very real way of sending a single particle in two different directions at
the same time.

Partial reflections are the norm for potentials that vary nontrivially on quan-
tum scales, but this example adds a second twist. Classically, a decelerating force
is needed to turn a particle back, but here the force is everywhere accelerating
only! As an actual physical example of this weird behavior, neutrons trying to
enter nuclei experience attractive forces that come on so quickly that they may
be repelled by them.

7.12.2 Tunneling

A classical particle will never be able to progress past a point at which the
potential energy exceeds its total energy. It will be turned back. However, the
quantum mechanical truth is, if the region in which the potential energy exceeds
the particle’s energy is narrow enough on a quantum scale, the particle can go
right through it. This effect is called “tunneling.”

As an example, figure 7.20 shows part of the wave packet of a particle passing
right through a region where the peak potential exceeds the particle’s expecta-
tion energy by a factor three.

http://www.eng.famu.fsu.edu/~dommelen/quansup/drop.gif
http://www.eng.famu.fsu.edu/~dommelen/quansup/drophi.html
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Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/tunnel.gif

Hi-res: http://www.eng.famu.fsu.edu/~dommelen/quansup/tunnelhi.html

Figure 7.20: An tunneling particle.

Of course, the energy values have some uncertainty, but it is small. The
reason the particle can pass through is not because it has a chance of having
three times its nominal energy. It absolutely does not; the simulation set the
probability of having more than twice the nominal energy to zero exactly. The
particle has a chance of passing through because its motion is governed by the
Schrödinger equation, instead of the equations of classical physics.

And if that is not convincing enough, consider the case of a delta function
barrier in figure 7.21; the limit of an infinitely high, infinitely narrow barrier.
Being infinitely high, classically nothing can get past it. But since it is also
infinitely narrow, a quantum particle will hardly notice a weak-enough delta
function barrier. In figure 7.21, the strength of the delta function was chosen
just big enough to split the wave function into equal reflected and transmitted
parts. If you look for the particle afterwards, you have a 50/50 chance of finding
it at either side of this “impenetrable” barrier.

Animation: http://www.eng.famu.fsu.edu/~dommelen/quansup/del.gif

Hi-res: http://www.eng.famu.fsu.edu/~dommelen/quansup/delhi.html

Figure 7.21: Penetration of an infinitely high potential energy barrier.

Curiously enough, a delta function well, (with the potential going down
instead of up), reflects the same amount as the barrier version.

Tunneling has consequences for the mathematics of bound energy states.
Classically, you can confine a particle by sticking it in between, say two delta
function potentials, or between two other potentials that have a maximum po-
tential energy V that exceeds the particle’s energy E. But such a particle trap
does not work in quantum mechanics, because given time, the particle would

http://www.eng.famu.fsu.edu/~dommelen/quansup/tunnel.gif
http://www.eng.famu.fsu.edu/~dommelen/quansup/tunnelhi.html
http://www.eng.famu.fsu.edu/~dommelen/quansup/del.gif
http://www.eng.famu.fsu.edu/~dommelen/quansup/delhi.html
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tunnel through a local potential barrier. In quantum mechanics, a particle is
bound only if its energy is less than the potential energy at infinite distance.
Local potential barriers only work if they have infinite potential energy, and
that over a larger range than a delta function.

Note however that in many cases, the probability of a particle tunneling out
is so infinitesimally small that it can be ignored. For example, since the electron
in a hydrogen atom has a binding energy of 13.6 eV, a 110 or 220 V ordinary
household voltage should in principle be enough for the electron to tunnel out
of a hydrogen atom. But don’t wait for it; it is likely to take much more than
the total life time of the universe. You would have to achieve such a voltage
drop within an atom-scale distance to get some action.

One major practical application of tunneling is the scanning tunneling mi-
croscope. Tunneling can also explain alpha decay of nuclei, and it is a critical
part of much advanced electronics, including current leakage problems in VLSI
devices.

Key Points

0 If the potential varies nontrivially on quantum scales, wave packets
do not move like classical particles.

0 A wave packet may split into separate parts that move in different
ways.

0 A wave packet may be reflected by an accelerating force.

0 A wave packet may tunnel through regions that a classical particle
could not enter.

7.13 Reflection and Transmission Coefficients

Scattering and tunneling can be described in terms of so-called “reflection and
transmission coefficients.” This section explains the underlying ideas.

C l
fe

iplcx/~ + C l
be
−iplcx/~ Cr

f e
iprcx/~

1 2
V

E

Figure 7.22: Schematic of a scattering potential and the asymptotic behavior of
an example energy eigenfunction for a wave packet coming in from the far left.

Consider an arbitrary scattering potential like the one in figure 7.22. To the
far left and right, it is assumed that the potential assumes a constant value. In
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such regions the energy eigenfunctions take the form

ψE = Cfe
ipcx/~ + Cbe

−ipcx/~

where pc =
√
2m(E − V ) is the classical momentum and Cf and Cb are con-

stants. When eigenfunctions of slightly different energies are combined together,
the terms Cfe

ipcx/~ produce wave packets that move forwards in x, graphically
from left to right, and the terms Cbe

−ipcx/~ produce packets that move back-
wards. So the subscripts indicate the direction of motion.

This section is concerned with a single wave packet that comes in from the
far left and is scattered by the nontrivial potential in the center region. To
describe this, the coefficient Cb must be zero in the far-right region. If it was
nonzero, it would produce a second wave packet coming in from the far right.

In the far-left region, the coefficient Cb is normally not zero. In fact, the term
C l

be
−ipcx/~ produces the part of the incoming wave packet that is reflected back

towards the far left. The relative amount of the incoming wave packet that is
reflected back is called the “reflection coefficient” R. It gives the probability that
the particle can be found to the left of the scattering region after the interaction
with the scattering potential. It can be computed from the coefficients of the
energy eigenfunction in the left region as, {A.32},

R =
|C l

b|2
|C l

f |2
(7.72)

Similarly, the relative fraction of the wave packet that passes through the
scattering region is called the “transmission coefficient” T . It gives the proba-
bility that the particle can be found at the other side of the scattering region
afterwards. It is most simply computed as T = 1−R: whatever is not reflected
must pass through. Alternatively, it can be computed as

T =
prc|Cr

f |2
plc|C l

f |2
plc =

√
2m(E − Vl) prc =

√
2m(E − Vr) (7.73)

where plc respectively p
r
c are the values of the classical momentum in the far left

and right regions.
Note that a coherent wave packet requires a small amount of uncertainty in

energy. Using the eigenfunction at the nominal value of energy in the above
expressions for the reflection and transmission coefficients will involve a small
error. It can be made to go to zero by reducing the uncertainty in energy, but
then the size of the wave packet will expand correspondingly.

In the case of tunneling through a high and wide barrier, the WKB ap-
proximation may be used to derive a simplified expression for the transmission
coefficient, {A.29}. It is

T ≈ e−2γ12 γ12 =
1

~

∫ x2

x1

|pc| dx |pc| =
√

2m(V − E) (7.74)



7.13. REFLECTION AND TRANSMISSION COEFFICIENTS 407

where x1 and x2 are the “turning points” in figure 7.22, in between which the
potential energy exceeds the total energy of the particle.

Therefore in the WKB approximation, it is just a matter of doing a simple
integral to estimate what is the probability for a wave packet to pass through a
barrier. One famous application of that result is for the alpha decay of atomic
nuclei. In such decay a so-called alpha particle tunnels out of the nucleus.

For similar considerations in three-dimensional scattering, see addendum
{A.30}.

Key Points

0 A transmission coefficient gives the probability for a particle to pass
through an obstacle. A reflection coefficient gives the probability for
it to be reflected.

0 A very simple expression for these coefficients can be obtained in the
WKB approximation.





Chapter 8

The Meaning of Quantum
Mechanics

Engineers tend to be fairly matter-of-fact about the physics they use. Many use
entropy on a daily basis as a computational tool without worrying much about
its vague, abstract mathematical definition. Such a practical approach is even
more important for quantum mechanics.

Famous quantum mechanics pioneer Niels Bohr had this to say about it:

“For those who are not shocked when they first come across quan-
tum theory cannot possibly have understood it.” [Niels Bohr, quoted
in W. Heisenberg (1971) Physics and Beyond. Harper and Row.]

Feynman was a Caltech quantum physicist who received a Nobel Prize for
the creation of quantum electrodynamics with Schwinger and Tomonaga. He
also pioneered nanotechnology with his famous talk “There’s Plenty of Room
at the Bottom.” About quantum mechanics, he wrote:

“There was a time when the newspapers said that only twelve
men understood the theory of relativity. I do not believe there ever
was such a time. There might have been a time when only one man
did, because he was the only guy who caught on, before he wrote his
paper. But after people read the paper, a lot of people understood
the theory of relativity in some way or other, certainly more than
twelve. On the other hand, I think I can safely say that nobody
understands quantum mechanics.” [Richard P. Feynman (1965) The
Character of Physical Law 129. BBC/Penguin.]

Still, saying that quantum mechanics is ununderstandable raises the obvious
question: “If we cannot understand it, does it at least seem plausible?” That is
the question to be addressed in this chapter. When you read this chapter, you
will see that the answer is simple and clear. Quantum mechanics is the most
implausible theory ever formulated. Nobody would ever formulate a theory like

409
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quantum mechanics in jest, because none would believe it. Physics ended up
with quantum mechanics not because it seemed the most logical explanation,
but because countless observations made it unavoidable.

8.1 Schrödinger’s Cat

Schrödinger, apparently not an animal lover, came up with an example illus-
trating what the conceptual difficulties of quantum mechanics really mean in
everyday terms. This section describes the example.

A cat is placed in a closed box. Also in the box is a Geiger counter and a
tiny amount of radioactive material that will cause the Geiger counter to go off
in a typical time of an hour. The Geiger counter has been rigged so that if it
goes off, it releases a poison that kills the cat.

Now the decay of the radioactive material is a quantum-mechanical process;
the different times for it to trigger the Geiger counter each have their own
probability. According to the orthodox interpretation, “measurement” is needed
to fix a single trigger time. If the box is left closed to prevent measurement, then
at any given time, there is only a probability of the Geiger counter having been
triggered. The cat is then alive, and also dead, each with a nonzero probability.

Of course no reasonable person is going to believe that she is looking at a box
with a cat in it that is both dead and alive. The problem is obviously with what
is to be called a “measurement” or “observation.” The countless trillions of air
molecules are hardly going to miss “observing” that they no longer enter the
cat’s nose. The biological machinery in the cat is not going to miss “observing”
that the blood is no longer circulating. More directly, the Geiger counter is not
going to miss “observing” that a decay has occurred; it is releasing the poison,
isn’t it?

If you postulate that the Geiger counter is in this case doing the “measure-
ment“ that the orthodox interpretation so deviously leaves undefined, it agrees
with our common sense. But of course, this Deus ex Machina only rephrases our
common sense; it provides no explanation why the Geiger counter would cause
quantum mechanics to apparently terminate its normal evolution, no proof or
plausible reason that the Geiger counter is able to fundamentally change the
normal evolution of the wave function, and not even a shred of hard evidence
that it terminates the evolution, if the box is truly closed.

There is a strange conclusion to this story. The entire point Schrödinger was
trying to make was that no sane person is going to believe that a cat can be
both dead and kicking around alive at the same time. But when the equations
of quantum mechanics are examined more closely, it is found that they require
exactly that. The wave function evolves into describing a series of different
realities. In our own reality, the cat dies at a specific, apparently random time,
just as common sense tells us. Regardless whether the box is open or not.
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But, as discussed further in section 8.6, the mathematics of quantum mechanics
extends beyond our reality. Other realities develop, which we humans are utterly
unable to observe, and in each of those other realities, the cat dies at a different
time.

8.2 Instantaneous Interactions

Special relativity has shown that we humans cannot transmit information at
more than the speed of light. However, according to the orthodox interpretation,
nature does not limit itself to the same silly restrictions that it puts on us. This
section discusses why not.

Consider again the H+
2 -ion, with the single electron equally shared by the

two protons. If you pull the protons apart, maintaining the symmetry, you get
a wave function that looks like figure 8.1. You might send one proton off to your

Figure 8.1: Separating the hydrogen ion.

observer on Mars, the other to your observer on Venus. Where is the electron,
on Mars or on Venus?

According to the orthodox interpretation, the answer is: neither. A position
for the electron does not exist. The electron is not on Mars. It is not on Venus.
Only when either observer makes a measurement to see whether the electron is
there, nature throws its dice, and based on the result, might put the electron
on Venus and zero the wave function on Mars. But regardless of the distance,
it could just as well have put the electron on Mars, if the dice would have come
up differently.

You might think that nature cheats, that when you take the protons apart,
nature already decides where the electron is going to be. That the Venus proton
secretly hides the electron “in its sleeve”, ready to make it appear if an observa-
tion is made. John Bell devised a clever test to force nature to reveal whether
it has something hidden in its sleeve during a similar sort of trick.

The test case Bell used was a generalization of an experiment proposed by
Bohm. It involves spin measurements on an electron/positron pair, created by
the decay of an π-meson. Their combined spins are in the singlet state because
the meson has no net spin. In particular, if you measure the spins of the electron
and positron in any given direction, there is a 50/50% chance for each that it

extrascale=3,notransparent
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turns out to be positive or negative. However, if one is positive, the other must
be negative. So there are only two different possibilities:

1. electron positive and positron negative,
2. electron negative and positron positive.
Now suppose Earth happens to be almost the same distance from Mars and

Venus, and you shoot the positron out to Venus, and the electron to Mars, as
shown at the left in the figure below:

✛ ✲

Venus Earth Mars Venus Earth Mars

Figure 8.2: The Bohm experiment before the Venus measurement (left), and
immediately after it (right).

You have observers on both planets waiting for the particles. According to
quantum mechanics, the traveling electron and positron are both in an indeter-
minate state.

The positron reaches Venus a fraction of a second earlier, and the observer
there measures its spin in the direction up from the ecliptic plane. According to
the orthodox interpretation, nature now makes a random selection between the
two possibilities, and assume it selects the positive spin value for the positron,
corresponding to a spin that is up from the ecliptic plane, as shown in figure
8.2. Immediately, then, the spin state of the electron on Mars must also have
collapsed; the observer on Mars is guaranteed to now measure negative spin, or
spin down, for the electron.

The funny thing is, if you believe the orthodox interpretation, the infor-
mation about the measurement of the positron has to reach the electron in-
stantaneously, much faster than light can travel. This apparent problem in the
orthodox interpretation was discovered by Einstein, Podolski, and Rosen. They
doubted it could be true, and argued that it indicated that something must be
missing in quantum mechanics.

In fact, instead of superluminal effects, it seems much more reasonable to
assume that earlier on earth, when the particles were sent on their way, nature
attached a secret little “note” of some kind to the positron, saying the equivalent
of “If your spin up is measured, give the positive value”, and that it attached a
little note to the electron “If your spin up is measured, give the negative value.”
The results of the measurements are still the same, and the little notes travel
along with the particles, well below the speed of light, so all seems now fine. Of
course, these would not be true notes, but some kind of additional information
beyond the normal quantum mechanics. Such postulated additional information
sources are called “hidden variables.”

Bell saw that there was a fundamental flaw in this idea if you do a large
number of such measurements and you allow the observers to select from more
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than one measurement direction at random. He derived a neat little general
formula, but the discussion here will just show the contradiction in a single
case. In particular, the observers on Venus and Mars will be allowed to select
randomly one of three measurement directions ~a, ~b, and ~c separated by 120
degrees:

~a
~b~c

Figure 8.3: Spin measurement directions.

Let’s see what the little notes attached to the electrons might say. They
might say, for example, “Give the + value if ~a is measured, give the − value if
~b is measured, give the + value if ~c is measured.” The relative fractions of the
various possible notes generated for the electrons will be called f1, f2, . . .. There
are 8 different possible notes:

f1 f2 f3 f4 f5 f6 f7 f8
~a + + + + − − − −
~b + + − − + + − −
~c + − + − + − + −

The sum of the fractions f1 through f8 must be one. In fact, because of sym-
metry, each note will probably on average be generated for 1

8
of the electrons

sent, but this will not be needed.
Of course, each note attached to the positron must always be just the oppo-

site of the one attached to the electron, since the positron must measure + in a
direction when the electron measures − in that direction and vice-versa.

Now consider those measurements in which the Venus observer measures
direction ~a and the Mars observer measures direction ~b. In particular, the
question is in what fraction of such measurements the Venus observer measures
the opposite sign from the Mars observer; call it fab,opposite. This is not that hard
to figure out. First consider the case that Venus measures − and Mars +. If the
Venus observer measures the − value for the positron, then the note attached to
the electron must say “measure + for ~a”; further, if the Mars observer measures
the + value for~b, that one should say “measure +” too. So, looking at the table,
the relative fraction where Venus measures −and Mars measures + is where the
electron’s note has a + for both ~a and ~b: f1 + f2.

Similarly, the fraction of cases where Venus finds + and Mars −is f7 + f8,
and you get in total:

fab,opposite = f1 + f2 + f7 + f8 = 0.25
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The value 0.25 is what quantum mechanics predicts; the derivation will be
skipped here, but it has been verified in the experiments done after Bell’s work.
Those experiments also made sure that nature did not get the chance to do
subluminal communication. The same way you get

fac,opposite = f1 + f3 + f6 + f8 = 0.25

and
fbc,opposite = f1 + f4 + f5 + f8 = 0.25

Now there is a problem, because the numbers add up to 0.75, but the fractions
add up to at least 1: the sum of f1 through f8 is one.

A seemingly perfectly logical and plausible explanation by great minds is
tripped up by some numbers that just do not want to match up. They only
leave the alternative nobody really wanted to believe.

Attaching notes does not work. Information on what the observer on Venus
decided to measure, the one thing that could not be put in the notes, must have
been communicated instantly to the electron on Mars regardless of the distance.

It can also safely be concluded that we humans will never be able to see inside
the actual machinery of quantum mechanics. For, suppose the observer on Mars
could see the wave function of the electron collapse. Then the observer on Venus
could send her Morse signals faster than the speed of light by either measuring
or not measuring the spin of the positron. Special relativity would then allow
signals to be sent into the past, and that leads to logical contradictions such as
the Venus observer preventing her mother from having her.

While the results of the spin measurements can be observed, they do not
allow superluminal communication. While the observer on Venus affects the
results of the measurements of the observer on Mars, they will look completely
random to that observer. Only when the observer on Venus sends over the
results of her measurements, at a speed less than the speed of light, and the two
sets of results are compared, do meaningful patterns how up.

The Bell experiments are often used to argue that Nature must really make
the collapse decision using a true random number generator, but that is of
course crap. The experiments indicate that Nature instantaneously transmits
the collapse decision on Venus to Mars, but say nothing about how that decision
was reached.

Superluminal effects still cause paradoxes, of course. The left of figure 8.4
shows how a Bohm experiment appears to an observer on earth. The spins

Venus Earth Mars Venus Mars

Figure 8.4: Earth’s view of events (left), and that of a moving observer (right).
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remain undecided until the measurement by the Venus observer causes both the
positron and the electron spins to collapse.

However, for a moving observer, things would look very different. Assuming
that the observer and the particles are all moving at speeds comparable to the
speed of light, the same situation may look like the right of figure 8.4, chapter
1.1.4. In this case, the observer on Mars causes the wave function to collapse
at a time that the positron has only just started moving towards Venus!

So the orthodox interpretation is not quite accurate. It should really have
said that the measurement on Venus causes a convergence of the wave function,
not an absolute collapse. What the observer of Venus really achieves in the
orthodox interpretation is that after her measurement, all observers agree that
the positron wave function is collapsed. Before that time, some observers are
perfectly correct in saying that the wave function is already collapsed, and that
the Mars observer did it.

It should be noted that when the equations of quantum mechanics are cor-
rectly applied, the collapse and superluminal effects disappear. That is ex-
plained in section 8.6. But, due to the fact that there are limits to our obser-
vational capabilities, as far as our own human experiences are concerned, the
paradoxes remain real.

To be perfectly honest, it should be noted that the example above is not
quite the one of Bell. Bell really used the inequality:

|2(f3 + f4 + f5 + f6)− 2(f2 + f4 + f5 + f7)| 6 2(f2 + f3 + f6 + f7)

So the discussion cheated. And Bell allowed general directions of measurement
not just 120 degree ones. See [25, pp. 423-426]. The above discussion seems a
lot less messy, even though not historically accurate.

8.3 Global Symmetrization

When computing, say a hydrogen molecule, it is all nice and well to say that
the wave function must be antisymmetric with respect to exchange of the two
electrons 1 and 2, so the spin state of the molecule must be the singlet one.
But what about, say, electron 3 in figure 8.1, which can with 50% chance be
found on Mars and otherwise on Venus? Should not the wave function also be
antisymmetric, for example, with respect to exchange of this electron 3 in one
of two places in space with electron 1 on the hydrogen molecule on Earth? And
would this not locate electron 3 in space also in part on the hydrogen molecule,
and electron 1 also partly in space?

The answer is: absolutely. Nature treats all electrons as one big connected
bunch. The given solution for the hydrogen molecule is not correct; it should
have included every electron in the universe, not just two of them. Every
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electron in the universe is just as much present on this single hydrogen molecule
as the assumed two.

From the difficulty in describing the 33 electrons of the arsenic atom, imagine
having to describe all electrons in the universe at the same time! If the universe
is truly flat, this number would not even be finite. Fortunately, it turns out that
the observed quantities can be correctly predicted pretending there are only two
electrons involved. Antisymmetrization with far-away electrons does not change
the properties of the local solution.

If you are thinking that more advanced quantum theories will eventually do
away with the preposterous notion that all electrons are present everywhere, do
not be too confident. As mentioned in addendum {A.15.1}, the idea has become
a fundamental tenet in quantum field theory.

8.4 A story by Wheeler

Consider a simple question. Why are all electrons so absolutely equal? Would
it not be a lot less boring if they had a range of masses and charges? As in “I
found a really big electron this morning, with an unbelievable charge!” It does
not happen.

And it is in fact far, far, worse than that. In quantum mechanics electrons are
absolutely identical. If you really write the correct (classical) wave function for
an hydrogen atom following the rules of quantum mechanics, then in principle
you must include every electron in the universe as being present, in part, on the
atom. Electrons are so equal that one cannot be present on a hydrogen atom
unless every electron in the universe is.

There is a simple explanation that the famous physicist Wheeler gave to his
talented graduate student Richard Feynman. In Feynman’s words:

“As a by-product of this same view, I received a telephone call
one day at the graduate college at Princeton from Professor Wheeler,
in which he said, ‘Feynman, I know why all electrons have the same
charge and the same mass’ ‘Why?’ ‘Because, they are all the same
electron!’ And, then he explained on the telephone, . . . ” [Richard
P. Feynman (1965) Nobel prize lecture. [[5]]]

What Professor Wheeler explained on the phone is sketched in the space-time
diagram figure 8.5. The “world-line” of the only electron there is is constantly
traveling back and forwards between the past and the future. At any given time,
like today, this single electron can be observed at countless different locations.
At the locations where the electron is traveling to the future it behaves like a
normal electron. And Wheeler recognized that where the electron is traveling
towards the past, it behaves like a positively charged electron, called a positron.
The mystery of all those countless identical electrons was explained.
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today

time

Figure 8.5: The space-time diagram of Wheeler’s single electron.

What had Feynman to say about that!? Again in his words:

“ ‘But, Professor,’ I said, ‘there aren’t as many positrons as elec-
trons.’ ‘Well, maybe they are hidden in the protons or something,’
he said. I did not take the idea that all the electrons were the same
one from him as seriously as I took the observation that positrons
could simply be represented as electrons going from the future to the
past in a back section of their world lines. That, I stole!” [Richard
P. Feynman (1965) Nobel prize lecture. [[5]]]

And there are other problems, like that electrons can be created or destroyed
in weak interactions.

But without doubt, if this was art instead of quantum mechanics, Wheeler’s
proposal would be considered one of the greatest works of all time. It is stunning
in both its utter simplicity and its inconceivable scope.

There is a place for esthetics in quantum mechanics, as the Dirac equation
illustrates. Therefore this section will take a very biased look at whether the
idea is really so truly inconceivable as it might appear. To do so, only positrons
and electrons will be considered, with their attendant photons. Shape-shifting
electrons are a major additional complication. And recall classical mechanics.
Some of the most esthetical results of classical mechanics are the laws of con-
servation of energy and momentum. Relativity and then quantum mechanics
eventually found that classical mechanics is fundamentally completely wrong.
But did conservation of energy and momentum disappear? Quite the contrary.



418 CHAPTER 8. THE MEANING OF QUANTUM MECHANICS

They took on an even deeper and more esthetically gratifying role in those
theories.

With other particles shoved out of the way, the obvious question is the one
of Feynman. Where are all the positrons? One idea is that they ended up in
some other part of space. But that seems to be hard to reconcile with the fact
that space seems quite similar in all directions. The positrons will still have to
be around us. So why do we not see them? Recall that the model considered
here has no protons for positrons to hide in.

Obviously, if the positrons have nowhere to hide, they must be in plain view.
That seems theoretically possible if it is assumed that the positron quantum
wave functions are delocalized on a gigantic scale. Note that astronomy is short
of a large amount of mass in the universe one way or the other. Delocalized
antimatter to the tune of the visible matter would be just a drop in the bucket.

A bit of mathematical trickery called the Cauchy-Schwartz inequality can be
used to illustrate the idea. Consider a “universe” of volume V . For simplicity,
assume that there is just one electron and one positron in this universe. More
does not seem to make a fundamental difference, at least not in a simplistic
model. The electron has wave function ψ1 and the positron ψ2. The Cauchy-
Schwartz inequality says that:

∣∣∣∣
∫

V
ψ∗1ψ2 d

2~r

∣∣∣∣
2

6

∫

V
|ψ1|2 d2~r

∫

V
|ψ2|2 d2~r = 1

Take the left hand side as representative for the interaction rate between elec-
trons and positrons. Then if the wave functions of both electrons and positrons
are completely delocalized, the interaction rate is 1. However, if only the
positrons are completely delocalized, it is much smaller. Suppose the electron is
localized within a volume εV with ε a very small number. Then the interaction
rate is reduced from 1 to ε. If both electrons and positrons are localized within
volumes of size εV it gets messier. If the electron and positron move completely
randomly and quickly through the volume, the average interaction rate would
still be ε. But electrons and positrons attract each other through their elec-
tric charges, and on a large scale also through gravity. That could increase the
interaction rate greatly.

The obvious next question is then, how come that positrons are delocalized
and electrons are not? The simple answer to that is: because electrons come to
us from the compact Big Bang stages of the universe. The positrons come to
us from the final stages of the evolution of the universe where it has expanded
beyond limit.

Unfortunately, that answer, while simple, is not satisfactory. Motion in
quantum mechanics is essentially time reversible. And that means that you
should be able to explain the evolution of both electrons and positrons coming
out of the initial Big Bang universe. Going forward in time.
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A more reasonable idea is that the other options do not produce stable situa-
tions. Consider a localized positron in an early universe that by random chance
happens to have more localized electrons than positrons. Because of attraction
effects, such a positron is likely to find a localized electron to annihilate with.
That is one less localized positron out of an already reduced population. A de-
localized positron could interact similarly with a delocalized electron, but there
are less of these. The reverse situation holds for electrons. So you could imagine
a runaway process where the positron population evolves to delocalized states
and the electrons to localized ones.

Another way to look at it is to consider how wave functions get localized
in the first place. The wave function of a localized isolated particle wants to
disperse out over time. Cosmic expansion would only add to that. In the
orthodox view, particles get localized because they are “measured.” The basics
of this process, as described by another graduate student of Wheeler, Everett
III, are in section 8.6. Unfortunately, the process remains poorly understood.
But suppose, say, that matter localizes matter but delocalizes antimatter, and
vice-versa. In that case a slight dominance of matter over antimatter could
conceivably lead to a run-away situation where the matter gets localized and
the antimatter delocalized.

Among all the exotic sources that have been proposed for the “dark matter”
in the universe, delocalized antimatter does not seem to get mentioned. So
probably someone has already solidly shown that it is impossible.

But that does not invalidate Wheeler’s basic idea, of course. As Wheeler
himself suggested, the positrons could in fact be hiding inside the protons
through the weak-force mechanism. Then of course, you need to explain how the
positrons came to be hiding inside the protons. Why not the electrons inside the
antiprotons? That would be messier, but it does not mean it could not be true.
In fact, it is one of the surprises of advanced particle physics that the entire
lepton-quark family seems to be one inseparable multi-component particle, [27,
p. 210]. It seems only fair to say that Wheeler’s idea predicted this. For clearly,
the electron could not maintain its unmutable identity if repeatedly changed
into particles with a separate and independent identity. So Wheeler’s idea may
not be so crazy after all, looking at the facts. It provides a real explanation why
identical particles are so perfectly identical. And it predicted something that
would only be observed well into the future.

Still, the bottom line remains the beauty of the idea. As the mathematician
Weyl noted, unfazed after Einstein shot down an idea of his:

“When there is a conflict between beauty and truth, I choose
beauty.”
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8.5 Failure of the Schrödinger Equation?

Section {8.2} mentioned sending half of the wave function of an electron to
Venus, and half to Mars. A scattering setup as described in chapter 7.12 provides
a practical means for actually doing this, (at least, for taking the wave function
apart in two separate parts.) The obvious question is now: can the Schrödinger
equation also describe the physically observed “collapse of the wave function”,
where the electron changes from being on both Venus and Mars with a 50/50
probability to, say, being on Mars with absolute certainty?

The answer obtained in this and the next subsection will be most curious: no,
the Schrödinger equation flatly contradicts that the wave function collapses, but
yes, it requires that measurement leads to the experimentally observed collapse.
The analysis will take us to a mind-boggling but really unavoidable conclusion
about the very nature of our universe.

This subsection will examine the problem the Schrödinger equation has with
describing a collapse. First of all, the solutions of the linear Schrödinger equation
do not allow a mathematically exact collapse like some nonlinear equations do.
But that does not necessarily imply that solutions would not be able to collapse
physically. It would be conceivable that the solution could evolve to a state
where the electron is on Mars with such high probability that it can be taken
to be certainty. In fact, a common notion is that, somehow, interaction with a
macroscopic “measurement” apparatus could lead to such an end result.

Of course, the constituent particles that make up such a macroscopic mea-
surement apparatus still need to satisfy the laws of physics. So let’s make up
a reasonable model for such a complete macroscopic system, and see what can
then be said about the possibility for the wave function to evolve towards the
electron being on Mars.

The model will ignore the existence of anything beyond the Venus, Earth,
Mars system. It will be assumed that the three planets consist of a humon-
gous, but finite, number of conserved classical particles 1, 2, 3, 4, 5, . . ., with a
supercolossal wave function:

Ψ(~r1, Sz1,~r2, Sz2,~r3, Sz3,~r4, Sz4,~r5, Sz5, . . .)

Particle 1 will be taken to be the scattered electron. It will be assumed that
the wave function satisfies the Schrödinger equation:

i~
∂Ψ

∂t
= −

∑

i

3∑

j=1

~
2

2mi

∂2Ψ

∂r2i,j
+ V (~r1, Sz1,~r2, Sz2,~r3, Sz3,~r4, Sz4, . . .)Ψ (8.1)

Trying to write the solution to this problem would of course be prohibitive,
but the evolution of the probability of the electron to be on Venus can still
be extracted from it with some fairly standard manipulations. First, taking the
combination of the Schrödinger equation times Ψ∗ minus the complex conjugate
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of the Schrödinger equation times Ψ produces after some further manipulation
an equation for the time derivative of the probability:

i~
∂Ψ∗Ψ
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∑

i

3∑
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~
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2mi

∂

∂ri,j

(
Ψ∗
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−Ψ

∂Ψ∗

∂ri,j

)
(8.2)

The question is the probability for the electron to be on Venus, and you can
get that by integrating the probability equation above over all possible positions
and spins of the particles except for particle 1, for which you have to restrict
the spatial integration to Venus and its immediate surroundings. If you do that,
the left hand side becomes the rate of change of the probability for the electron
to be on Venus, regardless of the position and spin of all the other particles.

Interestingly, assuming times at which the Venus part of the scattered elec-
tron wave is definitely at Venus, the right hand side integrates to zero: the wave
function is supposed to disappear at large distances from this isolated system,
and whenever particle 1 would be at the border of the surroundings of Venus.

It follows that the probability for the electron to be at Venus cannot change
from 50%. A true collapse of the wave function of the electron as postulated in
the orthodox interpretation, where the probability to find the electron at Venus
changes to 100% or 0% cannot occur.

Of course, the model was simple; you might therefore conjecture that a true
collapse could occur if additional physics is included, such as nonconserved par-
ticles like photons, or other relativistic effects. But that would obviously be
a moving target. The analysis made a good-faith effort to examine whether
including macroscopic effects may cause the observed collapse of the wave func-
tion, and the answer was no. Having a scientifically open mind requires you to at
least follow the model to its logical end; nature might be telling you something
here.

Is it really true that the results disagree with the observed physics? You need
to be careful. There is no reasonable doubt that if a measurement is performed
about the presence of the electron on Venus, the wave function will be observed
to collapse. But all you established above is that the wave function does not
collapse; you did not establish whether or not it will be observed to collapse.
To answer the question whether a collapse will be observed, you will need to
include the observers in your reasoning.

The problem is with the innocuous looking phrase regardless of the position
and spin of all the other particles in the arguments above. Even while the total
probability for the electron to be at Venus must stay at 50% in this example
system, it is still perfectly possible for the probability to become 100% for one
state of the particles that make up the observer and her tools, and to be 0% for
another state of the observer and her tools.

It is perfectly possible to have a state of the observer with brain particles,
ink-on-paper particles, tape recorder particles, that all say that the electron is
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on Venus, combined with 100% probability that the electron is on Venus, and
a second state of the observer with brain particles, ink-on-paper particles, tape
recorder particles, that all say the electron must be on Mars, combined with 0%
probability for the electron to be on Venus. Such a scenario is called a “relative
state interpretation;” the states of the observer and the measured object become
entangled with each other.

The state of the electron does not change to a single state of presence or
absence; instead two states of the macroscopic universe develop, one with the
electron absent, the other with it present. As explained in the next subsection,
the Schrödinger equation does not just allow this to occur, it requires this to
occur. So, far from being in conflict with the observed collapse, the model
above requires it. The model produces the right physics: observed collapse is a
consequence of the Schrödinger equation, not of something else.

But all this ends up with the rather disturbing thought that there are now
two states of the universe, and the two are different in what they think about
the electron. This conclusion was unexpected; it comes as the unavoidable
consequence of the mathematical equations that quantum mechanics abstracted
for the way nature operates.

8.6 The Many-Worlds Interpretation

The Schrödinger equation has been enormously successful, but it describes the
wave function as always smoothly evolving in time, in apparent contradiction to
its postulated collapse in the orthodox interpretation. So, it would seem to be
extremely interesting to examine the solution of the Schrödinger equation for
measurement processes more closely, to see whether and how a collapse might
occur.

Of course, if a true solution for a single arsenic atom already presents an
unsurmountable problem, it may seem insane to try to analyze an entire macro-
scopic system such as a measurement apparatus. But in a brilliant Ph.D. thesis
with Wheeler at Princeton, Hugh Everett, III did exactly that. He showed
that the wave function does not collapse. However it seems to us humans that
it does, so we are correct in applying the rules of the orthodox interpretation
anyway. This subsection explains briefly how this works.

Let’s return to the experiment of section 8.2, where a positron is sent to
Venus and an entangled electron to Mars, as in figure 8.6. The spin states are

✛ ✲

Venus Earth Mars

Figure 8.6: Bohm’s version of the Einstein, Podolski, Rosen Paradox.
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uncertain when the two are sent from Earth, but when Venus measures the spin
of the positron, it miraculously causes the spin state of the electron on Mars to
collapse too. For example, if the Venus positron collapses to the spin-up state
in the measurement, the Mars electron must collapse to the spin-down state.
The problem, however, is that there is nothing in the Schrödinger equation to
describe such a collapse, nor the superluminal communication between Venus
and Mars it implies.

The reason that the collapse and superluminal communication are needed
is that the two particles are entangled in the singlet spin state of chapter 5.5.6.
This is a 50% / 50% probability state of (electron up and positron down) /
(electron down and positron up).

It would be easy if the positron would just be spin up and the electron spin
down, as in figure 8.7. You would still not want to write down the supercolossal

✛ ✲

Venus Earth Mars

Figure 8.7: Nonentangled positron and electron spins; up and down.

wave function of everything, the particles along with the observers and their
equipment for this case. But there is no doubt what it describes. It will simply
describe that the observer on Venus measures spin up, and the one on Mars,
spin down. There is no ambiguity.

The same way, there is no question about the opposite case, figure 8.8. It

✛ ✲

Venus Earth Mars

Figure 8.8: Nonentangled positron and electron spins; down and up.

will produce a wave function of everything describing that the observer on Venus
measures spin down, and the one on Mars, spin up.

Everett, III recognized that the solution for the entangled case is blindingly
simple. Since the Schrödinger equation is linear, the wave function for the
entangled case must simply be the sum of the two nonentangled ones above, as
shown in figure 8.9. If the wave function in each nonentangled case describes a
universe in which a particular state is solidly established for the spins, then the
conclusion is undeniable: the wave function in the entangled case describes two
universes, each of which solidly establishes states for the spins, but which end
up with opposite results.

This explains the result of the orthodox interpretation that only eigenval-
ues are measurable. The linearity of the Schrödinger equation leaves no other
option:
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Venus Earth Mars
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Figure 8.9: The wave functions of two universes combined

Assume that any measurement device at all is constructed that for
a spin-up positron results in a universe that has absolutely no doubt
that the spin is up, and for a spin-down positron results in a universe
that has absolutely no doubt that the spin is down. In that case a
combination of spin up and spin down states must unavoidably result
in a combination of two universes, one in which there is absolutely
no doubt that the spin is up, and one in which there is absolutely no
doubt that it is down.

Note that this observation does not depend on the details of the Schrödinger
equation, just on its linearity. For that reason it stays true even including
relativity.

The two universes are completely unaware of each other. It is the very nature
of linearity that if two solutions are combined, they do not affect each other at
all: neither universe would change in the least whether the other universe is
there or not. For each universe, the other universe “exists” only in the sense
that the Schrödinger equation must have created it given the initial entangled
state.

Nonlinearity would be needed to allow the solutions of the two universes to
couple together to produce a single universe with a combination of the two eigen-
values, and there is none. A universe measuring a combination of eigenvalues is
made impossible by linearity.

While the wave function has not collapsed, what has changed is the most
meaningful way to describe it. The wave function still by its very nature assigns
a value to every possible configuration of the universe, in other words, to every
possible universe. That has never been a matter of much controversy. And
after the measurement it is still perfectly correct to say that the Venus observer
has marked down in her notebook that the positron was up and down, and has
transmitted a message to earth that the positron was up and down, and earth
has marked on in its computer disks and in the brains of the assistants that the
positron was found to be up and down, etcetera.

But it is much more precise to say that after the measurement there are
two universes, one in which the Venus observer has observed the positron to be
up, has transmitted to earth that the positron was up, and in which earth has
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marked down on its computer disks and in the brains of the assistants that the
positron was up, etcetera; and a second universe in which the same happened,
but with the positron everywhere down instead of up. This description is much
more precise since it notes that up always goes with up, and down with down.
As noted before, this more precise way of describing what happens is called the
“relative state formulation.”

Note that in each universe, it appears that the wave function has collapsed.
Both universes agree on the fact that the decay of the π-meson creates an elec-
tron/positron pair in a singlet state, but after the measurement, the notebook,
radio waves, computer disks, brains in one universe all say that the positron
is up, and in the other, all down. Only the unobservable full wave function
“knows” that the positron is still both up and down.

And there is no longer a spooky superluminal action: in the first universe,
the electron was already down when sent from earth. In the other universe, it
was sent out as up. Similarly, for the case of the last subsection, where half the
wave function of an electron was sent to Venus, the Schrödinger equation does
not fail. There is still half a chance of the electron to be on Venus; it just gets
decomposed into one universe with one electron, and a second one with zero
electron. In the first universe, earth sent the electron to Venus, in the second to
Mars. The contradictions of quantum mechanics disappear when the complete
solution of the Schrödinger equation is examined.

Next, let’s examine why the results would seem to be covered by rules of
chance, even though the Schrödinger equation is fully deterministic. To do so,
assume earth keeps on sending entangled positron and electron pairs. When
the third pair is on its way, the situation looks as shown in the third column
of figure 8.10. The wave function now describes 8 universes. Note that in
most universes the observer starts seeing an apparently random sequence of up
and down spins. When repeated enough times, the sequences appear random
in practically speaking every universe. Unable to see the other universes, the
observer in each universe has no choice but to call her results random. Only the
full wave function knows better.

Everett, III also derived that the statistics of the apparently random se-
quences are proportional to the absolute squares of the eigenfunction expansion
coefficients, as the orthodox interpretation says.

How about the uncertainty relationship? For spins, the relevant uncertainty
relationship states that it is impossible for the spin in the up/down directions
and in the front/back directions to be certain at the same time. Measuring the
spin in the front/back direction will make the up/down spin uncertain. But if
the spin was always up, how can it change?

This is a bit more tricky. Let’s have the Mars observer do a couple of
additional experiments on one of her electrons, first one front/back, and then
another again up/down, to see what happens. To be more precise, let’s also ask
her to write the result of each measurement on a blackboard, so that there is a
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Figure 8.10: The Bohm experiment repeated.

good record of what was found. Figure 8.11 shows what happens.

When the electron is sent from Earth, two universes can be distinguished,
one in which the electron is up, and another in which it is down. In the first one,
the Mars observer measures the spin to be up and marks so on the blackboard.
In the second, she measures and marks the spin to be down.

Next the observer in each of the two universes measures the spin front/
back. Now it can be shown that the spin-up state in the first universe is a
linear combination of equal amounts of spin-front and spin-back. So the second
measurement splits the wave function describing the first universe into two, one
with spin-front and one with spin-back.

Similarly, the spin-down state in the second universe is equivalent to equal
amounts of spin-front and spin-back, but in this case with opposite sign. Either
way, the wave function of the second universe still splits into a universe with
spin front and one with spin back.

Now the observer in each universe does her third measurement. The front
electron consists of equal amounts of spin up and spin down electrons, and
so does the back electron, just with different sign. So, as the last column in
figure 8.11 shows, in the third measurement, as much as half the eight universes
measure the vertical spin to be the opposite of the one they got in the first
measurement!

The full wave function knows that if the first four of the final eight universes
are summed together, the net spin is still down (the two down spins have equal
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Figure 8.11: Repeated experiments on the same electron.

and opposite amplitude). But the observers have only their blackboard (and
what is recorded in their brains, etcetera) to guide them. And that information
seems to tell them unambiguously that the front-back measurement “destroyed”
the vertical spin of the electron. (The four observers that measured the spin
to be unchanged can repeat the experiment a few more times and are sure to
eventually find that the vertical spin does change.)

The unavoidable conclusion is that the Schrödinger equation does not fail.
It describes the observations exactly, in full agreement with the orthodox inter-
pretation, without any collapse. The appearance of a collapse is actually just a
limitation of our human observational capabilities.

Of course, in other cases than the spin example above, there are more than
just two symmetric states, and it becomes much less self-evident what the proper
partial solutions are. However, it does not seem hard to make some conjectures.
For Schrödinger’s cat, you might model the radioactive decay that gives rise to
the Geiger counter going off as due to a nucleus with a neutron wave packet
rattling around in it, trying to escape. As chapter 7.12.1 showed, in quantum
mechanics each rattle will fall apart into a transmitted and a reflected wave.
The transmitted wave would describe the formation of a universe where the
neutron escapes at that time to set off the Geiger counter which kills the cat,
and the reflected wave a universe where the neutron is still contained.

For the standard quantum mechanics example of an excited atom emitting
a photon, a model would be that the initial excited atom is perturbed by the
ambient electromagnetic field. The perturbations will turn the atom into a
linear combination of the excited state with a bit of a lower energy state thrown
in, surrounded by a perturbed electromagnetic field. Presumably this situation
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can be taken apart in a universe with the atom still in the excited state, and
the energy in the electromagnetic field still the same, and another universe with
the atom in the lower energy state with a photon escaping in addition to the
energy in the original electromagnetic field. Of course, the process would repeat
for the first universe, producing an eventual series of universes in almost all of
which the atom has emitted a photon and thus transitioned to a lower energy
state.

So this is where we end up. The equations of quantum mechanics describe
the physics that we observe perfectly well. Yet they have forced us to the un-
comfortable conclusion that, mathematically speaking, we are not at all unique.
Beyond our universe, the mathematics of quantum mechanics requires an infin-
ity of unobservable other universes that are nontrivially different from us.

Note that the existence of an infinity of universes is not the issue. They
are already required by the very formulation of quantum mechanics. The wave
function of say an arsenic atom already assigns a nonzero probability to every
possible configuration of the positions of the electrons. Similarly, a wave func-
tion of the universe will assign a nonzero probability to every possible configu-
ration of the universe, in other words, to every possible universe. The existence
of an infinity of universes is therefore not something that should be ascribed to
Everett, III {N.15}.

However, when quantum mechanics was first formulated, people quite obvi-
ously believed that, practically speaking, there would be just one universe, the
one we observe. No serious physicist would deny that the monitor on which you
may be reading this has uncertainty in its position, yet the uncertainty you are
dealing with here is so astronomically small that it can be ignored. Similarly
it might appear that all the other substantially different universes should have
such small probabilities that they can be ignored. The actual contribution of
Everett, III was to show that this idea is not tenable. Nontrivial universes must
develop that are substantially different.

Formulated in 1957 and then largely ignored, Everett’s work represents with-
out doubt one of the human race’s greatest accomplishments; a stunning dis-
covery of what we are and what is our place in the universe.

8.7 The Arrow of Time

This section has some further musings on the many worlds interpretation. One
question is why it matters. What is wrong with postulating a fairy-tale col-
lapse mechanism that makes people feel unique? The alternate realities are
fundamentally unobservable, so in normal terms they do truly not exist. For all
practical purposes, the wave function really does collapse.

The main reason is of course because people are curious. We would also
want to understand what nature is really all about, even if we may not like the
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answer very much.

But there is also a more practical side. An understanding of nature can help
guess what is likely to happen under circumstances that are not well known.
And clearly, there is a difference in thinking. The Everett model is a universe
following the established equations of physics in which observers only observe a
very narrow and evolving part of a much larger reality. The Copenhagen model
is a single universe run by gnomes that allow microscopic deviations from a
unique reality following the equations of physics, but kindly eliminate anything
bigger.

One major difference is what is considered to be real. In Everett’s theory,
for an observer reality is not the complete wave function but a small selection
of it. That becomes a philosophical point when considering “vacuum energy.”
According to quantum field theory, even empty space still contains half a photon
of electromagnetic energy at each frequency, {A.23.4}. That is much like a
harmonic oscillator still has half a quantum of kinetic and potential energy left
in its ground state. The electric and magnetic fields have quantum uncertainty.
If you “measure” the electric or magnetic field in vacuum, you will get a nonzero
value. The same applies to other fields of particles. Unfortunately, if you sum
these energies over all frequencies, you get infinity. Even if the frequencies are
assumed to be limited to scales about which there is solid knowledge, there
is still an enormous amount of energy here. Its gravitational effect should be
gigantic, it should dwarf anything else.

Somehow that does not happen. Now, in Everett’s interpretation a particle
only becomes real for a universe when a state is established in which there is
no doubt that the particle exists. That obviously greatly limits the vacuum
energy that affects that universe. The existence of other particles might be
firmly established in other universes, but these will then affect those other uni-
verses. In the Copenhagen interpretation, however, there are no other universes,
and therefore no good reason to exclude any vacuum energy from affecting the
gravity of the only universe there is.

Then there is the arrow of time. It is observed that time has directionality.
So why does time only go one way, from early to late? You might argue that
“early” and “late” are just words. But they are not. They are given meaning by
the second law of thermodynamics. This law says that a measurable definition
of disorder in the observed universe, called entropy, always increases with time.
The law applies to macroscopic systems. However, macroscopic systems consist
of particles that satisfy microscopic mechanics. And the Schrödinger equation
has no particular preference for the time t above the backward time −t. So
what happened to the processes that run according to −t, backwards to what
we would consider forward in time? Why do we not observe such processes?
And why are we composed of matter, not antimatter? And why does nature not
look the same when viewed in the mirror? What is so different about a mirror
image of the universe that we observe?
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The conventional view postulates ad-hoc asymmetries that “just happened”
to be that way. Why would that happen and why would it be in the same di-
rection everywhere in an infinite space-time and an infinity of possible universes
therein?

Then the conventional view adds evolution equations that magnify that
asymmetry using small perturbation theory. That sounds reasonable until you
examine those evolution equations more closely, chapter 11.10. The mecha-
nism that provides the increasing asymmetry is, you guessed it, exactly that
poorly defined collapse mechanism. Collapse is simply stated to apply for times
greater than the “measurement” time. Obviously that produces asymmetry in
time. But why could the collapse not apply for times less than the collapse time
instead?

Now stand back from the details and take a look at the larger philosophical
question. The well established equations of nature have no particular preference
for either direction of time. True, the direction of time is correlated with matter
versus antimatter, and with mirror symmetry. But that still does not make
either direction of time any better than the other. According to the laws of
physics that have been solidly established, there does not seem to be any big
reason for nature to prefer one direction of time above the other.

According to Everett’s theory, there is no reason to assume that it does. The
many-worlds interpretation allows the wave function to describe both universes
that are observed to evolve towards one direction of time and universes that are
observed to evolve in the other direction.

That is not a trivial observation. The problem of the observed time asym-
metry for a symmetric physics has now been removed. It has been replaced
by the question why forward evolving systems appear to correlate with forward
evolving systems, and backward evolving systems with backward evolving ones.
While that is not a trivial question either, it is not implausible.

Perhaps, if we spend more time on listening to what nature is really telling
us, rather than make up stories for what we want to believe, we would now
understand those processes a lot more clearly.
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Chapter 9

Numerical Procedures

Since analytical solutions in quantum mechanics are extremely limited, numeri-
cal solution is essential. This chapter outlines some of the most important ideas.
The most glaring omission at this time is the DFT (Density Functional Theory.)
A writer needs a sabbatical.

9.1 The Variational Method

Solving the equations of quantum mechanics is typically difficult, so approxi-
mations must usually be made. One very effective tool for finding approximate
solutions is the variational principle. This section gives some of the basic ideas,
including ways to apply it best.

9.1.1 Basic variational statement

Finding the state of a physical system in quantum mechanics means finding the
wave function Ψ that describes it. For example, at sufficiently low temperatures,
physical systems will be described by the ground state wave function. The
problem is that if there are more than a couple of particles in the system, the
wave function is a very high-dimensional function. It is far too complex to be
crunched out using brute force on any current computer.

However, the expectation value of energy is just a simple single number for
any given wave function. It is defined as

〈E〉 = 〈Ψ|HΨ〉

where H is the Hamiltonian of the system. The key observation on which the
variational method is based is that the ground state is the state among all
allowable wave functions that has the lowest expectation value of energy:

〈E〉 is minimal for the ground state wave function. (9.1)

433
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That means that if you would find 〈E〉 for all possible system wave functions,
you would be able to pick out the ground state simply as the state that has the
lowest value.

Of course, finding the expectation value of the energy for all possible wave
functions is still an impossible task. But you may be able to guess a generic type
of wave function that you would expect to be able to approximate the ground
state well, under suitable conditions. Normally, “suitable conditions” means
that the approximation will be good only if various parameters appearing in
the approximate wave function are well chosen.

That then leaves you with the much smaller task of finding good values for
this limited set of parameters. Here the key idea is:

〈E〉 is lowest for the best approximation to the ground state. (9.2)

Following that idea, what you do is adjust the parameters values so that you get
the lowest possible value of the expectation energy for your type of approximate
wave function. The true ground state wave function always has the lowest
possible energy, so the lower you make your approximate energy, the closer that
energy is to the exact value.

So this procedure gives you the best possible approximation to the true en-
ergy, and energy is usually the key quantity in quantum mechanics. In addition
you know for sure that the true energy must be lower than your approximation,
which is also often very useful information.

The variational method as described above has already been used earlier in
this book to find an approximate ground state for the hydrogen molecular ion,
chapter 4.6, and for the hydrogen molecule, chapter 5.2. It will also be used to
find an approximate ground state for the helium atom, {A.38.2}. The method
works quite well even for the crude approximate wave functions used in those
examples.

To be sure, it is not at all obvious that getting the best energy will also
produce the best wave function. After all, “best” is a somewhat tricky term for
a complex object like a wave function. To take an example from another field,
surely you would not argue that the best sprinter in the world must also be the
best person in the world.

But in this case, your wave function will in fact be close to the exact wave
function if you manage to get close enough to the exact energy. More precisely,
assuming that the ground state is unique, the closer your energy gets to the
exact energy, the closer your wave function gets to the exact wave function.
One way of thinking about it is to note that your approximate wave function is
always a combination of the desired exact ground state plus polluting amounts
of higher energy states. By minimizing the energy, in some sense you minimize
the amount of these polluting higher energy states. The mathematics of that
idea is explored in more detail in addendum {A.7}.
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And there are other benefits to specifically getting the energy as accurate
as possible. One problem is often to figure out whether a system is bound.
For example, can you add another electron to a hydrogen atom and have that
electron at least weakly bound? The answer is not obvious. But if using a
suitable approximate solution, you manage to show that the approximate energy
of the bound system is less than that of having the additional electron at infinity,
then you have proved that the bound state exist. Despite the fact that your
solution has errors. The reason is that, by definition, the ground state must
have lower energy than your approximate wave function. So the ground state is
even more tightly bound together than your approximate wave function says.

Another reason to specifically getting the energy as accurate as possible is
that energy values are directly related to how fast systems evolve in time when
not in the ground state, chapter 7.

For the above reasons, it is also great that the errors in energy turn out to
be unexpectedly small in a variational procedure, when compared to the errors
in the guessed wave function, {A.7}.

To get the second lowest energy state, you could search for the lowest energy
among all wave functions orthogonal to the ground state. But since you would
not know the exact ground state, you would need to use your approximate one
instead. That would involve some error, and it is no longer sure that the true
second-lowest energy level is no higher than what you compute, but anyway.
The suprising accuracy in energy will still apply.

If you want to get truly accurate results in a variational method, in general
you will need to increase the number of parameters. The molecular exam-
ple solutions were based on the atomic ground states, and you could consider
adding some excited states to the mix. In general, a procedure using appropri-
ate guessed functions is called a Rayleigh-Ritz method. Alternatively, you could
just chop space up into little pieces, or “elements,” and use a simple polynomial
within each piece. That is called a finite-element method. In either case, you
end up with a finite, but relatively large number of unknowns; the parameters
and coefficients of the functions, or the coefficients of the polynomials.

9.1.2 Differential form of the statement

You might by now wonder about the wisdom of trying to find the minimum
energy by searching through the countless possible combinations of a lot of pa-
rameters. Brute-force search worked fine for the hydrogen molecule examples
since they really only depended nontrivially on the distance between the nuclei.
But if you add some more parameters for better accuracy, you quickly get into
trouble. Semi-analytical approaches like Hartree-Fock even leave whole func-
tions unspecified. In that case, simply put, every single function value is an
unknown parameter, and a function has infinitely many of them. You would be
searching in an infinite-dimensional space, and might search forever.
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Usually it is a much better idea to write some equations for the minimum
energy first. From calculus, you know that if you want to find the minimum
of a function, the sophisticated way to do it is to note that the derivatives of
the function must be zero at the minimum. Less rigorously, but a lot more
intuitive, at the minimum of a function the changes in the function due to small
changes in the variables that it depends on must be zero. Mathematicians may
not like that, since the word “small” has no rigorous meaning. But unless you
misuse your small quantities, you can always convert your results using them
to rigorous mathematics after the fact.

In the simplest possible example of a function f(x) of one variable x, a
rigorous mathematician would say that at a minimum, the derivative f ′(x) must
be zero. But a physicists may not like that, for if you say derivative, you must
say with respect to what variable; you must say what x is as well as what f is.
There is often more than one possible choice for x, with none preferred under
all circumstances. So a typical physicist would say that the change df in f due
to a small change in whatever variable it depends on must be zero. It is the
same thing, since for a small enough change dx in the variable, df = f ′dx, so
that if f ′ is zero, then so is df . (Mathematically more accurately, if dx becomes
small enough, df becomes zero compared to dx.) If there is more than one
independent variable that the function depends on, then the derivatives become
partial derivatives, df becomes ∂f , and specifying the precise derivatives would
become much messier still.

In variational procedures, it is common to use δf instead of df or ∂f for the
small change in f . This book will do so too.

So in quantum mechanics, the fact that the expectation energy must be
minimal in the ground state can be written as:

δ 〈E〉 = 0 for all acceptable small changes in wave function (9.3)

The changes must be acceptable; you cannot allow that the changed wave func-
tion is no longer normalized. Also, if there are boundary conditions, the changed
wave function should still satisfy them. (There may be exceptions permitted
to the latter under some conditions, but these will be ignored here.) So, in
general you have “constrained minimization;” you cannot make your changes
completely arbitrary.

9.1.3 Using Lagrangian multipliers

As an example of how the variational formulation of the previous subsection
can be applied analytically, and how it can also describe eigenstates of higher
energy, this subsection will work out a very basic example. The idea is to figure
out what you get if you truly zero the changes in the expectation value of energy
〈E〉 = 〈ψ|H|ψ〉 over all acceptable wave functions ψ. (Instead of just over all
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possible versions of a numerical approximation, say.) It will illustrate how the
“Lagrangian multiplier” method can deal with the constraints.

The differential statement is:

δ〈ψ|H|ψ〉 = 0 for all acceptable changes δψ in ψ

But “acceptable” is not a mathematical concept. What does it mean? Well, if it
is assumed that there are no boundary conditions, (like the harmonic oscillator,
but unlike the particle in a pipe,) then acceptable just means that the wave
function must remain normalized under the change. So the change in 〈ψ|ψ〉
must be zero, and you can write more specifically:

δ〈ψ|H|ψ〉 = 0 whenever δ〈ψ|ψ〉 = 0.

But how do you crunch a statement like that down mathematically? Well,
there is a very important mathematical trick to simplify this. Instead of rigor-
ously trying to enforce that the changed wave function is still normalized, just
allow any change in wave function. But add “penalty points” to the change in
expectation energy if the change in wave function goes out of allowed bounds:

δ〈ψ|H|ψ〉 − ǫδ〈ψ|ψ〉 = 0

Here ǫ is the penalty factor. Such penalty factors are called “Lagrangian multi-
pliers” after a famous mathematician who probably watched a lot of soccer. For
a change in wave function that does not go out of bounds, the second term is
zero, so nothing changes. And if the change does go out of bounds, the second
term will cancel any resulting erroneous gain or decrease in expectation energy,
{D.48}, assuming that the penalty factor is carefully tuned. Note that the
penalty factor ǫ must be real because the other two quantities in the equation
above are changes in real functions.

You do not, however, have to explicitly tune the penalty factor yourself. All
you need to know is that a proper one exists. In actual application, all you
do in addition to ensuring that the penalized change in expectation energy is
zero is ensure that at least the unchanged wave function is normalized. It is
really a matter of counting equations versus unknowns. Compared to simply
setting the change in expectation energy to zero with no constraints on the wave
function, one additional unknown has been added, the penalty factor. And quite
generally, if you add one more unknown to a system of equations, you need one
more equation to still have a unique solution. As the one-more equation, use
the normalization condition. With enough equations to solve, you will get the
correct solution, which means that the implied value of the penalty factor should
be OK too.

So what does this variational statement now produce? Writing out the
differences explicitly, you must have

(
〈ψ + δψ|H|ψ + δψ〉 − 〈ψ|H|ψ〉

)
− ǫ
(
〈ψ + δψ|ψ + δψ〉 − 〈ψ|ψ〉

)
= 0
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Multiplying out, canceling equal terms and ignoring terms that are quadratically
small in δψ, you get

〈δψ|H|ψ〉+ 〈ψ|H|δψ〉 − ǫ
(
〈δψ|ψ〉+ 〈ψ|δψ〉

)
= 0

Remarkably, you can throw away the second of each pair of inner products
in the expression above. To see why, remember that you can allow any change
δψ you want, including the δψ you are now looking at times −i. If you plug
that into the above equation and divide the entire thing by i to get rid of the
added factors i again, you get

〈δψ|H|ψ〉 − 〈ψ|H|δψ〉 − ǫ
(
〈δψ|ψ〉 − 〈ψ|δψ〉

)
= 0

The two additional minus signs arise because an −i comes out of the left side of
an inner product as i, but out of the right side as −i. Averaging this equation
with the original above it has the effect of throwing away the second of each
pair of inner products in the original equation.

You can now combine the remaining two terms into one inner product with
δψ on the left:

〈δψ|Hψ − ǫψ〉 = 0

If this is to be zero for any change δψ, then the right hand side of the inner
product must unavoidably be zero. For example, just take δψ equal to a small
number ε times the right hand side, you will get ε times the square norm of the
right hand side, and that can only be zero if the right hand side is. So Hψ− ǫψ
= 0, or

Hψ = ǫψ.

So you see that you have recovered the Hamiltonian eigenvalue problem from
the requirement that the variation of the expectation energy is zero. Unavoid-
ably then, ǫ will have to be an energy eigenvalue E. It often happens that
Lagrangian multipliers have a physical meaning beyond being merely penalty
factors. But note that there is no requirement for this to be the ground state.
Any energy eigenstate would satisfy the equation; the variational principle works
for them all.

Indeed, you may remember from calculus that the derivatives of a function
may be zero at more than one point. For example, a function might also have a
maximum, or local minima and maxima, or stationary points where the function
is neither a maximum nor a minimum, but the derivatives are zero anyway. This
sort of thing happens here too: the ground state is the state of lowest possible
energy, but there will be other states for which δ 〈E〉 is zero, and these will
correspond to energy eigenstates of higher energy, {D.49}.
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9.2 The Born-Oppenheimer Approximation

Exact solutions in quantum mechanics are hard to come by. In almost all cases,
approximation is needed. The Born-Oppenheimer approximation in particular
is a key part of real-life quantum analysis of atoms and molecules and the like.
The basic idea is that the uncertainty in the nuclear positions is too small to
worry about when you are trying to find the wave function for the electrons.
That was already assumed in the earlier approximate solutions for the hydrogen
molecule and molecular ion. This section discusses the approximation, and how
it can be used, in more depth.

9.2.1 The Hamiltonian

The general problem to be discussed in this section is that of a number of
electrons around a number of nuclei. You first need to know what is the true
problem to be solved, and for that you need the Hamiltonian.

This discussion will be restricted to the strictly nonrelativistic case. Cor-
rections for relativistic effects on energy, including those involving spin, can in
principle be added later, though that is well beyond the scope of this book. The
physical problem to be addressed is that there are a finite number I of electrons
around a finite number J of nuclei in otherwise empty space. That describes
basic systems of atoms and molecules, but modifications would have to be made
for ambient electric and magnetic fields and electromagnetic waves, or for the
infinite systems of electrons and nuclei used to describe solids.

The electrons will be numbered using an index i, and whenever there is a
second electron involved, its index will be called i. Similarly, the nuclei will be
numbered with an index j, or j where needed. The nuclear charge of nucleus
number j, i.e. the number of protons in that nucleus, will be indicated by Zj,
and the mass of the nucleus by mn

j . Roughly speaking, the mass mn
j will be the

sum of the masses of the protons and neutrons in the nucleus; however, internal
nuclear energies are big enough that there are noticeable relativistic deviations
in total nuclear rest mass from what you would think. All the electrons have
the same mass me since relativistic mass changes due to motion are ignored.

Under the stated assumptions, the Hamiltonian of the system consists of a
number of contributions that will be looked at one by one. First there is the
kinetic energy of the electrons, the sum of the kinetic energy operators of the
individual electrons:

T̂E = −
I∑

i=1

~
2

2me

∇2
i = −

I∑

i=1

~
2

2me

(
∂2

∂r1i2
+

∂2

∂r2i2
+

∂2

∂r3i2

)
. (9.4)

where ~ri = (r1i, r2i, r3i) is the position of electron number i. Note the use of
(r1, r2, r3) as the notation for the components of position, rather than (x, y, z).
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For more elaborate mathematics, the index notation (r1, r2, r3) is often more
convenient, since you can indicate any generic component by the single expres-
sion rα, (with the understanding that α = 1, 2, or 3,) instead of writing them
out all three separately.

Similarly, there is the kinetic energy of the nuclei,

T̂N = −
J∑

j=1

~
2

2mn
j

∇n
j
2 = −

J∑

j=1

~
2

2mn
j

(
∂2

∂rn1j
2 +

∂2

∂rn2j
2 +

∂2

∂rn3j
2

)
. (9.5)

where ~r n
j = (rn1j, r

n
2j , r

n
3j) is the position of nucleus number j.

Next there is the potential energy due to the attraction of the I electrons
by the J nuclei. That potential energy is, summing over all electrons and over
all nuclei:

V NE = −
I∑

i=1

J∑

j=1

Zje
2

4πǫ0

1

rij
(9.6)

where rij ≡ |~ri − ~r n
j | is the distance between electron number i and nucleus

number j, and ǫ0 = 8.85 10−12 C2/J m is the permittivity of space.
Next there is the potential energy due to the electron-electron repulsions:

V EE = 1
2

I∑

i=1

I∑

i=1
i 6=i

e2

4πǫ0

1

rii
(9.7)

where rii ≡ |~ri − ~ri| is the distance between electron number i and electron
number i. Half of this repulsion energy will be attributed to electron i and half
to electron i, accounting for the factor 1

2
.

Finally, there is the potential energy due to the nucleus-nucleus repulsions,

V NN = 1
2

J∑

j=1

J∑

j=1

j 6=j

ZjZje
2

4πǫ0

1

rjj
, (9.8)

where rjj ≡ |~r n
j − ~r n

j | is the distance between nucleus number j and nucleus

number j.
Solving the full quantum problem for this system of electrons and nuclei

exactly would involve finding the eigenfunctions ψ to the Hamiltonian eigenvalue
problem [

T̂E + T̂N + V NE + V EE + V NN
]
ψ = Eψ (9.9)

Here ψ is a function of the position and spin coordinates of all the electrons and
all the nuclei, in other words:

ψ = ψ(~r1, Sz1,~r2, Sz2, . . . ,~rI , SzI , ~r
n
1 , S

n
z1,~r

n
2 , S

n
z2, . . . ,~r

n
J , S

n
zJ) (9.10)
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You might guess solving this problem is a tall order, and you would be
perfectly right. It can only be done analytically for the very simplest case
of one electron and one nucleus. That is the hydrogen atom solution, using
an effective electron mass to include the nuclear motion. For any decent size
system, an accurate numerical solution is a formidable task too.

9.2.2 Basic Born-Oppenheimer approximation

The general idea of the Born-Oppenheimer approximation is simple. First note
that the nuclei are thousands of times heavier than the electrons. A proton is
almost two thousand times heavier than an electron, and that does not even
count any neutrons in the nuclei.

So, if you take a look at the kinetic energy operators of the two,

T̂E = −
I∑

i=1

~
2

2me

(
∂2

∂r1i2
+

∂2

∂r2i2
+

∂2

∂r3i2

)

T̂N = −
J∑

j=1

~
2

2mn
j

(
∂2

∂rn1j
2 +

∂2

∂rn2j
2 +

∂2

∂rn3j
2

)

then what would seem more reasonable than to ignore the kinetic energy T̂N of
the nuclei? It has those heavy masses in the bottom.

An alternative, and better, way of phrasing the assumption that T̂N can be
ignored is to say that you ignore the uncertainty in the positions of the nuclei.
For example, visualize the hydrogen molecule, figure 5.2. The two protons, the
nuclei, have pretty well defined positions in the molecule, while the electron wave
function extends over the entire region like a big blob of possible measurable
positions. So how important could the uncertainty in position of the nuclei
really be?

Assuming that the nuclei do not suffer from quantum uncertainty in posi-
tion is really equivalent to putting ~ to zero in their kinetic energy operator
above, making the operator disappear, because ~ is nature’s measure of uncer-
tainty. And without a kinetic energy term for the nuclei, there is nothing left
in the mathematics to force them to have uncertain positions. Indeed, you can
now just guess numerical values for the positions of the nuclei, and solve the
approximated eigenvalue problem Hψ = Eψ for those assumed values.

That thought is the Born-Oppenheimer approximation in a nutshell. Just do
the electrons, assuming suitable positions for the nuclei a priori. The solutions
that you get doing so will be called ψE to distinguish them from the true solu-
tions ψ that do not use the Born-Oppenheimer approximation. Mathematically
ψE will still be a function of the electron and nuclear positions:

ψE = ψE(~r1, Sz1,~r2, Sz2, . . . ,~rI , SzI ; ~r
n
1 , S

n
z1,~r

n
2 , S

n
z2, . . . ,~r

n
J , S

n
zJ). (9.11)



442 CHAPTER 9. NUMERICAL PROCEDURES

But physically it will be a quite different thing: it describes the probability
of finding the electrons, given the positions of the nuclei. That is why there
is a semi-colon between the electron positions and the nuclear positions. The
nuclear positions are here assumed positions, while the electron positions are
potential positions, for which the square magnitude of the wave function ψE

gives the probability. This is an electron wave function only.
In application, it is usually most convenient to write the Hamiltonian eigen-

value problem for the electron wave function as
[
T̂E + V NE + V EE + V NN

]
ψE = (EE + V NN)ψE,

which just means that the eigenvalue is called EE + V NN instead of simply EE.
The reason is that you can then get rid of V NN, and obtain the electron wave
function eigenvalue problem in the more concise form

[
T̂E + V NE + V EE

]
ψE = EEψE (9.12)

After all, for given nuclear coordinates, V NN is just a bothersome constant in
the solution of the electron wave function that you may just as well get rid of.

Of course, after you compute your electron eigenfunctions, you want to get
something out of the results. Maybe you are looking for the ground state of a
molecule, like was done earlier for the hydrogen molecule and molecular ion. In
that case, the simplest approach is to try out various nuclear positions and for
each likely set of nuclear positions compute the electronic ground state energy
EE

gs, the lowest eigenvalue of the electronic problem (9.12) above.
For different assumed nuclear positions, you will get different values for the

electronic ground state energy, and the nuclear positions corresponding to the
actual ground state of the molecule will be the ones for which the total energy
is least:

nominal ground state condition: EE
gs + V NN is minimal (9.13)

This is what was used to solve the hydrogen molecule cases discussed in
earlier chapters; a computer program was written to print out the energy EE

gs +
V NN for a lot of different spacings between the nuclei, allowing the spacing that
had the lowest total energy to be found by skimming down the print-out. That
identified the ground state. The biggest error in those cases was not in using
the Born-Oppenheimer approximation or the nominal ground state condition
above, but in the crude way in which the electron wave function for given
nuclear positions was approximated.

For more accurate work, the nominal ground state condition (9.13) above
does have big limitations, so the next subsection discusses a more advanced
approach.
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9.2.3 Going one better

Solving the wave function for electrons only, given positions of the nuclei is
definitely a big simplification. But identifying the ground state as the position
of the nuclei for which the electron energy plus nuclear repulsion energy is
minimal is much less than ideal.

Such a procedure ignores the motion of the nuclei, so it is no use for figuring
out any molecular dynamics beyond the ground state. And even for the ground
state, it is really wrong to say that the nuclei are at the position of minimum
energy, because the uncertainty principle does not allow precise positions for
the nuclei.

Instead, the nuclei behave much like the particle in a harmonic oscillator.
They are stuck in an electron blob that wants to push them to their nominal
positions. But uncertainty does not allow that, and the wave function of the
nuclei spreads out a bit around the nominal positions, adding both kinetic and
potential energy to the molecule. One example effect of this “zero point energy”
is to lower the required dissociation energy a bit from what you would expect
otherwise.

It is not a big effect, maybe on the order of tenths of electron volts, compared
to typical electron energies described in terms of multiple electron volts (and
much more for the inner electrons in all but the lightest atoms.) But it is not
as small as might be guessed based on the fact that the nuclei are at least
thousands of times heavier than the electrons.

Moreover, though relatively small in energy, the motion of the nuclei may
actually be the one that is physically the important one. One reason is that
the electrons tend to get stuck in single energy states. That may be because
the differences between electron energy levels tend to be so large compared to
a typical unit 1

2
kT of thermal energy, about one hundredth of an electron volt,

or otherwise because they tend to get stuck in states for which the next higher
energy levels are already filled with other electrons. The interesting physical
effects then become due to the seemingly minor nuclear motion.

For example, the heat capacity of typical diatomic gases, like the hydrogen
molecule or air under normal conditions, is not in any direct sense due to the
electrons; it is kinetic energy of translation of the molecules plus a comparable
energy due to angular momentum of the molecule; read, angular motion of the
nuclei around their mutual center of gravity. The heat capacity of solids too is
largely due to nuclear motion, as is the heat conduction of non metals.

For all those reasons, you would really, really, like to actually compute the
motion of the nuclei, rather than just claim they are at fixed points. Does
that mean that you need to go back and solve the combined wave function for
the complete system of electrons plus nuclei anyway? Throw away the Born-
Oppenheimer approximation results?

Fortunately, the answer is mostly no. It turns out that nature is quite coop-
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erative here, for a change. After you have done the electronic structure compu-
tations for all relevant positions of the nuclei, you can proceed with computing
the motion of nuclei as a separate problem. For example, if you are interested in
the ground state nuclear motion, it is governed by the Hamiltonian eigenvalue
problem [

T̂N + V NN + EE
1

]
ψN
1 = EψN

1

where ψN
1 is a wave function involving the nuclear coordinates only, not any

electronic ones. The trick is in the potential energy to use in such a computation;
it is not just the potential energy of nucleus to nucleus repulsions, but you must
include an additional energy EE

1 .
So, what is this EE

1 ? Easy, it is the electronic ground state energy EE
gs that

you computed for assumed positions of the nuclei. So it will depend on where
the nuclei are, but it does not depend on where the electrons are. You can just
computed EE

1 for a sufficient number of relevant nuclear positions, tabulate the
results somehow, and interpolate them as needed. EE

1 is then a known function
function of the nuclear positions and so is V NN. Proceed to solve for the wave
function for the nuclei ψN

1 as a problem not directly involving any electrons.
And it does not necessarily have to be just to compute the ground state.

You might want to study thermal motion or whatever. As long as the electrons
are not kicked strongly enough to raise them to the next energy level, you can
assume that they are in their ground state, even if the nuclei are not. The usual
way to explain this is to say something like that the electrons “move so fast
compared to the slow nuclei that they have all the time in the world to adjust
themselves to whatever the electronic ground state is for the current nuclear
positions.“

You might even decide to use classical molecular dynamics based on the
potential V NN + EE

1 instead of quantum mechanics. It would be much faster
and easier, and the results are often good enough.

So what if you are interested in what your molecule is doing when the elec-
trons are at an elevated energy level, instead of in their ground state? Can
you still do it? Sure. If the electrons are in an elevated energy level EE

n , (for
simplicity, it will be assumed that the electron energy levels are numbered with
a single index n,) just solve

[
T̂N + V NN + EE

n

]
ψN
n = EψN

n (9.14)

or equivalent.
Note that for a different value of n, this is truly a different motion problem

for the nuclei, since the potential energy will be different. If you are a visual
sort of person, you might vaguely visualize the potential energy for a given value
of n plotted as a surface in some high-dimensional space, and the state of the
nuclei moving like a roller-coaster along that potential energy surface, speeding
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up when the surface goes down, slowing down if it goes up. There is one such
surface for each value of n. Anyway. The bottom line is that people refer
to these different potential energies as “potential energy surfaces.” They are
also called “adiabatic surfaces” because “adiabatic” normally means processes
sufficiently fast that heat transfer can be ignored. So, some quantum physicists
figured that it would be a good idea to use the same term for quantum processes
that are so slow that quasi-equilibrium conditions persist throughout, and that
have nothing to do with heat transfer.

Of course, any approximation can fail. It is possible to get into trouble
solving your problem for the nuclei as explained above. The difficulties arise if
two electron energy levels, call them EE

n and EE
n , become almost equal, and in

particular when they cross. In simple terms, the difficulty is that if energy levels
are equal, the energy eigenfunctions are not unique, and the slightest thing can
throw you from one eigenfunction to the completely different one.

You might now get alarmed, because for example the hydrogen molecular ion
does have two different ground state solutions with the same energy. Its single
electron can be in either the spin-up state or the spin down state, and it does
not make any difference for the energy because the assumed Hamiltonian does
not involve spin. In fact, all systems with an odd number of electrons will have
a second solution with all spins reversed and the same energy {D.50}. There is
no need to worry, though; these reversed-spin solutions go their own way and
do not affect the validity of (9.14). It is spatial, rather than spin nonuniqueness
that is a concern.

There is a derivation of the nuclear eigenvalue problem (9.14) in deriva-
tion {D.51}, showing what the ignored terms are and why they can usually be
ignored.

9.3 The Hartree-Fock Approximation

Many of the most important problems that you want to solve in quantum me-
chanics are all about atoms and/or molecules. These problems involve a number
of electrons around a number of atomic nuclei. Unfortunately, a full quantum
solution of such a system of any nontrivial size is very difficult. However, ap-
proximations can be made, and as section 9.2 explained, the real skill you need
to master is solving the wave function for the electrons given the positions of
the nuclei.

But even given the positions of the nuclei, a brute-force solution for any
nontrivial number of electrons turns out to be prohibitively laborious. The
Hartree-Fock approximation is one of the most important ways to tackle that
problem, and has been so since the early days of quantum mechanics. This
section explains some of the ideas.
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9.3.1 Wave function approximation

The key to the basic Hartree-Fock method is the assumptions it makes about
the form of the electron wave function. It will be assumed that there are a total
of I electrons in orbit around a number of nuclei. The wave function describing
the set of electrons then has the general form:

Ψ(~r1, Sz1,~r2, Sz2, . . . ,~ri, Szi, . . .~rI , SzI)

where ~ri is the position of the electron numbered i, and Szi its spin (i.e. internal
angular momentum) in a chosen z-direction. Recall that while the position of
an electron can be anywhere in three-dimensional space, its spin component Sz
can have only two measurable values: 1/2~ or −1/2~. Because of the factor

1/2, an
electron is a “particle of spin one-half”. Such a particle is also called a “spin
doublet” because of the two possible spin values.

The square magnitude of the wave function above gives the probability for
the electrons i = 1, 2, . . . , I to be near the position ~ri, per unit volume, with
spin component Szi.

Of course, what the wave function is will also depend on where the nuclei
are. However, in this section, the nuclei are supposed to be at given positions.
Therefore to reduce the clutter, the dependence of the electron wave function
on the nuclear positions will not be shown explicitly.

Hartree-Fock approximates the wave function above in terms of single-elec-
tron wave functions. Each single-electron wave function takes the form of a
product of a spatial function ψs of the electron position ~r, times a function of
the electron spin component Sz. The spin function is either taken to be ↑ or ↓;
by definition, function ↑(Sz) equals 1 if the spin Sz is 1/2~, and 0 if it is −1/2~.
Conversely, function ↓(Sz) equals 0 if Sz is 1/2~ and 1 if it is −1/2~. Function ↑
is called “spin-up” and ↓ “spin-down.”

A complete single-electron wave function is then of the form

ψs(~r)l(Sz)

where l is either ↑ or ↓. Such a single-electron wave function is called an
“orbital” or more accurately a “spin orbital.” The reason is that people tend to
think of the single-electron wave function as describing a single electron being
in a particular orbit around the nuclei with a particular spin. Wrong, of course:
the electrons do not have well-defined positions on these scales, so you cannot
talk about “orbits” But people do tend to think of the “spatial orbitals” ψs(~r)
that way anyway.

For simplicity, it will be assumed that the spin orbitals are taken to be “nor-
malized;” if you integrate the square magnitude of ψs(~r)l(Sz) over all possible
positions ~r of the electron and sum over the two possible values of its spin Sz,
you get 1. Physically that merely expresses that the electron must be at some



9.3. THE HARTREE-FOCK APPROXIMATION 447

position and have some spin for certain (probability 1). The integral plus sum
combination can be expressed using the concise bra[c]ket notation from chapter
2;

〈ψsl|ψsl〉 = 1

Such a bracket, or “inner product,” is equivalent to a dot product for functions.
If there is more than one electron, as will be assumed in this section, a single

spin orbital ψsl is not enough to create a valid wave function for the complete
system. In fact, the “Pauli exclusion principle” says that each of the I electrons
must go into a different spin orbital, chapter 5.7. So a series of orbitals is needed,

ψs
1l1, ψs

2l2, . . . , ψs
nln, . . . , ψs

NlN
where the number of orbitalsN must be at least as big as the number of electrons
I.

It will be assumed that any two different spin orbitals ψs
nln and ψs

nln are
taken to be “orthogonal;” by definition this means that their bracket is zero:

〈
ψs
nln
∣∣∣ψs

nln
〉
= 0 if n 6= n

In short, it is assumed that the set of spin orbitals is orthonormal; mutually
orthogonal and normalized.

Note that the bracket above can be written as a product of a spatial bracket
and a spin one: 〈

ψs
nln
∣∣∣ψs

nln
〉
≡
〈
ψs
n

∣∣ψs
n

〉
×
〈
ln
∣∣∣ln
〉

So for different spin orbitals to be orthogonal, either the spatial states or the
spin states must orthogonal; they do not both need to be orthogonal. (To verify
the expression above, just write the first bracket out in terms of a spatial integral
over ~r and a sum over the two values of Sz and reorder terms.)

Note also that the spin states ↑ and ↓ are an orthonormal set:

〈↑|↑〉 = 〈↓|↓〉 = 1 〈↑|↓〉 = 〈↓|↑〉 = 0

So if the spin states are opposite, the spatial states do not need to be orthogonal.
In fact, the spatial states can then be the same.

The base Hartree-Fock method uses the absolute minimum number of or-
bitals N = I. In that case, the simplest you could do to create a system wave
function is to put electron 1 in orbital 1, electron 2 in orbital 2, etcetera. That
would give the system wave function

ψs
1(~r1)l1(Sz1)ψs

2(~r2)l2(Sz2)ψs
3(~r3)l3(Sz3) . . . ψs

I(~rI)lI(SzI)

A product of single-electron wave functions like this is called a “Hartree prod-
uct.”
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But a single Hartree product like the one above is physically not acceptable
as a wave function. The Pauli exclusion principle is only part of what is needed,
chapter 5.7. The full requirement is that a system wave function must be “an-
tisymmetric under electron exchange:” the wave function must simply change
sign when any two electrons are swapped. But if, say, electrons 1 and 2 are
swapped in the Hartree product above, it produces the new Hartree product

ψs
1(~r2)l1(Sz2)ψs

2(~r1)l2(Sz2)ψs
3(~r3)l3(Sz3) . . . ψs

I(~rI)lI(SzI)

That is a fundamentally different wave function, not just minus the first Hartree
product; orbitals ψs

1l1 and ψs
2l2 are not allowed to be equivalent.

To get a wave function that does simply change sign when electrons 1 and
2 are swapped, you can take the first Hartree product minus the second one.
That solves that problem. But it is not enough: the wave function must also
simply change sign if electrons 1 and 3 are swapped. Or if 2 and 3 are swapped,
etcetera.

So you must add more Hartree products with swapped electrons to the mix.
A lot more in fact. There are I! ways to order I electrons, and each ordering
adds one Hartree product to the mix. (The Hartree product gets a plus sign
or a minus sign in the mix depending on whether the number of swaps to get
there from the first one is even or odd). So for, say, a single carbon atom with
I = 6 electrons, writing down the full Hartree-Fock wave function would mean
writing down 6! = 720 Hartree products. Roughly a thousand of them, in short.
Of course, writing all that out would be insane. Fortunately, there is a more
concise way to write the complete wave function; it uses a so-called “Slater
determinant,”

1√
I!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψs
1(~r1)l1(Sz1) ψs

2(~r1)l2(Sz1) . . . ψs
n(~r1)ln(Sz1) . . . ψs

I(~r1)lI(Sz1)
ψs
1(~r2)l1(Sz2) ψs

2(~r2)l2(Sz2) . . . ψs
n(~r2)ln(Sz2) . . . ψs

I(~r2)lI(Sz2)
...

...
. . .

...
. . .

...
ψs
1(~ri)l1(Szi) ψs

2(~ri)l2(Szi) . . . ψs
n(~ri)ln(Szi) . . . ψs

I(~ri)lI(Szi)
...

...
. . .

...
. . .

...
ψs
1(~rI)l1(SzI) ψs

2(~rI)l2(SzI) . . . ψs
n(~rI)ln(SzI) . . . ψs

I(~rI)lI(SzI)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(9.15)

The determinant multiplies out to the I! individual Hartree products. (See chap-
ter 5.7 and the notations section for more on determinants.) The factor 1//

√
I!

is there to ensure that the wave function remains normalized after summing the
I! Hartree products together.

The most general system wave function Ψ using only N = I orbitals is
any coefficient a of magnitude 1 times the above Slater determinant. However,
displaying the Slater determinant fully as above is still a lot to write and read.
Therefore, from now on the Slater determinant will be abbreviated as in

Ψ = a|det ψs
1l1, ψs

2l2, . . . , ψs
nln, . . . , ψs

IlI〉 (9.16)
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where |det . . .〉 is the Slater determinant.
It is important to realize that using the minimum number of single-electron

functions will unavoidably produce an error that is mathematically speaking not
small {N.16}. To get a vanishingly small error, you would need a large number
of different Slater determinants, not just one. Still, the results you get with the
basic Hartree-Fock approach may be good enough to satisfy your needs. Or you
may be able to improve upon them enough with “post-Hartree-Fock methods.”

But none of that would be likely if you just selected the single-electron func-
tions ψs

1l1, ψs
2l2, . . . at random. The cleverness in the Hartree-Fock approach

will be in writing down equations for these single-electron wave functions that
produce the best approximation possible with a single Slater determinant.

Recall the approximate solutions that were written down for the electrons
in atoms in chapter 5.9. These solutions were really single Slater determinants.
To improve on these results, you might think of trying to find more accurate
ways to average out the effects of the neighboring electrons than just putting
them in the nucleus as that chapter essentially did. You could smear them out
over some optimal area, say. But even if you did that, the Hartree-Fock solution
will still be better, because it gives the best possible approximation obtainable
with any single determinant.

That assumes of course that the spins are taken the same way. Consider that
problem for a second. Typically, a nonrelativistic approach is used, in which spin
effects on the energy are ignored. Then spin only affects the antisymmetrization
requirements.

Things are straightforward if you try to solve, say, a helium atom. The
correct ground state takes the form

ΨHe(~r1,~r2)×
↑(Sz1)↓(Sz2)− ↓(Sz1)↑(Sz2)√

2
,

The factor ΨHe(~r1,~r2) is the spatial wave function that has the absolutely lowest
energy, regardless of any antisymmetrization concerns. This wave function must
be symmetric (unchanged) under electron exchange since the two electrons are
identical and the ground state is unique. The antisymmetrization requirement
is met because the spins combine together as shown in the second factor above;
this factor changes sign when the electrons are exchanged. So the spatial state
does not have to change sign.

The combined spin state shown in the second factor above is called the
“singlet state,” chapter 5.5.6. In the singlet state the two spins cancel each
other completely : the net electron spin is zero. If you measure the net spin
component in any direction, not just the chosen z-direction, you get zero.

Based on the exact helium ground state wave function above, you would
take the Hartree-Fock approximation to be of the form

|det ψs
1↑, ψs

2↓〉
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and then you would make things easier for yourself by postulating a priori that
the spatial orbitals are the same, ψs

1 = ψs
2. Lo and behold, when you multiply

out the Slater determinant,

1√
2

∣∣∣∣
ψs
1(~r1)↑(Sz1) ψs

1(~r1)↓(Sz1)
ψs
1(~r2)↑(Sz2) ψs

1(~r2)↓(Sz2)

∣∣∣∣

you get

ψs
1(~r1)ψ

s
1(~r2)×

↑(Sz1)↓(Sz2)− ↓(Sz1)↑(Sz2)√
2

This automagically reproduces the correct singlet spin state! (The approxima-
tion comes in because the exact spatial ground state, ΨHe(~r1,~r2) is not just the
product of two single-electron functions as in Hartree-Fock.) And you only need
to find one spatial orbital instead of two.

As discussed in chapter 5.9, a beryllium atom has two electrons with op-
posite spins in the “1s” shell like helium, and two more in the “2s” shell. An
appropriate Hartree-Fock wave function would be

|det ψs
1↑, ψs

1↓, ψs
3↑, ψs

3↓〉

in other words, two pairs of orbitals with the same spatial states and opposite
spins. Similarly, Neon has an additional 6 paired electrons in a closed “2p”
shell, and you could use 3 more pairs of orbitals with the same spatial states
and opposite spins. The number of spatial orbitals that must be found in such
solutions is only half the number of electrons. This procedure is called the
“closed shell Restricted Hartree-Fock (RHF)” method. It restricts the form of
the spatial states to be pair-wise equal.

But now look at lithium. Lithium has two paired 1s electrons like helium,
and an unpaired 2s electron. For the third orbital in the Hartree-Fock determi-
nant, you will now have to make a choice: whether to take it of the form ψs

3↑
or ψs

3↓. Lets assume you take ψs
3↑, so the wave function is

|det ψs
1↑, ψs

2↓, ψs
3↑〉

You have introduced a bias in the determinant: there is now a real difference
between the spatial orbitals ψs

1 and ψ
s
2: ψ

s
1↑ has the same spin as the third spin

orbital, but ψs
2↓ the opposite.

If you find the best approximation to the energy among all possible spatial
orbitals ψs

1, ψ
s
2, and ψs

3, you will end up with orbitals ψs
1 and ψs

2 that are not
the same. Allowing for them to be different is called the “Unrestricted Hartree-
Fock (UHF)” method. In general, you no longer require that equivalent spatial
orbitals are the same in their spin-up and spin down versions. For a bigger
system, you will end up with one set of orthonormal spatial orbitals for the
spin-up orbitals and a different set of orthonormal spatial orbitals for the spin-
down ones. These two sets of orthonormal spatial orbitals are not mutually
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orthogonal; the only reason the complete spin orbitals are still orthonormal is
because the two spins are orthogonal, 〈↑|↓〉 = 0.

If instead of using unrestricted Hartree-Fock, you insist on demanding that
the spatial orbitals for spin up and down do form a single set of orthonormal
functions, it is called “open shell Restricted Hartree-Fock (RHF).” In the case
of lithium, you would then demand that ψs

2 equals ψs
1. Since the best (in terms

of energy) solution has them different, your solution is then no longer the best
possible. You pay a price, but you now only need to find two spatial orbitals
rather than three. The spin orbital ψs

3↑ without a matching opposite-spin orbital
counts as an open shell. For nitrogen, you might want to use three open shells
to represent the three different spatial states 2px, 2py, and 2pz with an unpaired
electron in it.

If you use unrestricted Hartree-Fock instead, you will need to compute more
spatial functions, and you pay another price, spin. Since all spin effects in the
Hamiltonian are ignored, it commutes with the spin operators. So, the exact
energy eigenfunctions are also, or can be taken to be also, spin eigenfunctions.
Restricted Hartree-Fock has the capability of producing approximate energy
eigenstates with well defined spin. Indeed, as you saw for helium, in restricted
Hartree-Fock all the paired spin-up and spin-down states combine into zero-
spin singlet states. If any additional unpaired states are all spin up, say, you
get an energy eigenstate with a net spin equal to the sum of the spins of the
unpaired states. This allows you to deal with typical atoms, including lithium
and nitrogen, very nicely.

But a true unrestricted Hartree-Fock solution does not have correct, defi-
nite, spin. For two electrons to produce states of definite combined spin, the
coefficients of spin-up and spin-down must come in specific ratios. As a sim-
ple example, an unrestricted Slater determinant of ψs

1↑ and ψs
2↓ with unequal

spatial orbitals multiplies out to

|det ψs
1↑, ψs

2↓〉 =
ψs
1(~r1)ψ

s
2(~r2)↑(Sz1)↓(Sz2)− ψs

2(~r1)ψ
s
1(~r2)↓(Sz1)↑(Sz2)√

2

or, writing the spin combinations in terms of singlets (which change sign under
electron exchange) and triplets (which do not),

ψs
1(~r1)ψ

s
2(~r2) + ψs

2(~r1)ψ
s
1(~r2)

2
× ↑(Sz1)↓(Sz2)− ↓(Sz1)↑(Sz2)√

2
+

ψs
1(~r1)ψ

s
2(~r2)− ψs

2(~r1)ψ
s
1(~r2)

2
× ↑(Sz1)↓(Sz2) + ↓(Sz1)↑(Sz2)√

2

So the spin will be some combination of the singlet state, the first term, and
a triplet state, the second. And the precise combination will depend on the
spatial locations of the electrons to boot. Now while the singlet state has net
spin 0, triplet states have net spin 1. So the net spin is uncertain, either 0 or
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1, even though it should not be. (Spin 1 implies that the measured component
of the spin in any direction must be one of the triplet of values ~, 0, or −~.
For the particular triplet state shown above, the component of spin in the z-
direction happens to be zero. But the net spin is not; in a direction normal
to the z-direction, the spin will be measured to be either ~ or −~.) However,
despite the spin problem, it may be noted that unrestricted wave functions are
commonly used as first approximations of doublet (spin 1/2) and triplet (spin 1)
states anyway [46, p. 105].

To show that all this can make a real difference, take the example of the
hydrogen molecule, chapter 5.2, when the two nuclei are far apart. The correct
electronic ground state is

ψL(~r1)ψR(~r2) + ψR(~r1)ψL(~r2)√
2

× ↑(Sz1)↓(Sz2)− ↓(Sz1)↑(Sz2)√
2

where ψL(~r1)ψR(~r2) is the state in which electron 1 is around the left proton and
electron 2 around the right one, and ψR(~r1)ψL(~r2) is the same state but with
the electrons reversed. Note that, like for the helium atom, the spatial state is
symmetric under electron exchange. However, it is not just a product of two
single-electron functions but a sum of two of such products. Note also that the
correct spin state is the singlet one with zero net spin, just like for the helium
atom. It takes care of the antisymmetrization requirement.

Now try to approximate this solution with a restricted closed shell Hartree-
Fock wave function of the form

|det ψs
1↑, ψs

1↓〉

Multiplying out the determinant gives

ψs
1(~r1)ψ

s
1(~r2)×

↑(Sz1)↓(Sz2)− ↓(Sz1)↑(Sz2)√
2

Note that you do get the correct singlet spin state. But ψs
1 will be something like

(ψL + ψR)/
√
2; the energy of either electron is lowest when it is near one of the

nuclei. If you multiply out the resulting spatial wave function, the terms include
ψLψL and ψRψR, in addition to the correct ψLψR and ψRψL. That produces a
50/50 chance that the two electrons are found around the same nucleus. That is
all wrong, since the electrons repel each other: if one electron is around the left
nucleus, the other electron should be around the right nucleus. The computed
energy, which should be that of two neutral hydrogen atoms far apart, will be
much too high due to electron-electron repulsion.

(Fortunately, at the nuclear separation distance corresponding to the ground
state of the complete molecule, the errors are much less, [46, p. 166]. Note that
if you put the two nuclei completely on top of each other, you get a helium
atom, for which Hartree-Fock gives a much more reasonable electron energy.
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Only when you are “breaking the bond,” dissociating the molecule, i.e. taking
the nuclei far apart, do you get into major trouble.)

If instead you would use unrestricted Hartree-Fock, say

|det ψs
1↑, ψs

2↓〉
you should find ψs

1 = ψL and ψs
2 = ψR (or vice versa), which would produce a

wave function

ψL(~r1)ψR(~r2)↑(Sz1)↓(Sz2)− ψR(~r1)ψL(~r2)↓(Sz1)↑(Sz2)√
2

.

In both terms, if the first electron is around the one nucleus, the second electron
is around the other. So this produces the correct energy, that of two neutral
hydrogen atoms. But the spin is now all wrong. It is not a singlet state, but the
combination of a singlet and a triplet state already written down earlier. Little
in life is ideal, is it?

(Actually there is a dirty trick to fix this. Note that which of the two orbitals
you give spin-up and which spin-down is physically immaterial. So there is a
trivially different solution

|det ψs
1↓, ψs

2↑〉
If you take a 50/50 combination of the original Slater determinant and minus
the one above, you get the correct singlet spin state. And the spatial state will
now be the correct average of ψLψR and ψRψL to boot. This spatial state is
more accurate than just two neutral atoms if the distance between the nuclei
decreases, chapter 5.2. All this for free! This sort of dirty trick in Hartree-Fock
is called a “spin adapted configuration.” It is usually used to deal with a few
open shells in an otherwise closed-shell restricted Hartree-Fock configuration.)

All of the above may be much more than you ever wanted to hear about the
wave function. The purpose was mainly to indicate that things are not as simple
as you might initially suppose. As the examples showed, some understanding of
the system that you are trying to model definitely helps. Or experiment with
different approaches.

Let’s go on to the next step: how to get the equations for the spatial orbitals
ψs
1, ψ

s
2, . . . that give the most accurate approximation of a multi-electron prob-

lem. The expectation value of energy will be needed for that, and to get that,
first the Hamiltonian is needed. That will be the subject of the next subsection.

9.3.2 The Hamiltonian

The nonrelativistic Hamiltonian of the system of I electrons consists of a number
of contributions. First there is the kinetic energy of the electrons; the sum of
the kinetic energy operators of the individual electrons:

T̂E = −
I∑

i=1

~
2

2me

∇2
i = −

I∑

i=1

~
2

2me

(
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

)
. (9.17)
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Next there is the potential energy due to the ambient electric field that the
electrons move in. It will be assumed that this field is caused by J nuclei,
numbered using an index j, and having charge Zje (i.e. there are Zj protons
in nucleus number j). In that case, the total potential energy due to nucleus-
electron attractions is, summing over all electrons and over all nuclei:

V NE = −
I∑

i=1

(
J∑

j=1

Zje
2

4πǫ0

1

rnij

)
(9.18)

where rnij ≡ |~ri − ~r n
j | is the distance between electron number i and nucleus

number j, and ǫ0 = 8.85 10−12 C2/J m is the permittivity of space.

And now for the black plague of quantum mechanics, the electron to electron
repulsions. The potential energy for those repulsions is

V EE =
I∑

i=1

I∑

i>i

e2

4πǫ0

1

rii
(9.19)

where rii ≡ |~ri − ~ri| is the distance between electron number i and electron
number i. To avoid counting each repulsion energy twice, (the second time with
reversed electron order), the second electron number is required to be larger
than the first.

Without this repulsion between different electrons, you could solve for each
electron separately, and all would be nice. But you do have it, and so you really
need to solve for all electrons at once, usually an impossible task. You may
recall that when chapter 5.9 examined the atoms heavier than hydrogen, those
with more than one electron, the discussion cleverly threw out the electron to
electron repulsion terms, by assuming that the effect of each neighboring electron
is approximately like canceling out one proton in the nucleus. And you may also
remember how this outrageous assumption led to all those wrong predictions
that had to be corrected by various excuses. The Hartree-Fock approximation
tries to do better than that.

It is helpful to split the Hamiltonian into the single electron terms and the
troublesome interactions, as follows,

H =
I∑

i=1

hei +
I∑

i=1

I∑

i>i

veeii (9.20)

where hei is the single-electron Hamiltonian of electron i,

hei = −
~
2

2me

∇2
i +

J∑

j=1

Zje
2

4πǫ0

1

rnij
(9.21)
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and veeii is the electron i to electron i repulsion potential energy,

veeii =
e2

4πǫ0

1

rii
(9.22)

Note that he1, h
e
2, . . . , h

e
I all take the same general form; the difference is just

in which electron you are talking about. That is not surprising because the
electrons all have the same properties. Similarly, the difference between vee12,
vee13, . . . , v

ee
(I−1)I is just in which pair of electrons you talk about.

9.3.3 The expectation value of energy

As was discussed in more detail in section 9.1, to find the best possible Hartree-
Fock approximation, the expectation value of energy will be needed. For exam-
ple, the best approximation to the ground state is the one that has the smallest
expectation value of energy.

The expectation value of energy 〈E〉 is defined as the inner product

〈Ψ|H|Ψ〉

where H is the Hamiltonian as given in the previous subsection. There is a
problem with using this expression mindlessly, though. Take once again the ex-
ample of the arsenic atom. There are 33 electrons in this atom, so you could try
to choose 33 promising single-electron wave functions to describe it. You could
then try to multiply out the Slater determinant for Ψ, but that produces 33!, or
about 4 1036, Hartree products. If you put these 33! terms in both sides of the
inner product, you get (33!)2 or 7.5 1073 pairs of terms, each producing one inner
product that must be integrated. Now since there are 3 coordinates for each of
the positions of the 33 electrons, this means that each term requires integration
over 99 scalar coordinates. Even using only 10 points in each direction, that
would mean evaluating 1099 integration points for each of the 7.5 1073 pairs of
terms. A computer that could do that is unimaginable. As of 2014, the fastest
computer in the world can do no more than 1025 floating point computations if
it stays at it for 10 years.

Fortunately, it turns out, {D.52}, that almost all of those integrations are
trivial since the single-electron functions are orthonormal. If you sit down and
identify what is really left, you find that only a few three-dimensional and six-
dimensional inner products survive the weeding-out process.

In particular, the single-electron Hamiltonians from the previous subsection
produce only single-electron energy expectation values of the general form

Ee
n ≡ 〈ψs

n|he|ψs
n〉 (9.23)

If you had only one single electron, and it was in the spatial single-particle state
ψs
n(~r), the above inner product would be its energy.
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The combined single-electron energy for all I electrons is then

I∑

n=1

Ee
n

It is just as if you had electron 1 in state ψs
1, electron 2 in state ψs

2, etcetera. Of
course, that is not really true. Antisymmetrization requires that all electrons
are partly in all states. Indeed, if you look a bit closer at the math, you see
that each of the I electrons contributes an equal fraction 1/I to each of the I
terms above. But it does not make a real difference. Without electron-electron
interactions, quantum mechanics would be so much easier!

But the repulsions are there. The Hamiltonians of the repulsions turn out to
produce six-dimensional spatial inner products of two types. The inner products
of the first type are called “Coulomb integrals:”

Jnn ≡
〈
ψs
nψ

s
n

∣∣vee
∣∣ψs

nψ
s
n

〉
(9.24)

To understand the Coulomb integrals better, the inner product above can
be written out explicitly as an integral, while also expanding vee:

∫

all ~r

∫

all ~r

|ψs
n(~r)|2|ψs

n(~r)|2
e2

4πǫ0

1

|~r −~r| d
3~r d3~r

The integrand equals the probability of an electron in state ψs
n to be found near

a position ~r, times the probability of an electron in state ψs
n to be found near

a position ~r, times the Coulomb repulsion energy if the two electrons are at
those positions. In short, Jnn is the expectation value of the Coulomb repulsion
potential between an electron in state ψs

n and one in state ψs
n. Thinking again

of electron 1 in state ψs
1, electron 2 in state ψs

2, etcetera, the total Coulomb
repulsion energy would be

I∑

n=1

I∑

n>n

Jnn

which is indeed the correct combined sum of the Coulomb integrals.
Unfortunately, that is not the complete story for the repulsion energy. Recall

that there are I! different ways in which you can distribute the I electrons over
the I single particle states. And the antisymmetrization requirement requires
that the system wave function is an equal combination of all these I! different
possibilities. In terms of classical physics, it might still seem that this should
make no difference: if any one of these I! possibilities is true, then the others
must be untrue. But quantum mechanics allows states in which the electrons
are distributed in one way to interact with states in which they are distributed
in another way. That produces the so-called “exchange integrals:”

Knn ≡
〈
ψs
nψ

s
n

∣∣vee
∣∣ψs

nψ
s
n

〉
(9.25)



9.3. THE HARTREE-FOCK APPROXIMATION 457

Written out explicitly, that equals

∫

all ~r

∫

all ~r

ψs
n(~r)

∗ψs
n(~r)

∗ e2

4πǫ0

1

|~r −~r|ψ
s
n(~r)ψ

s
n(~r) d

3~r d3~r

It is an interaction of the possibility that the first electron is in state ψs
n and

the second in state ψs
n with the possibility that the second electron is in state

ψs
n and the first in state ψs

n. This book likes to call terms like this “twilight
terms,” since in terms of classical physics they do not make sense.

It may be noted that a single Hartree product satisfying the Pauli exclusion
principle would not produce exchange integrals; in such a wave function, there
is no possibility for an electron to be in another state. But don’t start thinking
that the exchange integrals are there just because the wave function must be
antisymmetric under electron exchange. They, and others, would show up in
any reasonably general wave function. You can think of the exchange integrals
instead as Coulomb integrals with the electrons in the right hand side of the
inner product exchanged.

Adding it all up, the expectation energy of the complete system of I electrons
can be written as

〈E〉 =
I∑

n=1

Ee
n +

1
2

I∑

n=1

I∑

n=1

Jnn − 1
2

I∑

n=1

I∑

n=1

〈
ln
∣∣∣ln
〉2
Knn (9.26)

Note that the above expression sums over all values of n, not just n > n. That
counts each pair of single-electron wave functions twice, so factors one-half have
been added to compensate. It also adds terms in which n = n, both electrons in
the same state, which is not allowed by the Pauli principle. But since Jnn = Knn,
these additional terms cancel each other.

Note also the spin inner products multiplying the exchange terms. These are
zero if the two states have opposite spin, so there are no exchange contributions
between electrons in spin orbitals of opposite spins. And if the spin orbitals
have the same spin, the spin inner product is 1, so the square is somewhat
superfluous.

There are also some a priori things you can say about the Coulomb and
exchange integrals, {D.53}; they are real, and additionally

Jnn = Knn Jnn = Jnn Knn = Knn Jnn > Knn > 0 (9.27)

Note in particular that since the Knn terms are positive, they lower the net
expectation energy of the system. So a wave function consisting of a single
Hartree product, which produces no exchange terms, cannot be the state of
lowest energy. Even without the antisymmetrization requirement, you would
need Hartree products with the electrons exchanged, simply to lower the energy.
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It is actually somewhat tricky to prove that theKnn terms are positive and so
lower the energy, {D.53}. But there is a simple physical reason why you might
guess that an antisymmetric wave function would lower the electron-electron
repulsion energy compared to the individual Hartree products from which it is
made up. In particular, the Coulomb repulsion between electrons becomes very
large when they get close together. But for an anti-symmetric wave function,
unlike for a single Hartree product, the relative probability of electrons of the
same spin getting close together is vanishingly small. That prevents any strong
Coulomb repulsion between electrons of the same spin.

(Recall that the relative probability for electrons to be at given positions and
spins is given by the square magnitude of the wave function at those positions
and spins. Now an antisymmetric wave function must be zero wherever any two
electrons are at the same position with the same spin, making this impossible.
After all, if you swap the two electrons, the antisymmetric wave function must
change sign. But since neither electron changes position nor spin, the wave
function cannot change either. Something can only change sign and stay the
same if it is zero. See also {A.34}.)

The analysis given in this subsection can easily be extended to generalized
orbitals that take the form

ψp
n(~r, Sz) = ψs

n+(~r)↑(Sz) + ψs
n−(~r)↓(Sz).

However, the normal unrestricted spin-up or spin-down orbitals, in which either
ψs
n+ or ψs

n− is zero, already satisfy the variational requirement δ 〈E〉 = 0 even
if generalized variations in the orbitals are allowed, {N.17}.

In any case, the expectation value of energy has been found.

9.3.4 The canonical Hartree-Fock equations

The previous subsection found the expectation value of energy for any electron
wave function described by a single Slater determinant. The final step is to find
the orbitals that produce the best approximation of the true wave function using
such a single determinant. For the ground state, the best single determinant
would be the one with the lowest expectation value of energy. But surely you
would not want to guess spatial orbitals at random until you find some with
really, really, low energy.

What you would like to have is specific equations for the best spatial orbitals
that you can then solve in a methodical way. And you can have them using the
methods of section 9.1, {D.54}. In unrestricted Hartree-Fock, for every spatial
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orbital ψs
n(~r) there is an equation of the form:

heψs
n(~r) +

I∑

n=1

〈
ψs
n

∣∣vee
∣∣ψs

n

〉
ψs
n(~r)

−
I∑

n=1

〈
ln
∣∣∣ln
〉2 〈

ψs
n

∣∣vee
∣∣ψs

n

〉
ψs
n(~r) = ǫnψ

s
n(~r) (9.28)

These are called the “canonical Hartree-Fock equations.” For equations valid
for the restricted closed-shell and single-determinant open-shell approximations,
see the derivation in {D.54}.

Recall that he is the single-electron Hamiltonian consisting of the electron’s
kinetic energy and potential energy due to nuclear attractions, and that vee is
the potential energy of repulsion between the electron and another at a position
~r:

he = − ~
2

2me

∇2 −
J∑

j=1

Zje
2

4πǫ0

1

rj
rj ≡ |~r −~r n

j | vee =
e2

4πǫ0

1

r
r ≡ |~r −~r|

So, if there were no electron-electron repulsions, i.e. vee = 0, the canonical
equations above would be single-electron Hamiltonian eigenvalue problems of
the form heψs

n = ǫnψ
s
n where ǫn would be the energy of the single-electron

orbital. This is really what happened in the approximate analysis of atoms in
chapter 5.9: the electron to electron repulsions were ignored there in favor of
nuclear strength reductions, and the result was single-electron hydrogen-atom
orbitals.

In the presence of electron to electron repulsions, the equations for the or-
bitals can still symbolically be written as if they were single-electron eigenvalue
problems,

Fψs
n(~r)ln(Sz) = ǫnψ

s
n(~r)ln(Sz)

where F is called the “Fock operator,” and is written out further as:

F = he + vHF.

The first term in the Fock operator is the single-electron Hamiltonian. The
mischief is in the innocuous-looking second term vHF. Supposedly, this is the
potential energy related to the repulsion by the other electrons. What is it?
Well, it will have to be the terms in the canonical equations (9.28) not described
by the single-electron Hamiltonian he:

vHFψs(~r)l(Sz) =
I∑

n=1

〈
ψs
n

∣∣vee
∣∣ψs

n

〉
ψs(~r)l(Sz)

−
I∑

n=1

〈
ln
∣∣∣l
〉 〈
ψs
n

∣∣vee
∣∣ψs(~r)

〉
ψs
n(~r)ln(Sz)
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The definition of the Fock operator is unavoidably in terms of spin rather than
just spatial orbitals: the spin of the state on which it operates must be known
to evaluate the final term.

Note that the above expression did not give an expression for vHF by itself,
but only for vHF applied to an arbitrary single-electron function ψsl. The reason
is that vHF is not a normal potential at all: the second term, the one due to
the exchange integrals, does not multiply ψsl by a potential function, it shoves
it into an inner product! The Hartree-Fock “potential” vHF is an operator, not
a normal potential energy. Given a single-electron function including spin, it
produces another single-electron function including spin.

Actually, even that is not quite true. The Hartree-Fock “potential” is only
an operator after you have found the orbitals ψs

1l1, ψs
2l2, . . . , ψs

nln, . . . , ψs
IlI

appearing in it. While you are still trying to find them, the Fock “operator” is
not even an operator, it is just a “thing.” However, given the orbitals, at least
the Fock operator is a Hermitian one, one that can be taken to the other side
if it appears in an inner product, and that has real eigenvalues and a complete
set of eigenfunctions, {D.55}.

So how do you solve the canonical Hartree-Fock equations for the orbitals ψs
n?

If the Hartree-Fock potential vHF was a known operator, you would have only
linear, single-electron eigenvalue problems to solve. That would be relatively
easy, as far as those things come. But since the operator vHF contains the
unknown orbitals, you do not have a linear problem at all; it is a system of
coupled cubic equations in infinitely many unknowns. The usual way to solve
it is iteratively: you guess an approximate form of the orbitals and plug it
into the Hartree-Fock potential. With this guessed potential, the orbitals may
then be found from solving linear eigenvalue problems. If all goes well, the
obtained orbitals, though not perfect, will at least be better than the ones
that you guessed at random. So plug those improved orbitals into the Hartree-
Fock potential and solve the eigenvalue problems again. Still better orbitals
should result. Keep going until you get the correct solution to within acceptable
accuracy.

You will know when you have got the correct solution since the Hartree-Fock
potential will no longer change; the potential that you used to compute the final
set of orbitals is really the potential that those final orbitals produce. In other
words, the final Hartree-Fock potential that you compute is consistent with the
final orbitals. Since the potential would be a field if it was not an operator, that
explains why such an iterative method to compute the Hartree-Fock solution is
called a “self-consistent field method.” It is like calling an iterative scheme for
the Laplace equation on a mesh a “self-consistent neighbors method,” instead
of “point relaxation.” Surely the equivalent for Hartree-Fock, like “iterated
potential” or “potential relaxation” would have been much clearer to a general
audience?
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9.3.5 Additional points

This brief section was not by any means a tutorial of the Hartree-Fock method.
The purpose was only to explain the basic ideas in terms of the notations and
coverage of this book. If you actually want to apply the method, you will need
to take up a book written by experts who know what they are talking about.
The book by Szabo and Ostlund [46] was the main reference for this section,
and is recommended as a well written introduction. Below are some additional
concepts you may want to be aware of.

9.3.5.1 Meaning of the orbital energies

In the single electron case, the “orbital energy” ǫn in the canonical Hartree-Fock
equation

heψs
n(~r) +

I∑

n=1

〈
ψs
n

∣∣vee
∣∣ψs

n

〉
ψs
n(~r)

−
I∑

n=1

〈
ln
∣∣∣ln
〉2 〈

ψs
n

∣∣vee
∣∣ψs

n

〉
ψs
n(~r) = ǫnψ

s
n(~r)

represents the actual energy of the electron. It also represents the ionization
energy, the energy required to take the electron away from the nuclei and leave
it far away at rest. This subsubsection will show that in the multiple electron
case, the “orbital energies” ǫn are not orbital energies in the sense of giving the
contributions of the orbitals to the total expectation energy. However, they can
still be taken to be approximate ionization energies. This result is known as
“Koopman’s theorem.”

To verify the theorem, a suitable equation for ǫn is needed. It can be found
by taking an inner product of the canonical equation above with ψs

n(~r), i.e. by
putting ψs

n(~r)
∗ to the left of both sides and integrating over ~r. That produces

ǫn = Ee
n +

I∑

n=1

Jnn −
I∑

n=1

〈
ln
∣∣∣ln
〉2
Knn (9.29)

which consists of the single-electron energy Ee
n, Coulomb integrals Jnn and ex-

change integrals Knn as defined in subsection 9.3.3. It can already be seen that
if all the ǫn are summed together, it does not produce the total expectation
energy (9.26), because that one includes a factor 1

2
in front of the Coulomb

and exchange integrals. So, ǫn cannot be seen as the part of the system energy
associated with orbital ψs

nln in any meaningful sense.
However, ǫn can still be viewed as an approximate ionization energy. Assume

that the electron is removed from orbital ψs
nln, leaving the electron at infinite

distance at rest. No, scratch that; all electrons share orbital ψs
nln, not just one.
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Assume that one electron is removed from the system and that the remaining
I − 1 electrons stay out of the orbital ψs

nln. Then, if it is assumed that the
other orbitals do not change, the new system’s Slater determinant is the same
as the original system’s, except that column n and a row have been removed.
The expectation energy of the new state then equals the original expectation
energy, except that Ee

n and the n-th column plus the n-th row of the Coulomb
and exchange integral matrices have been removed. The energy removed is then
exactly ǫn above. (While ǫn only involves the n-th row of the matrices, not the
n-th column, it does not have the factor 1

2
in front of them like the expectation

energy does. And rows equal columns in the matrices, so half the row in ǫn
counts as the half column in the expectation energy and the other half as the
half row. This counts the element n = n twice, but that is zero anyway since
Jnn = Knn.)

So by the removal of the electron “from” (read: and) orbital ψs
nln, an amount

of energy ǫn has been removed from the expectation energy. Better put, a
positive amount of energy −ǫn has been added to the expectation energy. So the
ionization energy is −ǫn if the electron is removed from orbital ψs

nln according
to this story.

Of course, the assumption that the other orbitals do not change after the
removal of one electron and orbital is dubious. If you were a lithium electron in
the expansive 2s state, and someone removed one of the two inner 1s electrons,
would you not want to snuggle up a lot more closely to the now much less
shielded three-proton nucleus? On the other hand, in the more likely case that
someone removed the 2s electron, it would probably not seem like that much of
an event to the remaining two 1s electrons near the nucleus, and the assumption
that the orbitals do not change would appear more reasonable. And normally,
when you say ionization energy, you are talking about removing the electron
from the highest energy state.

But still, you should really recompute the remaining two orbitals from the
canonical Hartree-Fock equations for a two-electron system to get the best,
lowest, energy for the new I − 1 electron ground state. The energy you get by
not doing so and just sticking with the original orbitals will be too high. Which
means that all else being the same, the ionization energy will be too high too.

However, there is another error of importance here, the error in the Hartree-
Fock approximation itself. If the original and final system would have the same
Hartree-Fock error, then it would not make a difference and ǫn would overes-
timate the ionization energy as described above. But Szabo and Ostlund [46,
p. 128] note that Hartree-Fock tends to overestimate the energy for the original
larger system more than for the final smaller one. The difference in Hartree-
Fock error tends to compensate for the error you make by not recomputing
the final orbitals, and in general the orbital energies provide reasonable first
approximations to the experimental ionization energies.

The opposite of ionization energy is “electron affinity,” the energy with which
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the atom or molecule will bind an additional free electron [in its valence shell],
{N.19}. It is not to be confused with electronegativity, which has to do with
willingness to take on electrons in chemical bonds, rather than free electrons.

To compute the electron affinity of an atom or molecule with I electrons us-
ing the Hartree-Fock method, you can either recompute the I + 1 orbitals with
the additional electron from scratch, or much easier, just use the Fock operator
of the I electrons to compute one more orbital ψs

I+1lI+1. In the later case how-
ever, the energy of the final system will again be higher than Hartree-Fock, and
it being the larger system, the Hartree-Fock energy will be too high compared
to the I-electron system already. So now the errors add up, instead of subtract
as in the ionization case. If the final energy is too high, then the computed
binding energy will be too low, so you would expect ǫI+1 to underestimate the
electron affinity relatively badly. That is especially so since affinities tend to
be relatively small compared to ionization energies. Indeed Szabo and Ostlund
[46, p. 128] note that while many neutral molecules will take up and bind a free
electron, producing a stable negative ion, the orbital energies almost always
predict negative binding energy, hence no stable ion.

9.3.5.2 Asymptotic behavior

The exchange terms in the Hartree-Fock potential are not really a potential,
but an operator. It turns out that this makes a major difference in how the
probability of finding an electron decays with distance from the system.

Consider again the Fock eigenvalue problem, but with the single-electron
Hamiltonian identified in terms of kinetic energy and nuclear attraction,

− ~
2

2me

∇2ψs
n(~r) + vNeψs
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〈
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n
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〈
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n

∣∣vee
∣∣ψs

n

〉
ψs
n(~r) = ǫnψ

s
n(~r)

Now consider the question which of these terms dominate at large distance from
the system and therefore determine the large-distance behavior of the solution.

The first term that can be thrown out is vNe, the Coulomb potential due to
the nuclei; this potential decays to zero approximately inversely proportional to
the distance from the system. (At large distance from the system, the distances
between the nuclei can be ignored, and the potential is then approximately the
one of a single point charge with the combined nuclear strengths.) Since ǫn in
the right hand side does not decay to zero, the nuclear term cannot survive
compared to it.

Similarly the third term, the Coulomb part of the Hartree-Fock potential,
cannot survive since it too is a Coulomb potential, just with a charge distribution
given by the orbitals in the inner product.
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However, the final term in the left hand side, the exchange part of the
Hartree-Fock potential, is more tricky, because the various parts of this sum
have other orbitals outside of the inner product. This term can still be ignored
for the slowest-decaying spin-up and spin-down states, because for them none
of the other orbitals is any larger, and the multiplying inner product still decays
like a Coulomb potential (faster, actually). Under these conditions the kinetic
energy will have to match the right hand side, implying

slowest decaying orbitals: ψs
n(~r) ∼ exp(−

√
−2meǫnr/~+ . . .)

From this expression, it can also be seen that the ǫn values must be negative,
or else the slowest decaying orbitals would not have the exponential decay with
distance of a bound state.

The other orbitals, however, cannot be less than the slowest decaying one
of the same spin by more than algebraic factors: the slowest decaying orbital
with the same spin appears in the exchange term sum and will have to be
matched. So, with the exchange terms included, all orbitals normally decay
slowly, raising the chances of finding electrons at significant distances. The
decay can be written as

ψs
n(~r) ∼ exp(−

√
2me|ǫm|min, same spin, no ssr/~+ . . .) (9.30)

where ǫm is the ǫ value of smallest magnitude (absolute value) among all the
orbitals with the same spin.

However, in the case that ψs
n(~r) is spherically symmetric, (i.e. an s state),

exclude other s-states as possibilities for ǫm. The reason is a peculiarity of the
Coulomb potential that makes the inner product appearing in the exchange term
exponentially small at large distance for two orthogonal, spherically symmetric
states. (For the incurably curious, it is a result of Maxwell’s first equation ap-
plied to a spherically symmetric configuration like figure 13.1, but with multiple
spherically distributed charges rather than one, and the net charge being zero.)

9.3.5.3 Hartree-Fock limit

The Hartree-Fock approximation greatly simplifies finding a many-dimension-
al wave function. But really, solving the “eigenvalue problems” (9.28) for the
orbitals iteratively is not that easy either. Typically, what one does is to write
the orbitals ψs

n as sums of chosen single-electron functions f1, f2, . . .. You can
then precompute various integrals in terms of those functions. Of course, the
number of chosen single-electron functions will have to be a lot more than the
number of orbitals I; if you are only using I chosen functions, it really means
that you are choosing the orbitals ψs

n rather than computing them.
But you do not want to choose too many functions either, because the re-

quired numerical effort will go up. So there will be an error involved; you will
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not get as close to the true best orbitals as you can. One thing this means is
that the actual error in the ground state energy will be even larger than true
Hartree-Fock would give. For that reason, the Hartree-Fock value of the ground
state energy is called the “Hartree-Fock limit:” it is how close you could come to
the correct energy if you were able to solve the Hartree-Fock equations exactly.

In short, to compute the Hartree-Fock solution accurately, you want to select
a large number of single-electron functions to represent the orbitals. But don’t
start using zillions of them. The problem is that even the exact Hartree-Fock
solution still has a finite error; a wave function cannot in general be described
accurately using only a single Slater determinant. So what would the point in
computing the very inaccurate numbers to ten digits accuracy?

9.3.5.4 Correlation energy

As the previous subsubsection noted, the Hartree-Fock solution, even if com-
puted exactly, will still have a finite error. You might think that this error would
be called something like “Hartree-Fock error.” Or maybe “representation error“
or “single-determinant error,” since it is due to an incomplete representation of
the true wave function using a single Slater determinant.

However, the Hartree-Fock error in energy is called “correlation energy.”
The reason is because there is a energizing correlation between the more im-
penetrable and poorly defined your jargon, and the more respect you will get
for doing all that incomprehensible stuff.

And of course the word “error” should never be used in the first place, God
forbid. Or those hated non-experts might figure out that Hartree-Fock has an
error in energy so big that it makes the base approximation pretty much useless
for chemistry.

To understand what physicists are referring to with “correlation,” reconsider
the form of the Hartree-Fock wave function, as described in subsection 9.3.1. It
consisted of a single Slater determinant. However, that Slater determinant in
turn consisted of a lot of Hartree products, the first of which was

ψs
1(~r1)l1(Sz1)ψs

2(~r2)l2(Sz2)ψs
3(~r3)l3(Sz3) . . . ψs

I(~rI)lI(SzI)

The other Hartree products were different only in the order in which the elec-
trons appear in the product. And since the electrons are all the same, the order
does not make a difference: each of these Hartree products has the same expec-
tation energy. Each also satisfies the Pauli exclusion principle but, by itself, not
the antisymmetrization requirement.

Now, consider what the Born statistical interpretation says about the single
Hartree product above. It says that the probability of electron 1 to be within
a vicinity of volume d3~r1 around a given position ~r1 with given spin Sz1, and
electron 2 to be within a vicinity of volume d3~r2 around a given position ~r2 with
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given spin Sz2, etcetera, is given by

|ψs
1(~r1)l1(Sz1)|

2 d3~r1

× |ψs
2(~r2)l2(Sz2)|

2 d3~r2

× |ψs
3(~r3)l3(Sz3)|

2 d3~r3

. . .

This takes the form of a probability for electron 1 to be in the given state that
is independent of where the other electrons are, times a probability for electron
2 to be in the given state that is independent of where the other electrons are,
etcetera. In short, in a single Hartree product the electrons do not care where
the other electrons are. Their positions are “uncorrelated.”

Uncorrelated positions would be OK if the electrons did not repel each other.
In that case, each electron would indeed not care where the other electrons are.
Then all Hartree products would have the same energy, which would also be the
energy of the complete Slater determinant.

But electrons do repel each other. So, if electron 1 is at a given position ~r1,
electron 2 can reduce its potential energy by preferring positions farther away
from that position. It cannot overdo it, as that will increase its kinetic energy
too much, but there is some room for improvement. So the exact wave function
will have correlations between the positions of different electrons. Based on
arguments like that, physicists then come up with the term correlation energy.

Not so fast, physicists! For one, a Slater determinant is not a single Hartree
product but already includes some electron correlations. Also, “correlation en-
ergy” is not the same as “error in energy caused by incorrect correlations.” And
“error in energy caused by incorrect correlations” is not the same as “error in
energy for an incorrect solution, including incorrect correlations.” And the last
is what the Hartree-Fock error really is. Note that while there is some rough
qualitative relation between potential energy and electron position correlations,
you cannot find the potential energy by pontificating about electrons trying
to stay away from each other. And the correct energy state is found by deli-
cately balancing subtle reductions in potential energy against subtle increases
in kinetic energy. The kinetic energy does not even care about electron correla-
tions. However, the kinetic energy is wrong too when applied on a single Slater
determinant.

See note {N.18} for more.

9.3.5.5 Configuration interaction

Since the base Hartree-Fock approximation has an error that is far too big for
typical chemistry applications, the next question is what can be done about it.
The basic answer is simple: use more that I orbitals, i.e. single-particle wave



9.3. THE HARTREE-FOCK APPROXIMATION 467

functions. As already noted in section 5.7, if you include enough orthonormal
basis functions, using all their possible Slater determinants, you can approxi-
mate any function to arbitrary accuracy.

After the I, (or I/2 in the restricted closed-shell case,) spatial orbitals have
been found, the Hartree-Fock operator becomes just a Hermitian operator, and
can be used to compute further orthonormal orbitals ψs

I+1lI+1, ψ
s
I+2lI+2, . . ..

You can add these to the mix, say to get a better approximation to the true
ground state wave function of the system.

You might want to try to start small. If you include just one more orbital
ψs
I+1lI+1, you can already form I more Slater determinants: you can replace any

of the I orbitals in the original determinant by the new function ψs
I+1lI+1. So

you can now approximate the true wave function by the more general expression

Ψ = a0

(
|det ψs

1l1, ψs
2l2, ψs

3l3, . . . , ψs
IlI〉

+ a1
∣∣det ψs

I+1lI+1, ψ
s
2l2, ψs

3l3, . . . , ψs
IlI
〉

+ a2
∣∣det ψs

1l1, ψs
I+1lI+1, ψ

s
3l3, . . . , ψs

IlI
〉

+ . . .

+ aI
∣∣det ψs

1l1, ψs
2l2, ψs

3l3, . . . , ψs
I+1lI+1

〉)

where the coefficients a1, a2, . . . are to be chosen to approximate the ground
state energy more closely and a0 is a normalization constant.

The additional I Slater determinants are called “excited determinants”. For
example, the first excited state

∣∣det ψs
I+1lI+1, ψ

s
2l2, ψs

3l3, . . . , ψs
IlI
〉

is like a state where you excited an electron out of the lowest state ψs
1l1 into an

elevated energy state ψs
I+1lI+1.

(However, note that if you really wanted to satisfy the variational require-
ment δ 〈E〉 = 0 for such a state, you would have to recompute the orbitals from
scratch, using ψs

I+1lI+1 in the Fock operator instead of ψs
1l1. That is not what

you want to do here; you do not want to create totally new orbitals, just more
of them.)

It may seem that this must be a winner: as much as I more determinants
to further minimize the energy. Unfortunately, now you pay the price for doing
such a great job with the single determinant. Since, hopefully, the Slater deter-
minant is the best single determinant that can be formed, any changes that are
equivalent to simply changing the determinant’s orbitals will do no good. And
it turns out that the I+1-determinant wave function above is equivalent to the
single-determinant wave function

Ψ = a0
∣∣det ψs

1l1 + a1ψ
s
I+1lI+1, ψ

s
2l2 + a2ψ

s
I+1lI+1, . . . , ψ

s
IlI + aIψ

s
I+1lI+1

〉
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as you can check with some knowledge of the properties of determinants. Since
you already have the best single determinant, all your efforts are going to be
wasted if you try this.

You might try forming another set of I excited determinants by replacing
one of the orbitals in the original Hartree-Fock determinant by ψs

I+2lI+2 instead
of ψs

I+1lI+1, but the fact is that the infinitesimal variational condition δ 〈E〉 = 0
is still going to be satisfied when the wave function is the original Hartree-Fock
one. For small changes in wave function, the additional determinants can still
be pushed inside the Hartree-Fock one. To ensure a decrease in energy, you
want to include determinants that allow a nonzero decrease in energy even for
small changes from the original determinant, and that requires “doubly” excited
determinants, in which two different original states are replaced by excited ones
like ψs

I+1lI+1 and ψs
I+2lI+2.

Note that you can form I(I − 1) such determinants; the number of deter-
minants rapidly explodes when you include more and more orbitals. And a
mathematically convergent process would require an asymptotically large set of
orbitals, compare chapter 5.7. How big is your computer?

Most people would probably call improving the wave function representation
using multiple Slater determinants something like “multiple-determinant repre-
sentation,” or “excited-determinant correction.”. However, it is called “config-
uration interaction.” The reason is that every hated non-expert will wonder
whether the physicist is talking about the configuration of the nuclei or the
electrons, and what it is interacting with.

(Actually, “configuration” refers to the practitioner “configuring” all those
determinants, no kidding. The interaction is with the computer used to do so.
Suppose you were creating the numerical mesh for some finite difference or finite
element computation. If you called that “configuration interaction” instead of
“mesh generation,” because it required you to “configure” all those mesh points
through interacting with your computer, some people might doubt your sanity.
But in physics, the standards are not so high.)



Chapter 10

Solids

Quantum mechanics is essential to make sense out of the properties of solids.
Some of the most important properties of solids were already discussed in chap-
ter 6. It is a good idea to review these sections before reading this chapter.

The discussion will remain restricted to solids that have a “crystal structure.”
In a crystal the atoms are packed together in a regular manner. Some important
materials, like glass and plastic, are amorphous, they do not have such a regular
crystal structure, and neither do liquids, so not all the ideas will apply to them.

10.1 Molecular Solids

The hydrogen molecule is the most basic example in quantum mechanics of how
atoms can combine into molecules in order to share electrons. So, the question
suggests itself whether, if hydrogen molecules are brought close together in a
solid, will the atoms start sharing their electrons not just with one other atom,
but with all surrounding atoms? The answer under normal conditions is no.
Metals do that, but hydrogen under normal conditions does not. Hydrogen
atoms are very happy when combined in pairs, and have no desire to reach
out to further atoms and weaken the strong bond they have already created.
Normally hydrogen is a gas, not a metal.

However, if you cool hydrogen way down to 20 K, it will eventually condense
into a liquid, and if you cool it down even further to 14 K, it will then freeze into
a solid. That solid still consists of hydrogen molecules, so it is called a molecular
solid. (Note that solidified noble gases, say frozen neon, are called molecular
solids too, even though they are made up of atoms rather than molecules.)

The forces that glue the hydrogen molecules together in the liquid and solid
phases are called Van der Waals forces, and more specifically, they are called
London forces. (Van der Waals forces are often understood to be all intermolec-
ular forces, not just London forces.) London forces are also the only forces that
can glue noble gas atoms together. These forces are weak.

469
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It is exactly because these forces are so weak that hydrogen must be cooled
down so much to condense it into liquid and finally freeze it. At the time of this
writing, that is a significant issue in the “hydrogen economy.” Unless you go
to very unusual temperatures and pressures, hydrogen is a very thin gas, hence
extremely bulky.

Helium is even worse; it must be cooled down to 4 K to condense it into a
liquid, and under normal pressure it will not freeze into a solid at all. These
two, helium and hydrogen are the worst elements of them all, and the reason is
that their atoms are so small. Van der Waals forces increase with size.

To explain why the London forces occur is easy; there are in fact two expla-
nations that can be given. There is a simple, logical, and convincing explanation
that can easily be found on the web, and that is also completely wrong. And
there is a weird quantum explanation that is also correct, {A.33}.

If you are the audience that this book is primarily intended for, you may
already know the London forces under the guise of the Lennard-Jones potential.
London forces produce an attractive potential between atoms that is propor-
tional to 1/d6 where d is a scaled distance between the molecules. So the
Lennard-Jones potential is taken to be

VLJ = C
(
d−12 − d−6

)
(10.1)

where C is a constant. The second term represents the London forces.

The first term in the Lennard-Jones potential is there to model the fact
that when the atoms get close enough, they rapidly start repelling instead of
attracting each other. (See section 5.10 for more details.) The power 12 is
computationally convenient, since it makes the first term just the square of the
second one. However, theoretically it is not very justifiable. A theoretically
more reasonable repulsion would be one of the form C̄e−d/c/dn, with C̄, c, and
n suitable constants, since that reflects the fact that the strength of the electron
wave functions ramps up exponentially when you get closer to an atom. But
practically, the Lennard-Jones potential works very well; the details of the first
term make no big difference as long as the potential ramps up quickly.

It may be noted that at very large distances, the London force takes the
Casimir-Polder form 1/d7 rather than 1/d6. Charged particles do not really in-
teract directly as a Coulomb potential assumes, but through photons that move
at the speed of light. At large separations, the time lag makes a difference, [26].
The separation at which this happens can be ballparked through dimensional
arguments. The frequency of a typical photon corresponding to transitions be-
tween energy states is given by ~ω = E with E the energy difference between
the states. The frequency for light to bounce back and forwards between the
molecules is given by c/d, with c the speed of light. It follows that the frequency
for light to bounce back and forward is no longer large compared to ω when
Ed/~c becomes order one. For hydrogen, E is about 10 eV and ~c is about 200
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eV nm. That makes the typical separation at which the 1/d6 relation breaks
down about 20 nm, or 200 Å.

Molecular solids may be held together by other Van der Waals forces besides
London forces. Many molecules have an charge distribution that is inherently
asymmetrical. If one side is more negative and the other more positive, the
molecule is said to have a “dipole strength.” The molecules can arrange them-
selves so that the negative sides of the molecules are close to the positive sides of
neighboring molecules and vice versa, producing attraction. (Even if there is no
net dipole strength, there will be some electrostatic interaction if the molecules
are very close and are not spherically symmetric like noble gas atoms are.)

Chemguide [[1]] notes: “Surprisingly dipole-dipole attractions are fairly mi-
nor compared to dispersion [London] forces, and their effect can only really be
seen if you compare two molecules with the same number of electrons and the
same size.” One reason is that thermal motion tends to kill off the dipole at-
tractions by messing up the alignment between molecules. But note that the
dipole forces act on top of the London ones, so everything else being the same,
the molecules with a dipole strength will be bound together more strongly.

When more than one molecular species is around, species with inherent
dipoles can induce dipoles in other molecules that normally do not have them.

Another way molecules can be kept together in a solid is by what are called
“hydrogen bonds.” In a sense, they too are dipole-dipole forces. In this case, the
molecular dipole is created when the electrons are pulled away from hydrogen
atoms. This leaves a partially uncovered nucleus, since an hydrogen atom does
not have any other electrons to shield it. Since it allows neighboring molecules
to get very close to a nucleus, hydrogen bonds can be strong. They remain a
lot weaker than a typical chemical bond, though.

Key Points

0 Even neutral molecules that do not want to create other bonds can
be glued together by various “Van der Waals forces.”

0 These forces are weak, though hydrogen bonds are much less so.

0 The London type Van Der Waals forces affects all molecules, even
noble gas atoms.

0 London forces can be modeled using the Lennard-Jones potential.

0 London forces are one of these weird quantum effects. Molecules with
inherent dipole strength feature a more classically understandable
version of such forces.
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10.2 Ionic Solids

A typical example of a ionic solid is ordinary salt, NaCl. There is little quanti-
tative quantum mechanics required to describe either the salt molecule or solid
salt. Still, there are some important qualitative points, so it seems useful to
include a discussion in this book. Both molecule and solid will be described in
this subsection, since the ideas are very similar.

To form a NaCl salt molecule, a clorine atom takes the loosely bound lone
3s electron away from a natrium (sodium) atom and puts it in its single still
vacant 3p position. That leaves a negative chlorine ion with filled K, L, and
M shells and a positive natrium ion with just filled K and L shells. Since the
combined electron distribution of filled shells is spherically symmetric, you can
reasonably think of the two ions as somewhat soft billiard balls. Since they have
opposite charge, they stick together into a salt molecule as sketched in figure
10.1. The natrium ion is a bit less than two Å in diameter, the clorine one a bit
less than four.

Na+ Cl−

Figure 10.1: Billiard-ball model of the salt molecule.

The energetics of this process is rather interesting. Assume that you start
out with a neutral natrium atom and a neutral chlorine atom that are far apart.
To take the lone 2s electron out of the natrium atom, and leave it at rest at a
position far from either the natrium or the chlorine atom, takes an amount of
energy called the “ionization energy” of natrium. Its value is 5.14 eV (electron
volts).

To take that free electron at rest and put it into the vacant 3p position of
the chlorine ion gives back an amount of energy called the “electron affinity” of
clorine. Its value is 3.62 eV.

(Electron affinity, the willingness to take on free electrons, is not to be con-
fused with “electronegativity,” the willingness to take on electrons in chemical
bonds. Unlike electronegativity, electron affinity varies wildly from element to
element in the periodic table. There is some system in it, still, especially within
single columns. It may also be noted that there seems to be some disagreement
about the definition of electronegativity, in particular for atoms or molecules
that cannot stably bind a free electron, {N.19}.)

Anyway, since it takes 5.14 eV to take the electron out of natrium, and you
get only 3.62 eV back by putting it into clorine, you may wonder how a salt
molecule could ever be stable. But the described picture is very misleading.
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It does not really take 5.14 eV to take the electron out of natrium; most of
that energy is used to pull the liberated electron and positive ion far apart. In
the NaCl molecule, they are not pulled far apart; the positive natrium ion and
negative chlorine ion stick together as in figure 10.1.

In other words, to create the widely separated positive natrium ion and
negative chlorine ion took 5.14 − 3.62 eV, but watch the energy that is recov-
ered when the two ions are brought together to their correct 2.36 Å separation
distance in the molecule. It is approximately given by the Coulomb expression

e2

4πǫ0

1

d

where ǫ0 = 8.85 10−12 C2/J m is the permittivity of space and d is the 2.36
Å distance between the nuclei. Putting in the numbers, dropping an e to get
the result in eV, this energy is 6.1 eV. That gives the total binding energy as
−5.14 + 3.62 + 6.1, or 4.58 eV. That is not quite right, but it is close; the true
value is 4.26 eV.

There are a few reasons why it is slightly off, but one is that the Coulomb
expression above is only correct if the ions were billiard balls that would move
unimpeded towards each other until they hit. Actually, the atoms are somewhat
softer than billiard balls; their mutual repulsion force ramps up quickly, but not
instantaneously. That means that the repulsion force will do a small amount
of negative work during the final part of the approach of the ions. Also, the
uncertainty principle does not allow the localized ions to have exactly zero
kinetic energy. But as you see, these are small effects. It may also be noted
that the repulsion between the ions is mostly Pauli repulsion, as described in
section 5.10.

Figure 10.2: Billiard-ball model of a salt crystal.

Now the electrostatic force that keeps the two ions together in the molecule is
omni-directional. That means that if you bring a lot of salt molecules together,
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the clorine ions will also attract the natrium ions of other molecules and vice
versa. As a result, under normal conditions, salt molecules pack together into
solid salt crystals, as shown in figure 10.2. The ions arrange themselves very
neatly into a pattern that allows each ion to be surrounded by as many attracting
ions of the opposite kind as possible. In fact, as figure 10.2 indicates, each ion
is surrounded by six ions of the opposite kind: four in the same vertical plane,
a fifth behind it, and a sixth in front of it. A more detailed description of the
crystal structure will be given next, but first consider what it means for the
energy.

Since when the molecules pack into a solid, each ion gets next to six ions
of the opposite type, the simplest guess would be that the 6.1 eV Coulomb
attraction of the ions in the molecule would increase by a factor 6 in the solid.
But that is a bad approximation: in the solid, each ion is not just surrounded by
six attracting ions of the opposite kind, but also by twelve repelling ions of the
same kind that are only slightly further away, then again eight attracting ions
still a bit further away, etcetera. The net effect is that the Coulomb attraction
is only 1.75 times higher in the solid than the lone molecules would have. The
factor 1.75 is called the “Madelung constant. So, all else being the same, by
forming a salt crystal the salt molecules would raise their Coulomb attraction
to 1.75× 6.1 or 10.7 eV.

That is still not quite right, because in the solid, the ions are farther apart
than in the molecule. Recall that in the solid, each attracting ion is surrounded
by repelling ions of the opposite kind, reducing the attraction between pairs.
In the solid, opposite ions are 2.82 Å apart instead of 2.36, so the Coulomb
energy reduces to 10.7 × 2.36/2.82 or 8.93 eV. Still, the bottom line is that
the molecules pick up about 2.8 eV more Coulomb energy by packing together
into salt crystals, and that is quite a bit of energy. So it should not come as a
surprise that salt must be heated as high as 801 ◦C to melt it, and as high as
1 465 ◦C to boil it.

Finally, consider the crystal structure that the molecules combine into. One
way of thinking of it is as a three-dimensional chess board structure. In figure
10.2, think of the frontal plane as a chess board of black and white cubes, with
a natrium nucleus in the center of each white cube and a clorine nucleus in the
center of each black one. The next plane of atoms can similarly be considered
to consists of black and white cubes, where the back cubes are behind the white
cubes of the frontal plane and vice-versa. And the same way for further planes.

However, this is not how a material scientist would think about the structure.
A material scientist likes to describe a crystal in terms copies of a simple unit,
called the “basis,” that are stacked together in a regular manner. One possible
choice for the basis in salt is a single natrium ion plus a single clorine ion to
the right of it, like the molecule of figure 10.1. In figure 10.3 the ions of the
salt crystal have been moved far apart to make the actual structure visible, and
the two atoms of the basis units have been joined by a blue line. Note that the
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Figure 10.3: The salt crystal disassembled to show its structure.

entire structure consists of these basis units.
But also note that the molecules lose their identity in a ionic solid. You

could just as well build up the crystal from vertical “molecules,” say, instead of
horizontal ones. In fact, there are six reasonable choices of basis, depending on
which of its six surrounding chlorine ions you want to associate each natrium
ion with. There are of course always countless unreasonable ones. . .

The regular way in which the bases are stacked together to form the complete
crystal structure is called the “lattice.” You can think of the volume of the salt
crystal as consisting of little cubes called “unit cells” indicated by the red frames
in figure 10.3. There are clorine atoms at the corners of the cubes as well as at
the center points of the faces of the cubes. That is the reason the salt lattice is
called the “face centered cubic” (FCC) lattice. Also note that if you shift the
unit cells half a cell to the left, it will be the natrium ions that are at the corners
and face centers of the cubes. In general, every point of a basis is arranged in
the crystal according to the same lattice.

You will agree that it sounds much more professional to say that you have
studied the face-centered cubic arrangement of the basis in a NaCl crystal than
to say that you have studied the three-dimensional chess board structure of salt.

Key Points

0 In a fully ionic bond like NaCl, one atom takes an electron away from
another.

0 The positive and negative ions stick together by electrostatic force,
creating a molecule.
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0 Because of the same electrostatic force, molecules clump together
into strong ionic solids.

0 The crystal structure of NaCl consists of copies of a two-atom NaCL
basis arranged in a face-centered cubic lattice.

10.3 Metals

Metals are unique in the sense that there is no true molecular equivalent to the
way the atoms are bound together in metals. In a metal, the valence electrons
are shared on crystal scales, rather than between pairs of atoms. This and
subsequent sections will discuss what this really means in terms of quantum
mechanics.

10.3.1 Lithium

The simplest metal is lithium. Before examining solid lithium, first consider
once more the free lithium atom. Figure 10.4 gives a more realistic picture of
the atom than the simplistic analysis of chapter 5.9 did. The atom is really made
up of two tightly bound electrons in “|1s〉” states very close to the nucleus, plus
a loosely bound third “valence” electron in an expansive “|2s〉” state. The core,
consisting of the nucleus and the two closely bound 1s electrons, resembles an
helium atom that has picked up an additional proton in its nucleus. It will be
referred to as the “atom core.” As far as the 2s electron is concerned, this entire
atom core is not that much different from an hydrogen nucleus: it is compact
and has a net charge equivalent to one proton.

Figure 10.4: The lithium atom, scaled more correctly than before.

One obvious question is then why under normal circumstances lithium is
a solid metal and hydrogen is a thin gas. The quantitative difference is that
a single-charge core has a favorite distance at which it would like to hold its
electron, the Bohr radius. In the hydrogen atom, the electron is about at the
Bohr radius, and hydrogen holds onto it tightly. It is willing to share electrons

extrascale=3,notransparent
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with one other hydrogen atom, but after that, it is satisfied. It is not looking
for any other hydrogen molecules to share electrons with; that would weaken
the bond it already has. On the other hand, the 2s electron in the lithium atom
is only loosely attached and readily given up or shared among multiple atoms.

Figure 10.5: Body-centered-cubic (BCC) structure of lithium.

Now consider solid lithium. A perfect lithium crystal would look as sketched
in figure 10.5. The atom cores arrange themselves in a regular, repeating, pat-
tern called the “ crystal structure.” As indicated in the figure by the thick red
lines, you can think of the total crystal volume as consisting of many identical
little cubes called “(unit) cells.”. There are atom cores at all eight corners of
these cubes and there is an additional core in the center of the cubic cell. In solid
mechanics, this arrangement of positions is referred to as the “body-centered
cubic” (BCC) lattice. The crystal “basis” for lithium is a single lithium atom,
(or atom core, really); if you put a single lithium atom at every point of the
BCC lattice, you get the complete lithium crystal.

Around the atom cores, the 2s electrons form a fairly homogeneous electron
density distribution. In fact, the atom cores get close enough together that a
typical 2s electron is no closer to the atom core to which it supposedly “belongs”
than to the surrounding atom cores. Under such conditions, the model of the
2s electrons being associated with any particular atom core is no longer really
meaningful. It is better to think of them as belonging to the solid as a whole,
moving freely through it like an electron “gas.”
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Under normal conditions, bulk lithium is “poly-crystalline,” meaning that
it consists of many microscopically small crystals, or “grains,“ each with the
above BCC structure. The “grain boundaries“ where different crystals meet
are crucial to understand the mechanical properties of the material, but not so
much to understand its electrical or heat properties, and their effects will be
ignored. Only perfect crystals will be discussed.

Key Points

0 Lithium can meaningfully be thought of as an atom core, with a net
charge of one proton, and a 2s valence electron around it.

0 In the solid, the cores arrange themselves into a “body-centered cu-
bic” (BCC) lattice.

0 The 2s electrons form an “electron gas” around the cores.

0 Normally the solid, like other solids, does not have the same crys-
tal lattice throughout, but consists of microscopic grains, each crys-
talline, (i.e. with its lattice oriented its own way).

0 The grain structure is critical for mechanical properties like strength
and plasticity. But that is another book.

10.3.2 One-dimensional crystals

Even the quantum mechanics of a perfect crystal like the lithium one described
above is not very simple. So it is a good idea to start with an even simpler
crystal. The easiest example would be a “crystal” consisting of only two atoms,
but two lithium atoms do not make a lithium crystal, they make a lithium
molecule.

✲
✻x

z

✲✛ ✛ ✛✲ ✲ ✲✛period period period

|2s〉(1) |2s〉(1) |2s〉(1) |2s〉(1) |2s〉(1) |2s〉(1)

Figure 10.6: Fully periodic wave function of a two-atom lithium “crystal.”

Fortunately, there is a dirty trick to get a “crystal” with only two atoms:
assume that nature keeps repeating itself as indicated in figure 10.6. Mathe-
matically, this is called “using periodic boundary conditions.” It assumes that
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after moving towards the left over a distance called the period, you are back at
the same point as you started, as if you are walking around in a circle and the
period is the circumference.

Of course, this is an outrageous assumption. If nature repeats itself at all,
and that is doubtful at the time of this writing, it would be on a cosmological
scale, not on the scale of two atoms. But the fact remains that if you make
the assumption that nature repeats, the two-atom model gives a much better
description of the mathematics of a true crystal than a two-atom molecule would.
And if you add more and more atoms, the point where nature repeats itself
moves further and further away from the typical atom, making it less and less
of an issue for the local quantum mechanics.

Key Points

0 Periodic boundary conditions are very artificial.

0 Still, for crystal lattices, periodic boundary conditions often work
very well.

0 And nobody is going to put any real grain boundaries into any basic
model of solids anyway.

10.3.3 Wave functions of one-dimensional crystals

To describe the energy eigenstates of the electrons in one-dimensional crystals in
simple terms, a further assumption must be made: that the detailed interactions
between the electrons can be ignored, except for the exclusion principle. Trying
to correctly describe the complex interactions between the large numbers of
electrons found in a macroscopic solid is simply impossible. And it is not really
such a bad assumption as it may appear. In a metal, electron wave functions
overlap greatly, and when they do, electrons see other electrons in all directions,
and effects tend to cancel out. The equivalent in classical gravity is where you
go down far below the surface of the earth. You would expect that gravity would
become much more important now that you are surrounded by big amounts of
mass at all sides. But they tend to cancel each other out, and gravity is actually
reduced. Little gravity is left at the center of the earth. It is not recommended
as a vacation spot anyway due to excessive pressure and temperature.

In any case, it will be assumed that for any single electron, the net effect of
the atom cores and smeared-out surrounding 2s electrons produces a periodic
potential that near every core resembles that of an isolated core. In particular, if
the atoms are spaced far apart, the potential near each core is exactly the one of
a free lithium atom core. For an electron in this two atom “crystal,” the intuitive
eigenfunctions would then be where it is around either the first or the second
core in the 2s state, (or rather, taking the periodicity into account, around every



480 CHAPTER 10. SOLIDS

first or every second core in each period.) Alternatively, since these two states
are equivalent, quantum mechanics allows the electron to hedge its bets and to
be about each of the two cores at the same time with some probability.

✲
✻x

z

✲✛ ✛ ✛✲ ✲ ✲✛period period period

|2s〉(2) −|2s〉(2) |2s〉(2) −|2s〉(2) |2s〉(2) −|2s〉(2)

Figure 10.7: Flip-flop wave function of a two-atom lithium “crystal.”

But as soon as the atoms are close enough to start noticeably affecting
each other, only two true energy eigenfunctions remain, and they are ones in
which the electron is around both cores with equal probability. There is one
eigenfunction that is exactly the same around both of the atom cores. This
eigenfunction is sketched in figure 10.6; it is periodic from core to core, rather
than merely from pair of cores to pair of cores. The second eigenfunction is the
same from core to core except for a change of sign, call it a flip-flop eigenfunction.
It is shown in figure 10.7. Since the grey-scale electron probability distribution
only shows the magnitude of the wave function, it looks periodic from atom to
atom, but the actual wave function is only the same after moving along two
atoms.

To avoid the grey fading away, the shown wave functions have not been
normalized; the darkness level is as if the 2s electrons of both the atoms are in
that state.

As long as the atoms are far apart, the wave functions around each atom
closely resemble the isolated-atom |2s〉 state. But when the atoms get closer
together, differences start to show up. Note for example that the flip-flop wave
function is exactly zero half way in between two cores, while the fully periodic
one is not. To indicate the deviations from the true free-atom |2s〉 wave function,
parenthetical superscripts will be used.

A one-dimensional crystal made up from four atoms is shown in figure 10.8.
Now there are four energy eigenstates. The energy eigenstate that is the same
from atom to atom is still there, as is the flip-flop one. But there is now also an
energy eigenstate that changes by a factor i from atom to atom, and one that
changes by a factor −i. They change more slowly from atom to atom than the
flip-flop one: it takes two atom distances for them to change sign. Therefore it
takes a distance of four atoms, rather than two, for them to return to the same
values.
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Figure 10.8: Wave functions of a four-atom lithium “crystal.” The actual picture
is that of the fully periodic mode.

Key Points

0 The electron energy eigenfunctions in a metal like lithium extend
over the entire crystal.

0 If the cores are relatively far apart, near each core the energy eigen-
function of an electron still resembles the 2s state of the free lithium
atom.

0 However, the magnitude near each core is of course much less, since
the electron is spread out over the entire crystal.

0 Also, from core to core, the wave function changes by a factor of
magnitude one.

0 The extreme cases are the fully periodic wave function that changes
by a factor one (stays the same) from core to core, versus the flip-flop
mode that changes sign completely from one core to the next.

0 The other eigenfunctions change by an amount in between these two
extremes from core to core.

10.3.4 Analysis of the wave functions

There is a pattern to the wave functions of one-dimensional crystals as discussed
in the previous subsection. First of all, while the spatial energy eigenfunctions
of the crystal are different from those of the individual atoms, their number is
the same. Four free lithium atoms would each have one |2s〉 spatial state to put
their one 2s electron in. Put them in a crystal, and there are still four spatial
states to put the four 2s electrons in. But the four spatial states in the crystal
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are no longer single atom states; each now extends over the entire crystal. The
atoms share all the electrons. If there were eight atoms, the eight atoms would
share the eight 2s electrons in eight possible crystal-wide states. And so on.

To be very precise, a similar thing is true of the inner 1s electrons. But
since the |1s〉 states remain well apart, the effects of sharing the electrons are
trivial, and describing the 1s electrons as belonging pair-wise to a single lithium
nucleus is fine. In fact, you may recall that the antisymmetrization requirement
of electrons requires every electron in the universe to be slightly present in every
occupied state around every atom. Obviously, you would not want to consider
that in the absence of a nontrivial need.

The reason that the energy eigenfunctions take the form shown in figure 10.8
is relatively simple. It follows from the fact that the Hamiltonian commutes with
the “translation operator” that shifts the entire wave function over one atom
spacing ~d. After all, because the potential energy is exactly the same after such
a translation, it does not make a difference whether you evaluate the energy
before or after you shift the wave function over.

Now commuting operators have a common set of eigenfunctions, so the en-
ergy eigenfunctions can be taken to be also eigenfunctions of the translation
operator. The eigenvalue must have magnitude one, since periodic wave func-
tions cannot change in overall magnitude when translated. So the eigenvalue
describing the effect of an atom-spacing translation on an energy eigenfunction
can be written as ei2πν with ν a real number. (The factor 2π does nothing ex-
cept rescale the value of ν. Apparently, crystallographers do not even put it in.
This book does so that you do not feel short-changed because other books have
factors 2π and yours does not.)

This can be verified for the example energy eigenfunctions shown in figure
10.8. For the fully periodic eigenfunction ν = 0, making the translation eigen-
value ei2πν equal to one. So this eigenfunction is multiplied by one under a
translation by one atom spacing d: it is the same after such a translation. For
the flip-flop mode, ν = 1

2
; this mode changes by eiπ = −1 under a translation

over an atom spacing d. That means that it changes sign when translated over
an atom spacing d. For the two intermediate eigenfunctions ν = ±1

4
, so, using

the Euler formula (2.5), they change by factors e±iπ/2 = ±i for each translation
over a distance d.

In general, for an J-atom periodic crystal, there will be J values of ν in the
range −1

2
< ν 6

1
2
. In particular for an even number of atoms J :

ν =
j

J
for j = −J

2
+ 1, −J

2
+ 2, −J

2
+ 3, . . . ,

J

2
− 1,

J

2

Note that for these values of ν, if you move over J atom spacings, ei2πνJ = 1
as it should; according to the imposed periodic boundary conditions, the wave
functions must be the same after J atoms. Also note that it suffices for j to be
restricted to the range −J/2 < j 6 J/2, hence −1

2
< ν 6

1
2
: if j is outside that
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range, you can always add or subtract a whole multiple of J to bring it back in
that range. And changing j by a whole multiple of J does absolutely nothing
to the eigenvalue ei2πν since ei2πJ/J = ei2π = 1.

10.3.5 Floquet (Bloch) theory

Mathematically it is awkward to describe the energy eigenfunctions piecewise,
as figure 10.8 does. To arrive at a better way, it is helpful first to replace the
axial Cartesian coordinate z by a new “crystal coordinate” u defined by

zk̂ = u~d (10.2)

where ~d is the vector shown in figure 10.8 that has the length of one atom
spacing d. Material scientists call this vector the “primitive translation vector”
of the crystal lattice. Primitive vector for short.

The advantage of the crystal coordinate u is that if it changes by one unit,
it changes the z-position by exactly one atom spacing. As noted in the previous
subsection, such a translation should multiply an energy eigenfunction by a
factor ei2πν . A continuous function that does that is the exponential ei2πνu. And
that means that if you factor out that exponential from the energy eigenfunction,
what is left does not change under the translation; it will be periodic on atom
scale. In other words, the energy eigenfunctions can be written in the form

ψp = ei2πνuψp
p

where ψp
p is a function that is periodic on the atom scale d; it is the same in

each successive interval d.
This result is part of what is called “Floquet theory:”

If the Hamiltonian is periodic of period d, the energy eigenfunctions
are not in general periodic of period d, but they do take the form of
exponentials times functions that are periodic of period d.

In physics, this result is known as “Bloch’s theorem,” and the Floquet-type wave
function solutions are called “Bloch functions” or “Bloch waves,” because Flo-
quet was just a mathematician, and the physicists’ hero is Bloch, the physicist
who succeeded in doing it too, half a century later. {N.20}.

The periodic part ψp
p of the energy eigenfunctions is not the same as the

|2s〉(.) states of figure 10.8, because ei2πνu varies continuously with the crystal
position z = ud, unlike the factors shown in figure 10.8. However, since the
magnitude of ei2πνu is one, the magnitudes of ψp

p and the |2s〉(.) states are the
same, and therefore, so are their grey scale electron probability pictures.

It is often more convenient to have the energy eigenfunctions in terms of the
Cartesian coordinate z instead of the crystal coordinate u, writing them in the
form

ψp
k = eikzψp

p,k with ψp
p,k periodic on the atom scale d (10.3)
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The constant k in the exponential is called the wave number, and subscripts
k have been added to ψp and ψp

p just to indicate that they will be different
for different values of this wave number. Since the exponential must still equal
ei2πνu, clearly the wave number k is proportional to ν. Indeed, substituting z =
ud into eikz, k can be traced back to be

k = νD D =
2π

d
− 1

2
< ν 6

1
2

(10.4)

10.3.6 Fourier analysis

As the previous subsection explained, the energy eigenfunctions in a crystal take
the form of a Floquet exponential times a periodic function ψp

p,k. This periodic
part is not normally an exponential. However, it is generally possible to write
it as an infinite sum of exponentials:

ψp
p,k =

∞∑

m=−∞
ckme

ikmz km = mD for m an integer (10.5)

where the ckm are constants whose values will depend on x and y, as well as on
k and the integer m.

Writing the periodic function ψp
p,k as such a sum of exponentials is called

“Fourier analysis,” after another French mathematician. That it is possible
follows from the fact that these exponentials are the atom-scale-periodic eigen-
functions of the z-momentum operator pz = ~∂/i∂z, as is easily verified by
straight substitution. Since the eigenfunctions of an Hermitian operator like pz
are complete, any atom-scale-periodic function, including ψp

p,k, can be written
as a sum of them. See also {D.8}.

10.3.7 The reciprocal lattice

As the previous two subsections discussed, the energy eigenfunctions in a one-
dimensional crystal take the form of a Floquet exponential eikz times a periodic
function ψp

p,k. That periodic function can be written as a sum of Fourier expo-

nentials eikmz. It is a good idea to depict all those k-values graphically, to keep
them apart. That is done in figure 10.9.

The Fourier k values, km = mD with m an integer, form a lattice of points
spaced a distance D apart. This lattice is called the “reciprocal lattice.” The
spacing of the reciprocal lattice, D = 2π/d, is proportional to the reciprocal
of the atom spacing d in the physical lattice. Since on a macroscopic scale the
atom spacing d is very small, the spacing of the reciprocal lattice is very large.

The Floquet k value, k = νD with −1
2
< ν 6

1
2
, is somewhere in the grey

range in figure 10.9. This range is called the first “Brillouin zone.’ It is an
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Figure 10.9: Reciprocal lattice of a one-dimensional crystal.

interval, a unit cell if you want, of lengthD around the origin. The first Brillouin
zone is particularly important in the theory of solids. The fact that the Floquet
k value may be assumed to be in it is but one reason.

To be precise, the Floquet k value could in principle be in an interval of
length D around any wave number km, not just the origin, but if it is, you can
shift it to the first Brillouin zone by splitting off a factor eikmz from the Floquet
exponential eikz. The eikmz can be absorbed in a redefinition of the Fourier series
for the periodic part ψp

p,k of the wave function, and what is left of the Floquet k
value is in the first zone. Often it is good to do so, but not always. For example,
in the analysis of the free-electron gas done later, it is critical not to shift the
k value to the first zone because you want to keep the (there trivial) Fourier
series intact.

The first Brillouin zone are the points that are closest to the origin on the
k-axis, and similarly the second zone are the points that are second closest to
the origin. The points in the interval of length D/2 in between k−1 and the
first Brillouin zone make up half of the second Brillouin zone: they are closest
to k−1, but second closest to the origin. Similarly, the other half of the second
Brillouin zone is given by the points in between k1 and the first Brillouin zone.
In one dimension, the boundaries of the Brillouin zone fragments are called the
“Bragg points.” They are either reciprocal lattice points or points half way in
between those.

10.3.8 The energy levels

Valence band. Conduction band. Band gap. Crystal. Lattice. Basis. Unit cell.
Primitive vector. Bloch wave. Fourier analysis. Reciprocal lattice. Brillouin
zones. These are the jargon of solid mechanics; now they have all been defined.
(Though certainly not fully discussed.) But jargon is not physics. The physically
interesting question is what are the energy levels of the energy eigenfunctions.

For the two-atom crystal of figures 10.6 and 10.7, the answer is much like
that for the hydrogen molecular ion of chapter 4.6 and hydrogen molecule of
chapter 5.2. In particular, when the atom cores are far apart, the |2s〉(.) states
are the same as the free lithium atom wave function |2s〉. In either the fully
periodic or the flip-flop mode, the electron is with 50% probability in that state
around each of the two cores. That means that at large spacing d between
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actual separation between the atoms
✻
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Figure 10.10: Schematic of energy bands.

the cores, the energy is the 2s free lithium atom energy, whether it is the fully
periodic or flip-flop mode. That is shown in the left graph of figure 10.10.

When the distance d between the atoms decreases so that the 2s wave func-
tions start to noticeably overlap, things change. As the same left graph in figure
10.10 shows, the energy of the flip-flop state increases, but that of the fully pe-
riodic state initially decreases. The reasons for the latter are similar to those
that gave the symmetric hydrogen molecular ion and hydrogen molecule states
lower energy. In particular, the electrons pick up more effective space to move
in, decreasing their uncertainty-principle demanded kinetic energy. Also, when
the electron clouds start to merge, the repulsion between electrons is reduced,
allowing the electrons to lose potential energy by getting closer to the nuclei of
the neighboring atoms. (Note however that the simple model used here would
not faithfully reproduce that since the repulsion between the electrons is not
correctly modeled.)

Next consider the case of a four-atom crystal, as shown in the second graph
of figure 10.10. The fully periodic and flip flop states are unchanged, and so
are their energies. But there are now two additional states. Unlike the fully
periodic state, these new states vary from atom, but less rapidly than the flip
flop mode. As you would then guess, their energy is somewhere in between that
of the fully periodic and flip-flop states. Since the two new states have equal
energy, it is shown as a double line in 10.10. The third graph in that figure
shows the energy levels of an 8 atom crystal, and the final graph that of a 24
atom crystal. When the number of atoms increases, the energy levels become
denser and denser. By the time you reach a one hundredth of an inch, one-
million atom one-dimensional crystal, you can safely assume that the energy
levels within the band have a continuous, rather than discrete distribution.

Now recall that the Pauli exclusion principle allows up to two electrons in
a single spatial energy state. Since there are an equal number of spatial states
and electrons, that means that the electrons can pair up in the lowest half of the
states. The upper states will then be unoccupied. Further, the actual separation
distance between the atoms will be the one for which the total energy of the
crystal is smallest. The energy spectrum at this actual separation distance is
found inside the vanishingly narrow vertical frame in the rightmost graph of
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figure 10.10. It shows that lithium forms a metal with a partially-filled band.
The partially filled band means that lithium conducts electricity well. As

was already discussed earlier in chapter 6.20, an applied voltage does not affect
the band structure at a given location. For an applied voltage to do that, it
would have to drop an amount comparable to volts per atom. The current that
would flow in a metal under such a voltage would vaporize the metal instantly.
Current occurs because electrons get excited to states of slightly higher energy
that produce motion in a preferential direction.

10.3.9 Merging and splitting bands

The explanation of electrical conduction in metals given in the previous subsec-
tion is incomplete. It incorrectly seems to show that beryllium, (and similarly
other metals of valence two,) is an insulator. Two valence electrons per atom
will completely fill up all 2s states. With all states filled, there would be no pos-
sibility to excite electrons to states of slightly higher energy with a preferential
direction of motion. There would be no such states. All states would be red in
figure 10.10, so nothing could change.

What is missing is consideration of the 2p atom states. When the atoms are
far enough apart not to affect each other, the 2p energy levels are a bit higher
than the 2s ones and not involved. However, as figure 10.11 shows, when the
atom spacing decreases to the actual one in a crystal, the widening bands merge
together. With this influx of 300% more states, valence-two metals have plenty
of free states to excite electrons to. Beryllium is actually a better conductor
than lithium.

actual separation between the atoms
✻

Ee

d

2s

2p

Figure 10.11: Schematic of merging bands.

Hydrogen is a more complicated story. Solid hydrogen consists of molecules
and the attractions between different molecules are weak. The proper model of
hydrogen is not a series of equally spaced atoms, but a series of pairs of atoms
joined into molecules, and with wide gaps between the molecules. When the two
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atoms in a single molecule are brought together, the energy varies with distance
between the atoms much like the left graph in figure 10.10. The wave function
that is the same for the two atoms in the current simple model corresponds to the
normal covalent bond in which the electrons are symmetrically shared; the flip-
flop function that changes sign describes the “anti-bonding” state in which the
two electrons are antisymmetrically shared. In the ground state, both electrons
go into the state corresponding to the covalent bond, and the anti-bonding state
stays empty. For multiple molecules, each of the two states turns into a band,
but since the interactions between the molecules are weak, these two bands do
not fan out much. So the energy spectrum of solid hydrogen remains much like
the left graph in figure 10.10, with the bottom curve becoming a filled band and
the top curve an empty one. An equivalent way to think of this is that the 1s
energy level of hydrogen does not fan out into a single band like the 2s level
of lithium, but into two half bands, since there are two spacings involved; the
spacing between the atoms in a molecule and the spacing between molecules.
In any case, because of the band gap energy required to reach the empty upper
half 1s band, hydrogen is an insulator.

10.3.10 Three-dimensional metals

The ideas of the previous subsections generalize towards three-dimensional crys-
tals in a relatively straightforward way.

~d1~d2

~d3

Figure 10.12: A primitive cell and primitive translation vectors of lithium.

As the lithium crystal of figure 10.12 illustrates, in a three-dimensional crys-
tal there are three “primitive translation vectors.” The three-dimensional Carte-
sian position ~r can be written as

~r = u1~d1 + u2~d2 + u3~d3 (10.6)

where if any of the “crystal coordinates” u1, u2, or u3 changes by exactly one
unit, it produces a physically completely equivalent position.
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Note that the vectors ~d1 and ~d2 are two bottom sides of the “cubic unit cell”
defined earlier in figure 10.5. However, ~d3 is not the vertical side of the cube.
The reason is that primitive translation vectors must be chosen to allow you to
reach any point of the crystal from any equivalent point in whole steps. Now ~d1
and ~d2 allow you to step from any point in a horizontal plane to any equivalent
point in the same plane. But if ~d3 was vertically upwards like the side of the
cubic unit cell, stepping with ~d3 would miss every second horizontal plane. With
~d1 and ~d2 defined as in figure 10.12, ~d3 must point to an equivalent point in an
immediately adjacent horizontal plane, not a horizontal plane farther away.

Despite this requirement, there are still many ways of choosing the primitive
translation vectors other than the one shown in figure 10.12. The usual way is
to choose all three to extend towards adjacent cube centers. However, then it
gets more difficult to see that no lattice point is missed when stepping around
with them.

The parallelepiped shown in figure 10.12, with sides given by the primitive
translation vectors, is called the “primitive cell.” It is the smallest building
block that can be stacked together to form the total crystal. The cubic unit cell
from figure 10.5 is not a primitive cell since it has twice the volume. The cubic
unit cell is instead called the “conventional cell.”

Since the primitive vectors are not unique, the primitive cell they define is not
either. These primitive cells are purely mathematical quantities; an arbitrary
choice for the smallest single volume element from which the total crystal volume
can be build up. The question suggests itself whether it would not be possible
to define a primitive cell that has some physical meaning; whose definition is
unique, rather than arbitrary. The answer is yes, and the unambiguously defined
primitive cell is called the “Wigner-Seitz cell.” The Wigner-Seitz cell around a
lattice point is the vicinity of locations that are closer to that lattice point than
to any other lattice point.

Figure 10.13: Wigner-Seitz cell of the BCC lattice.

Figure 10.13 shows the Wigner-Seitz cell of the BCC lattice. To the left, it is
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shown as a wire frame, and to the right as an opaque volume element. To put it
within context, the atom around which this Wigner-Seitz cell is centered was also
put in the center of a conventional cubic unit cell. Note how the Wigner-Seitz
primitive cell is much more spherical than the parallelepiped-shaped primitive
cell shown in figure 10.12. The outside surface of the Wigner-Seitz cell consists
of hexagonal planes on which the points are just on the verge of getting closer
to a corner atom of the conventional unit cell than to the center atom, and of
squares on which the points are just on the verge of getting closer to the center
atom of an adjacent conventional unit cell. The squares are located within the
faces of the conventional unit cell.

The reason that the entire crystal volume can be build up from Wigner-Seitz
cells is simple: every point must be closest to some lattice point, so it must be
in some Wigner-Seitz cell. When a point is equally close to two nearest lattice
points, it is on the boundary where adjacent Wigner-Seitz cells meet.

Turning to the energy eigenfunctions, they can now be taken to be eigen-
functions of three translation operators; they will change by some factor ei2πν1

when translated over ~d1, by e
i2πν2 when translated over ~d2, and by ei2πν3 when

translated over ~d3. All that just means that they must take the Floquet (Bloch)
function form

ψp = ei2π(ν1u1+ν2u2+ν3u3)ψp
p,

where ψp
p is periodic on atom scales, exactly the same after one unit change in

any of the crystal coordinates u1, u2 or u3.
It is again often convenient to write the Floquet exponential in terms of nor-

mal Cartesian coordinates. To do so, note that the relation giving the physical
position ~r in terms of the crystal coordinates u1, u2, and u3,

~r = u1~d1 + u2~d2 + u3~d3

can be inverted to give the crystal coordinates in terms of the physical position,
as follows:

u1 =
1

2π
~D1 ·~r u2 =

1

2π
~D2 ·~r u3 =

1

2π
~D3 ·~r (10.7)

(Again, factors 2π have been thrown in merely to fully satisfy even the most

demanding quantum mechanics reader.) To find the vectors ~D1, ~D2, and ~D3,
simply solve the expression for ~r in terms of u1, u2, and u3 using linear algebra
procedures. In particular, they turn out to be the rows of the inverse of matrix
(~d1, ~d2, ~d3).

If you do not know linear algebra, it can be done geometrically: if you dot
the expression for ~r above with ~D1/2π, you must get u1; for that to be true, the
first three conditions below are required:

~d1 · ~D1 = 2π, ~d2 · ~D1 = 0, ~d3 · ~D1 = 0,
~d1 · ~D2 = 0, ~d2 · ~D2 = 2π, ~d3 · ~D2 = 0,
~d1 · ~D3 = 0, ~d2 · ~D3 = 0, ~d3 · ~D3 = 2π.

(10.8)
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The second set of three equations is obtained by dotting with ~D2/2π to get u2
and the third by dotting with ~D3/2π to get u3. From the last two equations in

the first row, it follows that vector ~D1 must be orthogonal to both ~d2 and ~d3.
That means that you can get ~D1 by first finding the vectorial cross product of
vectors ~d2 and ~d3 and then adjusting the length so that ~d1 · ~D1 = 2π. In similar
ways, ~D2 and ~D3 may be found.

If the expressions for the crystal coordinates are substituted into the expo-
nential part of the Bloch functions, the result is

ψp
~k
= ei

~k·~rψp

p,~k
~k = ν1 ~D1 + ν2 ~D2 + ν3 ~D3 (10.9)

So, in three dimensions, a wave number k becomes a “wave number vector” ~k.
Just like for the one-dimensional case, the periodic function ψp

p,~k
too can be

written in terms of exponentials. Converted from crystal to physical coordinates,
it gives:

ψp

p,~k
=
∑

m1

∑

m2

∑

m3

cp,~k~me
i~k~m·~r

~k~m = m1
~D1 +m2

~D2 +m3
~D3 for m1, m2, and m3 integers (10.10)

If these wave number vectors ~k~m are plotted three-dimensionally, it again forms
a lattice called the “reciprocal lattice,” and its primitive vectors are ~D1, ~D2,
and ~D3. Remarkably, the reciprocal lattice to lithium’s BCC physical lattice
turns out to be the FCC lattice of NaCl fame!

And now note the beautiful symmetry in the relations (10.8) between the

primitive vectors ~D1, ~D2, and ~D3 of the reciprocal lattice and the primitive
vectors ~d1, ~d2, and ~d3 of the physical lattice. Because these relations involve
both sets of primitive vectors in exactly the same way, if a physical lattice with
primitive vectors ~d1, ~d2, and ~d3 has a reciprocal lattice with primitive vectors
~D1, ~D2, and ~D3, then a physical lattice with primitive vectors ~D1, ~D2, and ~D3

has a reciprocal lattice with primitive vectors ~d1, ~d2, and ~d3. Which means that
since NaCl’s FCC lattice is the reciprocal to lithium’s BCC lattice, lithium’s
BCC lattice is the reciprocal to NaCl’s FCC lattice. You now see where the
word “reciprocal” in reciprocal lattice comes from. Lithium and NaCl borrow
each other’s lattice to serve as their lattice of wave number vectors.

Finally, how about the definition of the “Brillouin zones” in three dimen-
sions? In particular, how about the first Brillouin zone to which you often
prefer to move the Floquet wave number vector ~k? Well, it is the magnitude of
the wave number vector that is important, so the first Brillouin zone is defined
to be the Wigner-Seitz cell around the origin in the reciprocal lattice. Note
that this means that in the first Brillouin zone, ν1, ν2, and ν3 are not simply
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numbers in the range from −1
2
to 1

2
as in one dimension; that would give a

parallelepiped-shaped primitive cell instead.

Solid state physicists may tell you that the other Brillouin zones are also
reciprocal lattice Wigner-Seitz cells, [29, p. 38], but if you look closer at what
they are actually doing, the higher zones consist of fragments of reciprocal lattice
Wigner-Seitz cells that can be assembled together to produce a Wigner-Seitz
cell shape. Like for the one-dimensional crystal, the second zone are again the
points that are second closest to the origin, etcetera.

The boundaries of the Brillouin zone fragments are now planes called “Bragg
planes.” Each is a perpendicular bisector of a lattice point and the origin.
That is so because the locations where points stop being first/, second/, third/,
. . . closest to the origin and become first/, second/, third/, . . . closest to some
other reciprocal lattice point must be on the bisector between that lattice point
and the origin. Sections 10.5.1 and 10.6 will give Bragg planes and Brillouin
zones for a simple cubic lattice.

The qualitative story for the valence electron energy levels is the same in
three dimensions as in one. Sections 10.5 and 10.6 will look a bit closer at them
quantitatively.

10.4 Covalent Materials

In covalent materials, the atoms are held together by covalent chemical bonds.
Such bonds are strong. Note that the classification is somewhat vague; many
crystals, like quartz (silicon dioxide), have partly ionic, partly covalent binding.
Another ambiguity occurs for graphite, the stable form of carbon under normal
condition. Graphite consists of layers of carbon atoms arranged in a hexagonal
pattern. There are four covalent bonds binding each carbon to three neighboring
atoms in the layer: three sp2 hybrid bonds in the plane and a fourth π-bond
normal it. The π-electrons are delocalized and will conduct electricity. (When
rolled into carbon nanotubes, this becomes a bit more complicated.) As far as
the binding of the solid is concerned, however, the point is that different layers
of graphite are only held together with weak Van der Waals forces, rather than
covalent bonds. This makes graphite one of the softest solids known.

Under pressure, carbon atoms can form diamond rather than graphite, and
diamond is one of the hardest substances known. The diamond structure is
a very clean example of purely covalent bonding, and this section will have a
look at its nature. Other group IV elements in the periodic table, in particular
silicon, germanium, and grey tin also have the diamond structure. All these, of
course, are very important for engineering applications.

One question that suggests itself in view of the earlier discussion of metals
is why these materials are not metals. Consider carbon for example. Compared
to beryllium, it has four rather than two electrons in the second, L, shell. But
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the merged 2s and 2p bands can hold eight electrons, so that cannot be the
explanation. In fact, tin comes in two forms under normal conditions: covalent
grey tin is stable below 13 ◦C; while above that temperature, metallic white tin
is the stable form. It is often difficult to guess whether a particular element will
form a metallic or covalent substance near the middle of the periodic table.
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Figure 10.14: Schematic of crossing bands.

Figure 10.14 gives a schematic of the energy band structure for a diamond-
type crystal when the spacing between the atoms is artificially changed. When
the atoms are far apart, i.e. d is large, the difference from beryllium is only
that carbon has two electrons in 2p states versus beryllium none. But when
the carbon atoms start coming closer, they have a group meeting and hit upon
the bright idea to reduce their energy even more by converting their one 2s and
three 2p spatial states into four hybrid sp3 states. This allows them to share
pairs of electrons symmetrically in as much as four strong covalent bonds. And
it does indeed work very well for lowering the energy of these states, filled to
the gills with electrons. But it does not work well at all for the “anti-bonding”
states that share the electrons antisymmetrically, (as discussed for the hydrogen
molecule in chapter 5.2.4), and who do not have a single electron to support
their case at the meeting. So a new energy gap now opens up.

At the actual atom spacing of diamond, this band gap has become as big as
5.5 eV, making it an electric insulator (unlike graphite, which is a semi-metal).
For silicon however, the gap is a much smaller 1.1 eV, similar to the one for
germanium of 0.7 eV; grey tin is considerably smaller still; recent authoritative
sources list it as zero. These smaller band gaps allow noticeable numbers of
electrons to get into the empty conduction band by thermal excitation, so these
materials are semiconductors at room temperature.

The crystal structure of these materials is rather interesting. It must allow
each atom core to connect to 4 others to form the hybrid covalent bonds. That
requires the rather spacious structure sketched in figure 10.15. For simplicity
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Figure 10.15: Ball and stick schematic of the diamond crystal.

and clarity, the four hybrid bonds that attach each atom core to its four neigh-
bors are shown as blue or dark grey sticks rather than as a distribution of grey
tones.

Like for lithium, you can think of the spheres as representing the inner
electrons. The grey gas represents the outer electrons, four per atom.

To understand the figure beyond that, first note that it turns out to be
impossible to create the diamond crystal structure from a basis of a single
atom. It is simply not possible to distribute clones of a single carbon atom
around using a single set of three primitive vectors, and produce all the atoms
in the diamond crystal. A basis of a pair of atoms is needed. The choice of
which pair is quite arbitrary, but in figure 10.15 the clones of the chosen pair
are linked by blue lines. Notice how the entire crystal is build up from such
clones. (Physically, the choice of basis is artificial, and the blue sticks indicate
hybrid bonds just like the grey ones.) One possible choice for a set of three
primitive translation vectors is shown in the figure. The more usual choice is to
take the one in the front plane to the atom located at 45 degrees instead.

Now notice that the lower members of these pairs are located at the corners
and face centers of the cubic volume elements indicated by the fat red lines. Yes,
diamond is another example of a face-centered cubic lattice. What is different
from the NaCl case is the basis; two carbon atoms at some weird angle, instead
of a natrium and a chlorine ion sensibly next to each other. Actually, if you
look a bit closer, you will notice that in terms of the half-size cubes indicated
by thin red frames, the structure is not that illogical. It is again that of a
three-dimensional chess board, where the centers of the black cubes contain the
upper carbon of a basis clone, while the centers of the white cubes are empty.
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But of course, you would not want to tell people that. They might think you
spend your time playing games, and terminate your support.

If you look at the massively cross-linked diamond structure, it may not
come as that much of a surprise that diamond is the hardest substance to
occur naturally. Under normal conditions, diamond will supposedly degenerate
extremely slowly into graphite, but without doubt, diamonds are forever.

10.5 Free-Electron Gas

Chapter 6 discussed the model of noninteracting electrons in a periodic box.
This simple model, due to Sommerfeld, is a first starting point for much analysis
of solids. It was used to provide explanations of such effects as the incompress-
ibility of solids and liquids, and of electrical conduction. This section will use
the model to explain some of the analytical methods that are used to analyze
electrons in crystals. A free-electron gas is a model for electrons in a crystal
when the physical effect of the crystal structure on the electrons is ignored.
The assumption is that the crystal structure is still there, but that it does not
actually do anything to the electrons.

The single-particle energy eigenfunctions of a periodic box are given by

ψp
~k
(~r) =

1√
V
ei
~k·~r =

1√
V
ei(kxx+kyy+kzz) (10.11)

Here the wave numbers are related to the box dimensions as

kx = nx
2π

ℓx
ky = ny

2π

ℓy
kz = nz

2π

ℓz
(10.12)

where the quantum numbers nx, ny, and nz are integers. This section will use
the wave number vector, rather than the quantum numbers, to indicate the
individual eigenfunctions.

Note that each of these eigenfunctions can be regarded as a Bloch wave: the
exponentials are the Floquet ones, and the periodic parts are trivial constants.
The latter reflects the fact the periodic potential itself is trivially constant (zero)
for a free-electron gas.

Of course, there is a spin-up version ψp
~k
↓ and a spin-down version ψp

~k
↑ of

each eigenfunction above. However, spin will not be much of an issue in the
analysis here.

The Floquet exponentials have not been shifted to any first Brillouin zone.
In fact, since the electrons experience no forces, as far as they are concerned,
there is no crystal structure, hence no Brillouin zones.

10.5.1 Lattice for the free electrons

As far as the mathematics of free electrons is concerned, the box in which they
are confined may as well be empty. However,it is useful to put the results in
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context of a surrounding crystal lattice anyway. That will allow some of the
basic concepts of the solid mechanics of crystals to be defined within a simple
setting.

It will therefore be assumed that there is a crystal lattice, but that its po-
tential is zero. So the lattice does not affect the motion of the electrons. An
appropriate choice for this lattice must now be made. The plan is to keep the
same Floquet wave number vectors as for the free electrons in a rectangular pe-
riodic box. Those wave numbers form a rectangular grid in wave number space
as shown in figure 6.17 of chapter 6.18. To preserve these wave numbers, it is
best to figure out a suitable reciprocal lattice first.

To do so, compare the general expression for the Fourier ~k~m values that make
up the reciprocal lattice:

~k~m = m1
~D1 +m2

~D2 +m3
~D3

in which m1, m2, and m3 are integers, with the Floquet ~k values,

~k = ν1 ~D1 + ν2 ~D2 + ν3 ~D3

(compare section 10.3.10.) Now ν1 is of the form ν1 = j1/J1 where j1 is an
integer just like m1 is an integer, and J1 is the number of lattice cells in the
direction of the first primitive vector. For a macroscopic crystal, J1 will be a
very large number, so the conclusion must be that the Floquet wave numbers
are spaced much more closely together than the Fourier ones. And so they are
in the other two directions.

kx

ky

Figure 10.16: Assumed simple cubic reciprocal lattice, shown as black dots, in
cross-section. The boundaries of the surrounding primitive cells are shown as
thin red lines.
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In particular, if it is assumed that there are an equal number of cells in
each primitive direction, J1 = J2 = J3 = J , then the Fourier wave numbers are
spaced farther apart than the Floquet ones by a factor J in each direction. Such
a reciprocal lattice is shown as fat black dots in figure 10.16.

Note that in this section, the wave number space will be shown only in the
kz = 0 cross-section. A full three-dimensional space, like the one of figure 6.17,
would get very messy when crystal structure effects are added.

A lattice like the one shown in figure 10.16 is called a “simple cubic lattice,”
and it is the easiest lattice that you can define. The primitive vectors are
orthonormal, just a multiple of the Cartesian unit vectors ı̂, ̂, and k̂. Each
lattice point can be taken to be the center of a primitive cell that is a cube, and
this cubic primitive cell just happens to be the Wigner-Seitz cell too.

It is of course not that strange that the simple cubic lattice would work
here, because the assumed wave number vectors were derived for electrons in a
rectangular periodic box.

How about the physical lattice? That is easy too. The simple cubic lattice
is its own reciprocal. So the physical crystal too consists of cubic cells stacked
together. (Atomic scale ones, of course, for a physical lattice.) In particu-
lar, the wave numbers as shown in figure 10.16 correspond to a crystal that is
macroscopically a cube with equal sides 2ℓ, and that on atomic scale consists of
J×J×J identical cubic cells of size d = 2ℓ/J . Here J , the number of atom-scale
cells in each direction, will be a very large number, so d will be very small.

In ~k-space, J is the number of Floquet points in each direction within a unit
cell. Figure 10.16 would correspond to a physical crystal that has only 40 atoms
in each direction. A real crystal would have many thousands, and the Floquet
points would be much more densely spaced than could be shown in a figure like
figure 10.16.

It should be pointed out that the simple cubic lattice, while definitely simple,
is not that important physically unless you happen to be particularly interested
in polonium or compounds like cesium chloride or beta brass. But the math-
ematics is really no different for other crystal structures, just messier, so the
simple cubic lattice makes a good example. Furthermore, many other lattices
feature cubic unit cells, even if these cells are a bit larger than the primitive
cell. That means that the assumption of a potential that has cubic periodicity
on an atomic scale is quite widely applicable.

10.5.2 Occupied states and Brillouin zones

The previous subsection chose the reciprocal lattice in wave number space to
be the simple cubic one. The next question is how the occupied states show
up in it. As usual, it will be assumed that the crystal is in the ground state,
corresponding to zero absolute temperature.
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As shown in figure 6.17, in the ground state the energy levels occupied by
electrons form a sphere in wave number space. The surface of the sphere is the
Fermi surface. The corresponding single-electron energy is the Fermi energy.

Figure 10.17 shows the occupied states in kz = 0 cross section if there are
one, two, and three valence electrons per physical lattice cell. (In other words,
if there are J3, 2J3, and 3J3 valence electrons.) For one valence electron per
lattice cell, the spherical region of occupied states stays within the first Brillouin
zone, i.e. the Wigner-Seitz cell around the origin, though just barely. There are
J3 spatial states in a Wigner-Seitz cell, the same number as the number of
physical lattice cells, and each can hold two electrons, (one spin up and one
spin down,) so half the states in the first Brillouin zone are filled. For two
electrons per lattice cell, there are just as many occupied spatial states as there
are states within the first Brillouin zone. But since in the ground state, the
occupied free electron states form a spherical region, rather than a cubic one,
the occupied states spill over into immediately adjacent Wigner-Seitz cells. For
three valence electrons per lattice cell, the occupied states spill over into still
more neighboring Wigner-Seitz cells. (It is hard to see, but the diameter of
the occupied sphere is slightly larger than the diagonal of the Wigner-Seitz cell
cross-section.)

However, these results may show up presented in a different way in literature.
The reason is that a Bloch-wave representation is not unique. In terms of Bloch
waves, the free-electron exponential solutions as used here can be represented
in the form

ψp
~k
= ei

~k·~rψp

p,~k

where the atom-scale periodic part ψp

p,~k
of the solution is a trivial constant. In

addition, the Floquet wave number ~k can be in any Wigner-Seitz cell, however
far away from the origin. Such a description is called an “extended zone scheme”.

This free-electron way of thinking about the solutions is often not the best
way to understand the physics. Seen within a single physical lattice cell, a
solution with a Floquet wave number in a Wigner-Seitz cell far from the origin
looks like an extremely rapidly varying exponential. However, all of that atom-
scale physics is in the crystal-scale Floquet exponential; the lattice-cell scale part
ψp

p,~k
is a trivial constant. It may be better to shift the Floquet wave number

to the Wigner-Seitz cell around the origin, the first Brillouin zone. That will
turn the crystal-scale Floquet exponential into one that varies relatively slowly
over the physical lattice cell; the rapid variation will now be absorbed into the
lattice-cell part ψp

p,~k
. This idea is called the “reduced zone scheme.” As long as

the Floquet wave number vector is shifted to the first Brillouin zone by whole
amounts of the primitive vectors of the reciprocal lattice, ψp

p,~k
will remain an

atom-scale-periodic function; it will just become nontrivial. This shifting of the
Floquet wave numbers to the first Brillouin zone is illustrated in figures 10.18a
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Figure 10.17: Occupied states for one, two, and three free electrons per physical
lattice cell.
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and 10.18b. The figures are for the case of three valence electrons per lattice
cell, but with a slightly increased radius of the sphere to avoid visual ambiguity.

a)

b)

c)

a b

cd
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C

D

c d
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first second third fourth

Figure 10.18: Redefinition of the occupied wave number vectors into Brillouin
zones.

Now each Floquet wave number vector in the first Brillouin zone does no
longer correspond to just one spatial energy eigenfunction like in the extended
zone scheme. There will now be multiple spatial eigenfunctions, distinguished
by different lattice-scale variations ψp

p,~k
. Compare that with the earlier approx-

imation of one-dimensional crystals as widely separated atoms. That was in
terms of different atomic wave functions like the 2s and 2p ones, not a single
one, that were modulated by Floquet exponentials that varied relatively slowly
over an atomic cell. In other words, the reduced zone scheme is the natural one
for widely spaced atoms: the lattice scale parts ψp

p,~k
correspond to the different

atomic energy eigenfunctions. And since they take care of the nontrivial vari-
ations within each lattice cell, the Floquet exponentials become slowly varying
ones.

But you might rightly feel that the critical Fermi surface is messed up pretty
badly in the reduced zone scheme figure 10.18b. That does not seem to be
such a hot idea, since the electrons near the Fermi surface are critical for the
properties of metals. However, the picture can now be taken apart again to
produce separate Brillouin zones. There is a construction credited to Harrison
that is illustrated in figure 10.18c. For points that are covered by at least one
fragment of the original sphere, (which means all points, here,) the first covering
is moved into the first Brillouin zone. For points that are covered by at least two
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fragments of the original sphere, the second covering is moved into the second
Brillouin zone. And so on.

Figure 10.19: Second, third, and fourth Brillouin zones seen in the periodic zone
scheme.

Remember that in say electrical conduction, the electrons change occupied
states near the Fermi surfaces. To simplify talking about that, physicist like to
extend the pictures of the Brillouin zones periodically, as illustrated in figure
10.19. This is called the “periodic zone scheme.” In this scheme, the boundaries
of the Wigner-Seitz cells, which are normally not Fermi surfaces, are no longer
a distracting factor. It may be noted that a bit of a lattice potential will round
off the sharp corners in figure 10.19, increasing the esthetics.

10.6 Nearly-Free Electrons

The free-electron energy spectrum does not have bands. Bands only form when
some of the forces that the ambient solid exerts on the electrons are included.
In this section, some of the mechanics of that process will be explored. The only
force considered will be one given by a periodic lattice potential. The discussion
will still ignore true electron-electron interactions, time variations of the lattice
potential, lattice defects, etcetera.

In addition, to simplify the mathematics it will be assumed that the lattice
potential is weak. That makes the approach here diametrically opposite to
the one followed in the discussion of the one-dimensional crystals. There the
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starting point was electrons tightly bound to widely spaced atoms; the atom
energy levels then corresponded to infinitely concentrated bands that fanned
out when the distance between the atoms was reduced. Here the starting idea
is free electrons in closely packed crystals for which the bands are completely
fanned out so that there are no band gaps left. But it will be seen that when a
bit of nontrivial lattice potential is added, energy gaps will appear.

The analysis will again be based on the Floquet energy eigenfunctions for
the electrons. As noted in the previous section, they correspond to periodic
boundary conditions for periods 2ℓx, 2ℓy, and 2ℓz. In case that the energy
eigenfunctions for confined electrons are desired, they can be obtained from
the Bloch solutions to be derived in this section in the following way: Take a
Bloch solution and flip it over around the x = 0 plane, i.e. replace x by −x.
Subtract that from the original solution, and you have a solution that is zero
at x = 0. And because of periodicity and odd symmetry, it will also be zero at
x = ℓx. Repeat these steps in the y and z directions. It will produce energy
eigenfunctions for electrons confined to a box 0 < x < ℓx, 0 < y < ℓy, 0 < z
< ℓz. This method works as long as the lattice potential has enough symmetry
that it does not change during the flip operations.

kx

ky

Figure 10.20: The red dot shows the wavenumber vector of a sample free electron
wave function. It is to be corrected for the lattice potential.

The approach will be to start with the solutions for force-free electrons and
see how they change if a small, but nonzero lattice potential is added to the
motion. It will be a “nearly-free electron model.” Consider a sample Floquet
wave number as shown by the red dot in the wave number space figure 10.20.
If there is no lattice potential, the corresponding energy eigenfunction is the
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free-electron one,

ψp
~k,0

=
1√

8ℓxℓyℓz
ei(kxx+kyy+kzz)

where the subscript zero merely indicates that the lattice potential is zero. (This
section will use the extended zone scheme because it is mathematically easiest.)
If there is a lattice potential, the eigenfunction will change into a Bloch one of
the form

ψp
~k
= ψp

p,~k
ei(kxx+kyy+kzz)

where ψp

p,~k
is periodic on an atomic scale. If the lattice potential is weak, as

assumed here,

ψp

p,~k
≈ 1√

8ℓxℓyℓz

Also, the energy will be almost the free-electron one:

E
e
~k ≈ E

e
~k,0 =

~
2

2me

k2

However, that is not good enough. The interest here is in the changes in the
energy due to the lattice potential, even if they are weak. So the first thing will
be to figure out these energy changes.

10.6.1 Energy changes due to a weak lattice potential

Finding the energy changes due to a small change in a Hamiltonian can be done
by a mathematical technique called “perturbation theory.” A full description
and derivation are in {A.38} and {D.79}. This subsection will simply state the
needed results.

The effects of a small change in a Hamiltonian, here being the weak lat-
tice potential, are given in terms of the so-called “Hamiltonian perturbation
coefficients” defined as

H~k~k ≡ 〈ψ
p
~k,0
|V ψp

~k,0
〉 (10.13)

where V is the lattice potential, and the ψp
~k,0

are the free-electron energy eigen-

functions.
In those terms, the energy of the eigenfunction ψ~k with Floquet wave number

~k is

E
e
~k ≈ E

e
~k,0 +H~k~k −

∑

~k 6=~k

|H~k~k|2
Ee
~k,0
− Ee

~k,0

+ . . . (10.14)

Here Ee
~k,0

is the free-electron energy. The dots stand for contributions that can
be ignored for sufficiently weak potentials.

The first correction to the free-electron energy is the Hamiltonian pertur-
bation coefficient H~k~k. However, by writing out the inner product, it is seen
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that this perturbation coefficient is just the average lattice potential. Such a
constant energy change is of no particular physical interest; it can be eliminated
by redefining the zero level of the potential energy.

kx

ky

Figure 10.21: The grid of nonzero Hamiltonian perturbation coefficients and the
problem sphere in wave number space.

That makes the sum in (10.14) the physically interesting change in energy.
Now, unlike it seems from the given expression, it is not really necessary to
sum over all free-electron energy eigenfunctions ψ~k,0. The only Hamiltonian

perturbation coefficients that are nonzero occur for the ~k values shown in figure
10.21 as blue stars. They are spaced apart by amounts J in each direction, where
J is the large number of physical lattice cells in that direction. These claims can
be verified by writing the lattice potential as a Fourier series and then integrating
the inner product. More elegantly, you can use the observation from addendum
{A.38.3} that the only eigenfunctions that need to be considered are those with
the same eigenvalues under displacement over the primitive vectors of the lattice.
(Since the periodic lattice potential is the same after such displacements, these
displacement operators commute with the Hamiltonian.)

The correct expression for the energy change has therefore now been identi-
fied. There is one caveat in the whole story, though. The above analysis is not
justified if there are eigenfunctions ψp

~k,0
on the grid of blue stars that have the

same free-electron energy Ee
~k,0

as the eigenfunction ψp
~k,0

. You can infer the prob-

lem from (10.14); you would be dividing by zero if that happened. You would
have to fix the problem by using so-called “singular perturbation theory,” which
is much more elaborate.

Fortunately, since the grid is so widely spaced, the problem occurs only for
relatively few energy eigenfunctions ψp

~k
. In particular, since the free-electron



10.6. NEARLY-FREE ELECTRONS 505

energy Ee
~k,0

equals ~2k2/2me, the square magnitude of ~k would have to be the

same as that of ~k. In other words, ~k would have to be on the same spherical
surface around the origin as point ~k. So, as long as the grid has no points other
than ~k on the spherical surface, all is OK.

10.6.2 Discussion of the energy changes

The previous subsection determined how the energy changes from the free-
electron gas values due to a small lattice potential. It was found that an energy
level Ee

~k,0
without lattice potential changes due to the lattice potential by an

amount:

∆E
e
~k = −

∑

~k 6=~k

|H~k~k|2
Ee
~k,0
− Ee

~k,0

(10.15)

where the H~k~k were coefficients that depend on the details of the lattice poten-

tial; ~k was the wave number vector of the considered free-electron gas solution,
shown as a red dot in the wavenumber space figure 10.21, ~k was an summation
index over the blue grid points of that figure, and Ee

~k,0
and Ee

~k,0
were propor-

tional to the square distances from the origin to points ~k, respectively ~k. Ee
~k,0

is also the energy level of the eigenfunction without lattice potential.
The expression above for the energy change is not valid when Ee

~k,0
= Ee

~k,0
,

in which case it would incorrectly give infinite change in energy. However, it is
does apply when Ee

~k,0
≈ Ee

~k,0
, in which case it predicts unusually large changes

in energy. The condition Ee
~k,0
≈ Ee

~k,0
means that a blue star ~k on the grid in

figure 10.21 is almost the same distance from the origin as the red point ~k itself.

kx

ky

Figure 10.22: Tearing apart of the wave number space energies.
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One case for which this happens is when the wave number vector ~k is right
next to one of the boundaries of the Wigner-Seitz cell around the origin. When-
ever a ~k is on the verge of leaving this cell, one of its lattice points is on the
verge of getting in. As an example, figure 10.22 shows two neighboring states
~k straddling the right-hand vertical plane of the cell, as well as their lattice ~k
values that cause the unusually large energy changes.

For the left of the two states, Ee
~k,0

is just a bit larger than Ee
~k.0

, so the

energy change (10.15) due to the lattice potential is large and negative. All
energy decreases will be represented graphically by moving the points towards
the origin, in order that the distance from the origin continues to indicate the
energy of the state. That means that the left state will move strongly towards
the origin. Consider now the other state just to the right; Ee

~k,0
for that state

is just a bit less than Ee
~k,0

, so the energy change of this state will be large and
positive; graphically, this point will move strongly away from the origin. The
result is that the energy levels are torn apart along the surface of the Wigner-
Seitz cell.

Figure 10.23: Effect of a lattice potential on the energy. The energy is repre-
sented by the square distance from the origin, and is relative to the energy at
the origin.

That is illustrated for an arbitrarily chosen example lattice potential in figure
10.23. It is another reason why the Wigner-Seitz cell around the origin, i.e. the
first Brillouin zone, is particularly important. For different lattices than the
simple cubic one considered here, it is still the distance from the origin that is
the deciding factor, so in general, it is the Wigner-Seitz cell, rather than some
parallelepiped-shaped primitive cell along whose surfaces the energies get torn
apart.
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Figure 10.24: Bragg planes seen in wave number space cross section.

But notice in figure 10.23 that the energy levels get torn apart along many
more surfaces than just the surface of the first Brillouin zone. In general, it
can be seen that tears occur in wave number space along all the perpendicular
bisector planes, or Bragg planes, between the points of the reciprocal lattice
and the origin. Figure 10.24 shows their intersections with the cross section kz
= 0 as thin black lines. The kx and ky axes were left away to clarify that they
do not hide any lines.

Recall that the Bragg planes are also the boundaries of the fragments that
make up the various Brillouin zones. In fact the first Brillouin zone is the cube
or Wigner-Seitz cell around the origin; (the square around the origin in the
cross section figure 10.24). The second zone consists of six pyramid-shaped
regions whose bases are the faces of the cube; (the four triangles sharing a side
with the square in the cross section figure 10.24). They can be pushed into the
first Brillouin zone using the fundamental translation vectors to combine into a
Wigner-Seitz cell shape.

For a sufficiently strong lattice potential like the one in figure 10.23, the
energy levels in the first Brillouin zone, the center patch, are everywhere lower
than in the remaining areas. Electrons will then occupy these states first, and
since there are J × J × J spatial states in the zone, two valence electrons per
physical lattice cell will just fill it, figure 10.25. That produces an insulator
whose electrons are stuck in a filled valence band. The electrons must jump
an finite energy gap to reach the outlying regions if they want to do anything
nontrivial. Since no particular requirements were put onto the lattice potential,
the forming of bands is self-evidently a very general process.

The wave number space in the right half of figure 10.25 also illustrates that a
lattice potential can change the Floquet wave number vectors that get occupied.
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Figure 10.25: Occupied states for the energies of figure 10.23 if there are two
valence electrons per lattice cell. Left: energy. Right: wave numbers.

For the free-electron gas, the occupied states formed a spherical region in terms
of the wave number vectors, as shown in the middle of figure 10.17, but here the
occupied states have become a cube, the Wigner-Seitz cell around the origin.
The Fermi surface seen in the extended zone scheme is now no longer a spherical
surface, but consists of the six faces of this cell.

But do not take this example too literally: the small-perturbation analysis
is invalid for the strong potential required for an insulator, and the real picture
would look quite different. In particular, the “roll-over” of the states at the
edge of the first Brillouin zone in the energy plot is a clear indication that the
accuracy is poor. The error in the perturbation analysis is the largest for states
immediately next to the Bragg planes. The example is given just to illustrate
that the nearly-free electron model can indeed describe band gaps if taken far
enough.

The nearly-free electron model is more reasonable for the smaller lattice
forces experienced by valence electrons in metals. For example, at reduced
strength, the same potential as before produces figure 10.26. Now the electrons
have no trouble finding states of slightly higher energy, as it should be for a
metal. Note, incidentally, that the Fermi surfaces in the right-hand graphs
seem to meet the Bragg planes much more normally than the spherical free-
electron surface. That leads to smoothing out of the corners of the surface seen
in the periodic zone scheme. For example, imagine the center zone of the one
valence electron wave number space periodically continued.

10.7 Additional Points

This section mentions a couple of additional very basic issues in the quantum
mechanics of solids.
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Figure 10.26: Smaller lattice potential. From top to bottom shows one, two and
three valence electrons per lattice cell. Left: energy. Right: wave numbers.
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10.7.1 About ferromagnetism

Magnetism in all its myriad forms and complexity is far beyond the scope of
this book. But there is one very important fundamental quantum mechanics
issue associated with ferromagnetism that has not yet been introduced.

Ferromagnetism is the plain variety of magnetism, like in refrigerator mag-
nets. Ferromagnetic solids like iron are of great engineering interest. They can
significantly increase a magnetic field and can stay permanently magnetized
even in the absence of a field. The fundamental quantum mechanics issue has
to do with why they produce magnetic fields in the first place.

The source of the ferromagnetic field is the electrons. Electrons have spin,
and just like a classical charged particle that is spinning around in a circle
produces a magnetic field, so do electrons act as little magnets. A free iron
atom has 26 electrons, each with spin 1/2. But two of these electrons are in the
1s states, the K shell, where they combine into a singlet state with zero net spin
which produces no magnetic field. Nor do the two 2s electrons and the six 2p
electrons in the L shell, and the two 3s electrons and six 3p electrons in the M
shell and the two 4s electrons in the N shell produce net spin. All of that lack of
net spin is a result of the Pauli exclusion principle, which says that if electrons
want to go two at a time into the lowest available energy states, they must do it
as singlet spin states. And these filled subshells produce no net orbital angular
momentum either, having just as many positive as negative orbital momentum
states filled in whatever way you look at it.

However, iron has a final six electrons in 3d states, and the 3d states can
accommodate ten electrons, five for each spin direction. So only two out of
the six electrons need to enter the same spatial state as a zero spin singlet.
The other four electrons can each go into their private spatial state. And the
electrons do want to do so, since by going into different spatial states, they can
stay farther away from each other, minimizing their mutual Coulomb repulsion
energy.

According to the simplistic model of noninteracting electrons that was used
to describe atoms in chapter 5.9, these last four electrons can then have equal
or opposite spin, whatever they like. But that is wrong. The four electrons
interact through their Coulomb repulsion, and it turns out that they achieve
the smallest energy when their spatial wave function is antisymmetric under
particle exchange.

(This is just the opposite of the conclusion for the hydrogen molecule, where
the symmetric spatial wave function had the lowest energy. The difference is that
for the hydrogen molecule, the dominant effect is the reduction of the kinetic
energy that the symmetric state achieves, while for the single-atom states, the
dominant effect is the reduction in electron to electron Coulomb repulsion that
the antisymmetric wave function achieves. In the antisymmetric spatial wave
function, the electrons stay further apart on average.)
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If the spatial wave function of the four electrons takes care of the antisym-
metrization requirement, then their spin state cannot change under particle
exchange; they all must have the same spin. This is known as “Hund’s first
rule:” electron interaction makes the net spin as big as the exclusion principle
allows. The four unpaired 3d electrons in iron minimize their Coulomb energy
at the price of having to align all four of their spins. Which means their spin
magnetic moments add up rather than cancel each other. {A.34}.

Hund’s second rule says that the electrons will next maximize their orbital
angular momentum as much as is still possible. And according to Hund’s third
rule, this orbital angular momentum will add to the spin angular momentum
since the ten 3d states are more than half full. It turns out that iron’s 3d
electrons have the same amount of orbital angular momentum as spin, however,
orbital angular momentum is only about half as effective at creating a magnetic
dipole.

In addition, the magnetic properties of orbital angular momentum are readily
messed up when atoms are brought together in a solid, and more so for transi-
tion metals like iron than for the lanthanoid series, whose unfilled 4f states are
buried much deeper inside the atoms. In most of the common ferromagnets, the
orbital contribution is negligible small, though in some rare earths there is an
appreciable orbital contribution.

Guessing just the right amounts of net spin angular momentum, net orbital
angular momentum, and net combined angular momentum for an atom can
be tricky. So, in an effort make quantum mechanics as readily accessible as
possible, physicists provide the data in an intuitive hieroglyph. For example

5
D4

gives the angular momentum of the iron atom. The 5 indicates that the spin
angular momentum is 2. To arrive at 5, the physicists multiply by 2, since spin
can be half integer and it is believed that many people doing quantum mechanics
have difficulty with fractions. Next 1 is added to keep people from cheating and
mentally dividing by 2 – you must subtract 1 first. (Another quick way of getting
the actual spin: write down all possible values for the spin in increasing order,
and then count until the fifth value. Start counting from 1, of course, because
counting from 0 is so computer science.) The D intimates that the orbital
angular momentum is 2. To arrive at D, physicists write down the intuitive
sequence of letters S, P,D, F,G,H, I,K, . . . and then count, starting from zero,
to the orbital angular momentum. Unlike for spin, here it is not the count,
but the object being counted that is listed in the hieroglyph; unfortunately
the object being counted is letters, not angular momentum. Physicists assume
that after having practiced counting spin states and letters, your memory is
refreshed about fractions, and the combined angular momentum is simply listed
by value, 4 for iron. Listing spin and combined angular momentum in two
different formats achieves that the class won’t notice the error if the physics
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professor misstates the spin or combined angular momentum for an atom with
zero orbital momentum.

On to the solid. The atoms act as little magnets because of their four aligned
electron spins and net orbital angular momentum, but why would different
atoms want to align their magnetic poles in the same direction in a solid? If
they don’t, there is not going to be any macroscopically significant magnetic
field. The logical reason for the electron spins of different atoms to align would
seem to be that it minimizes the magnetic energy. However, if the numbers
are examined, any such aligning force is far too small to survive random heat
motion at normal temperatures.

The primary reason is without doubt again the same weird quantum me-
chanics as for the single atom. Nature does not care about magnetic align-
ment or not; it is squirming to minimize its Coulomb energy under the massive
constraints of the antisymmetrization requirement. By aligning electron spins
globally, it achieves that electrons can stay farther apart spatially. {N.22}.

It is a fairly small effect; among the pure elements, it really only works
under normal operating temperatures for cobalt and its immediate neighbors
in the periodic table, iron and nickel. And alignment is normally not achieved
throughout a bulk solid, but only in microscopic zones, with different zones
having different alignment. But any electrical engineer will tell you it is a very
important effect anyway. For one since the zones can be manipulated with a
magnetic field.

And it clarifies that nature does not necessarily select singlet states of op-
posite spin to minimize the energy, despite what the hydrogen molecule and
helium atom might suggest. Much of the time, aligned spins are preferred.

10.7.2 X-ray diffraction

You may wonder how so much is known about the crystal structure of solids
in view of the fact that the atoms are much too small to be seen with visible
light. In addition, because of the fact that the energy levels get smeared out
into bands, like in figure 10.11, solids do not have those tell-tale line spectra
that are so useful for analyzing atoms and molecules.

To be precise, while the energy levels of the outer electrons of the atoms get
smeared out, those of the inner electrons do not do so significantly, and these
do produce line spectra. But since the energy levels of the inner electrons are
very high, transitions involving inner electrons do not produce visible light, but
X-rays.

There is a very powerful other technique for studying the crystal structure
of atoms, however, and it also involves X-rays. In this technique, called X-ray
diffraction, an X-ray is trained on a crystal from various angles, and the way
the crystal scatters the X-ray is determined.
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There is no quantum mechanics needed to describe how this works, but
a brief description may be of value anyway. If you want to work in nano-
technology, you will inevitably run up against experimental work, and X-ray
diffraction is a key technique. Having some idea of how it works and what it
can do can be useful.

First a very basic understanding is needed of what is an X-ray. An X-ray
is a propagating wave of electromagnetic radiation just like a beam of visible
light. The only difference between them is that an X-ray is much more ener-
getic. Whether it is light or an X-ray, an electromagnetic wave is physically a
combination of electric and magnetic fields that propagate in a given direction
with the speed of light.

wave length λ✲✛

E

Figure 10.27: Depiction of an electromagnetic ray.

Figure 10.27 gives a sketch of how the strength of the electric field varies
along the propagation direction of a simple monochromatic wave; the magnetic
field is similar, but 90 degrees out of phase. Above that, a sketch is given how
such rays will be visualized in this subsection: the positive maxima will be
indicated by encircled plus signs, and the negative minima by encircled minus
signs. Both these maxima and minima propagate along the line with the speed
of light; the picture is just a snapshot at an arbitrary time.

The distance between two successive maxima is called the wave length λ. If
the wave length is in the narrow range from about 4 000 to 7 000 Å, it is visible
light. But such a wave length is much too large to distinguish atoms, since atom
sizes are in the order of a few Å. Electromagnetic waves with the required wave
lengths of a few Å fall in what is called the X-ray range.

The wave number κ is the reciprocal of the wave length within a normaliza-
tion factor 2π: κ = 2π/λ. The wave number vector ~κ has the magnitude of the
wave number κ and points in the direction of propagation of the wave.

Next consider a plane of atoms in a crystal, and imagine that it forms a
perfectly flat mirror, as in figure 10.28. No, there are no physical examples of
flat atoms known to science. But just imagine there would be, OK? Now shine
an X-ray from the left onto this crystal layer and examine the diffracted wave
that comes back from it. Assume Huygens’ principle that the scattered rays
come off in all directions, and that the scattering is elastic, meaning that the
energy, hence wave length, stays the same.

Under those conditions, a detector A, placed at a position to catch the rays
scattered to the same angle as the angle θ of the incident beam, will observe a
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Figure 10.28: Law of reflection in elastic scattering from a plane.

strong signal. All the maxima in the electric field of the rays arrive at detector A
at the same time, reinforcing each other. They march in lock-step. So a strong
positive signal will exist at detector A at their arrival. Similarly, the minima
march in lock-step, arriving at A at the same time and producing a strong
signal, now negative. Detector A will record a strong, fluctuating, electric field.

Detector B, at a position where the angle of reflection is unequal to the angle
of incidence, receives similar rays, but both positive and negative values of the
electric field arrive at B at the same time, killing each other off. So detector B
will not see an observable signal. That is the law of reflection: there is only a
detectable diffracted wave at a position where the angle of reflection equals the
angle of incidence. (Those angles are usually measured from the normal to the
surface instead of from the surface itself, but not in Bragg diffraction.)

For visible light, this is actually a quite reasonable analysis of a mirror,
since an atom-size surface roughness is negligible compared to the wave length
of visible light. For X-rays, it is not so hot, partly because a layer of atoms is
not flat on the scale of the wave length of the X-ray. But worse, a single layer of
atoms does not reflect an X-ray by any appreciable amount. That is the entire
point of medical X-rays; they can penetrate millions of layers of atoms to show
what is below. A single layer is nothing to them.

For X-rays to be diffracted in an appreciable amount, it must be done by
many parallel layers of atoms, not just one, as in figure 10.29. The layers
must furthermore have a very specific spacing d for the maxima and minima
from different layers to arrive at the detector at the same time. Note that the
angular position of the detector is already determined by the law of reflection,
in order to get whatever little there can be gotten from each plane separately.
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Figure 10.29: Scattering from multiple “planes of atoms.”

(Also note that whatever variations in phase there are in the signals arriving
at the detector in figure 10.29 are artifacts: for graphical reasons the detector
is much closer to the specimen than it should be. The spacing between planes
should be on the order of Å, while the detector should be a macroscopic distance
away from the specimen.)

The spacing between planes needed to get a decent combined signal strength
at the detector is known to satisfy the Bragg law:

2d sin θ = nλ (10.16)

where n is a natural number. A derivation will be given below. One immediate
consequence is that to get X-ray diffraction, the wave length λ of the X-ray
cannot be more than twice the spacing between the planes of atoms. That
requires wave lengths no longer than of the order of Ångstroms. Visible light
does not qualify.

The above story is, of course, not very satisfactory. For one, layers of atoms
are not flat planes on the scale of the required X-ray wave lengths. And how
come that in one direction the atoms have continuous positions and in another
discrete? Furthermore, it is not obvious what to make of the results. Observing
a refracted X-ray at some angular location may suggest that there is some
reflecting plane in the crystal at an angle deducible from the law of reflection,
but many different planes of atoms exist in a crystal. If a large number of
measurements are done, typically by surrounding the specimen by detectors
and rotating it while shining an X-ray on it, how is the crystal structure to be
deduced from that overwhelming amount of information?

Clearly, a mathematical analysis is needed, and actually it is not very com-
plicated. First a mathematical expression is needed for the signal along the ray;
it can be taken to be a complex exponential

eiκ(s−ct),
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where s is the distance traveled along the ray from a suitable chosen starting
position, t the time, and c the speed of light. The real part of the exponential
can be taken as the electric field, with a suitable constant, and the imaginary
part as the magnetic field, with another constant. The only important point
here is that if there is a difference in travel distance ∆s between two rays, their
signals at the detector will be out of phase by a factor eiκ∆s. Unless this factor
is one, which requires κ∆s to be zero or a whole multiple of 2π, there will be at
least some cancelation of signals at the detector.

detector

incoming
wave

O

P

~r

~κ

~κ ′

Figure 10.30: Difference in travel distance when scattered from P rather than
O.

So, how much is the phase factor eiκ∆s? Figure 10.30 shows one ray that is
scattered at a chosen reference point O in the crystal, and another ray that is
scattered at another point P. The position vector of P relative to origin O is ~r.
Now the difference in travel distance for the second ray to reach P versus the
first one to reach O is given by the component of vector ~r in the direction of the
incoming wave vector ~κ. This component can be found as a dot product with
the unit vector in the direction of ~κ:

∆s1 = ~r · ~κ
κ

so eiκ∆s1 = ei~κ·~r.

The difference in travel distance for the second ray to reach the detector from
point P versus the first from O is similarly given as

∆s2 = −~r ·
~κ′

κ
so eiκ∆s2 = e−i~κ

′·~r

assuming that the detector is sufficiently far away from the crystal that the rays
can be assumed to travel to the detector in parallel.

The net result is then that the phase factor with which the ray from P arrives
at the detector compared to the ray from O is

ei(~κ−~κ
′)·~r.
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This result may be used to check the law of reflection and Bragg’s law above.
First of all, for the law of reflection of figure 10.28, the positions of the

scattering points P vary continuously through the horizontal plane. That means
that the phase factor of the rays received at the detector will normally also vary
continuously from positive to negative back to positive etcetera, leading to large-
scale cancelation of the net signal. The one exception is when ~κ−~κ′ happens to
be normal to the reflecting plane, since a dot product with a normal vector is
always zero. For ~κ−~κ′ to be normal to the plane, its horizontal component must
be zero, meaning that the horizontal components of ~κ and ~κ′ must be equal,
and for that to be true, their angles with the horizontal plane must be equal,
since the vectors have the same length. So the law of reflection is obtained.

Next for Bragg’s law of figure 10.29, the issue is the phase difference between
successive crystal planes. So the vector ~r in this case can be assumed to point
from one crystal plane to the next. Since from the law of reflection, it is already
known that ~κ−~κ′ is normal to the planes, the only component of ~r of importance
is the vertical one, and that is the crystal plane spacing d. It must be multiplied
by the vertical component of ~κ − ~κ′, (its only component), which is according
to basic trig is equal to −2κ sin θ. The phase factor between successive planes
is therefore e−id2κ sin θ. The argument of the exponential is obviously negative,
and then the only possibility for the phase factor to be one is if the argument
is a whole multiple n times −i2π. So for signals from different crystal planes to
arrive at the detector in phase,

d2κ sin θ = n2π.

Substitute κ = 2π/λ and you have Bragg’s law.
Now how about diffraction from a real crystal? Well, assume that every

location in the crystal elastically scatters the incoming wave by a small amount
that is proportional to the electron density n at that point. (This n not to be
confused with the n in Bragg’s law.) Then the total signal D received by the
detector can be written as

D = C

∫

all ~r

n(~r)ei(~κ−~κ
′)·~r d3~r

where C is some constant. Now the electron density is periodic on crystal lattice
scale, so according to section 10.3.10 it can be written as a Fourier series, giving
the signal as

D = C
∑

all ~k~n

∫

all ~r

n~k~ne
i(~k~n+~κ−~κ′)·~r d3~r

where the ~k~n wave number vectors form the reciprocal lattice and the numbers
n~k~n are constants. Because the volume integration above extends over countless
lattice cells, there will be massive cancelation of signal unless the exponential is
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constant, which requires that the factor multiplying the position coordinate is
zero:

~k~n = ~κ′ − ~κ (10.17)

So the changes in the x-ray wave number vector ~κ for which there is a
detectable signal tell you the reciprocal lattice vectors. (Or at least the ones for
which n~k~n is not zero because of some symmetry.) After you infer the reciprocal
lattice vectors it is easy to figure out the primitive vectors of the physical crystal
you are analyzing. Furthermore, the relative strength of the received signal
tells you the magnitude of the Fourier coefficient n~k~n of the electron density.
Obviously, all of this is very specific and powerful information, far above trying
to make some sense out of mere collections of flat planes and their spacings.

One interesting additional issue has to do with what incoming wave vectors
~κ are diffracted, regardless of where the diffracted wave ends up. To answer it,
just eliminate ~κ′ from the above equation by finding its square and noting that
~κ′ · ~κ′ is κ2 since the magnitude of the wave number does not change in elastic
scattering. It produces

~κ · ~k~n = −1
2
~k~n · ~k~n (10.18)

For this equation to be satisfied, the X-ray wave number vector ~κ must be in
the Bragg plane between −~k~n and the origin. For example, for a simple cubic
crystal, ~κ must be in one of the Bragg planes shown in cross section in figure
10.24. One general consequence is that the wave number vector κ must at least
be long enough to reach the surface of the first Brillouin zone for any Bragg
diffraction to occur. That determines the maximum wave length of usable X-
rays according to λ = 2π/κ. You may recall that the Bragg planes are also the
surfaces of the Brillouin zone segments and the surfaces along which the electron
energy states develop discontinuities if there is a lattice potential. They sure
get around.

Historically, Bragg diffraction was important to show that particles are in-
deed associated with wave functions, as de Broglie had surmised. When Davis-
son and Germer bombarded a crystal with a beam of single-momentum elec-
trons, they observed Bragg diffraction just like for electromagnetic waves. As-
suming for simplicity that the momentum of the electrons is in the z-direction
and that uncertainty in momentum can be ignored, the eigenfunctions of the
momentum operator p̂z = ~∂/i∂z are proportional to eiκz, where ~κ is the z-mo-
mentum eigenvalue. From the known momentum of the electrons, Davisson and
Germer could compute the wave number κ and verify that the electrons suffered
Bragg diffraction according to that wave number. (The value of ~ was already
known from Planck’s blackbody spectrum, and from the Planck-Einstein rela-
tion that the energy of the photons of electromagnetic radiation equals ~ω with
ω the angular frequency.)



Chapter 11

Basic and Quantum
Thermodynamics

Chapter 6 mentioned the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein
energy distributions of systems of weakly interacting particles. This chapter
explains these results and then goes on to put quantum mechanics and thermo-
dynamics in context.

It is assumed that you have had a course in basic thermodynamics. If not,
rejoice, you are going to get one now. The exposition depends relatively strongly
upon the material in chapter 5.7–5.9 and chapter 6.1–6.16.

This chapter will be restricted to systems of particles that are all the same.
Such a system is called a “pure substance.” Water would be a pure substance,
but air not really; air is mostly nitrogen, but the 20% oxygen can probably not
be ignored. That would be particularly important under cryogenic conditions
in which the oxygen condenses out first.

The primary quantum system to be studied in detail will be a macroscopic
number of weakly interacting particles, especially particles in a box. Nontrivial
interactions between even a few particles are very hard to account for correctly,
and for a macroscopic system, that becomes much more so: just a millimol
has well over 1020 particles. By ignoring particle interactions, the system can
be described in terms of single-particle energy eigenstates, allowing some real
analysis to be done.

However, a system of strictly noninteracting unperturbed particles would be
stuck into the initial energy eigenstate, or the initial combination of such states,
according to the Schrödinger equation. To get such a system to settle down
into a physically realistic configuration, it is necessary to include the effects
of the unavoidable real life perturbations, (molecular motion of the containing
box, ambient electromagnetic field, cosmic rays, whatever.) The effects of such
small random perturbations will be accounted for using reasonable assumptions.
In particular, it will be assumed that they tend to randomly stir up things a
bit over time, taking the system out of any physically unlikely state it may be
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stuck in and making it settle down into the macroscopically stable one, called
“thermal equilibrium.”

11.1 Temperature

This book frequently uses the word “temperature,” but what does that really
mean? It is often said that temperature is some measure of the kinetic energy
of the molecules, but that is a dubious statement. It is OK for a thin noble gas,
where the kinetic energy per atom is 3

2
kBT with kB = 1.380 65 10−23 J/K the

Boltzmann constant and T the (absolute) temperature in degrees Kelvin. But
the valence electrons in an metal typically have kinetic energies many times
greater than 3

2
kBT . And when the absolute temperature becomes zero, the

kinetic energy of a system of particles does not normally become zero, since the
uncertainty principle does not allow that.

In reality, the temperature of a system is not a measure of its thermal kinetic
energy, but of its “hotness.” So, to understand temperature, you first have to
understand hotness. A system A is hotter than a system B, (and B is colder
than A,) if heat energy flows from A to B if they are brought into thermal
contact. If no heat flows, A and B are equally hot. Temperature is a numerical
value defined so that, if two systems A and B are equally hot, they have the
same value for the temperature.

The so-called “zeroth law of thermodynamics” ensures that this definition
makes sense. It says that if systems A and B have the same temperature, and
systems B and C have the same temperature, then systems A and C have the
same temperature. Otherwise system B would have two temperatures: A and
C would have different temperatures, and B would have the same temperature
as each of them.

The systems are supposed to be in thermal equilibrium. For example, a
solid chunk of matter that is hotter on its inside than its outside simply does
not have a (single) temperature, so there is no point in talking about it.

The requirement that systems that are equally hot must have the same value
of the temperature does not say anything about what that value must be. Def-
initions of the actual values have historically varied. A good one is to compute
the temperature of a system A using an ideal gas B at equal temperature as
system A. Then 3

2
kBT can simply be defined to be the mean translational ki-

netic energy of the molecules of ideal gas B. That kinetic energy, in turn, can
be computed from the pressure and density of the gas. With this definition
of the temperature scale, the temperature is zero in the ground state of ideal
gas B. The reason is that a highly accurate ideal gas means very few atoms
or molecules in a very roomy box. With the vast uncertainty in position that
the roomy box provides to the ground-state, the uncertainty-demanded kinetic
energy is vanishingly small. So kBT will be zero.
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It then follows that all ground states are at absolute zero temperature,
regardless how large their kinetic energy. The reason is that all ground states
must have the same temperature: if two systems in their ground states are
brought in thermal contact, no heat can flow: neither ground state can sacrifice
any more energy, the ground state energy cannot be reduced.

However, the “ideal gas thermometer” is limited by the fact that the temper-
atures it can describe must be positive. There are some unstable systems that
in a technical and approximate, but meaningful, sense have negative absolute
temperatures [4]. Unlike what you might expect, (aren’t negative numbers less
than positive ones?) such systems are hotter than any normal system. Systems
of negative temperature will give off heat regardless of how searingly hot the
normal system that they are in contact with is.

In this chapter a definition of temperature scale will be given based on the
quantum treatment. Various equivalent definitions will pop up. Eventually,
section 11.14.4 will establish it is the same as the ideal gas temperature scale.

You might wonder why the laws of thermodynamics are numbered from zero.
The reason is historical; the first, second, and third laws were already firmly
established before in the early twentieth century it was belatedly recognized that
an explicit statement of the zeroth law was really needed. If you are already
familiar with the second law, you might think it implies the zeroth, but things
are not quite that simple.

What about these other laws? The “first law of thermodynamics” is simply
stolen from general physics; it states that energy is conserved. The second and
third laws will be described in sections 11.8 through 11.10.

11.2 Single-Particle versus System States

The purpose of this section is to describe the generic form of the energy eigen-
functions of a system of weakly interacting particles.

The total number of particles will be indicated by I. If the interactions
between the I particles are ignored, any energy eigenfunction of the complete
system of I particles can be written in terms of single-particle energy eigenfunc-
tions ψp

1 (~r, Sz), ψ
p
2 (~r, Sz), . . ..

The basic case is that of noninteracting particles in a box, like discussed in
chapter 6.2. For such particles the single-particle eigenfunctions take the spatial
form

ψp
n =

√
8

ℓxℓyℓz
sin(kxx) sin(kyy) sin(kzz)

where kx, ky, and kz are constants, called the “wave number components.”
Different values for these constants correspond to different single-particle eigen-
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functions, with single-particle energy

E
p
n =

~
2

2m
(k2x + k2y + k2z) =

~
2

2m
k2

The single-particle energy eigenfunctions will in this chapter be numbered as n
= 1, 2, 3, . . . , N . Higher values of index n correspond to eigenfunctions of equal
or higher energy Ep

n.
The single-particle eigenfunctions do not always correspond to a particle in a

box. For example, particles caught in a magnetic trap, like in the Bose-Einstein
condensation experiments of 1995, might be better described using harmonic
oscillator eigenfunctions. Or the particles might be restricted to move in a
lower-dimensional space. But a lot of the formulae you can find in literature and
in this chapter are in fact derived assuming the simplest case of noninteracting
particles in a roomy box.

The details of the single-particle energy eigenfunctions are not really that
important in this chapter. What is more interesting are the energy eigenfunc-
tions ψS

q of complete systems of particles. It will be assumed that these system
eigenfunctions are numbered using a counter q, but the way they are numbered
also does not really make a difference to the analysis.

As long as the interactions between the particles are weak, energy eigen-
functions of the complete system can be found as products of the single-particle
ones. As an important example, at absolute zero temperature, all particles will
be in the single-particle ground state ψp

1 , and the system will be in its ground
state

ψS
1 = ψp

1 (~r1, Sz1)ψ
p
1 (~r2, Sz2)ψ

p
1 (~r3, Sz3)ψ

p
1 (~r4, Sz4)ψ

p
1 (~r5, Sz5) . . . ψ

p
1 (~rI , SzI)

where I is the total number of particles in the system. This does assume that
the single-particle ground state energy Ep

1 is not degenerate. More importantly,
it assumes that the I particles are not identical fermions. According to the
exclusion principle, at most one fermion can go into a single-particle state. (For
spin 1/2 fermions like electrons, two can go into a single spatial state, one in the
spin-up version, and the other in the spin-down one.)

Statistical thermodynamics, in any case, is much more interested in tem-
peratures that are not zero. Then the system will not be in the ground state,
but in some combination of system eigenfunctions of higher energy. As a com-
pletely arbitrary example of such a system eigenfunction, take the following one,
describing I = 36 different particles:

ψS
q = ψp

24(~r1, Sz1)ψ
p
4 (~r2, Sz2)ψ

p
7 (~r3, Sz3)ψ

p
1 (~r4, Sz4)ψ

p
6 (~r5, Sz5) . . . ψ

p
54(~r36, Sz36)

This system eigenfunction has an energy that is the sum of the 36 single-particle
eigenstate energies involved:

E
S
q = E

p
24 + E

p
4 + E

p
7 + E

p
1 + E

p
6 + . . .+ E

p
54
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Ep
1

ψp
1

4❤21❤35❤ ψp
2

10❤12❤24❤28❤
Ep

2

ψp
3

25❤ ψp
4

2❤31❤33❤ ψp
5

11❤34❤ ψp
6

5❤20❤ ψp
7

3❤32❤
Ep

3

ψp
8

19❤ ψp
9

6❤ ψp
10 ψp

11 ψp
12

13❤23❤ ψp
13

27❤ ψp
14

7❤30❤
Ep

4

ψp
15 ψp

16

8❤ ψp
17

14❤ ψp
18

15❤ ψp
19

22❤ ψp
20

26❤ ψp
21 ψp

22 ψp
23

Ep
5

ψp
24

1❤ ψp
25 ψp

26 ψp
27 ψp

28 ψp
29 ψp

30 ψp
31

29❤ ψp
32 ψp

33 ψp
34

16❤
Ep

6

ψp
35 ψp

36 ψp
37 ψp

38 ψp
39 ψp

40 ψp
41 ψp

42 ψp
43 ψp

44 ψp
45 ψp

46

17❤18❤
Ep

7

ψp
47 ψp

48 ψp
49 ψp

50 ψp
51 ψp

52 ψp
53 ψp

54

36❤ ψp
55 ψp

56 ψp
57 ψp

58 ψp
59

Ep
8

ψp
60 ψp

61 ψp
62

9❤ ψp
63 ψp

64 ψp
65 ψp

66 ψp
67 ψp

68 ψp
69 ψp

70 ψp
71 ψp

72 ψp
73

Figure 11.1: Graphical depiction of an arbitrary system energy eigenfunction
for 36 distinguishable particles.

To understand the arguments in this chapter, it is essential to visualize the
system energy eigenfunctions as in figure 11.1. In this figure the single-particle
states are shown as boxes, and the particles that are in those particular single-
particle states are shown inside the boxes. In the example, particle 1 is inside
the ψp

24 box, particle 2 is inside the ψp
4 one, etcetera. It is just the reverse from

the mathematical expression above: the mathematical expression shows for each
particle in turn what the single-particle eigenstate of that particle is. The figure
shows for each type of single-particle eigenstate in turn what particles are in
that eigenstate.

To simplify the analysis, in the figure single-particle eigenstates of about
the same energy have been grouped together on “shelves.” (As a consequence,
a subscript to a single-particle energy Ep may refer to either a single-particle
eigenfunction number n or to a shelf number s, depending on context.) The
number of single-particle states on a shelf is intended to roughly simulate the
density of states of the particles in a box as described in chapter 6.3. The larger
the energy, the more single-particle states there are at that energy; it increases
like the square root of the energy. This may not be true for other situations,
such as when the particles are confined to a lower-dimensional space, compare
chapter 6.12. Various formulae given here and in literature may need to be
adjusted then.

Of course, in normal nonnano applications, the number of particles will be
astronomically larger than 36 particles; the example is just a small illustration.
Even a millimol of particles means on the order of 1020 particles. And unless
the temperature is incredibly low, those particles will extend to many more
single-particle states than the few shown in the figure.
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Next, note that you are not going to have something like 1020 different types
of particles. Instead they are more likely to all be helium atoms, or all electrons
or so. If their wave functions overlap nontrivially, that makes a big difference
because of the symmetrization requirements of the system wave function.

Consider first the case that the I particles are all identical bosons, like plain
helium atoms. In that case the wave function must be symmetric, unchanged,
under the exchange of any two of the bosons, and the example wave function
above is not. If, for example, particles 2 and 5 are exchanged, it turns the
example wave function from

ψS
q = ψp

24(~r1, Sz1)ψ
p
4 (~r2, Sz2)ψ

p
7 (~r3, Sz3)ψ

p
1 (~r4, Sz4)ψ

p
6 (~r5, Sz5) . . . ψ

p
54(~r36, Sz36)

into

ψS
q = ψp

24(~r1, Sz1)ψ
p
6 (~r2, Sz2)ψ

p
7 (~r3, Sz3)ψ

p
1 (~r4, Sz4)ψ

p
4 (~r5, Sz5) . . . ψ

p
54(~r36, Sz36)

and that is simply a different wave function, because the states are different,
independent functions. In terms of the pictorial representation figure 11.1, swap-
ping the numbers “2” and “5” in the particles changes the picture.

Ep
1

ψp
1❤❤❤ ψp

2❤❤❤❤
Ep
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Figure 11.2: Graphical depiction of an arbitrary system energy eigenfunction
for 36 identical bosons.

As chapter 5.7 explained, to eliminate the problem that exchanging particles
2 and 5 changes the wave function, the original and exchanged wave functions
must be combined together. And to eliminate the problem for any two particles,
all wave functions that can be obtained by merely swapping numbers must be
combined together equally into a single wave function multiplied by a single
undetermined coefficient. In terms of figure 11.1, we need to combine the wave
functions with all possible permutations of the numbers inside the particles into
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one. And if all permutations of the numbers are equally included, then those
numbers no longer add any nontrivial additional information; they may as well
be left out. That makes the pictorial representation of an example system wave
function for identical bosons as shown in figure 11.2.
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Figure 11.3: Graphical depiction of an arbitrary system energy eigenfunction
for 33 identical fermions.

For identical fermions, the situation is similar, except that the different wave
functions must be combined with equal or opposite sign, depending on whether
it takes an odd or even number of particle swaps to turn one into the other. And
such wave functions only exist if the I single-particle wave functions involved are
all different. That is the Pauli exclusion principle. The pictorial representation
figure 11.2 for bosons is totally unacceptable for fermions since it uses many of
the single-particle states for more than one particle. There can be at most one
fermion in each type of single-particle state. An example of a wave function
that is acceptable for a system of identical fermions is shown in figure 11.3.

Looking at the example pictorial representations for systems of bosons and
fermions, it may not be surprising that such particles are often called “indistin-
guishable.“ Of course, in classical quantum mechanics, there is still an electron
1, an electron 2, etcetera; they are mathematically distinguished. Still, it is
convenient to use the term “distinguishable” for particles for which the sym-
metrization requirements can be ignored.

The prime example is the atoms of an ideal gas in a box; almost by defini-
tion, the interactions between such atoms are negligible. And that allows the
quantum results to be referred back to the well-understood properties of ideal
gases obtained in classical physics. Probably you would like to see all results
follow naturally from quantum mechanics, not classical physics, and that would
be very nice indeed. But it would be very hard to follow up on. As Baierlein [4,
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p. 109] notes, real-life physics adopts whichever theoretical approach offers the
easiest calculation or the most insight. This book’s approach really is to for-
mulate as much as possible in terms of the quantum-mechanical ideas discussed
here. But do be aware that it is a much more messy world when you go out
there.

11.3 How Many System Eigenfunctions?

The fundamental question from which all of quantum statistics springs is a very
basic one: How many system energy eigenstates are there with given generic
properties? This section will address that question.

Of course, by definition each system energy eigenfunction is unique. Figures
11.1–11.3 give examples of such unique energy eigenfunctions for systems of dis-
tinguishable particles, indistinguishable bosons, and indistinguishable fermions.
But trying to get accurate data on each individual eigenfunction just does not
work. That is much too big a challenge.

Quantum statistics must satisfy itself by figuring out the probabilities on
groups of system eigenfunctions with similar properties. To do so, the single-
particle energy eigenstates are best grouped together on shelves of similar en-
ergy, as illustrated in figures 11.1–11.3. Doing so allows for more answerable
questions such as: “How many system energy eigenfunctions ψS

q have I1 out of
the I total particles on shelf 1, another I2 on shelf 2, etcetera?” In other words,
if ~I stands for a given set of shelf occupation numbers (I1, I2, I3, . . .), then what
is the number Q~I of system eigenfunctions ψS

q that have those shelf occupation
numbers?

That question is answerable with some clever mathematics; it is a big thing
in various textbooks. However, the suspicion is that this is more because of
the “neat” mathematics than because of the actual physical insight that these
derivations provide. In this book, the derivations are shoved away into {D.56}.
But here are the results. (Drums please.) The system eigenfunction counts for
distinguishable particles, bosons, and fermions are:

Qd
~I

= I!
∏

all s

N Is
s(
Is

)
!

(11.1)

Qb
~I

=
∏

all s

(
Is +Ns − 1

)
!

(
Is

)
!
(
Ns − 1

)
!

(11.2)

Qf
~I

=
∏

all s

(
Ns

)
!

(
Is

)
!
(
Ns − Is

)
!

(11.3)
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where Π means the product of all the terms of the form shown to its right that
can be obtained by substituting in every possible value of the shelf number s.
That is just like Σ would mean the sum of all these terms. For example, for
distinguishable particles

Qd
~I
= I!

N I1
1(
I1

)
!

N I2
2(
I2

)
!

N I3
3(
I3

)
!

N I4
4(
I4

)
!
. . .

where N1 is the number of single-particle energy states on shelf 1 and I1 the
number of particles on that shelf, N2 the number of single-particle energy states
on shelf 2 and I2 the number of particles on that shelf, etcetera. Also an
exclamation mark indicates the factorial function, defined as

n! =
n∏

n=1

n = 1× 2× 3× . . .× n

For example, 5! = 1 × 2 × 3 × 4 × 5 = 120. The eigenfunction counts may
also involve 0!, which is defined to be 1, and n! for negative n, which is defined
to be infinity. The latter is essential to ensure that the eigenfunction count is
zero as it should be for fermion eigenfunctions that try to put more particles on
a shelf than there are states on it.

This section is mainly concerned with explaining qualitatively why these
system eigenfunction counts matter physically. And to do so, a very simple
model system having only three shelves will suffice.

Ep
1 = 1

ψp
1

2❤
Ep

2 = 2
ψp
2 ψp

3

1❤ ψp
4

3❤

Ep
3 = 4

ψp
5 ψp

6 ψp
7 ψp

8

4❤ ψp
9 ψp

10 ψp
11 ψp

12

Figure 11.4: Illustrative small model system having 4 distinguishable particles.
The particular eigenfunction shown is arbitrary.

The first example is illustrated in quantum-mechanical terms in figure 11.4.
Like the other examples, it has only three shelves, and it has only I = 4 dis-
tinguishable particles. Shelf 1 has N1 = 1 single-particle state with energy Ep

1

= 1 (arbitrary units), shelf 2 has N2 = 3 single-particle states with energy Ep
2

= 2, (note that 3 ≈ 2
√
2), and shelf 3 has N3 = 4

√
4 = 8 single-particle states

with energy Ep
3 = 4. One major deficiency of this model is the small number

of particles and states, but that will be fixed in the later examples. More se-
riously is that there are no shelves with energies above Ep

3 = 4. To mitigate
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that problem, for the time being the average energy per particle of the system
eigenfunctions will be restricted to no more than 2.5. This will leave shelf 3
largely empty, reducing the effects of the missing shelves of still higher energy.

40%
40% 40%

I2/I
I2/I I2/I

37% 37% 37%

I3/I I3/I I3/I

Figure 11.5: The number of system energy eigenfunctions for a simple model
system with only three energy shelves. Positions of the squares indicate the
numbers of particles on shelves 2 and 3; darkness of the squares indicates the
relative number of eigenfunctions with those shelf numbers. Left: system with
4 distinguishable particles, middle: 16, right: 64.

Now the question is, how many energy eigenfunctions are there for a given
set of shelf occupation numbers ~I = (I1, I2, I3)? The answer, as given by (11.1),
is shown graphically in the left graph of figure 11.5. Darker squares indicate
more eigenfunctions with those shelf occupation numbers. The oblique line in
figure 11.5 is the line above which the average energy per particle exceeds the
chosen limit of 2.5.

Some example observations about the figure may help to understand it. For
example, there is only one system eigenfunction with all 4 particles on shelf 1,
i.e. with I1 = 4 and I2 = I3 = 0; it is

ψS
1 = ψp

1 (~r1, Sz1)ψ
p
1 (~r2, Sz2)ψ

p
1 (~r3, Sz3)ψ

p
1 (~r4, Sz4).

This is represented by the white square at the origin in the left graph of figure
11.5.

As another example, the darkest square in the left graph of figure 11.5 repre-
sents system eigenfunctions that have shelf numbers ~I = (1, 2, 1), i.e. I1 = 1, I2
= 2, I3 = 1: one particle on shelf 1, two particles on shelf 2, and one particle on
shelf 3. A completely arbitrary example of such a system energy eigenfunction,

ψp
3 (~r1, Sz1)ψ

p
1 (~r2, Sz2)ψ

p
4 (~r3, Sz3)ψ

p
8 (~r4, Sz4),

is the one depicted in figure 11.4. It has particle 1 in single-particle state ψp
3 ,

which is on shelf 2, particle 2 in ψp
1 , which is on shelf 1, particle 3 in ψp

4 which
is on shelf 2, and particle 4 in ψp

8 , which is on shelf 3. But there are a lot more
system eigenfunctions with the same shelf occupation numbers; in fact, there
are

4× 3× 8× 3× 3 = 864

notransparent
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such eigenfunctions, since there are 4 possible choices for the particle that goes
on shelf 1, times a remaining 3 possible choices for the particle that goes on shelf
3, times 8 possible choices ψp

5 through ψp
12 for the single-particle eigenfunction

on shelf 3 that that particle can go into, times 3 possible choices ψp
2 through ψp

4

that each of the remaining two particles on shelf 2 can go into.
Next, consider a system four times as big. That means that there are four

times as many particles, so I = 16 particles, in a box that has four times the
volume. If the volume of the box becomes 4 times as large, there are four times
as many single-particle states on each shelf, since the number of states per unit
volume at a given single-particle energy is constant, compare (6.6). Shelf 1 now
has 4 states, shelf 2 has 12, and shelf 3 has 32. The number of energy states
for given shelf occupation numbers is shown as grey tones in the middle graph
of figure 11.5. Now the number of system energy eigenfunctions that have all
particles on shelf 1 is not one, but 416 or 4 294 967 296, since there are 4 different
states on shelf 1 that each of the 16 particles can go into. That is obviously quite
lot of system eigenfunctions, but it is dwarfed by the darkest square, states with
shelf occupation numbers ~I = (4,6,6). There are about 1.4 1024 system energy

eigenfunctions with those shelf occupation numbers. So the ~I = (16,0,0) square
at the origin stays lily-white despite having over 4 billion energy eigenfunctions.

If the system size is increased by another factor 4, to 64 particles, the num-
ber of states with occupation numbers ~I = (64,0,0), all particles on shelf 1, is
1.2 1077, a tremendous number, but totally humiliated by the 2.7 10138 eigen-
functions that have occupation numbers ~I = (14,27,23). Taking the ratio of
these two numbers shows that there are 2.3 1061 energy eigenfunctions with
shelf numbers (14, 27, 23) for each eigenfunction with shelf numbers (64, 0, 0).
By the time the system reaches, say, 1020 particles, still less than a millimol,
the number of system energy eigenstates for each set of occupation numbers is
astronomical, but so are the differences between the shelf numbers that have
the most and those that have less. The tick marks in figure 11.5 indicate that
for large systems, the darkest square will have 40% of the particles on shelf 2,
37% on shelf 3, and the remaining 23% on shelf 1.

These general trends do not just apply to this simple model system; they
are typical:

The number of system energy eigenfunctions for a macroscopic sys-
tem is astronomical, and so are the differences in numbers.

Another trend illustrated by figure 11.5 has to do with the effect of system
energy. The system energy of an energy eigenfunction is given in terms of its
shelf numbers by

E
S
= I1E

p
1 + I2E

p
2 + I3E

p
3

so all eigenfunctions with the same shelf numbers have the same system energy.
In particular, the squares just below the oblique cut-off line in figure 11.5 have
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the highest system energy. It is seen that these shelf numbers also have by far
the most energy eigenfunctions:

The number of system energy eigenfunctions with a higher energy
typically dwarfs the number of system eigenfunctions with a lower
energy.

max max max

Q~I Q~I Q~I

40% 40% 40%I2/I I2/I I2/I

Figure 11.6: Number of energy eigenfunctions on the oblique energy line in
the previous figure. (The curves are mathematically interpolated to allow a
continuously varying fraction of particles on shelf 2.) Left: 4 particles, middle:
64, right: 1,024.

Next assume that the system has exactly the energy of the oblique cut-off
line in figure 11.5, with zero uncertainty. The number of energy eigenstates
Q~I on that oblique line is plotted in figure 11.6 as a function of the fraction
of particles I2/I on shelf 2. (To get a smooth continuous curve, the values
have been mathematically interpolated in between the integer values of I2. The
continuous function that interpolates n! is called the gamma function; see the
notations section under “!” for details.) The maximum number of energy
eigenstates occurs at about I2/I = 40%, corresponding to I3 = 37% and I1
=23%. This set of occupation numbers, (I1, I2, I3) = (0.23,0.40,0.37)I, is called
the “most probable set of occupation numbers.” If you pick an eigenfunction
at random, you have more chance of getting one with that set of occupation
numbers than one with a different given set of occupation numbers.

To be sure, if the number of particles is large, the chances of picking any
eigenfunction with an exact set of occupation numbers is small. But note how
the “spike” in figure 11.6 becomes narrower with increasing number of particles.
You may not pick an eigenfunction with exactly the most probable set of shelf
numbers, but you are quite sure to pick one with shelf numbers very close to it.
By the time the system size reaches, say, 1020 particles, the spike becomes for
all practical purposes a mathematical line. Then essentially all eigenfunctions
have very precisely 23% of their particles on shelf 1 at energy Ep

1, 40% on shelf
2 at energy Ep

2, and 37% on shelf 3 at energy Ep
3.

Since there is only an incredibly small fraction of eigenfunctions that do not
have very accurately the most probable occupation numbers, it seems intuitively
obvious that in thermal equilibrium, the physical system must have the same
distribution of particle energies. Why would nature prefer one of those extremely

notransparent
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rare eigenfunctions that do not have these occupation numbers, rather than one
of the vast majority that do? In fact, {N.23},

It is a fundamental assumption of statistical mechanics that in ther-
mal equilibrium, all system energy eigenfunctions with the same en-
ergy have the same probability.

So the most probable set of shelf numbers, as found from the count of eigen-
functions, gives the distribution of particle energies in thermal equilibrium.

This then is the final conclusion: the particle energy distribution of a macro-
scopic system of weakly interacting particles at a given energy can be obtained
by merely counting the system energy eigenstates. It can be done without doing
any physics. Whatever physics may want to do, it is just not enough to offset
the vast numerical superiority of the eigenfunctions with very accurately the
most probable shelf numbers.

11.4 Particle-Energy Distribution Functions

The objective in this section is to relate the Maxwell-Boltzmann, Bose-Einstein,
and Fermi-Dirac particle energy distributions of chapter 6 to the conclusions
obtained in the previous section. The three distributions give the number of
particles that have given single-particle energies.

In terms of the picture developed in the previous sections, they describe how
many particles are on each energy shelf relative to the number of single-particle
states on the shelf. The distributions also assume that the number of shelves is
taken large enough that their energy can be assumed to vary continuously.

According to the conclusion of the previous section, for a system with given
energy it is sufficient to find the most probable set of energy shelf occupation
numbers, the set that has the highest number of system energy eigenfunctions.
That gives the number of particles on each energy shelf that is the most prob-
able. As the previous section demonstrated by example, the fraction of eigen-
functions that have significantly different shelf occupation numbers than the
most probable ones is so small for a macroscopic system that it can be ignored.

Therefore, the basic approach to find the three distribution functions is to
first identify all sets of shelf occupation numbers ~I that have the given energy,
and then among these pick out the set that has the most system eigenfunctions
Q~I . There are some technical issues with that, {N.24}, but they can be worked
out, as in derivation {D.57}.

The final result is, of course, the particle energy distributions from chapter
6:

ιb =
1

e(E
p−µ)/kBT − 1

ιd =
1

e(E
p−µ)/kBT

ιf =
1

e(E
p−µ)/kBT + 1

.
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Here ι indicates the number of particles per single-particle state, more precisely,
ι = Is/Ns. This ratio is independent of the precise details of how the shelves
are selected, as long as their energies are closely spaced. However, for identical
bosons it does assume that the number of single-particle states on a shelf is large.
If that assumption is problematic, the more accurate formulae in derivation
{D.57} should be consulted. The main case for which there is a real problem is
for the ground state in Bose-Einstein condensation.

It may be noted that “T” in the above distribution laws is a temperature,
but the derivation in the note did not establish it is the same temperature
scale that you would get with an ideal-gas thermometer. That will be shown
in section 11.14.4. For now note that T will normally have to be positive.
Otherwise the derived energy distributions would have the number of particles
become infinity at infinite shelf energies. For some weird system for which there
is an upper limit to the possible single-particle energies, this argument does
not apply, and negative temperatures cannot be excluded. But for particles in a
box, arbitrarily large energy levels do exist, see chapter 6.2, and the temperature
must be positive.

The derivation also did not show that µ in the above distributions is the
chemical potential as is defined in general thermodynamics. That will eventually
be shown in derivation {D.61}. Note that for particles like photons that can be
readily created or annihilated, there is no chemical potential; µ entered into the
derivation {D.57} through the constraint that the number of particles of the
system is a given. A look at the note shows that the formulae still apply for
such transient particles if you simply put µ = 0.

For permanent particles, increasingly large negative values of the chemical
potential µ decrease the number of particles at all energies. Therefore large neg-
ative µ corresponds to systems of very low particle densities. If µ is sufficiently
negative that e(E

p−µ)/kBT is large even for the single-particle ground state, the
±1 that characterize the Fermi-Dirac and Bose-Einstein distributions can be
ignored compared to the exponential, and the three distributions become equal:

The symmetrization requirements for bosons and fermions can be
ignored under conditions of very low particle densities.

These are ideal gas conditions, section 11.14.4
Decreasing the temperature will primarily thin out the particle numbers at

high energies. In this sense, yes, temperature reductions are indeed to some
extent associated with (kinetic) energy reductions.

11.5 The Canonical Probability Distribution

The particle energy distribution functions in the previous section were derived
assuming that the energy is given. In quantum-mechanical terms, it was as-
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sumed that the energy had a definite value. However, that cannot really be
right, for one because of the energy-time uncertainty principle.

Assume for a second that a lot of boxes of particles are carefully prepared, all
with a system energy as precise as it can be made. And that all these boxes are
then stacked together into one big system. In the combined system of stacked
boxes, the energy is presumably quite unambiguous, since the random errors are
likely to cancel each other, rather than add up systematically. In fact, simplistic
statistics would expect the relative error in the energy of the combined system
to decrease like the square root of the number of boxes.

But for the carefully prepared individual boxes, the future of their lack
of energy uncertainty is much bleaker. Surely a single box in the stack may
randomly exchange a bit of energy with the other boxes. Of course, when a
box acquires much more energy than the others, the exchange will no longer be
random, but almost certainly go from the hotter box to the cooler ones. Still, it
seems unavoidable that quite a lot of uncertainty in the energy of the individual
boxes would result. The boxes still have a precise temperature, being in thermal
equilibrium with the larger system, but no longer a precise energy.

Then the appropriate way to describe the individual boxes is no longer in
terms of given energy, but in terms of probabilities. The proper expression for
the probabilities is “deduced” in derivation {D.58}. It turns out that when the
temperature T , but not the energy of a system is certain, the system energy
eigenfunctions ψS

q can be assigned probabilities of the form

Pq =
1

Z
e−E

S
q/kBT (11.4)

where kB = 1.380 65 10−23 J/K is the Boltzmann constant. This equation for the
probabilities is called the Gibbs “canonical probability distribution.” Feynman
[18, p. 1] calls it the summit of statistical mechanics.

The exponential by itself is called the “Boltzmann factor.” The normaliza-
tion factor Z, which makes sure that the probabilities all together sum to one,
is called the “partition function.” It equals

Z =
∑

all q

e−E
S
q/kBT (11.5)

You might wonder why a mere normalization factor warrants its own name. It
turns out that if an analytical expression for the partition function Z(T, V, I) is
available, various quantities of interest may be found from it by taking suitable
partial derivatives. Examples will be given in subsequent sections.

The canonical probability distribution conforms to the fundamental assump-
tion of quantum statistics that eigenfunctions of the same energy have the same
probability. However, it adds that for system eigenfunctions with different ener-
gies, the higher energies are less likely. Massively less likely, to be sure, because
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the system energy ES
q is a macroscopic energy, while the energy kBT is a micro-

scopic energy level, roughly the kinetic energy of a single atom in an ideal gas
at that temperature. So the Boltzmann factor decays extremely rapidly with
energy.

I3/I I3/I I3/I

27%
36%

48%

I2/I I2/I I2/I39% 41% 36%

Figure 11.7: Probabilities of shelf-number sets for the simple 64 particle model
system if there is uncertainty in energy. More probable shelf-number distribu-
tions are shown darker. Left: identical bosons, middle: distinguishable particles,
right: identical fermions. The temperature is the same as in the previous two
figures.

So, what happens to the simple model system from section 11.3 when the
energy is no longer certain, and instead the probabilities are given by the canon-
ical probability distribution? The answer is in the middle graphic of figure 11.7.
Note that there is no longer a need to limit the displayed energies; the strong
exponential decay of the Boltzmann factor takes care of killing off the high
energy eigenfunctions. The rapid growth of the number of eigenfunctions does
remain evident at lower energies where the Boltzmann factor has not yet reached
enough strength.

There is still an oblique energy line in figure 11.7, but it is no longer limiting
energy; it is merely the energy at the most probable shelf occupation numbers.
Equivalently, it is the “expectation energy” of the system, defined following the
ideas of chapter 4.4.1 as

〈E〉 ≡
∑

all q

PqE
S
q ≡ E

because for a macroscopic system size, the most probable and expectation values
are the same. That is a direct result of the black blob collapsing towards a single
point for increasing system size: in a macroscopic system, essentially all system
eigenfunctions have the same macroscopic properties.

In thermodynamics, the expectation energy is called the “internal energy”
and indicated by E or U . This book will use E, dropping the angular brackets.
The difference in notation from the single-particle/shelf/system energies is that
the internal energy is plain E with no subscripts or superscripts.

notransparent
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Figure 11.7 also shows the shelf occupation number probabilities if the ex-
ample 64 particles are not distinguishable, but identical bosons or identical
fermions. The most probable shelf numbers are not the same, since bosons and
fermions have different numbers of eigenfunctions than distinguishable particles,
but as the figure shows, the effects are not dramatic at the shown temperature,
kBT = 1.85 in the arbitrary energy units.

11.6 Low Temperature Behavior

The three-shelf simple model used to illustrate the basic ideas of quantum statis-
tics qualitatively can also be used to illustrate the low temperature behavior that
was discussed in chapter 6. To do so, however, the first shelf must be taken to
contain just a single, nondegenerate ground state.

I3/I I3/I I3/I

36%
47%

58%

I2/I I2/I I2/I64% 51% 41%

Figure 11.8: Probabilities of shelf-number sets for the simple 64 particle model
system if shelf 1 is a nondegenerate ground state. Left: identical bosons, middle:
distinguishable particles, right: identical fermions. The temperature is the same
as in the previous figures.

In that case, figure 11.7 of the previous section turns into figure 11.8. Neither
of the three systems sees much reason to put any measurable amount of particles
in the first shelf. Why would they, it contains only one single-particle state out
of 177? In particular, the most probable shelf numbers are right at the 45◦

limiting line through the points I2 = I, I3 = 0 and I2 = 0, I3 = I on which
I1 = 0. Actually, the mathematics of the system of bosons would like to put
a negative number of bosons on the first shelf, and must be constrained to put
zero on it.

If the temperature is lowered however, as in figure 11.9 things change, es-
pecially for the system of bosons. Now the mathematics of the most probable
state wants to put a positive number of bosons on shelf 1, and a large fraction
of them to boot, considering that it is only one state out of 177. The most
probable distribution drops way below the 45◦ limiting line. The mathematics
for distinguishable particles and fermions does not yet see any reason to panic,
and still leaves shelf 1 largely empty.

notransparent
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I3/I I3/I I3/I

17%

33%

50%

I2/I I2/I I2/I56% 64% 49%

Figure 11.9: Like the previous figure, but at a lower temperature.

I3/I I3/I I3/I

0% 1%

27%

I2/I I2/I I2/I6% 77% 72%

Figure 11.10: Like the previous figures, but at a still lower temperature.

When the temperature is lowered still much lower, as shown in figure 11.10,
almost all bosons drop into the ground state and the most probable state is right
next to the origin I2 = I3 = 0. In contrast, while the system of distinguishable
particles does recognize that high-energy shelf 3 becomes quite unreachable with
the available amount of thermal energy, it still has a quite significant fraction
of the particles on shelf 2. And the system of fermions will never drop to shelf
1, however low the temperature. Because of the Pauli exclusion principle, only
one fermion out of the 64 can ever go on shelf one, and only 48, 75%. can go
on shelf 2. The remaining 23% will stay on the high-energy shelf however low
the temperature goes.

If you still need convincing that temperature is a measure of hotness, and not
of thermal kinetic energy, there it is. The three systems of figure 11.10 are all
at the same temperature, but there are vast differences in their kinetic energy.
In thermal contact at very low temperatures, the system of fermions runs off
with almost all the energy, leaving a small morsel of energy for the system of
distinguishable particles, and the system of bosons gets practically nothing.

It is really weird. Any distribution of shelf numbers that is valid for distin-
guishable particles is exactly as valid for bosons and vice/versa; it is just the
number of eigenfunctions with those shelf numbers that is different. But when
the two systems are brought into thermal contact at very low temperatures, the
distinguishable particles get all the energy. It is just as possible from an energy

notransparent
notransparent
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conservation and quantum mechanics point of view that all the energy goes to
the bosons instead of to the distinguishable particles. But it becomes astronom-
ically unlikely because there are so few eigenfunctions like that. (Do note that
it is assumed here that the temperature is so low that almost all bosons have
dropped in the ground state. As long as the temperatures do not become much
smaller than the one of Bose-Einstein condensation, the energies of systems of
bosons and distinguishable particles remain quite comparable, as in figure 11.9.)

11.7 The Basic Thermodynamic Variables

This section introduces the most important basic players in thermodynamics.

The primary thermodynamic property introduced so far is the temperature.
Recall that temperature is a measure of the hotness of the substance, a measure
of how eager it is to dump energy onto other systems. Temperature is called an
“intensive variable;“ it is the same for two systems that differ only in size.

The total number of particles I or the total volume of their box V are not
intensive variables; they are “extensive variables,“ variables that increase in
value proportional to the system size. Often, however, you are only interested
in the properties of your substance, not the amount. In that case, intensive
variables can be created by taking ratios of the extensive ones; in particular,
I/V is an intensive variable called the “particle density.” It is the number of
particles per unit volume. If you restrict your attention to only one half of your
box with particles, the particle density is still the same, with half the particles
in half the volume.

Note that under equilibrium conditions, it suffices to know the temperature
and particle density to fully fix the state that a given system is in. More
generally, the rule is that:

Two intensive variables must be known to fully determine the inten-
sive properties of a simple substance in thermal equilibrium.

(To be precise, in a two-phase equilibrium like a liquid-vapor mixture, pressure
and temperature are related, and would not be sufficient to determine something
like net specific volume. They do still suffice to determine the specific volumes of
the liquid and vapor parts individually, in any case.) If the amount of substance
is also desired, knowledge of at least one extensive variable is required, making
three variables that must be known in total.

Since the number of particles will have very large values, for macroscopic
work the particle density is often not very convenient, and somewhat differently
defined, but completely equivalent variables are used. The most common are the
(mass) “density” ρ, found by multiplying the particle density with the single-
particle mass m, ρ ≡ mI/V , or its reciprocal, the “specific volume” v ≡ V /mI.
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The density is the system mass per unit system volume, and the specific volume
is the system volume per unit system mass.

Alternatively, to keep the values for the number of particles in check, they
may be expressed in “moles,” multiples of Avogadro’s number

IA ≈ 6.022 1 1023

That produces the “molar density” ρ̄ ≡ I/IAV and “molar specific volume” v̄ ≡
V IA/I. In thermodynamic textbooks, the use of kilo mol (kmol) instead of mol
has become quite standard (but then, so has the use of kilo Newton instead of
Newton.) The conversion factor between molar and nonmolar specific quantities
is called the “molar mass” M ; it is applied according to its units of kg/kmol.
Note that thermo books for engineers may misname M to be the “molecular
mass”. The numerical value of the molar mass is roughly the total number
of protons and neutrons in the nuclei of a single molecule; in fact, the weird
number of particles given by Avogadro’s number was chosen to achieve this.

So what else is there? Well, there is the energy of the system. In view
of the uncertainty in energy, the appropriate system energy is defined as the
expectation value,

E =
∑

all q

PqE
S
q (11.6)

where Pq is the canonical probability of (11.4), (11.5). Quantity E is called the
“internal energy.” In engineering thermodynamics books, it is usually indicated
by U , but this is physics. The intensive equivalent e is found by dividing by the
system mass; e = E/mI. Note the convention of indicating extensive variables
by a capital and their intensive value per unit mass with the corresponding
lower case letter. A specific quantity on a molar basis is lower case with a bar
above it.

As a demonstration of the importance of the partition function mentioned
in the previous section, if the partition function (11.5) is differentiated with
respect to temperature, you get

(
∂Z

∂T

)

V constant

=
1

kBT 2

∑

all q

E
S
qe
−ES

q/kBT .

(The volume of the system should be held constant in order that the energy
eigenfunctions do not change.) Dividing both sides by Z turns the derivative
in the left hand side into that of the logarithm of Z, and the sum in the right
hand side into the internal energy E, and you get

E = kBT
2

(
∂ lnZ

∂T

)

V constant

(11.7)
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Next there is the “pressure” P , being the force with which the substance
pushes on the surfaces of the box it is in per unit surface area. To identify P
quantum mechanically, first consider a system in a single energy eigenfunction
ES
q for certain. If the volume of the box is slightly changed, there will be

a corresponding slight change in the energy eigenfunction ES
q , (the boundary

conditions of the Hamiltonian eigenvalue problem will change), and in particular
its energy will slightly change. Energy conservation requires that the change in
energy dES

q is offset by the work done by the containing walls on the substance.
Now the work done by the wall pressure on the substance equals

−P dV.

(The force is pressure times area and is normal to the area; the work is force
times displacement in the direction of the force; combining the two, area times
displacement normal to that area gives change in volume. The minus sign is be-
cause the displacement must be inwards for the pressure force on the substance
to do positive work.) So for the system in a single eigenstate, the pressure equals
P = −dES

q/dV . For a real system with uncertainty in energy, the pressure is
defined as the expectation value:

P = −
∑

all q

Pq
dES

q

dV
(11.8)

It may be verified by simple substitution that this, too may be obtained from
the partition function, now by differentiating with respect to volume keeping
temperature constant:

P = kBT

(
∂ lnZ

∂V

)

T constant

(11.9)

While the final quantum mechanical definition of the pressure is quite sound,
it should be pointed out that the original definition in terms of force was very
artificial. And not just because force is a poor quantum variable. Even if a
system in a single eigenfunction could be created, the walls of the system would
have to be idealized to assume that the energy change equals the work −P dV .
For example, if the walls of the box would consist of molecules that were hotter
than the particles inside, the walls too would add energy to the system, and
take it out of its single energy eigenstate to boot. And even macroscopically,
for pressure times area to be the force requires that the system is in thermal
equilibrium. It would not be true for a system evolving in a violent way.

Often a particular combination of the variables defined above is very conve-
nient; the“enthalpy” H is defined as

H = E + PV (11.10)
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Enthalpy is not a fundamentally new variable, just a combination of existing
ones.

Assuming that the system evolves while staying at least approximately in
thermal equilibrium, the “first law of thermodynamics” can be stated macro-
scopically as follows:

dE = δQ− P dV (11.11)

In words, the internal energy of the system changes by the amount δQ of heat
added plus the amount −P dV of work done on the system. It is just energy
conservation expressed in thermodynamic terms. (And it assumes that other
forms of energy than internal energy and work done while expanding can be
ignored.)

Note the use of a straight d for the changes in internal energy E and volume
V , but a δ for the heat energy added. It reflects that dE and dV are changes
in properties of the system, but δQ is not; δQ is a small amount of energy
exchanged between systems, not a property of any system. Also note that
while popularly you might talk about the heat within a system, it is standard
in thermodynamics to refer to the thermal energy within a system as internal
energy, and reserve the term “heat” for exchanged thermal energy.

Just two more variables. The “specific heat at constant volume” Cv is defined
as the heat that must be added to the substance for each degree temperature
change, per unit mass and keeping the volume constant. In terms of the first
law on a unit mass basis,

de = δq − P dv,

it means that Cv is defined as δq/dT when dv = 0. So Cv is the derivative
of the specific internal energy e with respect to temperature. To be specific,
since specifying e normally requires two intensive variables, Cv is the partial
derivative of e keeping specific volume constant:

Cv ≡
(
∂e

∂T

)

v

(11.12)

Note that in thermodynamics the quantity being held constant while taking the
partial derivative is shown as a subscript to parentheses enclosing the deriva-
tive. You did not see that in calculus, but that is because in mathematics,
they tend to choose a couple of independent variables and stick with them. In
thermodynamics, two independent variables are needed, (assuming the amount
of substance is a given), but the choice of which two changes all the time.
Therefore, listing what is held constant in the derivatives is crucial.

The specific heat at constant pressure Cp is defined similarly as Cv, except
that pressure, instead of volume, is being held constant. According to the first
law above, the heat added is now de+ P dv and that is the change in enthalpy
h = e + Pv. There is the first practical application of the enthalpy already! It
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follows that

Cp ≡
(
∂h

∂T

)

P

(11.13)

11.8 Intro to the Second Law

Take a look around you. You are surrounded by air molecules. They are all over
the place. Isn’t that messy? Suppose there would be water all over the room,
wouldn’t you do something about it? Wouldn’t it be much neater to compress
all those air atoms together and put them in a glass? (You may want to wear
a space suit while doing this.)

The reality, of course, is that if you put all the air atoms in a glass, the high
pressure would cause the air to explode out of the glass and it would scatter all
over the room again. All your efforts would be for naught. It is like the clothes of
a ten-year old. Nature likes messiness. In fact, if messiness is properly defined,
and it will be in section 11.10, nature will always increase messiness as much as
circumstances and the laws of physics allow. The properly defined messiness is
called “entropy.” It is not to be confused with enthalpy, which is a completely
different concept altogether.

Entropy provides an unrelenting arrow of time. If you take a movie and run
it backwards, it simply does not look right, since you notice messiness getting
smaller, rather than larger. The movie of a glass of water slipping out of your
hand and breaking on the floor becomes, if run backwards, a spill of water and
pieces of glass combining together and jumping into your hand. It does not
happen. Messiness always increases. Even if you mop up the water and glue
the pieces of broken glass back together, it does not work. While you reduce
the messiness of the glass of water, you need to perform effort, and it turns out
that this always increases messiness elsewhere more than the messiness of the
glass of water is reduced.

It has big consequences. Would it not be nice if your car could run without
using gas? After all, there is lots of random kinetic energy in the air molecules
surrounding your car. Why not scope up some of that kinetic energy out of
the air and use it to run your car? It does not work because it would decrease
messiness in the universe, that’s why. It would turn messy random molecular
motion into organized motion of the engine of your car, and nature refuses to
do it. And there you have it, the second law of thermodynamics, or at least the
version of it given by Kelvin and Planck:

You cannot just take random thermal energy out of a substance and
turn it into useful work.

You expected a physical law to be a formula, instead of a verbal statement like
that? Well, you are out of luck for now.
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To be sure, if the air around your car is hotter than the ground below it, then
it is possible with some ingenuity to set up a flow of heat from the air to the
ground, and you can then divert some of this flow of heat and turn it into useful
work. But that is not an unlimited free supply of energy; it stops as soon as the
temperatures of air and ground have become equal. The temperature difference
is an expendable energy source, much like oil in the ground is; you are not
simply scooping up random thermal energy out of a substance. If that sounds
like a feeble excuse, consider the following: after the temperature difference is
gone, the air molecules still have almost exactly the same thermal energy as
before, and the ground molecules have more. But you cannot get any of it out
anymore as usable energy. Zero. (Practically speaking, the amount of energy
you would get out of the temperature difference is not going to get you to work
in time anyway, but that is another matter.)

Would it not be nice if your fridge would run without electricity? It would
really save on the electricity bill. But it cannot be done; that is the Clausius
statement of the second law:

You cannot move heat the wrong way, from cold to hot, without doing
work.

It is the same thing as the Kelvin-Planck statement, of course. If you could
really have a fridge that ran for free, you could use it to create a temperature
difference, and you could use that temperature difference to run your car. So
your car would run for free. Conversely, if your car could run for free, you could
use the cigarette lighter socket to run your fridge for free.

As patent offices all over the world can confirm, the second law has been
solidly verified by countless masses of clever inventors all over the centuries
doing everything possible to get around it. All have failed, however ingenious
their tricks trying to fool nature. And don’t forget about the most brilliant
scientists of the last few centuries who have also tried wistfully and failed mis-
erably, usually by trying to manipulate nature on the molecular level. The two
verbal statements of the second law may not seem to have much mathematical
precision, but they do. If you find a kink in either one’s armor, however small,
the fabric of current science and technology comes apart. Fabulous riches will
be yours, and you will also be the most famous scientist of all time.

11.9 The Reversible Ideal

The statements of the previous section describing the second law are clearly
common sense: yes, you still need to plug in your fridge, and no, you cannot
skip the periodic stop at a gas station. What a surprise!

They seem to be fairly useless beyond that. For example, they say that it
takes electricity to run our fridge, but they do not say it how much. It might
be a megawatt, it might be a nanowatt.
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Enter human ingenuity. With a some cleverness the two simple statements
of the second law can be greatly leveraged, allowing an entire edifice to be
constructed upon their basis.

A first insight is that if we are limited by nature’s unrelenting arrow of time,
then it should pay to study devices that almost ignore that arrow. If you make
a movie of a device, and it looks almost exactly right when run backwards, the
device is called (almost exactly) “reversible.” An example is a mechanism that
is carefully designed to move with almost no friction. If set into motion, the
motion will slow down only a negligible amount during a short movie. When
that movie is run backwards in time, at first glance it seems perfectly fine. If
you look more carefully, you will see a slight problem: in the backward movie,
the device is speeding up slightly, instead of slowing down due to friction as it
should. But it is almost right: it would require only a very small amount of
additional energy to speed up the actual device running backwards as it does
in the reversed movie.

Dollar signs may come in front of your eyes upon reading that last sentence:
it suggest that almost reversible devices may require very little energy to run.
In context of the second law it suggests that it may be worthwhile to study
refrigeration devices and engines that are almost reversible.

The second major insight is to look where there is light. Why not study, say,
a refrigeration device that is simple enough that it can be analyzed in detail?
At the very minimum it will give a standard against which other refrigeration
devices can be compared. And so it will be done.

Low temperature side TL. (Fridge.)

✻ ✻ ✻ ✻ ✻QL

High temperature side TH. (Kitchen.)

✻ ✻ ✻ ✻ ✻QH

heat exchanger✲

heat exchanger ✛✬
✫

✩
✪turbine

❄

⇐=
WT

✬
✫

✩
✪compressor

✻

⇐=
WC

Figure 11.11: Schematic of the Carnot refrigeration cycle.

The theoretically simple refrigeration device is called a “Carnot cycle” re-
frigeration device, or Carnot heat pump. A schematic is shown in figure 11.11.
A substance, the refrigerant, is circulating through four devices, with the ob-
jective of transporting heat out of the fridge, dumping it into the kitchen. In
the discussed device, the refrigerant will be taken to be some ideal gas with a
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constant specific heat like maybe helium. You would not really want to use an
ideal gas as refrigerant in a real refrigerator, but the objective here is not to
make a practical refrigerator that you can sell for a profit. The purpose here is
to create a device that can be analyzed precisely, and an ideal gas is described
by simple mathematical formulae discussed in basic physics classes.

Consider the details of the device. The refrigerant enters the fridge at a
temperature colder than the inside of the fridge. It then moves through a long
piping system, allowing heat to flow out of the fridge into the colder refrigerant
inside the pipes. This piping system is called a heat exchanger. The first
reversibility problem arises: heat flow is most definitely irreversible. Heat flow
seen backwards would be flow from colder to hotter, and that is wrong. The
only thing that can be done to minimize this problem as much as possible is to
minimize the temperature differences. The refrigerant can be sent in just slightly
colder than the inside of the fridge. Of course, if the temperature difference is
small, the surface through which the heat flows into the refrigerant will have to
be very large to take any decent amount of heat away. One impractical aspect
of Carnot cycles is that they are huge; that piping system cannot be small. Be
that as it may, the theoretical bottom line is that the heat exchange in the fridge
can be approximated as (almost) isothermal.

After leaving the inside of the refrigerator, the refrigerant is compressed to
increase its temperature to slightly above that of the kitchen. This requires
an amount WC of work to be done, indicating the need for electricity to run
the fridge. To avoid irreversible heat conduction in the compression process,
the compressor is thermally carefully insulated to eliminate any heat exchange
with its surroundings. Also, the compressor is very carefully designed to be
almost frictionless. It has expensive bearings that run with almost no friction.
Additionally, the refrigerant itself has “viscosity;” it experiences internal fric-
tion if there are significant gradients in its velocity. That would make the work
required to compress it greater than the ideal −P dV , and to minimize that
effect, the velocity gradients can be minimized by using lots of refrigerant. This
also has the effect of minimizing any internal heat conduction within the refrig-
erant that may arise. Viscosity is also an issue in the heat exchangers, because
the pressure differences cause velocity increases. With lots of refrigerant, the
pressure changes over the heat exchangers are also minimized.

Now the refrigerant is sent to a heat exchanger open to the kitchen air. Since
it enters slightly hotter than the kitchen, heat will flow out of the refrigerant into
the kitchen. Again, the temperature difference must be small for the process
to be almost reversible. Finally, the refrigerant is allowed to expand, which
reduces its temperature to below that inside the fridge. The expansion occurs
within a carefully designed turbine, because the substance does an amount of
work WT while expanding reversibly, and the turbine captures that work. It is
used to run a high-quality generator and recover some of the electric power WC

needed to run the compressor. Then the refrigerant reenters the fridge and the



11.9. THE REVERSIBLE IDEAL 545

cycle repeats.
If this Carnot refrigerator is analyzed theoretically, {D.59}, a very simple

result is found. The ratio of the heat QH dumped by the device into the kitchen
to the heat QL removed from the refrigerator is exactly the same as the ratio of
the temperature of the kitchen TH to that of the fridge TL:

For an ideal cycle:
QH

QL

=
TH
TL

(11.14)

That is a very useful result, because the net work W = WC −WT that must
go into the device is, by conservation of energy, the difference between QH and
QL. A “coefficient of performance” can be defined that is the ratio of the heat
QL removed from the fridge to the required power input W :

For an ideal refrigeration cycle: β ≡ QL

W
=

TL
TH − TL

(11.15)

Actually, some irreversibility is unavoidable in real life, and the true work re-
quired will be more. The formula above gives the required work if everything is
truly ideal.

The same device can be used in winter to heat the inside of your house.
Remember that heat was dumped into the kitchen. So, just cross out “kitchen”
at the high temperature side in figure 11.11 and write in “house.” And cross
out “fridge“ and write in “outside.” The device removes heat from the outside
and dumps it into your house. It is the exact same device, but it is used for a
different purpose. That is the reason that it is no longer called a “refrigeration
cycle” but a “heat pump.” For an heat pump, the quantity of interest is the
amount of heat dumped at the high temperature side, into your house. So an
alternate coefficient of performance is now defined as

For an ideal heat pump: β′ ≡ QH

W
=

TH
TH − TL

(11.16)

The formula above is ideal. Real-life performance will be less, so the work
required will be more.

It is interesting to note that if you take an amount W of electricity and
dump it into a simple resistance heater, it adds exactly an amount W of heat
to your house. If you dump that same amount of electricity into a Carnot heat
pump that uses it to pump in heat from the outside, the amount of heat added
to your house will be much larger than W . For example, if it is 300 K (27 ◦C)
inside and 275 K (2 ◦C) outside, the amount of heat added is 300/25 = 12 W,
twelve times the amount you got from the resistance heater!

If you run the Carnot refrigeration cycle in reverse, as in figure 11.12, all
arrows reverse and it turns into a “heat engine.” The device now takes in
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Figure 11.12: Schematic of the Carnot heat engine.

heat at the high temperature side and outputs a net amount of work. The
high temperature side is the place where you are burning the fuel. The low
temperature may be cooling water from the local river. The Kelvin-Planck
statement says that the device will not run unless some of the heat from the
combustion is dumped to a lower temperature. In a car engine, the exhaust
and radiator are the ones that take much of the heat away. Since the device is
almost reversible, the numbers for transferred heats and net work do not change
much from the nonreversed version. But the purpose is now to create work, so
the “thermal efficiency” of a heat engine is defined as

For an ideal heat engine: ηth ≡
W

QH

=
TH − TL
TH

(11.17)

Unfortunately, this is always less than one. And to get close to that, the engine
must operate hot; the temperature at which the fuel is burned must be very
hot.

(Note that slight corrections to the strictly reversed refrigeration process
are needed; in particular, for the heat engine process to work, the substance
must now be slightly colder than TH at the high temperature side, and slightly
hotter than TL at the low temperature side. Heat cannot flow from colder to
hotter. But since these are small changes, the mathematics is almost the same.
In particular, the numerical values for QH and QL will be almost unchanged,
though the heat now goes the opposite way.)

The final issue to be resolved is whether other devices could not be better
than the Carnot ones. For example, could not a generic heat pump be more
efficient than the reversible Carnot version in heating a house? Well, put them
into different windows, and see. (The Carnot one will need the big window.)
Assume that both devices are sized to produce the same heat flow into the
house. On second thought, since the Carnot machine is reversible, run it in
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Figure 11.13: A generic heat pump next to a reversed Carnot one with the same
heat delivery.

reverse; that can be done without changing its numbers for the heat fluxes and
net work noticeably, and it will show up the differences between the devices.

The idea is shown in figure 11.13. Note that the net heat flow into the
house is now zero, confirming that running the Carnot in reverse really shows
the differences between the devices. Net heat is exchanged with the outside air
and there is net work. Enter Kelvin-Planck. According to Kelvin-Planck, heat
cannot simply be taken out of the outside air and converted into useful net work.
The net work being taken out of the air will have to be negative. So the work
required for the generic heat pump will need to be greater than that recovered
by the reversed Carnot one, the excess ending up as heat in the outside air. So,
the generic heat pump requires more work than a Carnot one running normally.
No device can therefore be more efficient than the Carnot one. The best case
is that the generic device, too, is reversible. In that case, neither device can
win, because the generic device can be made to run in reverse instead of the
Carnot one. That is the case where both devices are so perfectly constructed
that whatever work goes into the generic device is almost 100% recovered by
the reversed Carnot machine, with negligible amounts of work being turned into
heat by friction or other irreversibility and ending up in the outside air.

The conclusion is that:

All reversible devices exchanging heat at a given high temperature
TH and low temperature TL, (and nowhere else,) have the same effi-
ciency. Irreversible devices have less.

To see that it is true for refrigeration cycles too, just note that because of con-
servation of energy, QL = QH−W . It follows that, considered as a refrigeration
cycle, not only does the generic heat pump above require more work, it also
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removes less heat from the cold side. To see that it applies to heat engines too,
just place a generic heat engine next to a reversed Carnot one producing the
same power. The net work is then zero, and the heat flow QH of the generic
device better be greater than that of the Carnot cycle, because otherwise net
heat would flow from cold to hot, violating the Clausius statement. The heat
flow QH is a measure of the amount of fuel burned, so the irreversible generic
device uses more fuel.

Practical devices may exchange heat at more than two temperatures, and
can be compared to a set of Carnot cycles doing the same. It is then seen that
it is bad news; for maximum theoretical efficiency of a heat engine, you prefer
to exchange heat at the highest available temperature and the lowest available
temperature, and for heat pumps and refrigerators, at the lowest available high
temperature and the highest available low temperature. But real-life and theory
are of course not the same.

Since the efficiency of the Carnot cycle has a unique relation to the tempera-
ture ratio between the hot and cold sides, it is possible to define the temperature
scale using the Carnot cycle. The only thing it takes is to select a single ref-
erence temperature to compare with, like water at its triple point. This was
in fact proposed by Kelvin as a conceptual definition, to be contrasted with
earlier definitions based on thermometers containing mercury or a similar fluid
whose volume expansion is read-off. While a substance like mercury expands in
volume very much linearly with the (Kelvin) temperature, it does not expand
exactly linearly with it. So slight variations in temperature would occur based
on which substance is arbitrarily selected for the reference thermometer. On
the other hand, the second law requires that all substances used in the Carnot
cycle will give the same Carnot temperature, with no deviation allowed. It may
be noted that the definition of temperature used in this chapter is completely
consistent with the Kelvin one, because “all” substances includes ideal gasses.

11.10 Entropy

With the cleverest inventors and the greatest scientists relentlessly trying to
fool nature and circumvent the second law, how come nature never once gets
confused, not even by the most complicated, convoluted, unusual, ingenious
schemes? Nature does not outwit them by out-thinking them, but by maintain-
ing an accounting system that cannot be fooled. Unlike human accounting sys-
tems, this accounting system does not assign a monetary value to each physical
system, but a measure of messiness called “entropy.” Then, in any transaction
within or between systems, nature simply makes sure that this entropy is not
being reduced; whatever entropy one system gives up must always be less than
what the other system receives.

So what can this numerical grade of messiness called entropy be? Surely, it
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must be related somehow to the second law as stated by Clausius and Kelvin
and Planck, and to the resulting Carnot engines that cannot be beat. Note
that the Carnot engines relate heat added to temperature. In particular an
infinitesimally small Carnot engine would take in an infinitesimal amount δQH

of heat at a temperature TH and give up an infinitesimal amount δQL at a
temperature TL. This is done so that δQH/δQL = TH/TL, or separating the two
ends of the device, δQH/TH = δQL/TL. The quantity δQ/T is the same at both
sides, except that one is going in and the other out. Might this, then, be the
change in messiness? After all, for the ideal reversible machine no messiness
can be created, otherwise in the reversed process, messiness would be reduced.
Whatever increase in messiness one side receives, the other side must give up,
and δQ/T fits the bill for that.

If δQ/T gives the infinitesimal change in messiness, excuse, entropy, then it
should be possible to find the entropy of a system by integration. In particular,
choosing some arbitrary state of the system as reference, the entropy of a system
in thermal equilibrium can be found as:

S ≡ Sref +

∫ desired state

reference state

δQ

T
along any reversible path (11.18)

P

V

✉ref

✉S = ?

r
A
r
B

rDrC

Figure 11.14: Comparison of two different integration paths for finding the
entropy of a desired state. The two different integration paths are in black and
the yellow lines are reversible adiabatic process lines.

The entropy as defined above is a specific number for a system in thermal
equilibrium, just like its pressure, temperature, particle density, and internal
energy are specific numbers. You might think that you could get a different
value for the entropy by following a different process path from the reference
state to the desired state. But the second law prevents that. To see why,
consider the pressure-volume diagram in figure 11.14. Two different reversible
processes are shown leading from the reference state to a desired state. A
bundle of reversible adiabatic process lines is also shown; those are graphical
representations of processes in which there is no heat exchange between the
system and its surroundings. The bundle of adiabatic lines chops the two process
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paths into small pieces, of almost constant temperature, that pairwise have the
same value of δQ/T . For, if a piece like AB would have a lower value for
δQ/T than the corresponding piece CD, then a heat engine running the cycle
CDBAC would lose less of the heat δQH at the low temperature side than
the Carnot ideal, hence have a higher efficiency than Carnot and that is not
possible. Conversely, if AB would have a higher value for δQ/T than CD, then
a refrigeration device running the cycle ABDCA would remove more heat from
the low side than Carnot, again not possible. So all the little segments pairwise
have the same value for δQ/T , which means the complete integrals must also
be the same. It follows that the entropy for a system in thermal equilibrium is
uniquely defined.

So what happens if the reference and final states are still the same, but
there is a slight glitch for a single segment AB, making the process over that
one segment irreversible? In that case, the heat engine argument no longer
applies, since it runs through the segment AB in reversed order, and irreversible
processes cannot be reversed. The refrigeration cycle argument says that the
amount of heat δQ absorbed by the system will be less; more of the heat δQ
going out at the high temperature side CD will come from the work done, and
less from the heat removed at the cold side. The final entropy is still the same,
because it only depends on the final state, not on the path to get there. So
during the slight glitch, the entropy of the system increased more than δQ/T .
In general:

dS >
δQ

T
(11.19)

where = applies if the change is reversible and > if it is not.

Note that the above formula is only valid if the system has an definite tem-
perature, as in this particular example. Typically this is simply not true in
irreversible processes; for example, the interior of the system might be hotter
than the outside. The real importance of the above formula is to confirm that
the defined entropy is indeed a measure of messiness and not of order; reversible
processes merely shuffle entropy around from one system to the next, but irre-
versible processes increase the net entropy content in the universe.

So what about the entropy of a system that is not in thermal equilibrium?
Equation (11.18) only applies for systems in thermal equilibrium. In order
for nature not to become confused in its entropy accounting system, surely
entropy must still have a numerical value for nonequilibrium systems. If the
problem is merely temperature or pressure variations, where the system is still
in approximate thermal equilibrium locally, you could just integrate the entropy
per unit volume over the volume. But if the system is not in thermal equilibrium
even on macroscopically small scales, it gets much more difficult. For example,
air crossing a typical shock wave (sonic boom) experiences a significant increase
in pressure over an extremely short distance. Better bring out the quantum
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mechanics trick box. Or at least molecular dynamics.
Still, some important general observations can be made without running

to a computer. An “isolated” system is a system that does not interact with
its surroundings in any way. Remember the example where the air inside a
room was collected and neatly put inside a glass? That was an example of an
isolated system. Presumably, the doors of the room were hermetically sealed.
The walls of the room are stationary, so they do not perform work on the air
in the room. And the air comes rushing back out of the glass so quickly that
there is really no time for any heat conduction through the walls. If there is no
heat conduction with the outside, then there is no entropy exchange with the
outside. So the entropy of the air can only increase due to irreversible effects.
And that is exactly what happens: the air exploding out of the glass is highly
irreversible, (no, it has no plans to go back in), and its entropy increases rapidly.
Quite quickly however, the air spreads again out over the entire room and settles
down. Beyond that point, the entropy remains further constant.

An isolated system evolves to the state of maximum possible entropy
and then stays there.

The state of maximum possible entropy is the thermodynamically stable state
a system will assume if left alone.

A more general system is an “adiabatic” or “insulated” system. Work may
be performed on such a system, but there is still no heat exchange with the
surroundings. That means that the entropy of such a system can again only
increase due to reversibility. A simple example is a thermos bottle with a cold
drink inside. If you continue shaking this thermos bottle violently, the cold
drink will heat up due to its viscosity, its internal friction, and it will not stay
a cold drink for long. Its entropy will increase while you are shaking it.

The entropy of adiabatic systems can only increase.

But, of course, that of an open system may not. It is the recipe of life, {N.25}.
You might wonder why this book on quantum mechanics included a concise,

but still very lengthy classical description of the second law. It is because the
evidence for the second law is so much more convincing based on the macro-
scopic evidence than on the microscopic one. Macroscopically, the most complex
systems can be accurately observed, microscopically, the quantum mechanics of
only the most simplistic systems can be rigorously solved. And whether we can
observe the solution is still another matter.

However, given the macroscopic fact that there really is an accounting mea-
sure of messiness called entropy, the question becomes what is its actual mi-
croscopic nature? Surely, it must have a relatively simple explanation in terms
of the basic microscopic physics? For one, nature never seems to get confused
about what it is, and for another, you really would expect something that is
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clearly so fundamental to nature to be relatively esthetic when expressed in
terms of mathematics.

And that thought is all that is needed to guess the true microscopic nature
of entropy. And guessing is good, because it gives a lot of insight why entropy
is what it is. And to ensure that the final result is really correct, it can be cross
checked against the macroscopic definition (11.18) and other known facts about
entropy.

The first guess is about what physical microscopic quantity would be in-
volved. Now microscopically, a simple system is described by energy eigenfunc-
tions ψS

q , and there is nothing messy about those. They are the systematic
solutions of the Hamiltonian eigenvalue problem. But these eigenfunctions have
probabilities Pq, being the square magnitudes of their coefficients, and they are
a different story. A system of a given energy could in theory exist neatly as a
single energy eigenfunction with that energy. But according to the fundamen-
tal assumption of quantum statistics, this simply does not happen. In thermal
equilibrium, every single energy eigenfunction of the given energy achieves about
the same probability. Instead of nature neatly leaving the system in the single
eigenfunction it may have started out with, it gives every Johnny-come-lately
state about the same probability, and it becomes a mess.

If the system is in a single eigenstate for sure, the probability Pq of that one
eigenstate is one, and all others are zero. But if the probabilities are equally
spread out over a large number, call it N , of eigenfunctions, then each eigenfunc-
tion receives a probability Pq = 1/N . So your simplest thought would be that
maybe entropy is the average value of the probability. In particular, just like the
average energy is

∑
PqE

S
q , the average probability would be

∑
P 2
q . It is always

the sum of the values for which you want the average times their probability.
You second thought would be that since

∑
P 2
q is one for the single eigenfunction

case, and 1/N for the spread out case, maybe the entropy should be −∑P 2
q in

order that the single eigenfunction case has the lower value of messiness. But
macroscopically it is known that you can keep increasing entropy indefinitely
by adding more and more heat, and the given expression starts at minus one
and never gets above zero.

So try a slightly more general possibility, that the entropy is the average of
some function of the probability, as in S =

∑
Pqf(Pq). The question is then,

what function? Well, macroscopically it is also known that entropy is additive,
the values of the entropies of two systems simply add up. It simplifies nature’s
task of maintaining a tight accounting system on messiness. For two systems
with probabilities Pq and Pr,

S =
∑

q

Pqf(Pq) +
∑

r

Prf(Pr)
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This can be rewritten as

S =
∑

q

∑

r

PqPrf(Pq) +
∑

q

∑

r

PqPrf(Pr).

since probabilities by themselves must sum to one. On the other hand, if you
combine two systems, the probabilities multiply, just like the probability of
throwing a 3 with your red dice and a 4 with your black dice is 1

6
× 1

6
. So the

combined entropy should also be equal to

S =
∑

q

∑

r

PqPrf(PqPr)

Comparing this with the previous equation, you see that f(PqPr) must equal
f(Pq) + f(Pr). The function that does that is the logarithmic function. More
precisely, you want minus the logarithmic function, since the logarithm of a
small probability is a large negative number, and you need a large positive
messiness if the probabilities are spread out over a large number of states. Also,
you will need to throw in a factor to ensure that the units of the microscopically
defined entropy are the same as the ones in the macroscopical definition. The
appropriate factor turns out to be the Boltzmann constant kB = 1.380 65 10−23

J/K; note that this factor has absolutely no effect on the physical meaning of
entropy; it is just a matter of agreeing on units.

The microscopic definition of entropy has been guessed:

S = −kB
∑

Pq ln(Pq) (11.20)

That wasn’t too bad, was it?
At absolute zero temperature, the system is in the ground state. That means

that probability Pq of the ground state is 1 and all other probabilities are zero.
Then the entropy is zero, because ln(1) = 0. The fact that the entropy is zero
at absolute zero is known as the “third law of thermodynamics,” {A.35}.

At temperatures above absolute zero, many eigenfunctions will have nonzero
probabilities. That makes the entropy positive, because logarithms of numbers
less than one are negative. (It should be noted that Pq lnPq becomes zero
when Pq becomes zero; the blow up of lnPq is no match for the reduction in
magnitude of Pq. So highly improbable states will not contribute significantly
to the entropy despite their relatively large values of the logarithm.)

To put the definition of entropy on a less abstract basis, assume that you
schematize the system of interest into unimportant eigenfunctions that you give
zero probability, and a remaining N important eigenfunctions that all have the
same average probability 1/N . Sure, it is crude, but it is just to get an idea.
In this simple model, the entropy is kB ln(N), proportional to the logarithm of
the number of quantum states that have an important probability. The more
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states, the higher the entropy. This is what you will find in popular expositions.
And it would actually be correct for systems with zero indeterminacy in energy,
if they existed.

The next step is to check the expression. Derivations are given in {D.60}, but
here are the results. For systems in thermal equilibrium, is the entropy the same
as the one given by the classical integration (11.18)? Check. Does the entropy
exist even for systems that are not in thermal equilibrium? Check, quantum
mechanics still applies. For a system of given energy, is the entropy smallest
when the system is in a single energy eigenfunction? Check, it is zero then. For a
system of given energy, is the entropy the largest when all eigenfunctions of that
energy have the same probability, as the fundamental assumption of quantum
statistics suggests? Check. For a system with given expectation energy but
uncertainty in energy, is the entropy highest when the probabilities are given
by the canonical probability distribution? Check. For two systems in thermal
contact, is the entropy greatest when their temperatures have become equal?
Check.

Feynman [18, p. 8] gives an argument to show that the entropy of an isolated
system always increases with time. Taking the time derivative of (11.20),

dS

dt
= −kB

∑

q

[ln(Pq) + 1]
dPq
dt

= −kB
∑

q

∑

r

[ln(Pq) + 1]Rqr[Pr − Pq],

the final equality being from time-dependent perturbation theory, with Rqr =
Rrq > 0 the transition rate from state q to state p. In the double summation, a
typical term with indices q and r combines with the term having the reversed
indices as

kB[ln(Pr) + 1− ln(Pq)− 1]Rqr[Pr − Pq]

and that is always greater that zero because the terms in the square brackets
have the same sign: if Pq is greater/less than Pr then so is ln(Pq) greater/less
than ln(Pr). However, given the dependence of time-dependent perturbation
theory on linearization and worse, the “measurement” wild card, chapter 7.6
you might consider this more a validation of time dependent perturbation theory
than of the expression for entropy. Then there is the problem of ensuring that
a perturbed and measured system is adiabatic.

In any case, it may be noted that the checks on the expression for entropy,
as given above, cut both ways. If you accept the expression for entropy, the
canonical probability distribution follows. They are consistent, and in the end,
it is just a matter of which of the two postulates you are more willing to accept
as true.
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11.11 The Big Lie of Distinguishable Particles

If you try to find the entropy of the system of distinguishable particles that
produces the Maxwell-Boltzmann distribution, you are in for an unpleasant
surprise. It just cannot be done. The problem is that the number of eigen-
functions for I distinguishable particles is typically roughly I! larger than for
I identical bosons or fermions. If the typical number of states becomes larger
by a factor I!, the logarithm of the number of states increases by I ln I, (using
the Stirling formula), which is no longer proportional to the size of the system
I, but much larger than that. The specific entropy would blow up with system
size.

What gives? Now the truth must be revealed. The entire notion of distin-
guishable particles is a blatant lie. You are simply not going to have 1023 distin-
guishable particles in a box. Assume they would be 1023 different molecules. It
would a take a chemistry handbook of 1021 pages to list them, one line for each.
Make your system size 1 000 times as big, and the handbook gets 1 000 times
thicker still. That would be really messy! When identical bosons or fermions
are far enough apart that their wave functions do no longer overlap, the sym-
metrization requirements are no longer important for most practical purposes.
But if you start counting energy eigenfunctions, as entropy does, it is a different
story. Then there is no escaping the fact that the particles really are, after all,
indistinguishable forever.

11.12 The New Variables

The new kid on the block is the entropy S. For an adiabatic system the entropy
is always increasing. That is highly useful information, if you want to know
what thermodynamically stable final state an adiabatic system will settle down
into. No need to try to figure out the complicated time evolution leading to the
final state. Just find the state that has the highest possible entropy S, that will
be the stable final state.

But a lot of systems of interest are not well described as being adiabatic.
A typical alternative case might be a system in a rigid box in an environment
that is big enough, and conducts heat well enough, that it can at all times
be taken to be at the same temperature Tsurr. Also assume that initially the
system itself is in some state 1 at the ambient temperature Tsurr, and that it
ends up in a state 2 again at that temperature. In the evolution from 1 to 2,
however, the system temperature could be be different from the surroundings,
or even undefined, no thermal equilibrium is assumed. The first law, energy
conservation, says that the heat Q12 added to the system from the surroundings
equals the change in internal energy E2 − E1 of the system. Also, the entropy
change in the isothermal environment will be −Q12/Tsurr, so the system entropy
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change S2 − S1 must be at least Q12/Tsurr in order for the net entropy in the
universe not to decrease. From that it can be seen by simply writing it out that
the “Helmholtz free energy”

F = E − TS (11.21)

is smaller for the final system 2 than for the starting one 1. In particular, if the
system ends up into a stable final state that can no longer change, it will be
the state of smallest possible Helmholtz free energy. So, if you want to know
what will be the final fate of a system in a rigid, heat conducting, box in an
isothermal environment, just find the state of lowest possible Helmholtz energy.
That will be the one.

A slightly different version occurs even more often in real applications. In
these the system is not in a rigid box, but instead its surface is at all times
exposed to ambient atmospheric pressure. Energy conservation now says that
the heat added Q12 equals the change in internal energy E2 − E1 plus the
work done expanding against the atmospheric pressure, which is Psurr(V2 −
V1). Assuming that both the initial state 1 and final state 2 are at ambient
atmospheric pressure, as well as at ambient temperature as before, then it is
seen that the quantity that decreases is the “Gibbs free energy”

G = H − TS (11.22)

in terms of the enthalpy H defined as H = E + PV . As an example, phase
equilibria are at the same pressure and temperature. In order for them to be
stable, the phases need to have the same specific Gibbs energy. Otherwise all
particles would end up in whatever phase has the lower Gibbs energy. Similarly,
chemical equilibria are often posed at an ambient pressure and temperature.

There are a number of differential expressions that are very useful in doing
thermodynamics. The primary one is obtained by combining the differential
first law (11.11) with the differential second law (11.19) for reversible processes:

dE = T dS − P dV (11.23)

This no longer involves the heat transferred from the surroundings, just state
variables of the system itself. The equivalent one using the enthalpy H instead
of the internal energy E is

dH = T dS + V dP (11.24)

The differentials of the Helmholtz and Gibbs free energies are, after cleaning
up with the two expressions immediately above:

dF = −S dT − P dV (11.25)
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and

dG = −S dT + V dP (11.26)

Expression (11.25) shows that the work obtainable in an isothermal reversible
process is given by the decrease in Helmholtz free energy. That is why Helmholtz
called it “free energy” in the first place. The Gibbs free energy is applicable
to steady flow devices such as compressors and turbines; the first law for these
devices must be corrected for the “flow work” done by the pressure forces on
the substance entering and leaving the device. The effect is to turn P dV into
−V dP as the differential for the actual work obtainable from the device. (This
assumes that the kinetic and/or potential energy that the substance picks up
while going through the device is a not a factor.)

Maxwell noted that, according to the total differential of calculus, the co-
efficients of the differentials in the right hand sides of (11.23) through (11.26)
must be the partial derivatives of the quantity in the left hand side:

(
∂E
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)
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V

= −S
(
∂F

∂V

)

T

= −P
(
∂S

∂V

)

T

=

(
∂P

∂T

)

V

(11.29)

(
∂G

∂T

)

P

= −S
(
∂G

∂P

)

T

= V

(
∂S

∂P

)

T

= −
(
∂V

∂T

)

P

(11.30)

The final equation in each line can be verified by substituting in the previous
two and noting that the order of differentiation does not make a difference.
Those are called the “Maxwell relations.” They have a lot of practical uses. For
example, either of the final equations in the last two lines allows the entropy
to be found if the relationship between the “normal” variables P , V , and T is
known, assuming that at least one data point at every temperature is already
available. Even more important from an applied point of view, the Maxwell
relations allow whatever data you find about a substance in literature to be
stretched thin. Approximate the derivatives above with difference quotients,
and you can compute a host of information not initially in your table or graph.

There are two even more remarkable relations along these lines. They follow
from dividing (11.23) and (11.24) by T and rearranging so that S becomes the



558 CHAPTER 11. BASIC AND QUANTUM THERMODYNAMICS

quantity differentiated. That produces
(
∂S

∂T

)

V

=
1

T

(
∂E

∂T

)

V

(
∂S

∂V

)

T

=
1

T

(
∂E

∂V

)

T

+
P

T
(
∂E

∂V

)

T

= T 2

(
∂P/T

∂T

)

V
(11.31)(

∂S

∂T

)

P

=
1

T

(
∂H

∂T

)

P

(
∂S

∂P

)

T

=
1

T

(
∂H

∂P

)

T

− V

T
(
∂H

∂P

)

T

= −T 2

(
∂V/T

∂T

)

P
(11.32)

What is so remarkable is the final equation in each case: they do not involve
entropy in any way, just the “normal” variables P , V , T , H, and E. Merely be-
cause entropy exists, there must be relationships between these variables which
seemingly have absolutely nothing to do with the second law.

As an example, consider an ideal gas, more precisely, any substance that
satisfies the ideal gas law

Pv = RT with R =
kB
m

=
Ru

M
Ru = 8.314 472 kJ/kmol K (11.33)

The constant R is called the specific gas constant; it can be computed from the
ratio of the Boltzmann constant kB and the mass of a single molecule m. Alter-
natively, it can be computed from the “universal gas constant” Ru = IAkB and
the molar mass M = IAm. For an ideal gas like that, the equations above show
that the internal energy and enthalpy are functions of temperature only. And
then so are the specific heats Cv and Cp, because those are their temperature
derivatives:

For ideal gases: e, h, Cv, Cp = e, h, Cv, Cp(T ) CP = Cv +R (11.34)

(The final relation is because CP = dh/dT = d(e + Pv)/dT with de/dT = Cv
and Pv = RT .) Ideal gas tables can therefore be tabulated by temperature
only, there is no need to include a second independent variable. You might
think that entropy should be tabulated against both varying temperature and
varying pressure, because it does depend on both pressure and temperature.
However, the Maxwell equation (11.30) may be used to find the entropy at any
pressure as long as it is listed for just one pressure, say for one bar.

There is a sleeper among the Maxwell equations; the very first one, in (11.27).
Turned on its head, it says that

1

T
=

(
∂S

∂E

)

V and other external parameters fixed

(11.35)
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This can be used as a definition of temperature. Note that in taking the deriva-
tive, the volume of the box, the number of particles, and other external pa-
rameters, like maybe an external magnetic field, must be held constant. To
understand qualitatively why the above derivative defines a temperature, con-
sider two systems A and B for which A has the larger temperature according
to the definition above. If these two systems are brought into thermal contact,
then net messiness increases when energy flows from high temperature system
A to low temperature system B, because system B, with the higher value of the
derivative, increases its entropy more than A decreases its.

Of course, this new definition of temperature is completely consistent with
the ideal gas one; it was derived from it. However, the new definition also works
fine for negative temperatures. Assume a system A has a negative tempera-
ture according to he definition above. Then its messiness (entropy) increases
if it gives up heat. That is in stark contrast to normal substances at positive
temperatures that increase in messiness if they take in heat. So assume that
system A is brought into thermal contact with a normal system B at a positive
temperature. Then A will give off heat to B, and both systems increase their
messiness, so everyone is happy. It follows that A will give off heat however hot
is the normal system it is brought into contact with. While the temperature
of A may be negative, it is hotter than any substance with a normal positive
temperature!

And now the big question: what is that “chemical potential” you hear so
much about? Nothing new, really. For a pure substance with a single constituent
like this chapter is supposed to discuss, the chemical potential is just the specific
Gibbs free energy on a molar basis, µ̄ = ḡ. More generally, if there is more than
one constituent the chemical potential µ̄c of each constituent c is best defined
as

µ̄c ≡
(
∂G

∂ı̄c

)

P,T

(11.36)

(If there is only one constituent, then G = ı̄ḡ and the derivative does indeed
produce ḡ. Note that an intensive quantity like ḡ, when considered to be a
function of P , T , and ı̄, only depends on the two intensive variables P and T ,
not on the amount of particles ı̄ present.) If there is more than one constituent,
and assuming that their Gibbs free energies simply add up, as in

G = ı̄1ḡ1 + ı̄ḡ2 + . . . =
∑

c

ı̄cḡc,

then the chemical potential µ̄c of each constituent is simply the molar specific
Gibbs free energy ḡc of that constituent,

The partial derivatives described by the chemical potentials are important for
figuring out the stable equilibrium state a system will achieve in an isothermal,
isobaric, environment, i.e. in an environment that is at constant temperature
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and pressure. As noted earlier in this section, the Gibbs free energy must be
as small as it can be in equilibrium at a given temperature and pressure. Now
according to calculus, the full differential for a change in Gibbs free energy is

dG(P, T, ı̄1, ı̄2, . . .) =
∂G

∂T
dT +

∂G

∂P
dP +

∂G

∂ı̄1
dı̄1 +

∂G

∂ı̄2
dı̄2 + . . .

The first two partial derivatives, which keep the number of particles fixed, were
identified in the discussion of the Maxwell equations as −S and V ; also the
partial derivatives with respect to the numbers of particles of the constituent
have been defined as the chemical potentials µ̄c. Therefore more shortly,

dG = −S dT + V dP + µ̄1 dı̄1 + µ̄2 dı̄2 + . . . = −S dT + V dP +
∑

c

µ̄c dı̄c

(11.37)
This generalizes (11.26) to the case that the numbers of constituents change.
At equilibrium at given temperature and pressure, the Gibbs energy must be
minimal. It means that dG must be zero whenever dT = dP = 0, regardless
of any infinitesimal changes in the amounts of the constituents. That gives a
condition on the fractions of the constituents present.

Note that there are typically constraints on the changes dı̄c in the amounts
of the constituents. For example, in a liquid-vapor “phase equilibrium,” any ad-
ditional amount of particles dı̄f that condenses to liquid must equal the amount
−dı̄g of particles that disappears from the vapor phase. (The subscripts fol-
low the unfortunate convention liquid=fluid=f and vapor=gas=g. Don’t ask.)
Putting this relation in (11.37) it can be seen that the liquid and vapor phase
must have the same chemical potential, µ̄f = µ̄g. Otherwise the Gibbs free
energy would get smaller when more particles enter whatever is the phase of
lowest chemical potential and the system would collapse completely into that
phase alone.

The equality of chemical potentials suffices to derive the famous Clausius-
Clapeyron equation relating pressure changes under two-phase, or “saturated,”
conditions to the corresponding temperature changes. For, the changes in chem-
ical potentials must be equal too, dµf = dµg, and substituting in the differential
(11.26) for the Gibbs free energy, taking it on a molar basis since µ̄ = ḡ,

−s̄fdT + v̄fdP = −s̄gdT + v̄gdP

and rearranging gives the Clausius-Clapeyron equation:

dP

dT
=
sg − sf
vg − vf

Note that since the right-hand side is a ratio, it does not make a difference
whether you take the entropies and volumes on a molar basis or on a mass
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basis. The mass basis is shown since that is how you will typically find the
entropy and volume tabulated. Typical engineering thermodynamic textbooks
will also tabulate sfg = sg− sf and vfg = vg− vf , making the formula above very
convenient.

In case your tables do not have the entropies of the liquid and vapor phases,
they often still have the “latent heat of vaporization,” also known as “enthalpy
of vaporization” or similar, and in engineering thermodynamics books typically
indicated by hfg. That is the difference between the enthalpy of the saturated
liquid and vapor phases, hfg = hg−hf . If saturated liquid is turned into saturated
vapor by adding heat under conditions of constant pressure and temperature,
(11.24) shows that the change in enthalpy hg − hf equals T (sg − sf). So the
Clausius-Clapeyron equation can be rewritten as

dP

dT
=

hfg
T (vg − vf)

(11.38)

Because T ds is the heat added, the physical meaning of the latent heat of
vaporization is the heat needed to turn saturated liquid into saturated vapor
while keeping the temperature and pressure constant.

For chemical reactions, like maybe

2H2 +O2 ⇐⇒ 2H2O,

the changes in the amounts of the constituents are related as

dı̄H2 = −2dr̄ dı̄O2 = −1dr̄ dı̄H2O = 2dr̄

where dr̄ is the additional number of times the forward reaction takes place from
the starting state. The constants −2, −1, and 2 are called the “stoichiometric
coefficients.” They can be used when applying the condition that at equilibrium,
the change in Gibbs energy due to an infinitesimal amount of further reactions
dr̄ must be zero.

However, chemical reactions are often posed in a context of constant volume
rather than constant pressure, for one because it simplifies the reaction kine-
matics. For constant volume, the Helmholtz free energy must be used instead
of the Gibbs one. Does that mean that a second set of chemical potentials is
needed to deal with those problems? Fortunately, the answer is no, the same
chemical potentials will do for Helmholtz problems. To see why, note that by
definition F = G − PV , so dF = dG − PdV − V dP , and substituting for dG
from (11.37), that gives

dF = −S dT − P dV + µ̄1 dı̄1 + µ̄2 dı̄2 + . . . = −S dT − P dV +
∑

c

µ̄c dı̄c

(11.39)
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Under isothermal and constant volume conditions, the first two terms in the
right hand side will be zero and F will be minimal when the differentials with
respect to the amounts of particles add up to zero.

Does this mean that the chemical potentials are also specific Helmholtz free
energies, just like they are specific Gibbs free energies? Of course the answer
is no, and the reason is that the partial derivatives of F represented by the
chemical potentials keep extensive volume V , instead of intensive molar specific
volume v̄ constant. A single-constituent molar specific Helmholtz energy f̄ can
be considered to be a function f̄(T, v̄) of temperature and molar specific volume,

two intensive variables, and then F = ı̄f̄(T, v̄), but
(
∂ı̄f̄(T, V/ı̄)/∂ı̄

)
TV

does

not simply produce f̄ , even if
(
∂ı̄ḡ(T, P )/∂ı̄

)
TP

produces ḡ.

11.13 Microscopic Meaning of the Variables

The new variables introduced in the previous section assume the temperature to
be defined, hence there must be thermodynamic equilibrium in some meaningful
sense. That is important for identifying their microscopic descriptions, since

the canonical expression Pq = e−E
S
q/kt/Z can be used for the probabilities of the

energy eigenfunctions.
Consider first the Helmholtz free energy:

F = E − TS =
∑

q

PqE
S
q + TkB

∑

q

Pq ln
(
e−E

S
q/kBT/Z

)

This can be simplified by taking apart the logarithm, and noting that the prob-
abilities must sum to one,

∑
q Pq = 1, to give

F = −kBT lnZ (11.40)

That makes strike three for the partition function Z, since it already was able
to produce the internal energy E, (11.7), and the pressure P , (11.9). Knowing
Z as a function of volume V , temperature T , and number of particles I is all
that is needed to figure out the other variables. Indeed, knowing F is just as
good as knowing the entropy S, since F = E − TS. It illustrates why the
partition function is much more valuable than you might expect from a mere
normalization factor of the probabilities.

For the Gibbs free energy, add PV from (11.9):

G = −kBT
[
lnZ − V

(
∂ lnZ

∂V

)

T

]
(11.41)

Dividing by the number of moles gives the molar specific Gibbs energy ḡ, equal
to the chemical potential µ̄.
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How about showing that this chemical potential is the same one as in the
Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein distribution functions for
weakly interacting particles? It is surprisingly difficult to show it; in fact, it
cannot be done for distinguishable particles for which the entropy does not exist.
It further appears that the best way to get the result for bosons and fermions
is to elaborately re-derive the two distributions from scratch, each separately,
using a new approach. Note that they were already derived twice earlier, once
for given system energy, and once for the canonical probability distribution. So
the dual derivations in {D.61} make three. Please note that whatever this book
tells you thrice is absolutely true.

11.14 Application to Particles in a Box

This section applies the ideas developed in the previous sections to weakly in-
teracting particles in a box. This allows some of the details of the “shelves” in
figures 11.1 through 11.3 to be filled in for a concrete case.

For particles in a macroscopic box, the single-particle energy levels Ep are
so closely spaced that they can be taken to be continuously varying. The one
exception is the ground state when Bose-Einstein condensation occurs; that will
be ignored for now. In continuum approximation, the number of single-particle
energy states in a macroscopically small energy range dEp is approximately,
following (6.6),

dN = V nsD dE
p
= V

ns
4π2

(
2m

~2

)3/2√
E

p
dE

p
(11.42)

Here ns = 2s+ 1 is the number of spin states.
Now according to the derived distributions, the number of particles in a

single energy state at energy Ep is

ι =
1

e(E
p−µ)/kBT ± 1

where the plus sign applies for fermions and the minus sign for bosons. The
term can be ignored completely for distinguishable particles.

To get the total number of particles, just integrate the particles per state ι
over all states:

I =

∫ ∞

Ep=0

ιV nsD dE
p
= V

ns
4π2

(
2m

~2

)3/2 ∫ ∞

Ep=0

√
Ep

e(E
p−µ)/kBT ± 1

dE
p

and to get the total energy, integrate the energy of each single-particle state
times the number of particles in that state over all states:

E =

∫ ∞

Ep=0

E
p
ιnsVD dE

p
= V

ns
4π2

(
2m

~2

)3/2 ∫ ∞

Ep=0

Ep
√
Ep

e(E
p−µ)/kBT ± 1

dE
p
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The expression for the number of particles can be nondimensionalized by
rearranging and taking a root to give

~
2

2m

(
I

V

)2/3

kBT
=

(
ns
4π2

∫ ∞

u=0

√
u du

eu−u0 ± 1

)2/3

u ≡ Ep

kBT
u0 ≡

µ

kBT
(11.43)

Note that the left hand side is a nondimensional ratio of a typical quantum
microscopic energy, based on the average particle spacing 3

√
V/I, to the typical

classical microscopic energy kBT . This ratio is a key nondimensional number
governing weakly interacting particles in a box. To put the typical quantum
energy into context, a single particle in its own volume of size V /I would have
a ground state energy 3π2

~
2/2m(V/I)2/3.

Some references, [4], define a “thermal de Broglie wavelength” λth by writing
the classical microscopic energy kBT in a quantum-like way:

kBT ≡ 4π
~
2

2m

1

λ2th

In some simple cases, you can think of this as roughly the quantum wavelength
corresponding to the momentum of the particles. It allows various results that
depend on the nondimensional ratio of energies to be reformulated in terms of
a nondimensional ratio of lengths, as in

~
2

2m

(
I

V

)2/3

kBT
=

1

4π

[
λth

(V/I)1/3

]2

Since the ratio of energies is fully equivalent, and has an unambiguous meaning,
this book will refrain from making theory harder than needed by defining su-
perfluous quantities. But in practice, thinking in terms of numerical values that
are lengths is likely to be more intuitive than energies, and then the numerical
value of the thermal wavelength would be the one to keep in mind.

Note that (11.43) provides a direct relationship between the ratio of typical
quantum/classical energies on one side, and u0, the ratio of atomic chemical
potential µ to typical classical microscopic energy kBT on the other side. While
the two energy ratios are not the same, (11.43) makes them equivalent for
systems of weakly interacting particles in boxes. Know one and you can in
principle compute the other.

The expression for the system energy may be nondimensionalized in a similar
way to get

E

IkBT
=

∫ ∞

u=0

u
√
u du

eu−u0 ± 1

/∫ ∞

u=0

√
u du

eu−u0 ± 1
u ≡ Ep

kBT
u0 ≡

µ

kBT
(11.44)
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The integral in the bottom arises when getting rid of the ratio of energies that
forms using (11.43).

The quantity in the left hand side is the nondimensional ratio of the actual
system energy over the system energy if every particle had the typical classical
energy kBT . It too is a unique function of u0, and as a consequence, also of the
ratio of typical microscopic quantum and classical energies.

11.14.1 Bose-Einstein condensation

Bose-Einstein condensation is said to have occurred when in a macroscopic
system the number of bosons in the ground state becomes a finite fraction of the
number of particles I. It happens when the temperature is lowered sufficiently
or the particle density is increased sufficiently or both.

According to derivation {D.57}, the number of particles in the ground state
is given by

I1 =
N1 − 1

e(E
p
1−µ)/kBT − 1

. (11.45)

In order for this to become a finite fraction of the large number of particles I of a
macroscopic system, the denominator must become extremely small, hence the
exponential must become extremely close to one, hence µ must come extremely
close to the lowest energy level Ep

1 . To be precise, E1−µ must be small of order
kBT/I; smaller than the classical microscopic energy by the humongous factor
I. In addition, for a macroscopic system of weakly interacting particles in a
box, Ep

1 is extremely close to zero, (it is smaller than the microscopic quantum
energy defined above by a factor I2/3.) So condensation occurs when µ ≈ Ep

1 ≈
0, the approximations being extremely close. If the ground state is unique, N1

= 1, Bose-Einstein condensation simply occurs when µ = Ep
1 ≈ 0.

You would therefore expect that you can simply put u0 = µ/kBT to zero in
the integrals (11.43) and (11.44). However, if you do so (11.43) fails to describe
the number of particles in the ground state; it only gives the number of particles
I − I1 not in the ground state:

~
2

2m

(
I − I1
V

)2/3

kBT
=

(
ns
4π2

∫ ∞

u=0

√
u du

eu − 1

)2/3

for BEC (11.46)

To see that the number of particles in the ground state is indeed not included
in the integral, note that while the integrand does become infinite when u ↓ 0,
it becomes infinite proportionally to 1/

√
u, which integrates as proportional to√

u, and
√
u1 =

√
Ep

1/kBT is vanishingly small, not finite. Arguments given in
derivation {D.57} do show that the only significant error occurs for the ground
state; the above integral does correctly approximate the number of particles not
in the ground state when condensation has occurred.
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The value of the integral can be found in mathematical handbooks, [41,
p. 201, with typo], as 1

2
!ζ
(
3
2

)
with ζ the so-called Riemann zeta function, due

to, who else, Euler. Euler showed that it is equal to a product of terms ranging
over all prime numbers, but you do not want to know that. All you want to
know is that ζ

(
3
2

)
≈ 2.612 and that 1

2
! = 1

2

√
π.

The Bose-Einstein temperature TB is the temperature at which Bose-Ein-
stein condensation starts. That means it is the temperature for which I1 = 0
in the expression above, giving

~
2

2m

(
I − I1
V

)2/3

kBT
=

~
2

2m

(
I

V

)2/3

kBTB
=
( ns
8π3/2

ζ
(
3
2

))2/3
T 6 TB (11.47)

It implies that for a given system of bosons, at Bose-Einstein condensation there
is a fixed numerical ratio between the microscopic quantum energy based on par-
ticle density and the classical microscopic energy kBTB. That also illustrates the
point made at the beginning of this subsection that both changes in temperature
and changes in particle density can produce Bose-Einstein condensation.

The first equality in the equation above can be cleaned up to give the fraction
of bosons in the ground state as:

I1
I

= 1−
(
T

TB

)3/2

T 6 TB (11.48)

11.14.2 Fermions at low temperatures

Another application of the integrals (11.43) and (11.44) is to find the Fermi
energy Ep

F and internal energy E of a system of weakly interacting fermions for
vanishing temperature.

For low temperatures, the nondimensional energy ratio u0 = µ/kBT blows
up, since kBT becomes zero and the chemical potential µ does not; µ becomes
the Fermi energy Ep

F, chapter 6.10. To deal with the blow up, the integrals can
be rephrased in terms of u/u0 = Ep/µ, which does not blow up.

In particular, the ratio (11.43) involving the typical microscopic quantum

energy can be rewritten by taking a factor u
3/2
0 out of the integral and root and

to the other side to give:

~
2

2m

(
I

V

)2/3

µ
=

(
ns
4π2

∫ ∞

u/u0=0

√
u/u0 d(u/u0)

eu0[(u/u0)−1] + 1

)2/3

Now since u0 is large, the exponential in the denominator becomes extremely
large for u/u0 > 1, making the integrand negligibly small. Therefore the upper
limit of integration can be limited to u/u0 = 1. In that range, the exponential
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is vanishingly small, except for a negligibly small range around u/u0 = 1, so it
can be ignored. That gives

~
2

2m

(
I

V

)2/3

µ
=

(
ns
4π2

∫ 1

u/u0=0

√
u/u0 d(u/u0)

)2/3

=
( ns
6π2

)2/3

It follows that the Fermi energy is

E
p
F = µ|T=0 =

(
6π2

ns

)2/3
~
2

2m

(
I

V

)2/3

Physicist like to define a “Fermi temperature” as the temperature where the
classical microscopic energy kBT becomes equal to the Fermi energy. It is

TF =
1

kB

(
6π2

ns

)2/3
~
2

2m

(
I

V

)2/3

(11.49)

It may be noted that except for the numerical factor, the expression for the
Fermi temperature TF is the same as that for the Bose-Einstein condensation
temperature TB given in the previous subsection.

Electrons have ns = 2. For the valence electrons in typical metals, the Fermi
temperatures are in the order of ten thousands of degrees Kelvin. The metal
will melt before it is reached. The valence electrons are pretty much the same
at room temperature as they are at absolute zero.

The integral (11.44) can be integrated in the same way and then shows that
E = 3

5
Iµ = 3

5
IEp

F. In short, at absolute zero, the average energy per particle is
3
5
times Ep

F, the maximum single-particle energy.
It should be admitted that both of the results in this subsection have been

obtained more simply in chapter 6.10. However, the analysis in this subsection
can be used to find the corrected expressions when the temperature is fairly
small but not zero, {D.62}, or for any temperature by brute-force numerical
integration. One result is the specific heat at constant volume of the free-
electron gas for low temperatures:

Cv =
π2

2

kBT

Ep
F

kB
m

(1 + . . .) (11.50)

where kB/m is the gas constant R. All low-temperature expansions proceed in
powers of (kBT/E

p
F)

2, so the dots in the expression for Cv above are of that
order. The specific heat vanishes at zero temperature and is typically small.

11.14.3 A generalized ideal gas law

While the previous subsections produced a lot of interesting information about
weakly interacting particles near absolute zero, how about some info about
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conditions that you can check in a T-shirt? And how about something mathe-
matically simple, instead of elaborate integrals that produce weird functions?

Well, there is at least one. By definition, (11.8), the pressure is the expec-
tation value of −dES

q/dV where the ES
q are the system energy eigenvalues. For

weakly interacting particles in a box, chapter 6.2 found that the single particle
energies are inversely proportional to the squares of the linear dimensions of
the box, which means proportional to V −2/3. Then so are the system energy
eigenfunctions, since they are sums of single-particle ones: ES

q = constant V −2/3

Differentiating produces dES
q/dV = −2

3
ES
q/V and taking the expectation value

PV = 2
3
E (11.51)

This expression is valid for weakly interacting bosons and fermions even if
the symmetrization requirements cannot be ignored.

11.14.4 The ideal gas

The weakly interacting particles in a box can be approximated as an ideal gas if
the number of particles is so small, or the box so large, that the average number
of particles in an energy state is much less than one.

Since the number of particles per energy state is given by

ι =
1

e(E
p−µ)/kBT ± 1

ideal gas conditions imply that the exponential must be much greater than
one, and then the ±1 can be ignored. That means that the difference between
fermions and bosons, which accounts for the ±1, can be ignored for an ideal
gas. Both can be approximated by the distribution derived for distinguishable
particles.

The energy integral (11.44) can now easily be done; the eu0 factor divides
away and an integration by parts in the numerator produces E = 3

2
IkBT . Plug

it into the generalized ideal gas law (11.51) to get the normal “ideal gas law”

PV = IkBT ⇐⇒ Pv = RT R ≡ kB
m

(11.52)

Also, following (11.34),

e = 3
2

kB
m
T = CvT h = 5

2

kB
m
T = CpT Cv =

3
2
R Cp =

5
2
R

but note that these formulae are specific to the simplistic ideal gases described
by the model, (like noble gases.) For ideal gases with more complex molecules,
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like air, the specific heats are not constants, but vary with temperature, as
discussed in section 11.15.

The ideal gas equation is identical to the one derived in classical physics.
That is important since it establishes that what was defined to be the temper-
ature in this chapter is in fact the ideal gas temperature that classical physics
defines.

The integral (11.43) can be done using integration by parts and a result
found in the notations under “!”. It gives an expression for the single-particle
chemical potential µ:

− µ

kBT
= 3

2
ln

[
kBT

/
4πn−2/3s

~
2

2m

(
I

V

)2/3
]

Note that the argument of the logarithm is essentially the ratio between the
classical microscopic energy and the quantum microscopic energy based on av-
erage particle spacing. This ratio has to be big for an accurate ideal gas, to get
the exponential in the particle energy distribution ι to be big.

Next is the specific entropy s. Recall that the chemical potential is just
the Gibbs free energy. By the definition of the Gibbs free energy, the specific
entropy s equals (h − g)/T . Now the specific Gibbs energy is just the Gibbs
energy per unit mass, in other words, µ/m while h/T = Cp as above. So

s = Cv ln

[
kBT

/
4πn−2/3s

~
2

2m

(
I

V

)2/3
]
+ Cp (11.53)

In terms of classical thermodynamics, V /I is m times the specific volume v.
So classical thermodynamics takes the logarithm above apart as

s = Cv ln(T ) +R ln(v) + some combined constant

and then promptly forgets about the constant, damn units.

11.14.5 Blackbody radiation

This section takes a closer look at blackbody radiation, discussed earlier in
chapter 6.8. Blackbody radiation is the basic model for absorption and emission
of electromagnetic radiation. Electromagnetic radiation includes light and a
wide range of other radiation, like radio waves, microwaves, and X-rays. All
surfaces absorb and emit radiation; otherwise we would not see anything. But
“black” surfaces are the most easy to understand theoretically.

No, a black body need not look black. If its temperature is high enough, it
could look like the sun. What defines an ideal black body is that it absorbs,
(internalizes instead of reflects,) all radiation that hits it. But it may be emitting
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its own radiation at the same time. And that makes a difference. If the black
body is cool, you will need your infrared camera to see it; it would look really
black to the eye. It is not reflecting any radiation, and it is not emitting any
visible amount either. But if it is at the temperature of the sun, better take out
your sunglasses. It is still absorbing all radiation that hits it, but it is emitting
large amounts of its own too, and lots of it in the visible range.

So where do you get a nearly perfectly black surface? Matte black paint? A
piece of blackboard? Soot? Actually, pretty much all materials will reflect in
some range of wave lengths. You get the blackest surface by using no material
at all. Take a big box and paint its interior the blackest you can. Close the box,
then drill a very tiny hole in its side. From the outside, the area of the hole will
be truly, absolutely black. Whatever radiation enters there is gone. Still, when
you heat the box to very high temperatures, the hole will shine bright.

While any radiation entering the hole will most surely be absorbed some-
where inside, the inside of the box itself is filled with electromagnetic radiation,
like a gas of photons, produced by the hot inside surface of the box. And some
of those photons will manage to escape through the hole, making it shine.

The amount of photons in the box may be computed from the Bose-Einstein
distribution with a few caveats. The first is that there is no limit on the number
of photons; photons will be created or absorbed by the box surface to achieve
thermal equilibrium at whatever level is most probable at the given temperature.
This means the chemical potential µ of the photons is zero, as you can check
from the derivations in notes {D.57} and {D.58}.

The second caveat is that the usual density of states (6.6) is nonrelativistic.
It does not apply to photons, which move at the speed of light. For photons
you must use the density of modes (6.7).

The third caveat is that there are only two independent spin states for a
photon. As a spin-one particle you would expect that photons would have the
spin values 0 and ±1, but the zero value does not occur in the direction of
propagation, addendum {A.21.6}. Therefore the number of independent states
that exist is two, not three. A different way to understand this is classical:
the electric field can only oscillate in the two independent directions normal to
the direction of propagation, (13.10); oscillation in the direction of propagation
itself is not allowed by Maxwell’s laws because it would make the divergence of
the electric field nonzero. The fact that there are only two independent states
has already been accounted for in the density of modes (6.7).

The energy per unit box volume and unit frequency range found under the
above caveats is Planck’s blackbody spectrum already given in chapter 6.8:

ρ(ω) ≡ d(E/V )

dω
=

~

π2c3
ω3

e~ω/kBT − 1
(11.54)

The expression for the total internal energy per unit volume is called the
“Stefan-Boltzmann formula.” It is found by integration of Planck’s spectrum
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over all frequencies just like for the Stefan-Boltzmann law in chapter 6.8:

E

V
=

π2

15~3c3
(kBT )

4 (11.55)

The number of particles may be found similar to the energy, by dropping
the ~ω energy per particle from the integral. It is, [41, 36.24, with typo]:

I

V
=

2ζ(3)

π2~3c3
(kBT )

3 ζ(3) ≈ 1.202 (11.56)

Taking the ratio with (11.55), the average energy per photon may be found:

E

I
=

π4

30ζ(3)
kBT ≈ 2.7kBT (11.57)

The temperature has to be roughly 9 000 K for the average photon to become
visible light. That is one reason a black body will look black at a room temper-
ature of about 300 K. The solar surface has a temperature of about 6 000 K, so
the visible light photons it emits are more energetic than average, but there are
still plenty of them.

The entropy S of the photon gas follows from integrating
∫
dE/T using

(11.55), starting from absolute zero and keeping the volume constant:

S

V
=

4π2

45~3c3
kB(kBT )

3 (11.58)

Dividing by (11.56) shows the average entropy per photon to be

S

I
=

2π4

45ζ(3)
kB (11.59)

independent of temperature.
The generalized ideal gas law (11.51) does not apply to the pressure exerted

by the photon gas, because the energy of the photons is ~ck and that is pro-
portional to the wave number instead of its square. The corrected expression
is:

PV = 1
3
E (11.60)

11.14.6 The Debye model

To explain the heat capacity of simple solids, Debye modeled the energy in the
crystal vibrations very much the same way as the photon gas of the previous
subsection. This subsection briefly outlines the main ideas.
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For electromagnetic waves propagating with the speed of light c, substitute
acoustical waves propagating with the speed of sound cs. For photons with
energy ~ω, substitute phonons with energy ~ω. Since unlike electromagnetic
waves, sound waves can vibrate in the direction of wave propagation, for the
number of spin states substitute ns = 3 instead of 2; in other words, just multiply
the various expressions for photons by 1.5.

The critical difference for solids is that the number of modes, hence the
frequencies, is not infinitely large. Since each individual atom has three degrees
of freedom (it can move in three individual directions), there are 3I degrees
of freedom, and reformulating the motion in terms of acoustic waves does not
change the number of degrees of freedom. The shortest wave lengths will be
comparable to the atom spacing, and no waves of shorter wave length will exist.
As a result, there will be a highest frequency ωmax. The “Debye temperature” TD
is defined as the temperature at which the typical classical microscopic energy
kBT becomes equal to the maximum quantum microscopic energy ~ωmax

kBTD = ~ωmax (11.61)

The expression for the internal energy becomes, from (6.11) times 1.5:

E

V
=

∫ ωmax

0

3~

2π2c3s

ω3

e~ω/kBT − 1
dω (11.62)

If the temperatures are very low the exponential will make the integrand zero
except for very small frequencies. Then the upper limit is essentially infinite
compared to the range of integration. That makes the energy proportional to
T 4 just like for the photon gas and the heat capacity is therefore proportional to
T 3. At the other extreme, when the temperature is large, the exponential in the
bottom can be expanded in a Taylor series and the energy becomes proportional
to T , making the heat capacity constant.

The maximum frequency, hence the Debye temperature, can be found from
the requirement that the number of modes is 3I, to be applied by integrat-
ing (6.7), or an empirical value can be used to improve the approximation for
whatever temperature range is of interest. Literature values are often chosen to
approximate the low temperature range accurately, since the model works best
for low temperatures. If integration of (6.7) is used at high temperatures, the
law of Dulong and Petit results, as described in section 11.15.

More sophisticated versions of the analysis exist to account for some of the
very nontrivial differences between crystal vibrations and electromagnetic waves.
They will need to be left to literature.
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11.15 Specific Heats

The specific heat of a substance describes its absorption of heat in terms of its
temperature change. In particular, the specific heat at constant volume, Cv, of
a substance is the thermal energy that gets stored internally in the substance
per unit temperature rise and per unit amount of substance.

As a first example, consider simple monatomic ideal gases, and in particular
noble gases. Basic physics, or section 11.14.4, shows that for an ideal gas,
the molecules have 1

2
kBT of translational kinetic energy in each of the three

directions of a Cartesian coordinate system, where kB = 1.38 10−23 J/K is
Boltzmann’s constant. So the specific heat per molecule is 3

2
kB or 1.5kB. For a

kmol (i.e. 6.02 1026) of molecules instead of one, kB becomes the “universal gas
constant” Ru = 8.31 kJ/kmol K. Hence for a

monatomic ideal gas: C̄v = 1.5Ru ≈ 12.5 kJ/kmol K (11.63)

on a kmol basis. As figure 11.15 shows, this is very accurate for noble gases,
including helium. (To get the more usual specific heat Cv per kilogram instead
of kmol, divide by the molar massM . For example, for helium with two protons
and two neutrons in its nucleus, the molar mass is about 4 kg/kmol, so divide
by 4. In thermo books, you will probably find the molar mass values you need
mislisted as “molecular mass,” without units. Just use the values and ignore
the name and the missing units of kg/kmol. See the notations for more.)

Many important ideal gases, such as hydrogen, as well as the oxygen and
nitrogen that make up air, are diatomic. Now if we assume that the two atoms
are point-size masses somehow rigidly connected to each other, we still have
that the center of the entire molecule can move in three different directions,
accounting for 3

2
kB of kinetic translational energy. But at any given time, the

molecule can also be conducting rotational motion around its center in two
independent directions, both orthogonal to the connecting line between the
atoms. (For point masses, rotation around the connecting axis would not do
anything.) Classical physics, in particular the “equipartition theorem,” would
then predict that each of the two rotational motions has 1

2
kB of kinetic energy

too, raising the total specific heat to 5
2
kB or 2.5kB. Well, figure 11.15 shows that

at room temperature, about 300 K, this is quite accurate for common diatomic
gases like the nitrogen and oxygen in air.

But note that these experimental data show that there are problems, both at
very low temperatures, and at very high ones. And there are major theoretical
problems too. Surely the connection between the atoms is not going to be
infinitely rigid. Allowing for that, we now have two individual atoms that can
each move in three different directions independently of each other. That raises
the kinetic energy to 6

2
kB. And assuming that the connecting force varies linearly

with elongation, there would be another 1
2
kB of potential energy, making the
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total energy 7
2
kB. But figure 11.15 shows that the common diatomic gasses only

approach values like that well above room temperature.

It was all a big problem for classical physics. Not to mention that, as Maxwell
noted, if you really take classical theory at face value, things get far, far, worse
still, since the individual internal parts of the atoms, like the individual electrons
and quarks in the nuclei, would each have to absorb their own thermal energy
too. This should produce enormously high specific heats.

3.5 Ru

2.5 Ru

1.5 Ru

0 300 K T (absolute)

F2

Cl2

Br2

H2

N2

O2

He, Ne, Ar, Kr, . . .

Figure 11.15: Specific heat at constant volume of gases. Temperatures from
absolute zero to 1,200 K. Data from NIST-JANAF and AIP.

Hydrogen in particular was a mystery before the advent of quantum mechan-
ics: at low temperatures it would behave as a monatomic gas, with a specific
heat of 3

2
kB per molecule, figure 11.15. That meant that the molecule had to be

translating only, like a monatomic gas. How could the random thermal motion
not cause any angular rotation of the two atoms around their mutual center of
gravity, nor vibration of the atoms towards and away from each other?

Quantum mechanics solved this problem. In quantum mechanics the angu-
lar momentum of the molecule, and so the corresponding kinetic energy, as well
as the harmonic oscillation energy, are quantized. For hydrogen at low temper-
atures, the typical available thermal energy 1

2
kBT is not enough to reach even

the first level above the ground state for either energy. No thermal energy can
therefore be put into rotation of the molecule, nor into internal vibration. So
hydrogen does indeed have the specific heat of monatomic gases at low tem-
peratures, weird as it may seem. The rotational and vibrational motions are
“frozen out.”

At normal temperatures, there is enough thermal energy to reach the states
where the molecule rotates normal to the line connecting the atoms, and the
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specific heat becomes

typical diatomic ideal gas: C̄v = 2.5Ru ≈ 20.8 kJ/kmol K. (11.64)

Actual values for hydrogen, nitrogen and oxygen at room temperature are 2.47,
2.50, and 2.53 Ru.

For high enough temperature, the vibrational modes will start becoming
active, and the specific heats will start inching up towards 3.5 Ru (and be-
yond), figure 11.15. But it takes to temperatures of 1 000 K (hydrogen), 600 K
(nitrogen), or 400 K (oxygen) before there is a 5% deviation from the 2.5 Ru

value.
These differences may be understood qualitatively if the motion is modeled

as a simple harmonic oscillator as discussed in chapter 4.1. The energy levels
of an harmonic oscillator are apart by an amount ~ω, where ω is the angular
frequency. And the frequency of a harmonic oscillator ω =

√
c/m, where c

is the effective stiffness and m the effective mass of the vibrational motion.
So light atoms that are bound together tightly will require a lot of thermal
energy to reach the first nontrivial vibrational state. Hydrogen is much lighter
than nitrogen or oxygen, so the required energy ~ω should be quite large. This
explains the high temperature before vibration become important for hydrogen.
The molar masses of nitrogen and oxygen are similar, but nitrogen is bound
with a triple bond, and oxygen only a double one. So nitrogen has the higher
effective stiffness of the two and vibrates less readily.

Following this reasoning, you would expect fluorine, which is held together
with only a single covalent bond, to have a higher specific heat still, and figure
11.15 confirms it. And chlorine and bromine, also held together by a single
covalent bond, but heavier than fluorine, approach the classical value 3.5 Ru

fairly closely at normal temperatures: Cl2 has 3.08 Ru and Br2 3.34 Ru.
For solids, the basic classical idea in terms of atomic motion would be that

there would be 3
2
Ru per atom in kinetic energy and 3

2
Ru in potential energy:

law of Dulong and Petit: C̄v = 3Ru ≈ 25 kJ/kmol K. (11.65)

Not only is 3 a nice round number, it actually works well for a lot of relatively
simple solids at room temperature. For example, aluminum is 2.91 Ru, copper
2.94, gold 3.05, iron 3.02.

Note that typically for solids C̄p, the heat added per unit temperature change
at constant pressure is given instead of C̄v. However, unlike for gases, the
difference between C̄p and C̄v is small for solids and most liquids and will be
ignored here.

Dulong and Petit also works for liquid water if you take it per kmol of
atoms, rather than kmol of molecules, but not for ice. Ice has 4.6 Ru per kmol
of molecules and 1.5 Ru per kmol of atoms. For molecules, certainly there is
an obvious problem in deciding how many pieces you need to count as indepen-
dently moving units. A value of 900 Ru for paraffin wax (per molecule) found at
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Wikipedia may sound astonishing, until you find elsewhere at Wikipedia that
its chemical formula is C25H52. It is still quite capable of storing a lot of heat
per unit weight too, in any case, but nowhere close to hydrogen. Putting 5

2
kBT

in a molecule with the tiny molecular mass of just about two protons is the real
way to get a high heat content per unit mass.

Complex molecules may be an understandable problem for the law of Dulong
and Petit, but how come that diamond has about 0.73 Ru, and graphite 1.02
Ru, instead of 3 as it should? No molecules are involved there. The values of
boron at 1.33 Ru and beryllium at 1.98 Ru are much too low too, though not
as bad as diamond or graphite.

3 Ru

0 300 K T (absolute)

Li
Be

Fe
Cu
Au
B
Al

C
Si
Pb

H2O

Figure 11.16: Specific heat at constant pressure of solids. Temperatures from
absolute zero to 1,200 K. Carbon is diamond; graphite is similar. Water is ice
and liquid. Data from NIST-JANAF, CRC, AIP, Rohsenow et al.

Actually, it turns out, figure 11.16, that at much higher temperatures di-
amond does agree nicely with the Dulong and Petit value. Conversely, if the
elements that agree well with Dulong and Petit at room temperature are cooled
to low temperatures, they too have a specific heat that is much lower than the
Dulong and Petit value. For example, at 77 K, aluminum has 1.09 Ru, copper
1.5, and diamond 0.01.

It turns out that for all of them a characteristic temperature can by found
above which the specific heat is about the Dulong and Petit value, but below
which the specific heat starts dropping precariously. This characteristic temper-
ature is called the Debye temperature. For example, aluminum, copper, gold,
and iron have Debye temperatures of 394, 315, 170, and 460 K, all near or below
room temperature, and their room temperature specific heats agree reasonably
with the Dulong and Petit value. Conversely, diamond, boron, and beryllium
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have Debye temperatures of 1 860, 1 250, and 1 000 K, and their specific heats
are much too low at room temperature.

The lack of heat capacity below the Debye temperature is again a matter of
“frozen out” vibrational modes, like the freezing out of the vibrational modes
that gave common diatomic ideal gases a heat capacity of only 5

2
Ru instead of

7
2
Ru. Note for example that carbon, boron and beryllium are light atoms, and

that the diamond structure is particularly stiff, just the properties that froze
out the vibrational modes in diatomic gas molecules too. However, the actual
description is more complex than for a gas: if all vibrations were frozen out in
a solid, there would be nothing left.

Atoms in a solid cannot be considered independent harmonic oscillators like
the pairs of atoms in diatomic molecules. If an atom in a solid moves, its neigh-
bors are affected. The proper way to describe the motion of the atoms is in terms
of crystal-wide vibrations, such as those that in normal continuum mechanics
describe acoustical waves. There are three variants of such waves, correspond-
ing to the three independent directions the motion of the atoms can take with
respect to the propagation direction of the wave. The atoms can move in the
same direction, like in the acoustics of air in a pipe, or in a direction normal
to it, like surface waves in water. Those are called longitudinal and transverse
waves respectively. If there is more than one atom in the basis from which the
solid crystal is formed, the atoms in a basis can also vibrate relative to each
other’s position in high-frequency vibrations called optical modes. However,
after such details are accounted for, the classical internal energy of a solid is
still the Dulong and Petit value.

Enter quantummechanics. Just like quantummechanics says that the energy
of vibrating electromagnetic fields of frequency ω comes in discrete units called
photons, with energy ~ω, it says that the energy of crystal vibrations comes in
discrete units called “phonons” with energy ~ω. As long as the typical amount
of heat energy, kBT , is larger than the largest of such phonon energies, the fact
that the energy levels are discrete make no real difference, and classical analysis
works fine. But for lower temperatures, there is not enough energy to create
the high-energy phonons and the specific heat will be less. The representative
temperature TD at which the heat energy kBTD becomes equal to the highest
phonon energies ~ω is the Debye temperature. (The Debye analysis is not
exact except for low energies, and the definitions of Debye temperature vary
somewhat. See section 11.14.6 for more details.)

Quantum mechanics did not just solve the low temperature problems for
heat capacity; it also solved the electron problem. That problem was that
classically electrons in at least metals too should have 3

2
kBT of kinetic energy,

since electrical conduction meant that they moved independently of the atoms.
But observations showed it was simply not there. The quantum mechanical
explanation was the Fermi-Dirac distribution of figure 6.11: only a small fraction
of the electrons have free energy states above them within a distance of order
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kBT , and only these can take on heat energy. Since so few electrons are involved,
the amount of energy they absorb is negligible except at very low temperatures.
At very low temperatures, the energy in the phonons becomes very small, and
the conduction electrons in metals then do make a difference.

Also, when the heat capacity due to the atom vibrations levels off to the Du-
long and Petit value, that of the valence electrons keeps growing. Furthermore,
at higher temperatures the increased vibrations lead to increased deviations in
potential from the harmonic oscillator relationship. Wikipedia, Debye model,
says anharmonicity causes the heat capacity to rise further; apparently authori-
tative other sources say that it can either increase or decrease the heat capacity.
In any case, typical solids do show an increase of the heat capacity above the
Dulong and Petit value at higher temperatures, figure 11.16.



Chapter 12

Angular momentum

The quantum mechanics of angular momentum is fascinating. It is also very
basic to much of quantum mechanics. It is a model for dealing with other
systems of particles

In chapter 5.4, it was already mentioned that angular momentum of particles
comes in two basic kinds. Orbital angular momentum is a result of the angular
motion of particles, while spin is “built-in” angular momentum of the particles.

Orbital angular momentum is usually indicated by ~̂L and spin angular mo-

mentum by ~̂S. A system of particles will normally involve both orbital and spin
angular momentum. The combined angular momentum is typically indicated
by

~̂J = ~̂L+ ~̂S

However, this chapter will use ~̂J as a generic name for any angular momen-

tum. So in this chapter ~̂J can indicate orbital angular momentum, spin angular
momentum, or any combination of the two.

12.1 Introduction

The standard eigenfunctions of orbital angular momentum are the so called
“spherical harmonics” of chapter 4.2. They show that the square orbital angular
momentum has the possible values

L2 ≡ L2
x + L2

y + L2
z = l(l + 1)~2 where l is one of 0, 1, 2, 3, . . .

The nonnegative integer l is called the azimuthal quantum number.
Further, the orbital angular momentum in any arbitrarily chosen direction,

taken as the z-direction from now on, comes in multiples m of Planck’s constant
~:

Lz = ml~ where ml is one of −l, −l+1, −l+2, . . . , l−1, l.

579
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The integer ml is called the magnetic quantum number.
The possible values of the square spin angular momentum can be written as

S2 ≡ S2
x + S2

y + S2
z = s(s+ 1)~2 where s is one of 0, 1/2, 1,

3/2, . . .

The “spin azimuthal quantum number” s is usually called the “spin” for short.
Note that while the orbital azimuthal quantum number l had to be an integer,
the spin can be half integer. But one important conclusion of this chapter will
be that the spin cannot be anything more. A particle with, say, spin 1

3
cannot

not exist according to the theory.
For the spin angular momentum in the z-direction

Sz = ms~ where ms is one of −s, −s+1, −s+2, . . . , s−1, s.

Note that if the spin s is half integer, then so are all the spin magnetic quan-
tum numbers ms. If the nature of the angular momentum is self-evident, the
subscript l or s of the magnetic quantum numbers m will be omitted.

Particles with half-integer spin are called fermions. That includes electrons,
as well as protons and neutrons and their constituent quarks. All of these
critically important particles have spin 1/2. (Excited proton and neutron states
can have spin 3/2.) Particles with integer spin are bosons. That includes the
particles that act as carriers of fundamental forces; the photons, intermediate
vector bosons, gluons, and gravitons. All of these have spin 1, except the
graviton which supposedly has spin 2.

12.2 The fundamental commutation relations

Analyzing nonorbital angular momentum is a challenge. How can you say any-
thing sensible about angular momentum, the dynamic motion of masses around
a given point, without a mass moving around a point? For, while a particle like
an electron has spin angular momentum, trying to explain it as angular motion
of the electron about some internal axis leads to gross contradictions such as
the electron exceeding the speed of light [25, p. 172]. Spin is definitely part
of the law of conservation of angular momentum, but it does not seem to be
associated with any familiar idea of some mass moving around some axis as far
as is known.

There goes the Newtonian analogy, then. Something else than classical
physics is needed to analyze spin.

Now, the complex discoveries of mathematics are routinely deduced from
apparently self-evident simple axioms, such as that a straight line will cross
each of a pair of parallel lines under the same angle. Actually, such axioms are
not as obvious as they seem, and mathematicians have deduced very different
answers from changing the axioms into different ones. Such answers may be just
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as good or better than others depending on circumstances, and you can invent
imaginary universes in which they are the norm.

Physics has no such latitude to invent its own universes; its mission is to
describe ours as well as it can. But the idea of mathematics is still a good one:
try to guess the simplest possible basic “law” that nature really seems to obey,
and then reconstruct as much of the complexity of nature from it as you can.
The more you can deduce from the law, the more ways you have to check it
against a variety of facts, and the more confident you can become in it.

Physicist have found that the needed equations for angular momentum are
given by the following “fundamental commutation relations:”

[Ĵx, Ĵy] = i~Ĵz [Ĵy, Ĵz] = i~Ĵx [Ĵz, Ĵx] = i~Ĵy (12.1)

They can be derived for orbital angular momentum (see chapter 4.5.4), but
must be postulated to also apply to spin angular momentum {N.26}.

At first glance, these commutation relations do not look like a promising
starting point for much analysis. All they say on their face is that the angular
momentum operators Ĵx, Ĵy, and Ĵz do not commute, so that they cannot have
a full set of eigenstates in common. That is hardly impressive.

But if you read the following sections, you will be astonished by what knowl-
edge can be teased out of them. For starters, one thing that immediately follows
is that the only eigenstates that Ĵx, Ĵy, and Ĵz have in common are states |0 0〉
of no angular momentum at all {D.63}. No other common eigenstates exist.

One assumption will be implicit in the use of the fundamental commutation
relations, namely that they can be taken at face value. It is certainly possible
to imagine that say Ĵx would turn an eigenfunction of say Ĵz into some singular
object for which angular momentum would be ill-defined. That would of course
make application of the fundamental commutation relations improper. It will
be assumed that the operators are free of such pathological nastiness.

12.3 Ladders

This section starts the quest to figure out everything that the fundamental
commutation relations mean for angular momentum. It will first be verified
that any angular momentum can always be described using |j m〉 eigenstates
with definite values of square angular momentum J2 and z angular momentum
Jz. Then it will be found that these angular momentum states occur in groups
called “ladders”.

To start with the first one, the mathematical condition for a complete set of
eigenstates |j m〉 to exist is that the angular momentum operators Ĵ2 and Ĵz
commute. They do; using the commutator manipulations of chapter 4.5.4), it
is easily found that:

[Ĵ2, Ĵx] = [Ĵ2, Ĵy] = [Ĵ2, Ĵz] = 0 where Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z
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So mathematics says that eigenstates |j m〉 of Ĵz and Ĵ2 exist satisfying

Ĵz|j m〉 = Jz|j m〉 where by definition Jz = m~ (12.2)

Ĵ2|j m〉 = J2|j m〉 where by definition J2 = j(j + 1)~2 and j > 0(12.3)

and that are complete in the sense that any state can be described in terms of
these |j m〉.

Unfortunately the eigenstates |j m〉, except for |0 0〉 states, do not satisfy

relations like (12.2) for Ĵx or Ĵy. The problem is that Ĵx and Ĵy do not commute

with Ĵz. But Ĵx and Ĵy do commute with Ĵ2, and you might wonder if that is

still worth something. To find out, multiply, say, the zero commutator [Ĵ2, Ĵx]
by |j m〉:

[Ĵ2, Ĵx]|j m〉 = (Ĵ2Ĵx − ĴxĴ2)|j m〉 = 0

Now take the second term to the right hand side of the equation, noting that
Ĵ2|j m〉 = J2|j m〉 with J2 just a number that can be moved up-front, to get:

Ĵ2
(
Ĵx|j m〉

)
= J2

(
Ĵx|j m〉

)

Looking a bit closer at this equation, it shows that the combination Ĵx|j m〉
satisfies the same eigenvalue problem for Ĵ2 as |j m〉 itself. In other words, the

multiplication by Ĵx does not affect the square angular momentum J2 at all.
To be picky, that is not quite true if Ĵx|j m〉 would be zero, because zero is

not an eigenstate of anything. However, such a thing only happens if there is no
angular momentum; (it would make |j m〉 an eigenstate of Ĵx with eigenvalue

zero in addition to an eigenstate of Ĵz {D.63}). Except for that trivial case,

Ĵx does not affect square angular momentum. And neither does Ĵy or any
combination of the two.

Angular momentum in the z-direction is affected by Ĵx and by Ĵy, since they

do not commute with Ĵz like they do with Ĵ2. Nor is it possible to find any
linear combination of Ĵx and Ĵy that does commute with Ĵz. What is the next
best thing? Well, it is possible to find two combinations, to wit

Ĵ+ ≡ Ĵx + iĴy and Ĵ− ≡ Ĵx − iĴy, (12.4)

that satisfy the “commutator eigenvalue problems”:

[Ĵz, Ĵ
+] = ~Ĵ+ and [Ĵz, Ĵ

−] = −~Ĵ−.

These two turn out to be quite remarkable operators.
Like Ĵx and Ĵy, their combinations Ĵ+ and Ĵ− leave J2 alone. To exam-

ine what the operator Ĵ+ does with the linear momentum in the z-direction,
multiply its commutator relation above by an eigenstate |j m〉:

(ĴzĴ
+ − Ĵ+Ĵz)|j m〉 = ~Ĵ+|j m〉
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Or, taking the second term to the right hand side of the equation and noting
that by definition Ĵz|j m〉 = m~|j m〉,

Ĵz

(
Ĵ+|j m〉

)
= (m+ 1)~

(
Ĵ+|j m〉

)

That is a stunning result, as it shows that Ĵ+|j m〉 is an eigenstate with z

angular momentum Jz = (m + 1)~ instead of m~. In other words, Ĵ+ adds
exactly one unit ~ to the z angular momentum, turning an |j m〉 state into a
|j m+1〉 one!

✻
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Ĵ−

Ĵ−
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Figure 12.1: Example bosonic ladders.

If you apply Ĵ+ another time, you get a state of still higher z angular mo-
mentum |j m+2〉, and so on, like the rungs on a ladder. This is graphically
illustrated for some examples in figures 12.1 and 12.2. The process eventually
comes to an halt at some top rung m = mmax where Ĵ+|j mmax〉 = 0. It has
to, because the angular momentum in the z-direction cannot just keep growing
forever: the square angular momentum in the z-direction only must stay less
than the total square angular momentum in all three directions {N.27}.

The second “ladder operator” Ĵ− works in much the same way, but it goes
down the ladder; its deducts one unit ~ from the angular momentum in the z-
direction at each application. Ĵ− provides the second stile to the ladders, and
must terminate at some bottom rung mmin.
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Figure 12.2: Example fermionic ladders.

12.4 Possible values of angular momentum

The fact that the angular momentum ladders of the previous section must have
a top and a bottom rung restricts the possible values that angular momentum
can take. This section will show that the azimuthal quantum number j can
either be a nonnegative whole number or half of one, but nothing else. And it
will show that the magnetic quantum number m must range from −j to +j in
unit increments. In other words, the bosonic and fermionic example ladders in
figures 12.1 and 12.2 are representative of all that is possible.

To start, in order for a ladder to end at a top rung mmax, Ĵ
+|l m〉 has to be

zero for m = mmax. More specifically, its magnitude
∣∣∣Ĵ+|j m〉

∣∣∣ must be zero.

The square magnitude is given by the inner product with itself:

∣∣∣Ĵ+|j m〉
∣∣∣
2

=
〈
Ĵ+|j m〉

∣∣∣Ĵ+|j m〉
〉
= 0.

Now because of the complex conjugate that is used in the left hand side of an
inner product, (see chapter 2.3), Ĵ+ = Ĵx + iĴy goes to the other side of the

product as Ĵ− = Ĵx − iĴy, and you must have

∣∣∣Ĵ+|j m〉
∣∣∣
2

=
〈
|j m〉

∣∣∣Ĵ−Ĵ+|j m〉
〉

That operator product can be multiplied out:

Ĵ−Ĵ+ ≡ (Ĵx − iĴy)(Ĵx + iĴy) = Ĵ2
x + Ĵ2

y + i(ĴxĴy − ĴyĴx),

but Ĵ2
x + Ĵ2

y is the square angular momentum Ĵ2 except for Ĵ2
z , and the term

within the parentheses is the commutator [Ĵx, Ĵy] which is according to the
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fundamental commutation relations equal to i~Ĵz, so

Ĵ−Ĵ+ = Ĵ2 − Ĵ2
z − ~Ĵz (12.5)

The effect of each of the operators in the left hand side on a state |j m〉 is known
and the inner product can be figured out:

∣∣∣Ĵ+|j m〉
∣∣∣
2

= j(j + 1)~2 −m2
~
2 −m~

2 (12.6)

The question where angular momentum ladders end can now be answered:

j(j + 1)~2 −m2
max~

2 −mmax~
2 = 0

There are two possible solutions to this quadratic equation for mmax, to wit
mmax = j or −mmax = j + 1. The second solution is impossible since it already
would have the square z angular momentum exceed the total square angular
momentum. So unavoidably,

mmax = j

That is one of the things this section was supposed to show.
The lowest rung on the ladder goes the same way; you get

Ĵ+Ĵ− = Ĵ2 − Ĵ2
z + ~Ĵz (12.7)

and then ∣∣∣Ĵ−|j m〉
∣∣∣
2

= j(j + 1)~2 −m2
~
2 +m~

2 (12.8)

and the only acceptable solution for the lowest rung on the ladders is

mmin = −j

It is nice and symmetric; ladders run fromm = −j up tom = j, as the examples
in figures 12.1 and 12.2 already showed.

And in fact, it is more than that; it also limits what the quantum numbers j
and m can be. For, since each step on a ladder increases the magnetic quantum
number m by one unit, you have for the total number of steps up from bottom
to top:

total number of steps = mmax −mmin = 2j

But the number of steps is a whole number, and so the azimuthal quantum j
must either be a nonnegative integer, such as 0, 1, 2, . . . , or half of one, such
as 1

2
, 3

2
, . . .

Integer j values occur, for example, for the spherical harmonics of orbital
angular momentum and for the spin of bosons like photons. Half-integer values
occur, for example, for the spin of fermions such as electrons, protons, neutrons,
and ∆ particles.
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Note that if j is a half-integer, then so are the corresponding values of m,
since m starts from −j and increases in unit steps. See again figures 12.1
and 12.2 for some examples. Also note that ladders terminate just before z-
momentum would exceed total momentum.

It may also be noted that ladders are distinct. It is not possible to go up
one ladder, like the first Y m

3 one in figure 12.1 with Ĵ+ and then come down the

second one using Ĵ−. The reason is that the states |j m〉 are eigenstates of the

operators Ĵ−Ĵ+, (12.5), and Ĵ+Ĵ−, (12.7), so going up with Ĵ+ and then down

again with Ĵ−, or vice-versa, returns to the same state. For similar reasons, if
the tops of two ladders are orthonormal, then so is the rest of their rungs.

12.5 A warning about angular momentum

Normally, eigenstates are indeterminate by a complex number of magnitude
one. If you so desire, you can multiply any normalized eigenstate by a number
of unit magnitude of your own choosing, and it is still a normalized eigenstate.
It is important to remember that in analytical expressions involving angular
momentum, you are not allowed to do this.

As an example, consider a pair of spin 1/2 particles, call them a and b,
in the “singlet state”, in which their spins cancel and there is no net angular
momentum. It was noted in chapter 5.5.6 that this state takes the form

|0 0〉ab =
|1/2 1/2〉a|1/2 1/2〉b − |1/2 1/2〉a|1/2 1/2〉b√

2

(This section will use kets rather than arrows for spin states.) But if you were
allowed to arbitrarily change the definition of say the spin state |1/2 1/2〉a by a
minus sign, then the minus sign in the singlet state above would turn in a plus
sign. The given expression for the singlet state, with its minus sign, is only
correct if you use the right normalization factors for the individual states.

It all has to do with the ladder operators Ĵ+ and Ĵ−. They are very con-
venient for analysis, but to make that easiest, you would like to know exactly
what they do to the angular momentum states |j m〉. What you have seen so

far is that Ĵ+|j m〉 produces a state with the same square angular momentum,
and with angular momentum in the z-direction equal to (m + 1)~. In other

words, Ĵ+|j m〉 is some multiple of a suitably normalized eigenstate |j m+1〉;

Ĵ+|j m〉 = C|j m+1〉

where the number C is the multiple. What is that multiple? Well, from the
magnitude of Ĵ+|j m〉, derived earlier in (12.6) you know that its square mag-
nitude is

|C|2 = j(j + 1)~2 −m2
~
2 −m~

2.
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But that still leaves C indeterminate by a factor of unit magnitude. Which
would be very inconvenient in the analysis of angular momentum.

To resolve this conundrum, restrictions are put on the normalization fac-
tors of the angular momentum states |j m〉 in ladders. It is required that the
normalization factors are chosen such that the ladder operator constants are
positive real numbers. That really leaves only one normalization factor in an
entire ladder freely selectable, say the one of the top rung.

Most of the time, this is not a big deal. Only when you start trying to
get too clever with angular momentum normalization factors, then you want to
remember that you cannot really choose them to your own liking.

The good news is that in this convention, you know precisely what the ladder
operators do {D.64}:

Ĵ+|j m〉 = ~

√
j(j + 1)−m(1 +m) |j m+1〉 (12.9)

Ĵ−|j m〉 = ~

√
j(j + 1) +m(1−m) |j m−1〉 (12.10)

12.6 Triplet and singlet states

With the ladder operators, you can determine how different angular momenta
add up to net angular momentum. As an example, this section will examine
what net spin values can be produced by two particles, each with spin 1/2. They
may be the proton and electron in a hydrogen atom, or the two electrons in the
hydrogen molecule, or whatever. The actual result will be to rederive the triplet
and singlet states described in chapter 5.5.6, but it will also be an example for
how more complex angular momentum states can be combined.

The particles involved will be denoted as a and b. Since each particle can
have two different spin states |1/2 1/2〉 and |1/2 1/2〉, there are four different com-
bined “product” states:

|1/2 1/2〉a|1/2 1/2〉b, |1/2 1/2〉a|1/2 1/2〉b, |1/2 1/2〉a|1/2 1/2〉b, and |1/2 1/2〉a|1/2 1/2〉b.

In these product states, each particle is in a single individual spin state. The
question is, what is the combined angular momentum of these four product
states? And what combination states have definite net values for square and z
angular momentum?

The angular momentum in the z-direction is simple; it is just the sum of those
of the individual particles. For example, the z-momentum of the |1/2 1/2〉a|1/2 1/2〉b
state follows from

(
Ĵza + Ĵzb

)
|1/2 1/2〉a|1/2 1/2〉b = 1/2~|1/2 1/2〉a|1/2 1/2〉b + |1/2 1/2〉a1/2~|1/2 1/2〉b

= h|1/2 1/2〉a|1/2 1/2〉b



588 CHAPTER 12. ANGULAR MOMENTUM

which makes the net angular momentum in the z-direction ~, or 1/2~ from each
particle. Note that the z angular momentum operators of the two particles
simply add up and that Ĵza only acts on particle a, and Ĵzb only on particle b
{N.28}. In terms of quantum numbers, the magnetic quantum number mab is
the sum of the individual quantum numbers ma and mb; mab = ma +mb = 1.

The net total angular momentum is not so obvious; you cannot just add total
angular momenta. To figure out the total angular momentum of |1/2 1/2〉a|1/2 1/2〉b
anyway, there is a trick: multiply it with the combined step-up operator

Ĵ+
ab = Ĵ+

a + Ĵ+
b

Each part returns zero: Ĵ+
a because particle a is at the top of its ladder and Ĵ+

b

because particle b is. So the combined state |1/2 1/2〉a|1/2 1/2〉b must be at the top
of the ladder too; there is no higher rung. That must mean jab = mab = 1; the
combined state must be a |1 1〉 state. It can be defined it as the combination
|1 1〉 state:

|1 1〉ab ≡ |1/2 1/2〉a|1/2 1/2〉b (12.11)

You could just as well have defined |1 1〉ab as −|1/2 1/2〉a|1/2 1/2〉b or i|1/2 1/2〉a|1/2 1/2〉b,
say. But why drag along a minus sign or i if you do not have to? The first triplet
state has been found.

Here is another trick: multiply |1 1〉ab = |1/2 1/2〉a|1/2 1/2〉b by Ĵ−ab: that will
go one step down the combined states ladder and produce a combination state
|1 0〉ab:

Ĵ−ab|1 1〉ab = ~

√
1(1 + 1) + 1(1− 1)|1 0〉ab

= Ĵ−a |1/2 1/2〉a|1/2 1/2〉b + Ĵ−b |1/2 1/2〉a|1/2 1/2〉b
or

~
√
2|1 0〉ab = ~|1/2 1/2〉a|1/2 1/2〉b + ~|1/2 1/2〉a|1/2 1/2〉b

where the effects of the ladder-down operators were taken from (12.10). (Note
that this requires that the individual particle spin states are normalized consis-
tent with the ladder operators.) The second triplet state is therefore:

|1 0〉ab ≡
√

1/2 |1/2 1/2〉a|1/2 1/2〉b +
√

1/2 |1/2 1/2〉a|1/2 1/2〉b (12.12)

But this gives only one |j m〉 combination state for the two product states
|1/2 1/2〉a|1/2 1/2〉b and |1/2 1/2〉a|1/2 1/2〉b with zero net z-momentum. If you want to
describe unequal combinations of them, like |1/2 1/2〉a|1/2 1/2〉b by itself, it cannot
be just a multiple of |1 0〉ab. This suggests that there may be another |j 0〉ab
combination state involved here. How do you get this second state?

Well, you can reuse the first trick. If you construct a combination of the
two product states that steps up to zero, it must be a state with zero z an-
gular momentum that is at the end of its ladder, a |0 0〉ab state. Consider an
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arbitrary combination of the two product states with as yet unknown numerical
coefficients C1 and C2:

C1|1/2 1/2〉a|1/2 1/2〉b + C2|1/2 1/2〉a|1/2 1/2〉b

For this combination to step up to zero,

(
Ĵ+
a + Ĵ+

b

)(
C1|1/2 1/2〉a|1/2 1/2〉b + C2|1/2 1/2〉a|1/2 1/2〉b

)

= ~C1|1/2 1/2〉a|1/2 1/2〉b + ~C2|1/2 1/2〉a|1/2 1/2〉b
must be zero, which requires C2 = −C1, leaving C1 undetermined. C1 must
be chosen such that the state is normalized, but that still leaves a constant of
magnitude one undetermined. To fix it, C1 is taken to be real and positive, and
so the singlet state becomes

|0 0〉ab =
√

1/2 |1/2 1/2〉a|1/2 1/2〉b −
√

1/2 |1/2 1/2〉a|1/2 1/2〉b. (12.13)

To find the remaining triplet state, just apply Ĵ−ab once more, to |1 0〉ab above.
It gives:

|1 1〉ab = |1/2 1/2〉a|1/2 1/2〉b (12.14)

Of course, the normalization factor of this bottom state had to turn out to be
one; all three step-down operators produce only positive real factors.
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Figure 12.3: Triplet and singlet states in terms of ladders

Figure 12.3 shows the results graphically in terms of ladders. The two pos-
sible spin states of each of the two electrons produce 4 combined product states
indicated using up and down arrows. These product states are then combined
to produce triplet and singlet states that have definite values for both z and
total net angular momentum, and can be shown as rungs on ladders.
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Note that a product state like |1/2 1/2〉a|1/2 1/2〉b cannot be shown as a rung
on a ladder. In fact, from adding (12.12) and (12.13) it is seen that

|1/2 1/2〉a|1/2 1/2〉b =
√

1/2 |1 0〉ab +
√

1/2 |0 0〉ab
which makes it a combination of the middle rungs of the triplet and singlet
ladders, rather than a single rung.

12.7 Clebsch-Gordan coefficients

In classical physics, combining angular momentum from different sources is
easy; the net components in the x, y, and z directions are simply the sum of the
individual components. In quantum mechanics, things are trickier, because if
the component in the z-direction exists, those in the x and y directions do not.
But the previous subsection showed how to the spin angular momenta of two spin
1/2 particles could be combined. In similar ways, the angular momentum states
of any two ladders, whatever their origin, can be combined into net angular
momentum ladders. And then those ladders can in turn be combined with still
other ladders, allowing net angular momentum states to be found for systems
of arbitrary complexity.

The key is to be able to combine the angular momentum ladders from two
different sources into net angular momentum ladders. To do so, the net angular
momentum can in principle be described in terms of product states in which
each source is on a single rung of its ladder. But as the example of the last
section illustrated, such product states give incomplete information about the
net angular momentum; they do not tell you what square net angular momen-
tum is. You need to know what combinations of product states produce rungs
on the ladders of the net angular momentum, like the ones illustrated in figure
12.3. In particular, you need to know the coefficients that multiply the product
states in those combinations.

|1
1〉
a
b

1 |1/2 1/2〉a|1/2 1/2〉b

|0
0〉
a
b

√
1/2 |1/2 1/2〉a|1/2 1/2〉b

√
1/2 |1/2 1/2〉a|1/2 1/2〉b

|1
0〉
a
b

√
1/2

√
1/2

|1
1〉
a
b

1 |1/2 1/2〉a|1/2 1/2〉b

Figure 12.4: Clebsch-Gordan coefficients of two spin one half particles.

These coefficients are called “Clebsch-Gordan” coefficients. The ones corre-
sponding to figure 12.3 are tabulated in Figure 12.4. Note that there are really
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three tables of numbers; one for each rung level. The top, single number, “ta-
ble” says that the |1 1〉 net momentum state is found in terms of product states
as:

|1 1〉ab = 1× |1/2 1/2〉a|1/2 1/2〉b
The second table gives the states with zero net angular momentum in the z-
direction. For example, the first column of the table says that the |0 0〉 singlet
state is found as:

|0 0〉ab =
√

1/2 |1/2 1/2〉a|1/2 1/2〉b −
√

1/2 |1/2 1/2〉a|1/2 1/2〉b
Similarly the second column gives the middle rung |1 0〉 on the triplet ladder.
The bottom “table” gives the bottom rung of the triplet ladder.

You can also read the tables horizontally {N.29}. For example, the first row
of the middle table says that the |1/2 1/2〉a|1/2 1/2〉b product state equals

|1/2 1/2〉a|1/2 1/2〉b =
√

1/2 |0 0〉ab +
√

1/2 |1 0〉ab
That in turn implies that if the net square angular momentum of this product
state is measured, there is a 50/50 chance of it turning out to be either zero, or
the j = 1 (i.e. 2~2) value. The z-momentum will always be zero.
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Figure 12.5: Clebsch-Gordan coefficients when the second angular momentum
contribution has azimuthal quantum number jb =

1
2
.
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How about the Clebsch-Gordan coefficients to combine other ladders than
the spins of two spin 1/2 particles? Well, the same procedures used in the previous
section work just as well to combine the angular momenta of any two angular
momentum ladders, whatever their size. Just the thing for a long winter night.
Or, if you live in Florida, you just might want to write a little computer program
that does it for you {D.65} and outputs the tables in human-readable form
{N.30}, like figures 12.5 and 12.6.

From the figures you may note that when two states with total angular
momentum quantum numbers ja and jb are combined, the combinations have
total angular quantum numbers ranging from ja+ jb to |ja− jb|. This is similar
to the fact that when in classical mechanics two angular momentum vectors are
combined, the combined total angular momentum Jab is at most Ja+ Jb and at
least |Ja− Jb|. (The so-called “triangle inequality” for combining vectors.) But
of course, j is not quite a proportional measure of J unless J is large; in fact, J
=
√
j(j + 1)~ {D.66}.

12.8 Some important results

This section gives some results that are used frequently in quantum analysis,
but usually not explicitly stated.

First a note on notations. It is fairly common to use the letter l for orbital
angular momentum, s for spin, and j for combinations of orbital and angular
momentum. This subsection will follow these conventions where appropriate.

1. If all possible angular momentum states are filled with a fermion,
the resulting angular momentum is zero and the wave function is
spherically symmetric. For example, consider the simplified case
that there is one spinless fermion in each spherical harmonic at a
given azimuthal quantum number l. Then it is easy to see from the
form of the spherical harmonics that the combined wave function
is independent of the angular position around the z-axis. And all
spherical harmonics at that l are filled whatever you take to be the
z-axis. This makes noble gasses into the equivalent of billiard balls.
More generally, if there is one fermion for every possible “direction”
of the angular momentum, by symmetry the net angular momentum
can only be zero.

2. If a spin 1/2 fermion has orbital angular momentum quantum number
l, net (orbital plus spin) angular momentum quantum number j =
l+ 1

2
, and net momentum in the z-direction quantum number mj, its

net state is given in terms of the individual orbital and spin states
as:

j = l + 1
2
: |j mj〉 =

√
j +mj

2j
Y
mj− 1

2
l ↑+

√
j −mj

2j
Y
mj+

1
2

l ↓
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Figure 12.6: Clebsch-Gordan coefficients when the second angular momentum
contribution has azimuthal quantum number jb = 1.
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If the net spin is j = l − 1
2
, assuming that l > 0, that becomes

j = l− 1
2
: |j mj〉 = −

√
j + 1−mj

2j + 2
Y
mj− 1

2
l ↑+

√
j + 1 +mj

2j + 2
Y
mj+

1
2

l ↓

Note that if the net angular momentum is unambiguous, the or-
bital and spin magnetic quantum numbers m and ms are in general
uncertain.

3. For identical particles, an important question is how the Clebsch-
Gordan coefficients change under particle exchange:

〈jabmab||ja ma〉|jb mb〉 = (−1)ja+jb−jab〈jabmab||jb mb〉|ja ma〉

For ja = jb = 1
2
, this verifies that the triplet states jab = 1 are

symmetric, and the singlet state jab = 0 is antisymmetric. More
generally, states with the maximum net angular momentum jab =
ja + jb and whole multiples of 2 less are symmetric under particle
exchange. States that are odd amounts less than the maximum are
antisymmetric under particle exchange.

4. When the net angular momentum state is swapped with one of the
component states, the relation is

〈jabmab||ja ma〉|jb mb〉 =

(−1)ja−jab+mb

√
2jab + 1

2ja + 1
〈jama||jab mab〉|jb mb〉

This is of interest in figuring out what states produce zero net an-
gular momentum, jab = mab = 0. In that case, the right hand side
is zero unless jb = ja and mb = −ma; and then 〈jama||0 0〉|ja ma〉
= 1. You can only create zero angular momentum from a pair of
particles that have the same square angular momentum; also, only
product states with zero net angular momentum in the z-direction
are involved.

12.9 Momentum of partially filled shells

One very important case of combining angular momenta occurs for both elec-
trons in atoms and nucleons in nuclei. In these problems there are a number
of identical fermions in single-particle states that differ only in the net (orbital
plus spin) momentum in the chosen z-direction. Loosely speaking, the single-
particle states are the same, just at different angular orientations. Such a set of
states is often called a “shell.” The question is then: what combinations of the
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possible combined angular momentum j

jp I 1/2
3/2

5/2
7/2

9/2
11/2

13/2
15/2

17/2
19/2

21/2
23/2

25/2
27/2

29/2
31/2

33/2
35/2

1/2 1 1
3/2 1 1
5/2 1 1

3 1 1 1
7/2 1 1

3 1 1 1 1 1 1
9/2 1 1

3 1 1 1 2 1 1 1 1 1
5 1 1 2 2 3 2 2 2 2 1 1 1

11/2 1 1
3 1 1 1 2 2 1 2 1 1 1 1 1
5 1 2 3 4 4 5 4 5 4 4 3 3 2 2 1 1 1

possible combined angular momentum j

jp I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3/2 2 1 1
5/2 2 1 1 1
7/2 2 1 1 1 1

4 1 2 2 1 1 1
9/2 2 1 1 1 1 1

4 2 2 1 3 1 3 1 2 1 1 1
11/2 2 1 1 1 1 1 1

4 2 3 1 4 2 4 2 4 2 3 1 2 1 1 1
6 3 4 3 6 3 7 4 6 4 5 2 4 2 2 1 1 1

Table 12.1: Possible combined angular momentum of identical fermions in shells
of single-particle states that differ in magnetic quantum number. The top shows
odd numbers of particles, the bottom even numbers.
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states are antisymmetric with respect to exchange of the fermions, and therefore
allowed? More specifically, what is their combined net angular momentum?

The answer is given in table 12.1, {D.67}. In it, I is the number of fermions
in the shell. Further jp is the net angular momentum of the single-particle states
that make up the shell. (Or the azimuthal quantum number of that angular
momentum really.) Similarly the values of j indicate the possible net angular
momentum quantum numbers of all i fermions combined. The main body of
the table lists the multiplicity of sets with the given angular momentum. Note
that the table is split into odd and even numbers of particles. That simplifies
the presentation, because odd numbers of particles produce only half-integer net
angular momentum, and even numbers only integer net angular momentum.

For example, consider a single particle, I = 1, in a set of single-particle
states with angular momentum jp = 9/2. For a single particle, the “combined”
momentum j is simply the single particle momentum jp, explaining the single
1 in the 9/2 column. But note that the 1 stands for a set of states; the magnetic
net quantum number mp of the single particle could still be any one of 9/2,

7/2,
. . . , −9/2. All the ten states in this set have net angular momentum j = jp =
9/2.

Next assume that there are two particles in the same jp = 9/2 single-particle
states. Then if both particles would be in the mp = 9/2 single-particle state,
their combined angular momentum in the z-direction m would be 2 × 9/2 =
9. Following the Clebsch-Gordan derivation shows that this state would have
combined angular momentum j =m = 9. But the two identical fermions cannot
be both in the mp = 9/2 state; that violates the Pauli exclusion principle. That
is why there is no entry in the j = 9 column. If the first particle is in the mp

= 9/2 state, the second one can at most be in the mp = 7/2 state, for a total
of m = 8. More precisely, the particles would have to be in the antisymmetric
combination, or Slater determinant, of these two states. That antisymmetric
combination can be seen to have combined angular momentum j = 8. There
are other combinations of states that also have j = 8, but values of m equal to
7, 6, . . . , −8, for a total of 17 states. That set of 17 states is indicated by the
1 in the j = 8 column.

It is also possible for the two jp = 9/2 particles to combine their angular
momentum into smaller even values of the total angular momentum j. In fact,
it is possible for the particles to combine their angular momenta so that they
exactly cancel one another; then the net angular momentum j = 0. That is
indicated by the 1 in the j = 0 column. Classically you would say that the
momentum vectors of the two particles are exactly opposite, producing a zero
resultant. In quantum mechanics true angular momentum vectors do not exist
due to uncertainty of the components, but complete cancelation is still possible.

The j = 0 set consists of just one state, becausem can only be zero for a state
with zero angular momentum. The entire table row for two jp = 9/2 particles
could in principle be derived by writing out the appropriate Clebsch-Gordan
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coefficients. But that would be one very big table.
If there are five jp = 9/2 particles. they can combine their angular momenta

into quite a wide variety of net angular momentum values. For example, the 2
in the j = 5/2 column indicates that there are two sets of states with combined
angular momentum j = 5/2. Each set has 6 members, because for each set m
can be any one of 5/2,

3/2, . . . , −5/2. So there are a total of 12 independent
combination states that have net angular momentum j = 5/2.

Note that a shell has 2jp + 1 different single-particle states, because the
magnetic quantum numbermp can have the values jp, jp−1, . . . , −jp. Therefore
a shell can accommodate up to 2jp + 1 fermions according to the exclusion
principle. However, the table only lists combined angular momentum values
for up to jp + 1/2 particles. The reason is that any more is unnecessary. A
given number of “holes” in an otherwise filled shell produces the same combined
angular momentum values as the same number of particles in an otherwise
empty shell. For example, two fermions in a jp = 1/2 shell, (zero holes), have the
same combined angular momentum as zero particles: zero. Indeed, those two
fermions must be in the antisymmetric singlet state with spin zero. In general, a
completely filled shell has zero angular momentum and is spherically symmetric.

The same situation for identical bosons is shown in table 12.2. For identical
bosons there is no limit to the number of particles that can go into a shell. The
table was arbitrarily cut off at 9 particles and a maximum spin of 18.

12.10 Pauli spin matrices

This subsection returns to the simple two-rung spin ladder (doublet) of an elec-
tron, or any other spin 1/2 particle for that matter, and tries to tease out some
more information about the spin. While the analysis so far has made statements
about the angular momentum in the arbitrarily chosen z-direction, you often
also need information about the spin in the corresponding x and y directions.
This subsection will find it.

But before getting at it, a matter of notations. It is customary to indicate
angular momentum that is due to spin by a capital S. Similarly, the azimuthal
quantum number of spin is indicated by s. This subsection will follow this
convention.

Now, suppose you know that the particle is in the “spin-up” state with Sz
= 1/2~ angular momentum in a chosen z direction; in other words that it is in

the |1/2 1/2〉, or ↑, state. You want the effect of the Ŝx and Ŝy operators on this
state. In the absence of a physical model for the motion that gives rise to the
spin, this may seem like a hard question indeed. But again the faithful ladder
operators Ŝ+ and Ŝ− clamber up and down to your rescue!

Assuming that the normalization factor of the ↓ state is chosen in terms of
the one of the ↑ state consistent with the ladder relations (12.9) and (12.10),
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possible combined angular momentum j

jp I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 1 1
3 1 1
4 1 1 1
5 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1 1 1
9 1 1 1 1 1

2 2 1 1 1
3 1 1 1 1 1
4 1 2 2 1 1 1
5 1 2 1 2 1 2 1 1 1
6 2 2 1 3 1 3 1 2 1 1 1
7 1 3 1 3 2 3 2 3 1 2 1 1 1
8 2 3 1 4 2 4 2 4 2 3 1 2 1 1 1
9 2 3 2 4 2 5 3 4 3 4 2 3 1 2 1 1 1

3 2 1 1 1 1
3 1 2 1 1 1 1 1
4 2 2 1 3 1 3 1 2 1 1 1
5 2 1 4 2 4 3 4 2 3 2 2 1 1 1
6 3 4 3 6 3 7 4 6 4 5 2 4 2 2 1 1 1

4 2 1 1 1 1 1
3 1 1 1 2 1 2 1 1 1 1 1
4 2 3 1 4 2 4 2 4 2 3 1 2 1 1 1

5 2 1 1 1 1 1 1
3 1 2 1 2 2 2 1 2 1 1 1 1 1

6 2 1 1 1 1 1 1 1
3 1 1 1 2 1 3 2 2 2 2 1 2 1 1 1 1 1

7 2 1 1 1 1 1 1 1 1
8 2 1 1 1 1 1 1 1 1 1
9 2 1 1 1 1 1 1 1 1 1 1

Table 12.2: Possible combined angular momentum of identical bosons.
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you have:

Ŝ+↑ = (Ŝx + iŜy)↑ = 0 Ŝ−↑ = (Ŝx − iŜy)↑ = ~↓

By adding or subtracting the two equations, you find the effects of Ŝx and Ŝy
on the spin-up state:

Ŝx↑ = 1
2
~↓ Ŝy↑ = 1

2
i~↓

It works the same way for the spin-down state ↓ = |1/2 1/2〉:

Ŝx↓ = 1
2
~↑ Ŝy↓ = −1

2
i~↑

You now know the effect of the x and y angular momentum operators on the z-
direction spin states. Chalk one up for the ladder operators.

Next, assume that you have some spin state that is an arbitrary combination
of spin-up and spin-down:

a↑+ b↓
Then, according to the expressions above, application of the x spin operator Ŝx
will turn it into:

Ŝx (a↑+ b↓) = a
(
0↑+ 1

2
~↓
)
+ b
(
1
2
~↑+ 0↓

)

while the operator Ŝy turns it into

Ŝy (a↑+ b↓) = a
(
0↑+ 1

2
~i↓
)
+ b
(
−1

2
~i↑+ 0↓

)

And of course, since ↑ and ↓ are the eigenstates of Ŝz,

Ŝz (a↑+ b↓) = a
(
1
2
~↑+ 0↓

)
+ b
(
0↑ − 1

2
~↓
)

If you put the coefficients in the formula above, except for the common factor
1
2
~, in little 2 × 2 tables, you get the so-called “Pauli spin matrices”:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(12.15)

where the convention is that a multiplies the first column of the matrices and b
the second. Also, the top rows in the matrices produce the spin-up part of the
result and the bottom rows the spin down part. In linear algebra, you also put
the coefficients a and b together in a vector:

a↑+ b↓ ≡
(
a
b

)
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You can now go further and find the eigenstates of the Ŝx and Ŝy operators in

terms of the eigenstates ↑ and ↓ of the Ŝz operator. You can use the techniques
of linear algebra, or you can guess. For example, if you guess a = b = 1,

Ŝx

(
1
1

)
= 1

2
~σx

(
1
1

)
= 1

2
~

(
0× 1 + 1× 1
1× 1 + 0× 1

)
= 1

2
~

(
1
1

)

so a = b = 1 is an eigenstate of Ŝx with eigenvalue 1
2
~, call it a→, “spin-right”,

state. To normalize the state, you still need to divide by
√
2:

→ =
1√
2
↑+ 1√

2
↓

Similarly, you can guess the other eigenstates, and come up with:

→ =
1√
2
↑+ 1√

2
↓ ← = − i√

2
↑+ i√

2
↓ ⊗ =

1√
2
↑+ i√

2
↓ ⊙ =

1√
2
↑ − i√

2
↓

(12.16)
Note that the square magnitudes of the coefficients of the states are all one

half, giving a 50/50 chance of finding the z-momentum up or down. Since the
choice of the axis system is arbitrary, this can be generalized to mean that if
the spin in a given direction has an definite value, then there will be a 50/50
chance of the spin in any orthogonal direction turning out to be 1

2
~ or −1

2
~.

You might wonder about the choice of normalization factors in the spin
states (12.16). For example, why not leave out the common factor i in the
←, (negative x spin, or spin-left), state? The reason is to ensure that the x-

direction ladder operator Ŝy ± iŜz and the y-direction one Ŝz ± iŜx, as obtained
by cyclic permutation of the ones for z, produce real, positive multiplication
factors. This allows relations valid in the z-direction (like the expressions for
triplet and singlet states) to also apply in the x and y directions. In addition,
with this choice, if you do a simple change in the labeling of the axes, from xyz
to yzx or zxy, the form of the Pauli spin matrices remains unchanged. The →
and ⊗ states of positive x-, respectively y-momentum were chosen a different
way: if you rotate the axis system 90◦ around the y or x axis, these are the
spin-up states along the new z-axis, the x-axis or y-axis in the system you are
looking at now, {D.68}.

12.11 General spin matrices

The arguments that produced the Pauli spin matrices for a system with spin 1/2
work equally well for systems with larger square angular momentum.

In particular, from the definition of the ladder operators

Ĵ+ ≡ Ĵx + iĴy Ĵ− ≡ Ĵx − iĴy
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it follows by taking the sum, respectively difference, that

Ĵx =
1
2
Ĵ+ + 1

2
Ĵ− Ĵy = −i12 Ĵ+ + i1

2
Ĵ− (12.17)

Therefore, the effect of either Ĵx or Ĵy is to produce multiples of the states
with the next higher and the next lower magnetic quantum number. The mul-
tiples can be determined using (12.9) and (12.10).

If you put these multiples again in matrices, after ordering the states by mag-
netic quantum number, you get Hermitian tridiagonal matrices with nonzero
sub and superdiagonals and zero main diagonal, where Ĵx is real symmetric
while Ĵy is purely imaginary, equal to i times a real skew-symmetric matrix.
Be sure to tell all you friends that you heard it here first. Do watch out for
the well-informed friend who may be aware that forming such matrices is bad
news anyway since they are almost all zeros. If you want to use canned matrix
software, at least use the kind for tridiagonal matrices.

12.12 The Relativistic Dirac Equation

Relativity threw up some road blocks when quantum mechanics was first for-
mulated, especially for the particles physicist wanted to look at most, electrons.
This section explains some of the ideas.

You will need a good understanding of linear algebra to really follow the
reasoning. A summary of the Dirac equation that is less heavy on the linear
algebra can be found in {A.44}.

For zero spin particles, including relativity appears to be simple. The clas-
sical kinetic energy Hamiltonian for a particle in free space,

H =
1

2m

3∑

i=1

p̂2i p̂i =
~

i

∂

∂ri

can be replaced by Einstein’s relativistic expression

H =

√√√√(mc2)2 +
3∑

i=1

(p̂ic)
2

where m is the rest mass of the particle and mc2 is the energy this mass is
equivalent to. You can again write Hψ = Eψ, or squaring the operators in
both sides to get rid of the square root:

[
(
mc2

)2
+

3∑

i=1

(p̂ic)
2

]
ψ = E2ψ
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This is the “Klein-Gordon” relativistic version of the Hamiltonian eigenvalue
problem. With a bit of knowledge of partial differential equations, you can
check that the unsteady version, chapter 7.1, obeys the speed of light as the
maximum propagation speed, as you would expect, chapter 8.6.

Unfortunately, throwing a dash of spin into this recipe simply does not seem
to work in a convincing way. Apparently, that very problem led Schrödinger to
limit himself to the nonrelativistic case. It is hard to formulate simple equations
with an ugly square root in your way, and surely, you will agree, the relativistic
equation for something so very fundamental as an electron in free space should
be simple and beautiful like other fundamental equations in physics. (Can you

be more concise than ~F = m~a or E = mc2?).
So P.A.M. Dirac boldly proposed that for a particle like an electron, (and

other spin 1/2 elementary particles like quarks, it turned out,) the square root
produces a simple linear combination of the individual square root terms:

√√√√(mc2)2 +
3∑

i=1

(p̂ic)
2 = α0mc

2 +
3∑

i=1

αip̂ic (12.18)

for suitable coefficients α0, α1, α2 and α3. Now, if you know a little bit of
algebra, you will quickly recognize that there is absolutely no way this can
be true. The teacher will have told you that, say, a function like

√
x2 + y2

is definitely not the same as the function
√
x2 +

√
y2 = x + y, otherwise the

Pythagorean theorem would look a lot different, and adding coefficients as in
α1x+ α2y does not do any good at all.

But here is the key: while this does not work for plain numbers, Dirac showed
it is possible if you are dealing with matrices, tables of numbers. In particular,
it works if the coefficients are given by

α0 =

(
1 0
0 −1

)
α1 =

(
0 σx
σx 0

)
α2 =

(
0 σy
σy 0

)
α3 =

(
0 σz
σz 0

)

This looks like 2 × 2 size matrices, but actually they are 4 × 4 matrices since all
elements are 2 × 2 matrices themselves: the ones stand for 2 × 2 unit matrices,
the zeros for 2 × 2 zero matrices, and the σx, σy and σz are the so-called 2 × 2
Pauli spin matrices that also pop up in the theory of spin angular momentum,
section 12.10. The square root cannot be eliminated with matrices smaller than
4 × 4 in actual size. (A derivation is in {D.70}. See also {A.36} for alternate
forms of the equation.)

Now if the Hamiltonian is a 4 × 4 matrix, the wave function at any point
must have four components. As you might guess from the appearance of the
spin matrices, half of the explanation of the wave function splitting into four is
the two spin states of the electron. How about the other half? It turns out that
the Dirac equation brings with it states of negative total energy, in particular
negative rest mass energy.
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That was of course a curious thing. Consider an electron in what otherwise is
an empty vacuum. What prevents the electron from spontaneously transitioning
to the negative rest mass state, releasing twice its rest mass in energy? Dirac
concluded that what is called empty vacuum should in the mathematics of
quantum mechanics be taken to be a state in which all negative energy states are
already filled with electrons. Clearly, that requires the Pauli exclusion principle
to be valid for electrons, otherwise the electron could still transition into such
a state. According to this idea, nature really does not have a free choice in
whether to apply the exclusion principle to electrons if it wants to create a
universe as we know it.

But now consider the vacuum without the electron. What prevents you from
adding a big chunk of energy and lifting an electron out of a negative rest-mass
state into a positive one? Nothing, really. It will produce a normal electron and
a place in the vacuum where an electron is missing, a “hole”. And here finally
Dirac’s boldness appears to have deserted him; he shrank from proposing that
this hole would physically show up as the exact antithesis of the electron, its
anti-particle, the positively charged positron. Instead Dirac weakly pointed the
finger at the proton as a possibility. “Pure cowardice,” he called it later. The
positron that his theory really predicted was subsequently discovered anyway.
(It had already been observed earlier, but was not recognized.)

The reverse of the production of an electron/positron pair is pair annihi-
lation, in which a positron and an electron eliminate each other, creating two
gamma-ray photons. There must be two, because viewed from the combined
center of mass, the net momentum of the pair is zero, and momentum conser-
vation says it must still be zero after the collision. A single photon would have
nonzero momentum, you need two photons coming out in opposite directions.
However, pairs can be created from a single photon with enough energy if it
happens in the vicinity of, say, a heavy nucleus: a heavy nucleus can absorb
the momentum of the photon without picking up much velocity, so without
absorbing too much of the photon’s energy.

The Dirac equation also gives a very accurate prediction of the magnetic
moment of the electron, section 13.4, though the quantum electromagnetic field
affects the electron and introduces a correction of about a tenth of a percent.
But the importance of the Dirac equation was much more than that: it was
the clue to our understanding how quantum mechanics can be reconciled with
relativity, where particles are no longer absolute, but can be created out of
nothing or destroyed according to the mass-energy relation E = mc2, chapter
1.1.2.

Dirac was a theoretical physicist at Cambridge University, but he moved to
Florida in his later life to be closer to his elder daughter, and was a professor
of physics at the Florida State University when I got there. So it gives me
some pleasure to include the Dirac equation in my text as the corner stone of
relativistic quantum mechanics.



Chapter 13

Electromagnetism

This chapter explains how quantum mechanics deals with electromagnetic ef-
fects.

Some more advanced topics will be left to introductory addenda. That in-
cludes how the solution for the hydrogen atom may be corrected for relativistic
effects, {A.39}, using perturbation theory, {A.38}. It also includes the quanti-
zation of the electromagnetic field, {A.23}, using quantum field theory, {A.15}.

Electromagnetics is closely tied to more advanced concepts in angular mo-
mentum and relativity. These have been discussed in chapters 1 and 12.

13.1 The Electromagnetic Hamiltonian

This section describes very basically how electromagnetism fits into quantum
mechanics. However, electromagnetism is fundamentally relativistic; its carrier,
the photon, readily emerges or disappears. To describe electromagnetic effects
fully requires quantum electrodynamics, and that is far beyond the scope of this
text. (However, see addenda {A.15} and {A.23} for some of the ideas.)

In classical electromagnetics, the force on a particle with charge q in a field
with electric strength ~E and magnetic strength ~B is given by the Lorentz force
law

m
d~v

dt
= q

(
~E + ~v × ~B

)
(13.1)

where ~v is the velocity of the particle and for an electron, the charge is q = −e.
Unfortunately, quantum mechanics uses neither forces nor velocities. In

fact, the earlier analysis of atoms and molecules in this book used the fact
that the electric field is described by the corresponding potential energy V , see
for example the Hamiltonian of the hydrogen atom. The magnetic field must
appear differently in the Hamiltonian; as the Lorentz force law shows, it couples
with velocity. You would expect that still the Hamiltonian would be relatively
simple, and the simplest idea is then that any potential corresponding to the
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magnetic field moves in together with momentum. Since the momentum is a
vector quantity, then so must be the magnetic potential. So, your simplest guess
would be that the Hamiltonian takes the form

H =
1

2m

(
~̂p− q ~A

)2
+ qϕ (13.2)

where ϕ = V /q is the “electric potential” and ~A is the “magnetic vector poten-
tial.” And this simplest guess is in fact right.

The relationship between the vector potential ~A and the magnetic field
strength ~B will now be found from requiring that the classical Lorentz force
law is obtained in the classical limit that the quantum uncertainties in position
and momentum are small. In that case, expectation values can be used to de-
scribe position and velocity, and the field strengths ~E and ~B will be constant
on the small quantum scales. That means that the derivatives of ϕ will be con-
stant, (since ~E is the negative gradient of ϕ), and presumably the same for the

derivatives of ~A.
Now according to chapter 7.2, the evolution of the expectation value of

position is found as

d〈~̂r〉
dt

=

〈
i

~
[H,~r]

〉

Working out the commutator with the Hamiltonian above, {D.71}, you get,

d〈~̂r〉
dt

=
1

m

〈
~̂p− q ~A

〉

This is unexpected; it shows that ~̂p, i.e. ~∇/i, is no longer the operator of the

normal momentum m~v when there is a magnetic field; ~̂p− q ~A gives the normal
momentum. The momentum represented by ~̂p by itself is called “canonical”
momentum to distinguish it from normal momentum:

The canonical momentum ~∇/i only corresponds to normal momen-
tum if there is no magnetic field involved.

(Actually, it was not that unexpected to physicists, since the same happens
in the classical description of electromagnetics using the so-called Lagrangian
approach, chapter 1.3.2.)

Next, Newton’s second law says that the time derivative of the linear mo-
mentum m~v is the force. Since according to the above, the linear momentum
operator is ~̂p− q ~A, then

m
d〈~v〉
dt

=
d〈~̂p− q ~A〉

dt
=

〈
i

~
[H,~̂p− q ~A]

〉
− q

〈
∂ ~A

∂t

〉
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The objective is now to ensure that the right hand side is the correct Lorentz
force (13.1) for the assumed Hamiltonian, by a suitable definition of ~B in terms

of ~A.
After a lot of grinding down commutators, {D.71}, it turns out that indeed

the Lorentz force is obtained,

m
d〈~v〉
dt

= q
(
~E + 〈~v〉 × ~B

)

provided that:

~E = −∇ϕ− ∂ ~A

∂t
~B = ∇× ~A (13.3)

So the magnetic field is found as the curl of the vector potential ~A. And the
electric field is no longer just the negative gradient of the scalar potential ϕ if
the vector potential varies with time.

These results are not new. The electric scalar potential ϕ and the magnetic
vector potential ~A are the same in classical physics, though they are a lot less
easy to guess than done here. Moreover, in classical physics they are just conve-
nient mathematical quantities to simplify analysis. In quantum mechanics they
appear as central to the formulation.

And it can make a difference. Suppose you do an experiment where you
pass electron wave functions around both sides of a very thin magnet: you will
get a wave interference pattern behind the magnet. The classical expectation is
that this interference pattern will be independent of the magnet strength: the
magnetic field ~B outside a very thin and long ideal magnet is zero, so there is no
force on the electron. But the magnetic vector potential ~A is not zero outside the
magnet, and Aharonov and Bohm argued that the interference pattern would
therefore change with magnet strength. So it turned out to be in experiments
done subsequently. The conclusion is clear; nature really goes by the vector
potential ~A and not the magnetic field ~B in its actual workings.

13.2 Maxwell’s Equations

Maxwell’s equations are commonly not covered in a typical engineering program.
While these laws are not directly related to quantum mechanics, they do tend
to pop up in nanotechnology. This section intends to give you some of the ideas.
The description is based on the divergence and curl spatial derivative operators,
and the related Gauss and Stokes theorems commonly found in calculus courses
(Calculus III in the US system.)

Skipping the first equation for now, the second of Maxwell’s equations comes
directly out of the quantum mechanical description of the previous section.
Consider the expression for the magnetic field ~B “derived” (guessed) there,
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(13.3). If you take its divergence, (premultiply by ∇·), you get rid of the vector

potential ~A, since the divergence of any curl is always zero, so you get

Maxwell’s second equation: ∇ · ~B = 0 (13.4)

and that is the second of Maxwell’s four beautifully concise equations. (The
compact modern notation using divergence and curl is really due to Heaviside
and Gibbs, though.)

The first of Maxwell’s equations is a similar expression for the electric field
~E , but its divergence is not zero:

Maxwell’s first equation: ∇ · ~E =
ρ

ǫ0
(13.5)

where ρ is the electric charge per unit volume that is present and the constant
ǫ0 = 8.85 10−12 C2/J m is called the permittivity of space.

q

~E

Figure 13.1: Relationship of Maxwell’s first equation to Coulomb’s law.

What does it all mean? Well, the first thing to verify is that Maxwell’s first
equation is just a very clever way to write Coulomb’s law for the electric field
of a point charge. Consider therefore an electric point charge of strength q, and
imagine this charge surrounded by a translucent sphere of radius r, as shown in
figure 13.1. By symmetry, the electric field at all points on the spherical surface
is radial, and everywhere has the same magnitude E = |~E|; figure 13.1 shows it
for eight selected points.

Now watch what happens if you integrate both sides of Maxwell’s first equa-
tion (13.5) over the interior of this sphere. Starting with the right hand side,
since the charge density is the charge per unit volume, by definition its integral
over the volume is the charge q. So the right hand side integrates simply to
q/ǫ0. How about the left hand side? Well, the Gauss, or divergence, theorem of

calculus says that the divergence of any vector, ~E in this case, integrated over

notransparent
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the volume of the sphere, equals the radial electric field E integrated over the
surface of the sphere. Since E is constant on the surface, and the surface of a
sphere is just 4πr2, the right hand side integrates to 4πr2E . So in total, you get
for the integrated first Maxwell’s equation that 4πr2E = q/ǫ0. Take the 4πr

2 to
the other side and there you have the Coulomb electric field of a point charge:

Coulomb’s law: E =
q

4πr2ǫ0
(13.6)

Multiply by −e and you have the electrostatic force on an electron in that field
according to the Lorentz equation (13.1). Integrate with respect to r and you
have the potential energy V = −qe/4πǫ0r that has been used earlier to analyze
atoms and molecules.

Of course, all this raises the question, why bother? If Maxwell’s first equa-
tion is just a rewrite of Coulomb’s law, why not simply stick with Coulomb’s
law in the first place? Well, to describe the electric field at a given point using
Coulomb’s law requires you to consider every charge everywhere else. In con-
trast, Maxwell’s equation only involves local quantities at the given point, to
wit, the derivatives of the local electric field and the local charge per unit vol-
ume. It so happens that in numerical or analytical work, most of the time it is
much more convenient to deal with local quantities, even if those are derivatives,
than with global ones.

q q

~E ~E

Figure 13.2: Maxwell’s first equation for a more arbitrary region. The figure to
the right includes the field lines through the selected points.

Of course, you can also integrate Maxwell’s first equation over more general
regions than a sphere centered around a charge. For example figure 13.2 shows
a sphere with an off-center charge. But the electric field strength is no longer
constant over the surface, and divergence theorem now requires you to inte-
grate the component of the electric field normal to the surface over the surface.
Clearly, that does not have much intuitive meaning. However, if you are willing

notransparent
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to loosen up a bit on mathematical preciseness, there is a better way to look at
it. It is in terms of the “electric field lines”, the lines that everywhere trace the
direction of the electric field. The left figure in figure 13.2 shows the field lines
through the selected points; a single charge has radial field lines.

q

Figure 13.3: The net number of field lines leaving a region is a measure for the
net charge inside that region.

Assume that you draw the field lines densely, more like figure 13.3 say,
and moreover, that you make the number of field lines coming out of a charge
proportional to the strength of that charge. In that case, the local density of
field lines at a point becomes a measure of the strength of the electric field at
that point, and in those terms, Maxwell’s integrated first equation says that the
net number of field lines leaving a region is proportional to the net charge inside
that region. That remains true when you add more charges inside the region.
In that case the field lines will no longer be straight, but the net number going
out will still be a measure of the net charge inside.

Now consider the question why Maxwell’s second equation says that the
divergence of the magnetic field is zero. For the electric field you can shove,
say, some electrons in the region to create a net negative charge, or you can
shove in some ionized molecules to create a net positive charge. But the mag-
netic equivalents to such particles, called “magnetic monopoles”, being separate
magnetic north pole particles or magnetic south pole particles, simply do not
exist, {N.31}. It might appear that your bar magnet has a north pole and a
south pole, but if you take it apart into little pieces, you do not end up with
north pole pieces and south pole pieces. Each little piece by itself is still a little
magnet, with equally strong north and south poles. The only reason the com-

notransparent
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bined magnet seems to have a north pole is that all the microscopic magnets of
which it consists have their north poles preferentially pointed in that direction.

S N

Figure 13.4: Since magnetic monopoles do not exist, the net number of magnetic
field lines leaving a region is always zero.

If all microscopic magnets have equal strength north and south poles, then
the same number of magnetic field lines that come out of the north poles go
back into the south poles, as figure 13.4 illustrates. So the net magnetic field
lines leaving a given region will be zero; whatever goes out comes back in. True,
if you enclose the north pole of a long bar magnet by an imaginary sphere, you
can get a pretty good magnetic approximation of the electrical case of figure
13.1. But even then, if you look inside the magnet where it sticks through
the spherical surface, the field lines will be found to go in towards the north
pole, instead of away from it. You see why Maxwell’s second equation is also
called “absence of magnetic monopoles.” And why, say, electrons can have a net
negative charge, but have zero magnetic pole strength; their spin and orbital
angular momenta produce equally strong magnetic north and south poles, a
magnetic “dipole” (di meaning two.)

You can get Maxwell’s third equation from the electric field “derived” in the
previous section. If you take its curl, (premultiply by ∇×), you get rid of the

potential ϕ, since the curl of any gradient is always zero, and the curl of ~A is
the magnetic field. So the third of Maxwell’s equations is:

Maxwell’s third equation: ∇× ~E = −∂
~B
∂t

(13.7)

notransparent
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The “curl”, ∇×, is also often indicated as “rot”.

N

~E ~E

Figure 13.5: Electric power generation.

Now what does that one mean? Well, the first thing to verify in this case
is that this is just a clever rewrite of Faraday’s law of induction, governing
electric power generation. Assume that you want to create a voltage to drive
some load (a bulb or whatever, don’t worry what the load is, just how to get
the voltage for it.) Just take a piece of copper wire and bend it into a circle,
as shown in figure 13.5. If you can create a voltage difference between the ends
of the wire you are in business; just hook your bulb or whatever to the ends
of the wire and it will light up. But to get such a voltage, you will need an
electric field as shown in figure 13.5 because the voltage difference between the
ends is the integral of the electric field strength along the length of the wire.
Now Stokes’ theorem of calculus says that the electric field strength along the
wire integrated over the length of the wire equals the integral of the curl of the
electric field strength integrated over the inside of the wire, in other words over
the imaginary translucent circle in figure 13.5. So to get the voltage, you need
a nonzero curl of the electric field on the translucent circle. And Maxwell’s
third equation above says that this means a time-varying magnetic field on the
translucent circle. Moving the end of a strong magnet closer to the circle should
do it, as suggested by figure 13.5. You better not make that a big bulb unless
you you wrap the wire around a lot more times to form a spool, but anyway.
{N.32}.

notransparent
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Maxwell’s fourth and final equation is a similar expression for the curl of the
magnetic field:

Maxwell’s fourth equation: c2∇× ~B =
~

ǫ0
+
∂~E
∂t

(13.8)

where ~ is the “electric current density,” the charge flowing per unit cross sec-
tional area, and c is the speed of light. (It is possible to rescale ~B by a factor c

to get the speed of light to show up equally in the equations for the curl of ~E
and the curl of ~B, but then the Lorentz force law must be adjusted too.)

I q

~B ~B ~B ~B

Figure 13.6: Two ways to generate a magnetic field: using a current (left) or
using a varying electric field (right).

The big difference from the third equation is the appearance of the current
density ~. So, there are two ways to create a circulatory magnetic field, as shown
in figure 13.6: (1) pass a current through the enclosed circle (the current density
integrates over the area of the circle into the current through the circle), and
(2) by creating a varying electric field over the circle, much like was done for
the electric field in figure 13.5.

The fact that a current creates a surrounding magnetic field was already
known as Ampere’s law when Maxwell did his analysis. Maxwell himself how-
ever added the time derivative of the electric field to the equation to have the
mathematics make sense. The problem was that the divergence of any curl must
be zero, and by itself, the divergence of the current density in the right hand
side of the fourth equation is not zero. Just like the divergence of the electric
field is the net field lines coming out of a region per unit volume, the divergence
of the current density is the net current coming out. And it is perfectly OK for a
net charge to flow out of a region: it simply reduces the charge remaining within
the region by that amount. This is expressed by the “continuity equation:”

Maxwell’s continuity equation: ∇ · ~ = −∂ρ
∂t

(13.9)
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So Maxwell’s fourth equation without the time derivative of the electric field is
mathematically impossible. But after he added it, if you take the divergence of
the total right hand side then you do indeed get zero as you should. To check
that, use the continuity equation above and the first equation.

In empty space, Maxwell’s equations simplify: there are no charges so both
the charge density ρ and the current density ~ will be zero. In that case, the
solutions of Maxwell’s equations are simply combinations of “traveling waves.”
A traveling wave takes the form

~E = k̂E0 cos
(
ω(t− y/c)− α

)
~B = ı̂

1

c
E0 cos

(
ω(t− y/c)− α

)
(13.10)

where for simplicity, the y-axis of the coordinate system has been aligned with
the direction in which the wave travels, and the z-axis with the amplitude k̂E0
of the electric field of the wave. Such a wave is called “linearly polarized” in
the z-direction. The constant ω is the angular frequency of the wave, equal to
2π times its frequency ν in cycles per second, and is related to its wave length
λ by ωλ/c = 2π. The constant α is just a phase angle. For these simple waves,
the magnetic and electric field must be normal to each other, as well as to the
direction of wave propagation.

You can plug the above wave solution into Maxwell’s equations and so verify
that it satisfies them all. With more effort and knowledge of Fourier analysis,
you can show that they are the most general possible solutions that take this
traveling wave form, and that any arbitrary solution is a combination of these
waves (if all directions of the propagation direction and of the electric field
relative to it, are included.)

The point is that the waves travel with the speed c. When Maxwell wrote
down his equations, c was just a constant to him, but when the propagation
speed of electromagnetic waves matched the experimentally measured speed of
light, it was just too much of a coincidence and he correctly concluded that light
must be traveling electromagnetic waves.

It was a great victory of mathematical analysis. Long ago, the Greeks had
tried to use mathematics to make guesses about the physical world, and it was an
abysmal failure. You do not want to hear about it. Only when the Renaissance
started measuring how nature really works, the correct laws were discovered
for people like Newton and others to put into mathematical form. But here,
Maxwell successfully amends Ampere’s measured law, just because the math-
ematics did not make sense. Moreover, by deriving how fast electromagnetic
waves move, he discovers the very fundamental nature of the then mystifying
physical phenomenon humans call light.

For those with a knowledge of partial differential equations, separate wave
equations for the electric and magnetic fields and their potentials are derived in
addendum {A.37}.
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An electromagnetic field obviously contains energy; that is how the sun
transports heat to our planet. The electromagnetic energy within an otherwise
empty volume V can be found as

EV = 1
2
ǫ0

∫

V

(
~E2 + c2~B2

)
d3~r (13.11)

This is typically derived by comparing the energy from discharging a condenser
to the electric field that it initially holds, and from comparing the energy from
discharging a coil to the magnetic field it initially holds. That is too much detail
for this book.

But at least the result can be made plausible. First note that the time
derivative of the energy above can be written as

dEV
dt

= −
∫

S

ǫ0c(~E × c~B) · ~n dS

Here S is the surface of volume V , and ~n is the unit vector normal to the
surface element dS. To verify this expression, bring the time derivative inside
the integral in (13.11), then get rid of the time derivatives using Maxwell’s
third and fourth laws, use the standard vector identity [41, 20.40], and finally
the divergence theorem.

Now suppose you have a finite amount of radiation in otherwise empty space.
If the amount of radiation is finite, the field should disappear at infinity. So,
taking the volume to be all of space, the integral in the right hand side above
will be zero. So EV will be constant. That indicates that EV should be at least a
multiple of the energy. After all, what other scalar quantity than energy would
be constant? And the factor ǫ0 is needed because of units. That misses only
the factor 1

2
in the expression for the energy.

For an arbitrary volume V , the surface integral must then be the energy
outflow through the surface of the volume. That suggests that the energy flow
rate per unit area is given by the so-called “Poynting vector”

ǫ0c ~E × c~B (13.12)

Unfortunately, this argument is flawed. You cannot deduce local values of the
energy flow from its integral over an entire closed surface. In particular, you can
find different vectors that describe the energy flow also without inconsistency.
Just add an arbitrary solenoidal vector, a vector whose divergence is zero, to the
Poynting vector. For example, adding a multiple of the magnetic field would do
it. However, if you look at simple lightwaves like (13.10), the Poynting vector
seems the intuitive choice. This paragraph was included because other books
have Poynting vectors and you would be very disappointed if yours did not.

You will usually not find Maxwell’s equations in the exact form described
here. To explain what is going on inside materials, you would have to account
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for the electric and magnetic fields of every electron and proton (and neutron!)
of the material. That is just an impossible task, so physicists have developed
ways to average away all those effects by messing with Maxwell’s equations. But
then the messed-up ~E in one of Maxwell’s equations is no longer the same as the
messed-up ~E in another, and the same for ~B. So physicists rename one messed-
up ~E as, maybe, the “electric flux density” ~D, and a messed up magnetic field
as, maybe, “the auxiliary field”. And they define many other symbols, and even
refer to the auxiliary field as being the magnetic field, all to keep engineers out of
nanotechnology. Don’t let them! When you need to understand the messed-up
Maxwell’s equations, Wikipedia has a list of the countless definitions.

13.3 Example Static Electromagnetic Fields

In this section, some basic solutions of Maxwell’s equations are described. They
will be of interest in addendum {A.39} for understanding relativistic effects on
the hydrogen atom (though certainly not essential). They are also of consider-
able practical importance for a lot of nonquantum applications.

It is assumed throughout this subsection that the electric and magnetic fields
do not change with time. All solutions also assume that the ambient medium
is vacuum.

For easy reference, Maxwell’s equations and various results to be obtained in
this section are collected together in tables 13.1 and 13.2. While the existence
of magnetic monopoles is unverified, it is often convenient to compute as if they
do exist. It allows you to apply ideas from the electric field to the magnetic field
and vice-versa. So, the tables include magnetic monopoles with strength qm, in
addition to electric charges with strength q, and a magnetic current density ~m
in addition to an electric current density ~. The table uses the permittivity of
space ǫ0 and the speed of light c as basic physical constants; the permeability of
space µ0 = 1/ǫ0c

2 is just an annoyance in quantum mechanics and is avoided.

The table has been written in terms of c~B and ~m/c because in terms of those
combinations Maxwell’s equations have a very pleasing symmetry. It allows you
to easily convert between expressions for the electric and magnetic fields. You
wish that physicists would have defined the magnetic field as c~B instead of ~B in
SI units, but no such luck.

13.3.1 Point charge at the origin

A point charge is a charge concentrated at a single point. It is a very good
model for the electric field of the nucleus of an atom, since the nucleus is so
small compared to the atom. A point charge of strength q located at the origin
has a charge density

point charge at the origin: ρ(~r) = qδ3(~r) (13.13)
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Physical constants:

ǫ0 = 8.854 187 817 . . . 10−12 C2/Nm2 c = 299 792 458 m/s ≈ 3 108 m/s

Lorentz force law:

~F = q

(
~E + ~v

c
× c~B

)
+
qm
c

(
c~B − ~v

c
× ~E

)

Maxwell’s equations:

∇ · ~E =
1

ǫ0
ρ ∇ · c~B =

1

ǫ0

ρm
c

∇× ~E = −1

c

∂c~B
∂t
− 1

ǫ0c

~m
c

∇× c~B =
1

c

∂~E
∂t

+
1

ǫ0c
~

∇ · ~+ ∂~ρ

∂t
= 0 ∇ · ~m +

∂~ρm
∂t

= 0

Existence of a potential:
~E = −∇ϕ iff ∇× ~E = 0 ~B = −∇ϕm iff ∇× ~B = 0

Point charge at the origin:

ϕ =
q

4πǫ0

1

r
~E =

q

4πǫ0

~r

r3
cϕm =

qm
4πǫ0c

1

r
c~B =

qm
4πǫ0c

~r

r3

Point charge at the origin in 2D:

ϕ =
q′

2πǫ0
ln

1

r
~E =

q′

2πǫ0

~r

r2
cϕm =

q′m
2πǫ0c

ln
1

r
c~B =

q′m
2πǫ0c

~r

r2

Charge dipoles:

ϕ =
q

4πǫ0

[
1

|~r −~r⊕|
− 1

|~r −~r⊖|

]
cϕm =

qm
4πǫ0c

[
1

|~r −~r⊕|
− 1

|~r −~r⊖|

]

~E =
q

4πǫ0

[
~r −~r⊕
|~r −~r⊕|3

− ~r −~r⊖
|~r −~r⊖|3

]
c~B =

qm
4πǫ0c

[
~r −~r⊕
|~r −~r⊕|3

− ~r −~r⊖
|~r −~r⊖|3

]

~℘ = q (~r⊕ −~r⊖) Eext = −~℘ · ~Eext ~µ = qm (~r⊕ −~r⊖) Eext = −~µ · ~Bext

Charge dipoles in 2D:

ϕ =
q′

2πǫ0

[
ln

1

|~r −~r⊕|
− ln

1

|~r −~r⊖|

]
cϕm =

q′m
2πǫ0c

[
ln

1

|~r −~r⊕|
− ln

1

|~r −~r⊖|

]

~E =
q′

2πǫ0

[
~r −~r⊕
|~r −~r⊕|2

− ~r −~r⊖
|~r −~r⊖|2

]
c~B =

q′m
2πǫ0c

[
~r −~r⊕
|~r −~r⊕|2

− ~r −~r⊖
|~r −~r⊖|2

]

~℘ ′ = q′ (~r⊕ −~r⊖) E ′ext = −~℘ ′ · ~Eext ~µ ′ = q′m (~r⊕ −~r⊖) E ′ext = −~µ ′ · ~Bext

Table 13.1: Electromagnetics I: Fundamental equations and basic solutions.
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Distributed charges:

ϕ =
1

4πǫ0

∫

all ~r

1

|~r −~r|ρ(~r) d
3~r cϕm =

1

4πǫ0

∫

all ~r

1

|~r −~r|
ρm(~r)

c
d3~r

~E =
1

4πǫ0

∫

all ~r

~r −~r
|~r −~r|3ρ(~r) d

3~r c~B =
1

4πǫ0

∫

all ~r

~r −~r
|~r −~r|3

ρm(~r)

c
d3~r

ϕ ∼ q

4πǫ0

1

r
+

1

4πǫ0

~℘ ·~r
r3

cϕm ∼
qm

4πǫ0c

1

r
+

1

4πǫ0

~µ ·~r
cr3

~E ∼ q

4πǫ0

~r

r3
+

1

4πǫ0

3(~℘ ·~r)~r − ~℘r2

r5
c~B ∼ qm

4πǫ0c

~r

r3
+

1

4πǫ0

3(~µ ·~r)~r − ~µr2
cr5

q =

∫
ρ(~r) d3~r ~℘ =

∫
~rρ(~r) d3~r qm =

∫
ρm(~r) d

3~r ~µ =

∫
~rρm(~r) d

3~r

Ideal charge dipoles:

ϕ =
1

4πǫ0

~℘ ·~r
r3

cϕm =
1

4πǫ0

~µ ·~r
cr3

~E =
1

4πǫ0

3(~℘ ·~r)~r − ~℘r2

r5
− ~℘

3ǫ0
δ3(~r) c~B =

1

4πǫ0

3(~µ ·~r)~r − ~µr2
cr5

− ~µ

3ǫ0c
δ3(~r)

Biot-Savart law for current densities and currents:

~E =
1

4πǫ0c

∫

all ~r

~r −~r
|~r −~r|3 ×

~m(~r)

c
d3~r c~B = − 1

4πǫ0c

∫

all ~r

~r −~r
|~r −~r|3 × ~(~r) d

3~r

~E =
1

4πǫ0c

∫

all ~r

~r −~r
|~r −~r|3 ×

Im(~r)

c
d~r c~B = − 1

4πǫ0c

∫

all ~r

~r −~r
|~r −~r|3 × I(~r) d~r

2D field due to a straight current along the z-axis:

ϕ =
Im

2πǫ0c2
θ ~E = − Im

2πǫ0c2
1

r
ı̂θ cϕm = − I

2πǫ0c
θ c~B =

I

2πǫ0c

1

r
ı̂θ

Current dipole moment:

~℘ = − 1

2c

∫

all ~r

~r × ~m(~r)

c
d3~r ~µ =

1

2

∫

all ~r

~r × ~(~r) d3~r =
qc
2mc

~L

~M = ~℘× ~Eext Eext = −~℘ · ~Eext ~M = ~µ× ~Bext Eext = −~µ · ~Bext

Ideal current dipoles:

ϕ =
1

4πǫ0

~℘ ·~r
r3

cϕm =
1

4πǫ0

~µ ·~r
cr3

~E =
1

4πǫ0

3(~℘ ·~r)~r − ~℘r2

r5
+

2~℘

3ǫ0
δ3(~r) c~B =

1

4πǫ0

3(~µ ·~r)~r − ~µr2
cr5

+
2~µ

3ǫ0c
δ3(~r)

Table 13.2: Electromagnetics II: Electromagnetostatic solutions.
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where δ3(~r) is the three-dimensional delta function. A delta function is a spike
at a single point that integrates to one, so the charge density above integrates
to the total charge q.

The electric field lines of a point charge are radially outward from the charge;
see for example figure 13.3 in the previous subsection. According to Coulomb’s
law, the electric field of a point charge is

electric field of a point charge: ~E =
q

4πǫ0r2
ı̂r (13.14)

where r is the distance from the charge, ı̂r is the unit vector pointing straight
away from the charge, and ǫ0 = 8.85 10−12 C2/J m is the permittivity of space.
Now for static electric charges the electric field is minus the gradient of a po-
tential ϕ,

~E = −∇ϕ ∇ ≡ ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

In everyday terms the potential ϕ is called the “voltage.” It follows by integra-
tion of the electric field strength with respect to r that the potential of a point
charge is

electric potential of a point charge: ϕ =
q

4πǫ0r
(13.15)

Multiply by −e and you get the potential energy V of an electron in the field of
the point charge. That was used in writing the Hamiltonians of the hydrogen
and heavier atoms.

Delta functions are often not that easy to work with analytically, since they
are infinite and infinity is a tricky mathematical thing. It is often easier to do
the mathematics by assuming that the charge is spread out over a small sphere
of radius ε, rather than concentrated at a single point. If it is assumed that the
charge distribution is uniform within the radius ε, then it is

spherical charge around the origin: ρ =





q
4
3
πε3

if r 6 ε

0 if r > ε

(13.16)

Since the charge density is the charge per unit volume, the charge density times
the volume 4

3
πε3 of the little sphere that holds it must be the total charge q.

The expression above makes it so.
Figure 13.7 shows that outside the region with charge, the electric field and

potential are exactly like those of a point charge with the same net charge q.
But inside the region of charge distribution, the electric field varies linearly with
radius, and becomes zero at the center. It is just like the gravity of earth: going
above the surface of the earth out into space, gravity decreases like 1/r2 if r
is the distance from the center of the earth. But if you go down below the
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. ⑦✄✄
✄
✄
✄
✄✗
~r

r r

ε ε

E ϕ

Figure 13.7: Electric field and potential of a charge that is distributed uniformly
within a small sphere. The dotted lines indicate the values for a point charge.

surface of the earth, gravity decreases also and becomes zero at the center of
the earth. If you want, you can derive the electric field of the spherical charge
from Maxwell’s first equation; it goes much in the same way that Coulomb’s
law was derived from it in the previous section.

If magnetic monopoles exist, they would create a magnetic field much like an
electric charge creates an electric field. As table 13.1 shows, the only difference
is the square of the speed of light c popping up in the expressions. (And that is
really just a matter of definitions, anyway.) In real life, these expressions give
an approximation for the magnetic field near the north or south pole of a very
long thin magnet as long as you do not look inside the magnet.

q′

Figure 13.8: Electric field of a two-dimensional line charge.

A homogeneous distribution of charges along an infinite straight line is called
a line charge. As shown in figure 13.8, it creates a two-dimensional field in the
planes normal to the line. The line charge becomes a point charge within such
a plane. The expression for the field of a line charge can be derived in much the
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same way as Coulomb’s law was derived for a three-dimensional point charge in
the previous section. In particular, where that derivation surrounded the point
charge by a spherical surface, surround the line charge by a cylinder. (Or by a
circle, if you want to think of it in two dimensions.) The resulting expressions
are given in table 13.1; they are in terms of the charge per unit length of the
line q′. Note that in this section a prime is used to indicate that a quantity is
per unit length.

13.3.2 Dipoles

A point charge can describe a single charged particle like an atom nucleus or
electron. But much of the time in physics, you are dealing with neutral atoms or
molecules. For those, the net charge is zero. The simplest model for a system
with zero net charge is called the “dipole.” It is simply a combination of a
positive point charge q and a negative one −q, making the net charge zero.

q

–q

Figure 13.9: Field lines of a vertical electric dipole.

Figure 13.9 shows an example of a dipole in which the positive charge is
straight above the negative one. Note the distinctive egg shape of the biggest
electric field lines. The “electric dipole moment” ~℘ is defined as the product
of the charge strength q times the connecting vector from negative to positive
charge:

electric dipole moment: ~℘ = q(~r⊕ −~r⊖) (13.17)

where ~r⊕ and ~r⊖ are the positions of the positive and negative charges respec-
tively.

The potential of a dipole is simply the sum of the potentials of the two
charges:

potential of an electric dipole: ϕ =
q

4πǫ0

1

|~r −~r⊕|
− q

4πǫ0

1

|~r −~r⊖|
(13.18)
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Note that to convert the expressions for a charge at the origin to one not at the
origin, you need to use the position vector measured from the location of the
charge.

The electric field of the dipole can be found from either taking minus the
gradient of the potential above, or from adding the fields of the individual point
charges, and is

field of an electric dipole: ~E =
q

4πǫ0

~r −~r⊕
|~r −~r⊕|3

− q

4πǫ0

~r −~r⊖
|~r −~r⊖|3

(13.19)

To obtain that result from taking the the gradient of the potential, remember
the following important formula for the gradient of |~r−~r0|n with n an arbitrary
power:

∂|~r −~r0|n
∂ri

= n|~r −~r0|n−2(ri − r0,i) ∇~r|~r −~r0|n = n|~r −~r0|n−2(~r −~r0)

(13.20)
The first expression gives the gradient in index notation and the second gives it
in vector form. The subscript on ∇ merely indicates that the differentiation is
with respect to ~r, not ~r0. These formulae will be used routinely in this section.
Using them, you can check that minus the gradient of the dipole potential does
indeed give its electric field above.

Similar expressions apply for magnetic dipoles. The field outside a thin bar
magnet can be approximated as a magnetic dipole, with the north and south
poles of the magnet as the positive and negative magnetic point charges. The
magnetic field lines are then just like the electric field lines in figure 13.9.

q′

−q′

Figure 13.10: Electric field of a two-dimensional dipole.

Corresponding expressions can also be written down in two dimensions, for
opposite charges distributed along parallel straight lines. Figure 13.10 gives
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an example. In two dimensions, all field lines are circles passing through both
charges.

A particle like an electron has an electric charge and no known size. It
can therefore be described as an ideal point charge. But an electron also has
a magnetic moment: it acts as a magnet of zero size. Such a magnet of zero
size will be referred to as an “ideal magnetic dipole.” More precisely, an ideal
magnetic dipole is defined as the limit of a magnetic dipole when the two poles
are brought vanishingly close together. Now if you just let the two poles ap-
proach each other without doing anything else, their opposite fields will begin to
increasingly cancel each other, and there will be no field left when the poles are
on top of each other. When you make the distance between the poles smaller,
you also need to increase the strengths qm of the poles to ensure that the

magnetic dipole moment: ~µ = qm(~r⊕ −~r⊖) (13.21)

remains finite. So you can think of an ideal magnetic dipole as infinitely strong
magnetic poles infinitely close together.

Figure 13.11: Field of an ideal magnetic dipole.

The field lines of a vertical ideal magnetic dipole are shown in figure 13.11.
Their egg shape is in spherical coordinates described by, {D.72},

r = rmax sin
2 θ φ = constant (13.22)

To find the magnetic field itself, start with the magnetic potential of a nonideal
dipole,

ϕm =
qm

4πǫ0c2

[
1

|~r −~r⊕|
− 1

|~r −~r⊖|

]

Now take the negative pole at the origin, and allow the positive pole to approach
it vanishingly close. Then the potential above takes the generic form

ϕm = f(~r −~r⊕)− f(~r) f(~r) =
qm

4πǫ0c2
1

|~r|
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Now according to the total differential of calculus, (or the multi-dimensional
Taylor series theorem, or the definition of directional derivative), for small ~r⊕
an expression of the form f(~r −~r⊕)− f(~r) can be approximated as

f(~r −~r⊕)− f(~r) ∼ −~r⊕ · ∇f for ~r⊕ → 0

From this the magnetic potential of an ideal dipole at the origin can be found
by using the expression (13.20) for the gradient of 1/|~r| and then substituting
the magnetic dipole strength ~µ for qm~r⊕. The result is

potential of an ideal magnetic dipole: ϕm =
1

4πǫ0c2
~µ ·~r
r3

(13.23)

The corresponding magnetic field can be found as minus the gradient of the
potential, using again (13.20) and the fact that the gradient of ~µ ·~r is just ~µ:

~B =
1

4πǫ0c2
3(~µ ·~r)~r − ~µr2

r5
(13.24)

Similar expressions can be written down for ideal electric dipoles and in two-
dimensions. They are listed in tables 13.1 and 13.2. (The delta functions will
be discussed in the next subsection.)

Figure 13.12: Electric field of an almost ideal two-dimensional dipole.

Figure 13.12 shows an almost ideal two-dimensional electric dipole. The
spacing between the charges has been reduced significantly compared to that
in figure 13.10, and the strength of the charges has been increased. For two-di-
mensional ideal dipoles, the field lines in a cross-plane are circles that all touch
each other at the dipole.
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13.3.3 Arbitrary charge distributions

Modeling electric systems like atoms and molecules and their ions as singular
point charges or dipoles is not very accurate, except in a detailed quantum
solution. In a classical description, it is more reasonable to assume that the
charges are “smeared out” over space into a distribution. In that case, the
charges are described by the charge per unit volume, called the charge density
ρ. The integral of the charge density over volume then gives the net charge,

qregion =

∫

region

ρ(~r) d3~r (13.25)

As far as the potential is concerned, each little piece ρ(~r) d3~r of the charge
distribution acts like a point charge at the point ~r. The expression for the
potential of such a point charge is like that of a point charge at the origin, but
with ~r replaced by ~r − ~r. The total potential results from integrating over all
the point charges. So, for a charge distribution,

ϕ(~r) =
1

4πǫ0

∫

all ~r

1

|~r −~r|ρ(~r) d
3~r (13.26)

The electric field and similar expression for magnetic charge distributions and
in two dimensions may be found in table 13.2

Note that when the integral expression for the potential is differentiated
to find the electric field, as in table 13.2, the integrand becomes much more
singular at the point of integration where ~r = ~r. This may be of importance in
numerical work, where the more singular integrand can lead to larger errors. It
may then be a better idea not to differentiate under the integral, but instead
put the derivative of the charge density in the integral, like in

Ex = −
∂ϕ

∂x
= − 1

4πǫ0

∫

all ~r

1

|~r −~r|
∂ρ(~r)

∂x
d3~r

and similar for the y and z components. That you can do that may be verified
by noting that differentiating ~r−~r with respect to x is within a minus sign the
same as differentiating with respect to x, and then you can use integration by
parts to move the derivative to ρ.

Now consider the case that the charge distribution is restricted to a very
small region around the origin, or equivalently, that the charge distribution
is viewed from a very large distance. For simplicity, assume the case that the
charge distribution is restricted to a small region around the origin. In that case,
~r is small wherever there is charge; the integrand can therefore be approximated
by a Taylor series in terms of ~r to give:

ϕ =
1

4πǫ0

∫

all ~r

[
1

|~r| +
~r

|~r|3 ·~r + . . .

]
ρ(~r) d3~r
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where (13.20) was used to evaluate the gradient of 1/|~r −~r| with respect to ~r.

Since the fractions no longer involve ~r, they can be taken out of the integrals
and so the potential simplifies to

ϕ =
q

4πǫ0

1

r
+

1

4πǫ0

~℘ ·~r
r3

+ . . . q ≡
∫

all ~r

ρ(~r) d3~r ~℘ ≡
∫

all ~r

~rρ(~r) d3~r

(13.27)
The leading term shows that a distributed charge distribution will normally look
like a point charge located at the origin when seen from a sufficient distance.
However, if the net charge q is zero, like happens for a neutral atom or molecule,
it will look like an ideal dipole, the second term, when seen from a sufficient
distance.

The expansion (13.27) is called a “multipole expansion.” It allows the effect
of a complicated charge distribution to be described by a few simple terms,
assuming that the distance from the charge distribution is sufficiently large
that its small scale features can be ignored. If necessary, the accuracy of the
expansion can be improved by using more terms in the Taylor series. Now
recall from the previous section that one advantage of Maxwell’s equations over
Coulomb’s law is that they allow you to describe the electric field at a point using
purely local quantities, rather than having to consider the charges everywhere.
But using a multipole expansion, you can simplify the effects of distant charge
distributions. Then Coulomb’s law can become competitive with Maxwell’s
equations, especially in cases where the charge distribution is restricted to a
relatively limited fraction of the total space.

The previous subsection discussed how an ideal dipole could be created by
decreasing the distance between two opposite charges with a compensating in-
crease in their strength. The multipole expansion above shows that the same
ideal dipole is obtained for a continuous charge distribution, provided that the
net charge q is zero.

The electric field of this ideal dipole can be found as minus the gradient of
the potential. But caution is needed; the so-obtained electric field may not be
sufficient for your needs. Consider the following ballpark estimates. Assume
that the charge distribution has been contracted to a typical small size ε. Then
the net positive and negative charges will have been increased by a corresponding
factor 1/ε. The electric field within the contracted charge distribution will then
have a typical magnitude 1/ε|~r − ~r|2, and that means 1/ε3, since the typical
size of the region is ε. Now a quantity of order 1/ε3 can integrate to a finite
amount even if the volume of integration is small of order ε3. In other words,
there seems to be a possibility that the electric field may have a delta function
hidden within the charge distribution when it is contracted to a point. And so
it does. The correct delta function is derived in derivation {D.72} and shown
in table 13.2. It is important in applications in quantum mechanics where you
need some integral of the electric field; if you forget about the delta function,
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you will get the wrong result.

13.3.4 Solution of the Poisson equation

The previous subsections stumbled onto the solution of an important mathe-
matical problem, the Poisson equation. The Poisson equation is

∇2ϕ = f (13.28)

where f is a given function and ϕ is the unknown one to be found. The Laplacian
∇2 is also often found written as ∆.

The reason that the previous subsection stumbled on to the solution of this
equation is that the electric potential ϕ satisfies it. In particular, minus the
gradient of ϕ gives the electric field; also, the divergence of the electric field
gives according to Maxwell’s first equation the charge density ρ divided by ǫ0.
Put the two together and it says that ∇2ϕ = −ρ/ǫ0. So, identify the function
f in the Poisson equation with −ρ/ǫ0, and there you have the solution of the
Poisson equation.

Because it is such an important problem, it is a good idea to write out the
abstract mathematical solution without the “physical entourage” of (13.26):

∇2ϕ = f =⇒ ϕ(~r) =

∫

all ~r

G(~r −~r)f(~r) d3~r G(~r) = − 1

4π|~r| (13.29)

The function G(~r − ~r) is called the Green’s function of the Laplacian. It is
the solution for ϕ if the function f is a delta function at point ~r. The integral
solution of the Poisson equation can therefore be understood as dividing function
f up into spikes f(~r) d3~r; for each of these spikes the contribution to ϕ is given
by corresponding Green’s function.

It also follows that applying the Laplacian on the Green’s function produces
the three-dimensional delta function,

∇2G(~r) = δ3(~r) G(~r) = − 1

4π|~r| (13.30)

with |~r| = r in spherical coordinates. That sometimes pops up in quantum
mechanics, in particular in perturbation theory. You might object that the
Green’s function is infinite at ~r = 0, so that its Laplacian is undefined there,
rather than a delta function spike. And you would be perfectly right; just
saying that the Laplacian of the Green’s function is the delta function is not
really justified. However, if you slightly round the Green’s function near ~r = 0,
say like ϕ was rounded in figure 13.7, its Laplacian does exist everywhere. The
Laplacian of this rounded Green’s function is a spike confined to the region of
rounding, and it integrates to one. (You can see the latter from applying the
divergence theorem on a sphere enclosing the region of rounding.) If you then



628 CHAPTER 13. ELECTROMAGNETISM

contract the region of rounding to zero, this spike becomes a delta function in
the limit of no rounding. Understood in this way, the Laplacian of the Green’s
function is indeed a delta function.

The multipole expansion for a charge distribution can also be converted to
purely mathematical terms:

ϕ = − 1

4πr

∫

all ~r

f(~r) d3~r − ~r

4πr3
·
∫

all ~r

~rf(~r) d3~r + . . . (13.31)

(Of course, delta functions are infinite objects, and you might wonder at the
mathematical rigor of the various arguments above. However, there are solid
arguments based on “Green’s second integral identity” that avoid the infinities
and produce the same final results.)

13.3.5 Currents

Streams of moving electric charges are called currents. The current strength I
through an electric wire is defined as the amount of charge flowing through a
cross section per unit time. It equals the amount of charge q′ per unit length
times its velocity v;

I ≡ q′v (13.32)

The current density ~ is defined as the current per unit volume, and equals the
charge density times the charge velocity. Integrating the current density over
the cross section of a wire gives its current.

I

Figure 13.13: Magnetic field lines around an infinite straight electric wire.

As shown in figure 13.13, electric wires are encircled by magnetic field lines.
The strength of this magnetic field may be computed from Maxwell’s fourth
equation. To do so, take an arbitrary field line circle. The field strength is
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constant on the line by symmetry. So the integral of the field strength along
the line is just 2πrB; the perimeter of the field line times its magnetic strength.
Now the Stokes’ theorem of calculus says that this integral is equal to the curl
of the magnetic field integrated over the interior of the field line circle. And
Maxwell’s fourth equation says that that is 1/ǫ0c

2 times the current density
integrated over the circle. And the current density integrated over the circle is
just the current through the wire. Put it all together to get

magnetic field of an infinite straight wire: B =
I

2πǫ0c2r
(13.33)

I

S

N

Figure 13.14: An electromagnet consisting of a single wire loop. The generated
magnetic field lines are in blue.

An infinite straight wire is of course not a practical way to create a magnetic
field. In a typical electromagnet, the wire is spooled around an iron bar. Figure
13.14 shows the field produced by a single wire loop, in vacuum. To find the
fields produced by curved wires, use the so-called “Biot-Savart law” listed in
table 13.2 and derived in {D.72}. You need it when you end up writing a book
on quantum mechanics and have to plot the field.

Of course, while figure 13.14 does not show it, you will also need a lead from
your battery to the electromagnet and a second lead back to the other pole of
the battery. These two leads form a two-dimensional “current dipole,” as shown
in figure 13.15, and they produce a magnetic field too. However, the currents in
the two leads are opposite; one coming from the battery and other returning to
it, so the magnetic fields that they create are opposite. Therefore, if you strand
the wires very closely together, their magnetic fields will cancel each other, and
not mess up that of your electromagnet.

It may be noted that if you bring the wires close together, whatever is left
of the field has circular field lines that touch at the dipole. In other words,
a horizontal ideal current dipole produces the same field as a two-dimensional
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I −I

Figure 13.15: A current dipole.

vertical ideal charge dipole. Similarly, the horizontal wire loop, if small enough,
produces the same field lines as a three-dimensional vertical ideal charge dipole.
(However, the delta functions are different, {D.72}.)

13.3.6 Principle of the electric motor

The previous section discussed how Maxwell’s third equation allows electric
power generation using mechanical means. The converse is also possible; electric
power allows mechanical power to be generated; that is the principle of the
electric motor.

It is possible because of the Lorentz force law, which says that a charge
q moving with velocity ~v in a magnetic field ~B experiences a force pushing it
sideways equal to

~F = q~v × ~B
Consider the wire loop in an external magnetic field sketched in figure 13.16.
The sideways forces on the current carriers in the wire produce a net moment
~M on the wire loop that allows it to perform useful work.

To be more precise, the forces caused by the component of the magnetic
field normal to the wire loop are radial and produce no net force nor moment.
However, the forces caused by the component of the magnetic field parallel to
the loop produce forces normal to the plane of the loop that do generate a net
moment. Using spherical coordinates aligned with the wire loop as in figure
13.17, the component of the magnetic field parallel to the loop equals Bext sin θ.
It causes a sideways force on each element rdφ of the wire equal to

dF = q′rdφ︸ ︷︷ ︸
dq

vBext sin θ sinφ︸ ︷︷ ︸
~v×~Bparallel
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~Bext

M

Figure 13.16: Electric motor using a single wire loop. The Lorentz forces (black
vectors) exerted by the external magnetic field on the electric current carriers
in the wire produce a net moment M on the loop. The self-induced magnetic
field of the wire and the corresponding radial forces are not shown.

~Bext

θ

φM

Figure 13.17: Variables for the computation of the moment on a wire loop in a
magnetic field.



632 CHAPTER 13. ELECTROMAGNETISM

where q′ is the net charge of current carriers per unit length and v their velocity.
The corresponding net force integrates to zero. However the moment does not;
integrating

dM = r sinφ︸ ︷︷ ︸
arm

q′rdφvBext sin θ sinφ︸ ︷︷ ︸
force

produces
M = πr2q′vBext sin θ

If the work Mdθ done by this moment is formulated as a change in energy of
the loop in the magnetic field, that energy is

Eext = −πr2q′vBext cos θ

The magnetic dipole moment ~µ is defined as the factor that only depends
on the wire loop, independent of the magnetic field. In particular µ = πr2q′v
and it is taken to be in the axial direction. So the moment and energy can be
written more concisely as

~M = ~µ× ~Bext Eext = −~µ · ~Bext

Yes, ~µ also governs how the magnetic field looks at large distances; feel free to
approximate the Biot-Savart integral for large distances to check.

A book on electromagnetics would typically identify q′v with the current
through the wire I and πr2 with the area of the loop, so that the magnetic
dipole moment is just IA. This is then valid for a flat wire loop of any shape,
not just a circular one.

But this is a book on quantum mechanics, and for electrons in orbits about
nuclei, currents and areas are not very useful. In quantum mechanics the more
meaningful quantity is angular momentum. So identify 2πrq′ as the total electric
charge going around in the wire loop, and multiply that with the ratio mc/qc
of mass of the current carrier to its charge to get the total mass going around.
Then multiply with rv to get the angular momentum L. In those terms, the
magnetic dipole moment is

~µ =
qc
2mc

~L (13.34)

Usually the current carrier is an electron, so qc = −e and mc = me.
These results apply to any arbitrary current distribution, not just a circular

wire loop. Formulae are in table 13.2 and general derivations in {D.72}.

13.4 Particles in Magnetic Fields

Maxwell’s equations are fun, but back to real quantum mechanics. The serious
question in this section is how a magnetic field ~B affects a quantum system, like
say an electron in an hydrogen atom.
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Well, if the Hamiltonian (13.2) for a charged particle is written out and
cleaned up, {D.73}, it is seen that a constant magnetic field adds two terms.
The most important of the two is

HBL = − q

2m
~B · ~̂L (13.35)

where q is the charge of the particle, m its mass, ~B the external magnetic field,

assumed to be constant on the scale of the atom, and ~̂L is the orbital angular
momentum of the particle.

In terms of classical physics, this can be understood as follows: a parti-
cle with angular momentum ~L can be pictured to be circling around the axis
through ~L. Now according to Maxwell’s equations, a charged particle going
around in a circle acts as a little electromagnet. Think of a version of figure
13.6 using a circular path. And a little magnet wants to align itself with an
ambient magnetic field, just like a magnetic compass needle aligns itself with
the magnetic field of earth.

In electromagnetics, the effective magnetic strength of a circling charged
particle is described by the so called orbital “magnetic dipole moment” ~µL,
defined as

~µL ≡
q

2m
~L. (13.36)

In terms of this magnetic dipole moment, the energy is

HBL = −~µL · ~B. (13.37)

which is the lowest when the magnetic dipole moment is in the same direction
as the magnetic field.

The scalar part of the magnetic dipole moment, to wit,

γL =
q

2m
(13.38)

is called the “gyromagnetic ratio.” But since in quantum mechanics the orbital
angular momentum comes in chunks of size ~, and the particle is usually an
electron with charge q = −e, much of the time you will find instead the “Bohr
magneton”

µB =
e~

2me

≈ 9.274 10−24 J/T (13.39)

used. Here T stands for Tesla, the kg/C-s unit of magnetic field strength.
Please, all of this is serious; this is not a story made up by this book to put

physicists in a bad light. Note that the original formula had four variables in

it: q, m, ~B, and ~̂L, and the three new names they want you to remember are
less than that.
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The big question now is: since electrons have spin, build-in angular momen-
tum, do they still act like little magnets even if not going around in a circle?
The answer is yes; there is an additional term in the Hamiltonian due to spin.
Astonishingly, the energy involved pops out of Dirac’s relativistic description of
the electron, {D.74}. The energy that an electron picks up in a magnetic field
due to its inherent spin is:

HBS = −ge
q

2me

~B · ~̂S ge ≈ 2 q = −e (13.40)

(This section uses again S to indicate spin angular momentum.) The constant
g is called the “g-factor”. Since its value is 2, electron spin produces twice
the magnetic dipole strength as the same amount of orbital angular momentum
would. That is called the “magnetic spin anomaly,” [52, p. 222].

It should be noted that really the g-factor of an electron is about 0.1%
larger than 2 because of the quantization of the electromagnetic field ignored in
the Dirac equation. The quantized electromagnetic field, whose particle is the
photon, has quantum uncertainty. You can think of it qualitatively as virtual
photons popping up and disappearing continuously according to the energy-time
uncertainty ∆E∆t ≈ ~, allowing particles with energy ∆E to appear as long as
they don’t stay around longer than a very brief time ∆t. “Quantum electrody-
namics” says that to a better approximation g ≈ 2+α/π where α = e2/4πǫ0~c
≈ 1/137 is called the fine structure constant. This correction to g, due to the
possible interaction of the electron with a virtual photon, [19, p. 116], is called
the “anomalous magnetic moment,” [25, p. 273]. (The fact that physicists have
not yet defined potential deviations from the quantum electrodynamics value
to be “magnetic spin anomaly anomalous magnetic moment anomalies” is an
anomaly.) The prediction of the g-factor of the electron is a test for the accu-
racy of quantum electrodynamics, and so this g-factor has been measured to
exquisite precision. At the time of writing, (2008), the experimental value is
2.002 319 304 362, to that many correct digits. Quantum electrodynamics has
managed to get things right to more than ten digits by including more and
more, increasingly complex interactions with virtual photons and virtual elec-
tron/positron pairs, [19], one of the greatest achievements of twentieth century
physics.

You might think that the above formula for the energy of an electron in a
magnetic field should also apply to protons and neutrons, since they too are spin
1/2 particles. However, this turns out to be untrue. Protons and neutrons are
not elementary particles, but consist of three “quarks.” Still, for both electron
and proton spin the gyromagnetic ratio can be written as

γS = g
q

2m
(13.41)

but while the g-factor of the electron is 2, the measured one for the proton is
5.59.



13.4. PARTICLES IN MAGNETIC FIELDS 635

Do note that due to the much larger mass of the proton, its actual magnetic
dipole moment is much less than that of an electron despite its larger g-factor.
Still, under the right circumstances, like in nuclear magnetic resonance, the
magnetic dipole moment of the proton is crucial despite its relative small size.

For the neutron, the charge is zero, but the magnetic moment is not, which
would make its g-factor infinite! The problem is that the quarks that make up
the neutron do have charge, and so the neutron can interact with a magnetic
field even though its net charge is zero. When the proton mass and charge are
arbitrarily used in the formula, the neutron’s g-factor is -3.83. More generally,
nuclear magnetic moments are expressed in terms of the “nuclear magneton”

µN =
e~

2mp

≈ 5.050 78 10−27 J/T (13.42)

that is based on proton charge and mass. Therefore nuclear g-factors are sim-
ply twice the nuclear magnetic moment in magnetons. (Needless to say, some
authors leave out the factor 2 for that additional touch of confusion.)

At the start of this subsection, it was noted that the Hamiltonian for a
charged particle has another term. So, how about it? It is called the “diamag-
netic contribution,” and it is given by

HBD =
q2

8m

(
~B × ~̂r

)2
(13.43)

Note that a system, like an atom, minimizes this contribution by staying away
from magnetic fields: it is positive and proportional to B2.

The diamagnetic contribution can usually be ignored if there is net orbital or
spin angular momentum. To see why, consider the following numerical values:

µB =
e~

2me

≈ 5.788 10−5 eV/T
e2a20
8me

= 6.156 5 10−11 eV/T2

The first number gives the magnetic dipole energy, for a quantum of angular
momentum, per Tesla, while the second number gives the diamagnetic energy,
for a Bohr-radius spread around the magnetic axis, per square Tesla.

It follows that it takes about a million Tesla for the diamagnetic energy
to become comparable to the dipole one. Now at the time of this writing,
(2008), the world record magnet that can operate continuously is right here at
the Florida State University. It produces a field of 45 Tesla, taking in 33 MW
of electricity and 4 000 gallons of cooling water per minute. The world record
magnet that can produce even stronger brief magnetic pulses is also here, and
it produces 90 Tesla, going on 100. (Still stronger magnetic fields are possible
if you allow the magnet to blow itself to smithereens during the fraction of a
second that it operates, but that is so messy.) Obviously, these numbers are
way below a million Tesla. Also note that since atom energies are in electron
volts or more, none of these fields are going to blow an atom apart.
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13.5 Stern-Gerlach Apparatus

A constant magnetic field will exert a torque, but no net force on a magnetic
dipole like an electron; if you think of the dipole as a magnetic north pole and
south pole close together, the magnetic forces on north pole and south pole will
be opposite and produce no net force on the dipole. However, if the magnetic
field strength varies with location, the two forces will be different and a net
force will result.

The Stern-Gerlach apparatus exploits this process by sending a beam of
atoms through a magnetic field with spatial variation, causing the atoms to
deflect upwards or downwards depending on their magnetic dipole strength.
The magnetic dipole strengths of the atoms will be proportional to the relevant
electron angular momenta, (the nucleus can be ignored because of the large
mass in its gyromagnetic ratio), and that will be quantized. So the incoming
beam will split into distinct beams corresponding to the quantized values of the
electron angular momentum.

The experiment was a great step forward in the development of quantum me-
chanics, because there is really no way that classical mechanics can explain the
splitting into separate beams; classical mechanics just has to predict a smeared-
out beam. Angular momentum in classical mechanics can have any value, not
just the values m~ of quantum mechanics. Moreover, by capturing one of the
split beams, you have a source of particles all in the same state without uncer-
tainty, to use for other experiments or practical applications such as masers.

Stern and Gerlach used a beam of silver atoms in their experiment, and the
separated beams deposited this silver on a plate. Initially, Gerlach had difficulty
seeing any deposited silver on those plates because the layer was extremely thin.
But fortunately for quantum mechanics, Stern was puffing his usual cheap cigars
when he had a look, and the large amount of sulphur in the smoke was enough
to turn some of the silver into jet-black silver sulfide, making it show clearly.

An irony is that that Stern and Gerlach assumed that that they had verified
Bohr’s orbital momentum. But actually, they had discovered spin. The net
magnetic moment of silver’s inner electrons is zero, and the lone valence electron
is in a 5s orbit with zero orbital angular momentum. It was the spin of the
valence electron that caused the splitting. While spin has half the strength of
orbital angular momentum, its magnetic moment is about the same due to its
g-factor being two rather than one.

To use the Stern Gerlach procedure with charged particles such as lone
electrons, a transverse electric field must be provided to counteract the large
Lorentz force that the magnet imparts on the moving electrons.
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13.6 Nuclear Magnetic Resonance

Nuclear magnetic resonance, or NMR, is a valuable tool for examining nuclei, for
probing the structure of molecules, in particular organic ones, and for medical
diagnosis, as MRI. This section will give a basic quantum description of the
idea. Linear algebra will be used.

13.6.1 Description of the method

First demonstrated independently by Bloch and Purcell in 1946, NMR probes
nuclei with net spin, in particular hydrogen nuclei or other nuclei with spin 1/2.
Various common nuclei, like carbon and oxygen do not have net spin; this can
be a blessing since they cannot mess up the signals from the hydrogen nuclei, or
a limitation, depending on how you want to look at it. In any case, if necessary
isotopes such as carbon 13 can be used which do have net spin.

It is not actually the spin, but the associated magnetic dipole moment of the
nucleus that is relevant, for that allows the nuclei to be manipulated by magnetic
fields. First the sample is placed in an extremely strong steady magnetic field.
Typical fields are in terms of Tesla. (A Tesla is about 20 000 times the strength
of the magnetic field of the earth.) In the field, the nucleus has two possible
energy states; a ground state in which the spin component in the direction of
the magnetic field is aligned with it, and an elevated energy state in which the
spin is opposite {N.33}. (Despite the large field strength, the energy difference
between the two states is extremely small compared to the thermal kinetic
energy at room temperature. The number of nuclei in the ground state may
only exceed those in the elevated energy state by say one in 100 000, but that
is still a large absolute number of nuclei in a sample.)

Now perturb the nuclei with a second, much smaller and radio frequency,
magnetic field. If the radio frequency is just right, the excess ground state
nuclei can be lifted out of the lowest energy state, absorbing energy that can
be observed. The “resonance” frequency at which this happens then gives in-
formation about the nuclei. In order to observe the resonance frequency very
accurately, the perturbing rf field must be very weak compared to the primary
steady magnetic field.

In Continuous Wave NMR, the perturbing frequency is varied and the ab-
sorption examined to find the resonance. (Alternatively, the strength of the
primary magnetic field can be varied, that works out to the same thing using
the appropriate formula.)

In Fourier Transform NMR, the perturbation is applied in a brief pulse just
long enough to fully lift the excess nuclei out of the ground state. Then the
decay back towards the original state is observed. An experienced operator can
then learn a great deal about the environment of the nuclei. For example, a
nucleus in a molecule will be shielded a bit from the primary magnetic field by



638 CHAPTER 13. ELECTROMAGNETISM

the rest of the molecule, and that leads to an observable frequency shift. The
amount of the shift gives a clue about the molecular structure at the nucleus,
so information about the molecule. Additionally, neighboring nuclei can cause
resonance frequencies to split into several through their magnetic fields. For
example, a single neighboring perturbing nucleus will cause a resonance fre-
quency to split into two, one for spin up of the neighboring nucleus and one
for spin down. It is another clue about the molecular structure. The time for
the decay back to the original state to occur is another important clue about
the local conditions the nuclei are in, especially in MRI. The details are beyond
this author’s knowledge; the purpose here is only to look at the basic quantum
mechanics behind NMR.

13.6.2 The Hamiltonian

The magnetic fields will be assumed to be of the form

~B = B0k̂ + B1 (̂ı cosωt− ̂ sinωt) (13.44)

where B0 is the Tesla-strength primary magnetic field, B1 the very weak per-
turbing field strength, and ω is the frequency of the perturbation.

The component of the magnetic field in the xy-plane, B1, rotates around the
z-axis at angular velocity ω. Such a rotating magnetic field can be achieved
using a pair of properly phased coils placed along the x and y axes. (In Fourier
Transform NMR, a single perturbation pulse actually contains a range of differ-
ent frequencies ω, and Fourier transforms are used to take them apart.) Since
the apparatus and the wave length of a radio frequency field is very large on
the scale of a nucleus, spatial variations in the magnetic field can be ignored.

Now suppose you place a spin 1/2 nucleus in the center of this magnetic field.
As discussed in section 13.4, a particle with spin will act as a little compass
needle, and its energy will be lowest if it is aligned with the direction of the
ambient magnetic field. In particular, the energy is given by

H = −~µ · ~B

where ~µ is called the magnetic dipole strength of the nucleus. This dipole

strength is proportional to its spin angular momentum ~̂S:

~µ = γ ~̂S

where the constant of proportionality γ is called the gyromagnetic ratio. The
numerical value of the gyromagnetic ratio can be found as

γ =
gq

2m
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In case of a hydrogen nucleus, a proton, the mass mp and charge qp = e can be
found in the notations section, and the proton’s experimentally found g-factor
is gp = 5.59.

The bottom line is that you can write the Hamiltonian of the interaction of
the nucleus with the magnetic field in terms of a numerical gyromagnetic ratio
value, spin, and the magnetic field:

H = −γ ~̂S · ~B (13.45)

Now turning to the wave function of the nucleus, it can be written as a
combination of the spin-up and spin-down states,

Ψ = a↑+ b↓,

where ↑ has spin 1
2
~ in the z-direction, along the primary magnetic field, and ↓

has −1
2
~. Normally, a and b would describe the spatial variations, but spatial

variations are not relevant to the analysis, and a and b can be considered to be
simple numbers.

You can use the concise notations of linear algebra by combining a and b in
a two-component column vector (more precisely, a spinor),

Ψ =

(
a
b

)

In those terms, the spin operators become matrices, the so-called Pauli spin
matrices of section 12.10,

Ŝx =
~

2

(
0 1
1 0

)
Ŝy =

~

2

(
0 −i
i 0

)
Ŝz =

~

2

(
1 0
0 −1

)
(13.46)

Substitution of these expressions for the spin, and (13.44) for the magnetic
field into (13.45) gives after cleaning up the final Hamiltonian:

H = −~

2

(
ω0 ω1e

iωt

ω1e
−iωt −ω0

)
ω0 = γB0 ω1 = γB1 (13.47)

The constants ω0 and ω1 have the dimensions of a frequency; ω0 is called the
“Larmor frequency.” As far as ω1 is concerned, the important thing to remember
is that it is much smaller than the Larmor frequency ω0 because the perturbation
magnetic field is small compared to the primary one.

13.6.3 The unperturbed system

Before looking at the perturbed case, it helps to first look at the unperturbed
solution. If there is just the primary magnetic field affecting the nucleus, with
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no radio-frequency perturbation ω1, the Hamiltonian derived in the previous
subsection simplifies to

H = −~

2

(
ω0 0
0 −ω0

)

The energy eigenstates are the spin-up state, with energy −1
2
~ω0, and the spin-

down state, with energy 1
2
~ω0.

The difference in energy is in relativistic terms exactly equal to a photon
with the Larmor frequency ω0. While the treatment of the electromagnetic field
in this discussion will be classical, rather than relativistic, it seems clear that
the Larmor frequency must play more than a superficial role.

The unsteady Schrödinger equation tells you that the wave function evolves
in time like i~Ψ̇ = HΨ, so if Ψ = a↑+ b↓,

i~

(
ȧ

ḃ

)
= −~

2

(
ω0 0
0 −ω0

)(
a
b

)

The solution for the coefficients a and b of the spin-up and -down states is:

a = a0e
iω0t/2 b = b0e

−iω0t/2

if a0 and b0 are the values of these coefficients at time zero.
Since |a|2 = |a0|2 and |b|2 = |b0|2 at all times, the probabilities of measuring

spin-up or spin-down do not change with time. This was to be expected, since
spin-up and spin-down are energy states for the steady system. To get more
interesting physics, you really need the unsteady perturbation.

But first, to understand the quantum processes better in terms of the ideas of
nonquantum physics, it will be helpful to write the unsteady quantum evolution
in terms of the expectation values of the angular momentum components. The
expectation value of the z-component of angular momentum is

〈Sz〉 = |a|2
~

2
− |b|2~

2

To more clearly indicate that the value must be in between −~/2 and ~/2,
you can write the magnitude of the coefficients in terms of an angle α, the
“precession angle”,

|a| = |a0| ≡ cos(α/2) |b| = |b0| ≡ sin(α/2)

In terms of the so-defined α, you simply have, using the half-angle trig formulae,

〈Sz〉 =
~

2
cosα

The expectation values of the angular momenta in the x and y directions
can by found as the inner products 〈Ψ|ŜxΨ〉 and 〈Ψ|ŜyΨ〉, chapter 4.4.3. Sub-
stituting the representation in terms of spinors and Pauli spin matrices, and
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cleaning up using the Euler formula (2.5), you get

〈Sx〉 =
~

2
sinα cos(ω0t+ α) 〈Sy〉 = −

~

2
sinα sin(ω0t+ α)

where α is some constant phase angle that is further unimportant.

The first thing that can be seen from these results is that the length of the
expectation angular momentum vector is ~/2. Next, the component with the z-
axis, the direction of the primary magnetic field, is at all times 1

2
~ cosα. That

implies that the expectation angular momentum vector is under a constant angle
α with the primary magnetic field.

y

z

x

~B

〈~S〉 or 〈~µ〉

Figure 13.18: Larmor precession of the expectation spin (or magnetic moment)
vector around the magnetic field.

The component in the xy-plane is 1
2
~ sinα, and this component rotates

around the z-axis, as shown in figure 13.18, causing the end point of the ex-
pectation angular momentum vector to sweep out a circular path around the
magnetic field ~B. This rotation around the z-axis is called “Larmor precession.”
Since the magnetic dipole moment is proportional to the spin, it traces out the
same conical path.

Caution should be used against attaching too much importance to this clas-
sical picture of a precessing magnet. The expectation angular momentum vector
is not a physically measurable quantity. One glaring inconsistency in the expec-
tation angular momentum vector versus the true angular momentum is that the
square magnitude of the expectation angular momentum vector is ~

2/4, three
times smaller than the true square magnitude of angular momentum.
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13.6.4 Effect of the perturbation

In the presence of the perturbing magnetic field, the unsteady Schrödinger equa-
tion i~Ψ̇ = HΨ becomes

i~

(
ȧ

ḃ

)
= −~

2

(
ω0 ω1e

iωt

ω1e
−iωt −ω0

)(
a
b

)
(13.48)

where ω0 is the Larmor frequency, ω is the frequency of the perturbation, and
ω1 is a measure of the strength of the perturbation and small compared to ω0.

The above equations can be solved exactly using standard linear algebra
procedures, though the the algebra is fairly stifling {D.75}. The analysis brings
in an additional quantity that will be called the “resonance factor”

f =

√
ω2
1

(ω − ω0)2 + ω2
1

(13.49)

Note that f has its maximum value, one, at “resonance,” i.e. when the pertur-
bation frequency ω equals the Larmor frequency ω0.

The analysis finds the coefficients of the spin-up and spin-down states to be:

a =

[
a0

(
cos
(ω1t

2f

)
− if

ω − ω0

ω1

sin
(ω1t

2f

))
+ b0if sin

(ω1t

2f

)]
eiωt/2 (13.50)

b =

[
b0

(
cos
(ω1t

2f

)
+ if

ω − ω0

ω1

sin
(ω1t

2f

))
+ a0if sin

(ω1t

2f

)]
e−iωt/2(13.51)

where a0 and b0 are the initial coefficients of the spin-up and spin-down states.
This solution looks pretty forbidding, but it is not that bad in application.

The primary interest is in nuclei that start out in the spin-up ground state, so
you can set |a0| = 1 and b0 = 0. Also, the primary interest is in the probability
that the nuclei may be found at the elevated energy level, which is

|b|2 = f 2 sin2
(ω1t

2f

)
(13.52)

That is a pretty simple result. When you start out, the nuclei you look at are in
the ground state, so |b|2 is zero, but with time the rf perturbation field increases
the probability of finding the nuclei in the elevated energy state eventually to a
maximum of f 2 when the sine becomes one.

Continuing the perturbation beyond that time is bad news; it decreases the
probability of elevated states again. As figure 13.19 shows, over extended times,
there is a flip-flop between the nuclei being with certainty in the ground state,
and having a probability of being in the elevated state. The frequency at which
the probability oscillates is called the “Rabi flopping frequency”. The author’s
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t
0

|b|2

Figure 13.19: Probability of being able to find the nuclei at elevated energy
versus time for a given perturbation frequency ω.

ωω0

2ω1

0

f 2

1

Figure 13.20: Maximum probability of finding the nuclei at elevated energy.

sources differ about the precise definition of this frequency, but the one that
seems to be most logical is ω1/f .

Anyway, by keeping up the perturbation for the right time you can raise the
probability of elevated energy to a maximum of f 2. A plot of f 2 against the
perturbing frequency ω is called the “resonance curve,“ shown in figure 13.20.
For the perturbation to have maximum effect, its frequency ω must equal the
nuclei’s Larmor frequency ω0. Also, for this frequency to be very accurately
observable, the “spike” in figure 13.20 must be narrow, and since its width is
proportional to ω1 = γB1, that means the perturbing magnetic field must be
very weak compared to the primary magnetic field.

There are two qualitative ways to understand the need for the frequency
of the perturbation to equal the Larmor frequency. One is geometrical and
classical: as noted in the previous subsection, the expectation magnetic moment
precesses around the primary magnetic field with the Larmor frequency. In order
for the small perturbation field to exert a long-term downward “torque” on this
precessing magnetic moment as in figure 13.21, it must rotate along with it.
If it rotates at any other frequency, the torque will quickly reverse direction
compared to the magnetic moment, and the vector will start going up again.
The other way to look at it is from a relativistic quantum perspective: if the
magnetic field frequency equals the Larmor frequency, its photons have exactly
the energy required to lift the nuclei from the ground state to the excited state.

At the Larmor frequency, it would naively seem that the optimum time
to maintain the perturbation is until the expectation spin vector is vertically
down; then the nucleus is in the exited energy state with certainty. If you
then allow nature the time to probe its state, every nucleus will be found to
be in the excited state, and will emit a photon. (If not messed up by some
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y

z

x

~B

Figure 13.21: A perturbing magnetic field, rotating at precisely the Larmor
frequency, causes the expectation spin vector to come cascading down out of
the ground state.

collision or whatever, little in life is ideal, is it?) However, according to actual
descriptions of NMR devices, it is better to stop the perturbation earlier, when
the expectation spin vector has become horizontal, rather than fully down. In
that case, nature will only find half the nuclei in the excited energy state after
the perturbation, presumably decreasing the radiation yield by a factor 2. The
classical explanation that is given is that when the (expectation) spin vector
is precessing at the Larmor frequency in the horizontal plane, the radiation is
most easily detected by the coils located in that same plane. And that closes
this discussion.



Chapter 14

Nuclei [Unfinished Draft]

This chapter has not been finished. Since I think some parts of it are already of
interest, like the figures, I am posting it as is. The reader beware, much of it
has been poorly proofread, if at all. The figures should be fine.

So far, the focus in this book has been mostly on electrons. That is normal
because electrons are important like nothing else for the physical properties
of matter. Atomic nuclei appear in the story only as massive anchors for the
electrons, holding onto the electrons with their positive electric charge. But
then there is nuclear energy. Here the nuclei call the shots. Nuclei are discussed
in this chapter.

The theory of nuclear structure is much less advanced than that of the elec-
tronic structure of atoms. Unlike the electromagnetic forces, the nuclear forces
are very poorly understood. Examining them with well-understood electro-
magnetic probes is limited since nuclear forces are extremely strong, resisting
manipulation. Accurate direct measurement of quantities of interest is usually
not possible.

Nuclear physicists responded to that with a tidal wave of ingenious experi-
ments, usually leveraging one accepted fact to deduce the next one (and at the
same time check the old one). Much of this data is presented in this chapter in
the form of overview figures. This is intended to allow you to understand the
big picture.

Some important approximate quantum models have been developed by nu-
clear physicists to explain all that data. This chapter also tries to explain these
models in relatively simple terms.

The first few sections of the chapter give an overview of key concepts im-
portant for understanding nuclei. It is highly recommended that you read these
before reading any later sections in this chapter.

But first one word of caution about the figures. Most of their data has been
carefully machine-read from standard nuclear data bases. However, the used
data bases date from around the year 2003. So check any data you get from the
figures for any more recent updates that may be available. Also note that various

645
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figures that depend on relatively delicate mathematical analysis were machine
produced too. Typically this was done using reasonable simplifications and/or
a priori assumptions. Use such figures to understand the big picture, but do
not pick individual data from them without checking it. A simple automated
procedure processing about 3 000 different nuclei from some key data using
an approximate model cannot compete with a nuclear specialist analyzing a
single nucleus based on all the extensive knowledge that is available for that
one nucleus.

14.1 Fundamental Concepts

This section describes the most basic facts about nuclei. These facts will be
taken for granted in the rest of this chapter.

Nuclei consist of protons and neutrons. Protons and neutrons are therefore
called “nucleons.” Neutrons are electrically neutral, but protons are positively
charged. In particular, the electric charge of a proton has the same magnitude
as the charge of an electron, but has opposite sign. Since opposite charges
attract, the protons in a nucleus attract electrons. Despite that, the electrons
do not end up inside the nucleus. They have much larger quantum mechanical
uncertainty in position than the much heavier nucleons. So the electrons form
a “cloud” around the tiny nucleus, producing an atom.

Since charges of the same sign repel, protons mutually repel each other.
That is due to the same electric “Coulomb” force that allows them to attract
electrons. By itself, the Coulomb force between the protons in a nucleus would
cause the nucleus to fly apart immediately. But nucleons, both protons and
neutrons, also attract each other through another force, the “nuclear force.” It
is this force that keeps a nucleus together.

The nuclear force is very strong, which allows it to dominate electromagnetic
forces like the repulsive Coulomb force in stable nuclei. But the nuclear force
is also very short range, extending over no more than a few femtometers. (A
femtometer, or fm, equals 10−15 m. It is sometimes called a fermi after famous
nuclear physicist Enrico Fermi. While not approved by SI, Fermi was one of
the good guys, so we should make allowances.) In big nuclei, nucleons are only
held together to other nucleons in their immediate neighborhood by the nuclear
force. But the protons are repulsed by other protons everywhere in the nucleus.
If the nucleus gets too big, this repulsion becomes so big that the nucleus can
no longer be stable. Lead, with 82 protons, is the heaviest element that can be
stable, and then only if it contains a suitable number of neutrons to keep the
protons somewhat apart.

The strength of the nuclear force is about the same regardless of the type of
nucleons involved, protons or neutrons. That is called “charge independence.”



14.1. FUNDAMENTAL CONCEPTS 647

More restrictively, but even more accurately, the nuclear force is the same
if you swap the nucleon types. In other words, the nuclear force is the same
if you replace all protons by neutrons and vice-versa. That is called “charge
symmetry.” For example, if you swap the nucleon type of a pair of protons, you
get a pair of neutrons. Therefore the nuclear force between a pair of protons
is very accurately the same as the one between a pair of neutrons, all else
being equal. (The already mentioned Coulomb repulsion between the protons
is additional and not the same.) But if you swap the nucleon type of a pair of
protons, or of a pair of neutrons, you do not get a proton and a neutron. So
the nuclear force between a proton and a neutron is less accurately the same as
that between two protons or two neutrons.

The nuclear force is not a fundamental one. It is just an effect of the “color
force” or “strong force” between the “quarks” of which protons and neutrons
consist. That is why the nuclear force is also often called the “residual strong
force.” It is much like how the Van der Waals force between molecules is not a
fundamental one; that force is a residual of the electromagnetic force between
the electrons and nuclei of which molecules exist, {A.33}.

However, the theory of the color force,“quantum chromedynamics,” is well
beyond the scope of this book. It is also not really important for nanotechnology.
In fact, it is not all that important for nuclear engineering either because the
details of the theory are uncertain, and numerical solution is intractable, [19].

Despite the fact that the nuclear force is poorly understood, physicists can
say some things with confidence. First of all,

Nuclei are normally in the ground state.

The “ground state” is the quantum state of lowest energy E. Nuclei can also
be in “excited” states of higher energy. However, a bit of thermal energy is
not going to excite a nucleus. Differences between nuclear energy levels are
extremely large on a microscopic scale. That is why nuclear bombs and nuclear
reactors can create so much energy. Still, nuclear reactions will typically leave
nuclei in excited states. Usually such states decay back to the ground state very
quickly. (In special cases, it may take forever.)

It should be noted that if a nuclear state is not stable, it implies that it has
a very slight uncertainty in energy, compare chapter 7.4.1. This uncertainty in
energy is commonly called the “width” Γ of the state. The discussion here will
almost always ignore the uncertainty in energy.

A second general property of nuclei is:

Nuclear states have definite nuclear mass mN.

You may be surprised by this statement. It seems trivial. You would expect that
the nuclear mass is simply the sum of the masses of the protons and neutrons
that make up the nucleus. But Einstein’s famous relation E = mc2 relates
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energy and mass. The nuclear mass is slightly less than the combined mass of
the protons and neutrons from which it is made. The difference is the binding
energy that keeps the nucleus together, expressed in mass units. (In other
words, divided by the square speed of light c2.) Sure, even for nuclear energies
the changes in nuclear mass due to binding energy are tiny. But physicists can
measure nuclear masses to very great accuracy. Different nuclear states have
different binding energies. So they have slightly different nuclear masses.

(Similarly, a hydrogen atom has less mass than a free proton and a free
electron. But here the difference, a few eV, is far too small to note. Since
nuclear binding energies are millions of times bigger, in nuclei the effect is much
more important.)

It may be noted that binding energies are almost never expressed in mass
units in nuclear physics. Instead masses are expressed in energy units! And
not in Joule either. The energy units used are almost invariably “electron
volts” (eV). Never use an SI unit when talking to nuclear physicists. They will
immediately know that you are one of those despised nonexperts. Just call it a
“blah.” In the unlikely case that they ask, tell them “That is what Fermi called
it.”

Next,

Nuclear states have definite nuclear spin jN.

Here the “nuclear spin” jN is the quantum number of the net nuclear angular
momentum. The magnitude of the net nuclear angular momentum itself is

J =
√
jN(jN + 1)~

Nuclei in excited energy states usually have different angular momentum than
in the ground state.

The name nuclear “spin” may seem inappropriate since net nuclear angular
momentum includes not just the spin of the nucleons but also their orbital
angular momentum. But since nuclear energies are so large, in many cases nuclei
act much like elementary particles do. Externally applied electromagnetic fields
are not by far strong enough to break up the internal nuclear structure. And
the angular momentum of an elementary particle is appropriately called spin.
However, the fact that “nuclear spin” is two words and “azimuthal quantum
number of the net nuclear angular momentum” is nine might conceivably also
have something to do with the terminology.

According to quantum mechanics, jN must be integer or half-integer. In
particular, jN must be an integer if the number of nucleons is even (jN = 0 or 1
or 2 or . . . ). If the number of nucleons is odd, jN must be half an odd integer
(jN = 1/2 or 3/2 or 5/2 or . . . ).

The fact that nuclei have definite angular momentum does not depend on
the details of the nuclear force. It is a consequence of the very fundamental
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observation that empty space has no “build-in” preferred direction. That issue
was explored in more detail in chapter 7.3.

(Many references use the symbol J also for jN for that spicy extra bit of
confusion. So one reference tells you that the eigenvalue [singular] of J2 is
J(J +1), leaving the ~2 away from conciseness. No kidding. One popular book
uses I instead of jN and reserves J for electronic angular momentum. At least
this reference uses a bold face I to indicate the angular momentum itself, as a
vector.)

Consider also the component Jz of the nuclear angular momentum in a se-
lected z direction. According to quantum mechanics, this component can have
the measurable values −jN, −jN+1, −jN+2, . . . , jN−1, or jN. Note also that if
Jz has a definite value for nonzero jN, then the components in orthogonal direc-
tions have uncertain values and are therefore not that interesting for analysis.

Finally,

Nuclear states have definite parity.

Here “parity” is what happens to the wave function when the nucleus is mir-
rored and then rotated 180◦ around the axis normal to the mirror, chapter 7.3.
(Mathematically, this corresponds to inverting every ~r position vector measured
from the center of gravity into −~r. Since the rotation is already covered by an-
gular momentum, the important step is the mirroring.) The wave function can
either stay the same, (called parity 1 or even parity), or it can change sign,
(called parity −1 or odd parity). The fact that nuclei have definite parity too
does not depend on the details of the nuclear force. It is a consequence of the
fact that the forces of nature behave the same way when seen in the mirror.

Or actually, there is one force of nature, the still unmentioned so-called
“weak force” that does not behave the same way when seen in the mirror. But
the weak force is, like it says, weak. On nuclear scales, it is many orders of
magnitude smaller than the nuclear and electromagnetic forces. So, while the
weak force introduces some quantum-mechanical uncertainty in the parity of
nuclei, this uncertainty is usually negligibly small. The chances of finding a
nucleus in a given energy state with the “wrong” parity can be ballparked at
10−14, [31, pp. 313ff]. That is almost always negligible. Only if, say, a nuclear
process is strictly impossible solely because of parity, then the uncertainty in
parity might give it a very slight possibility of occurring anyway.

Parity is commonly indicated by π because π is the Greek letter “p” and is
not used for anything else in science. And physicists usually list the spin and
parity of a nucleus together in the form Jπ. If you have two quantities like spin
and parity that have nothing to do with one another, what is better than show
one as a superscript of the other? But do not start raising J to the power π!
You should be translating this into common sense as follows:

Jπ ⇒ j±N ⇒ jN and ±
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As a numerical example, 3− means a nucleus with spin 3 and odd parity. It
does not mean a nucleus with spin 1/3, (which is not even possible; spins can
only be integer or half-integer.)

Key Points

0 Nuclei form the centers of atoms.

0 Nuclei consist of protons and neutrons. Therefore protons and neu-
trons are called nucleons.

0 Protons and neutrons themselves consist of quarks. But for practical
purposes, you may as well forget about that.

0 Neutrons are electrically neutral. Protons are positively charged.

0 Nucleons are held together by the so-called nuclear force.

0 The nuclear force is approximately independent of whether the nu-
cleons are protons or neutrons. That is called charge independence.
Charge symmetry is a more accurate, but also more limited version
of charge independence.

0 Nuclear states, including the ground state, have definite nuclear en-
ergy E. The differences in energy between nuclear states are so large
that they produce small but measurable differences in the nuclear
mass mN.

0 Nuclear states also have definite nuclear spin jN. Nuclear spin is
the azimuthal quantum number of the net angular momentum of the
nucleus. Many references indicate it by J or I.

0 Nuclear states have definite parity π. At least they do if the so-called
weak force is ignored.

0 Never use an SI unit when talking to a nuclear physicist.

14.2 Draft: The Simplest Nuclei

This subsection introduces the simplest nuclei and their properties.

14.2.1 Draft: The proton

The simplest nucleus is the hydrogen one, just a single proton. It is trivial. Or at
least it is if you ignore the fact that that proton really consists of a conglomerate
of three quarks held together by gluons. A proton has an electric charge e that
is the same as that of an electron but opposite in sign (positive). It has the
same spin s as an electron, 1/2. Spin is the quantum number of inherent angular
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momentum, chapter 5.4. Also like an electron, a proton has a magnetic dipole
moment µ. In other words, it acts as a little electromagnet.

However, the proton is roughly 2 000 times heavier than the electron. On
the other hand the magnetic dipole moment of a proton is roughly 700 times
smaller than that of an electron. The differences in mass and magnetic dipole
moment are related, chapter 13.4. In terms of classical physics, a lighter particle
circles around a lot faster for given angular momentum.

Actually, the proton has quite a large magnetic moment for its mass. The
proton has the same spin and charge as the electron but is roughly 2 000 times
heavier. So logically speaking the proton magnetic moment should be roughly
2 000 times smaller than the one of the electron, not 700 times. The explanation
is that the electron is an elementary particle, but the proton is not. The proton
consists of two up quarks, each with charge 2

3
e, and one down quark, with

charge −1
3
e. All three quarks have spin 1/2. Since the quarks have significantly

lower effective mass than the proton, they have correspondingly higher magnetic
moments. Even though the spins of the quarks are not all aligned in the same
direction, the resulting net magnetic moment is still unusually large for the
proton net charge, mass, and spin.

Key Points

0 The proton is the nucleus of a normal hydrogen atom.

0 It really consists of three quarks, but ignore that.

0 It has the opposite charge of an electron, positive.

0 It has spin 1/2.

0 It is roughly 2 000 times heavier than an electron.

0 It has a magnetic dipole moment. But this moment is roughly 700
times smaller than that of an electron.

14.2.2 Draft: The neutron

It is hard to call a lone neutron a nucleus, as it has no net charge to hold
onto any electrons. In any case, it is somewhat academic, since a lone neutron
disintegrates in on average about 10 minutes. The neutron emits an electron
and an antineutrino and turns into a proton. That is an example of what is
called “beta decay.” Neutrons in nuclei can be stable.

A neutron is slightly heavier than a proton. It too has spin 1/2. And despite
the zero net charge, it has a magnetic dipole moment. The magnetic dipole
moment of a neutron is about two thirds of that of a proton. It is in the
direction opposite to the spin rather than parallel to it like for the proton.

The reason that the neutron has a dipole moment is that the three quarks
that make up a neutron do have charge. A neutron contains one up quark with
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a charge of 2
3
e and two down quarks with a charge of −1

3
e each. That makes

the net charge zero, but the magnetic dipole moment can be and is nonzero.

Key Points

0 The neutron is slightly heavier than the proton.

0 It too has spin 1/2.

0 It has no charge.

0 Despite that, it does have a comparable magnetic dipole moment.

0 Lone neutrons are unstable. They suffer beta decay.

14.2.3 Draft: The deuteron

The smallest nontrivial nucleus consists of one proton and one neutron. This nu-
cleus is called the deuteron. (An atom with such a nucleus is called deuterium).
Just like the proton-electron hydrogen atom has been critical for deducing the
structure of atoms, so the proton-neutron deuteron has been very important in
deducing knowledge about the internal structure of nuclei.

However, the deuteron is not by far as simple a two-particle system as the
hydrogen atom. It is also much harder to analyze. For the hydrogen atom,
spectroscopic analysis of its excited quantum states provided a gold mine of
information. Unfortunately, it turns out that the deuteron is so weakly bound
that it has no excited quantum states. If you try to excite it by adding energy,
it falls apart.

The experimental binding energy of the deuteron is only about 2.22 MeV.
Here a MeV is the energy that an electron would pick up in a one-million voltage
difference. For an electron, that would be a gigantic energy. But for a nucleus
it is ho-hum indeed. A typical stable nucleus has a binding energy on the order
of 8 MeV per nucleon.

In any case, it is lucky that that 2.22 MeV of binding energy is there at
all. If the deuteron would not bind, life as we know it would not exist. The
formation of nuclei heavier than hydrogen, including the carbon of life, begins
with the deuteron.

The lack of excited states makes it hard to understand the deuteron. In
addition, spin has a major effect on the force between the proton and neutron.
In the hydrogen atom, that effect exists but it is extremely small. In particular,
in the true hydrogen atom ground state the electron and proton align their spins
in opposite directions. That produces the so-called singlet state of zero net spin,
chapter 5.5.6. However, the electron and proton can also align their spins in the
same direction, at least as far as angular momentum uncertainty allows. That
produces the so-called triplet state of unit net spin. For the hydrogen atom, it
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turns out that the triplet state has very slightly higher energy than the singlet
state, {A.39}.

In case of the deuteron, however, the triplet state has the lowest energy. And
the singlet state has so much more energy that it is not even bound. Almost
bound maybe, but definitely not bound. For the proton and neutron to bind
together at all, they must align their spins into the triplet state.

As a result, a nucleus consisting of two protons (the diproton) or of two
neutrons (the dineutron) does not exist. That is despite the fact that two
protons or two neutrons attract each other almost the same as the proton and
neutron in the deuteron. The problem is the antisymmetrization requirement
that two identical nucleons must satisfy, chapter 5.6. A spatial ground state
should be symmetric. (See addendum {A.40} for more on that.) To satisfy the
antisymmetrization requirement, the spin state of a diproton or dineutron must
then be the antisymmetric singlet state. But only the triplet state is bound.

(You might guess that the diproton would also not exist because of the
Coulomb repulsion between the two protons. But if you ballpark the Coulomb
repulsion using the models of {A.41}, it is less than a third of the already small
2.22 MeV binding energy. In general, the Coulomb force is quite small for light
nuclei.)

There is another qualitative difference between the hydrogen atom and the
deuteron. The hydrogen atom has zero orbital angular momentum in its ground
state. In particular, the quantum number of orbital angular momentum l equals
zero. That makes the spatial structure of the atom spherically symmetric.

But orbital angular momentum is not conserved in the deuteron. In terms
of classical physics, the forces between the proton and neutron are not exactly
along the line connecting them. They deviate from the line based on the direc-
tions of the nucleon spins.

In terms of quantum mechanics, this gets phrased a bit differently. The
potential does not commute with the orbital angular momentum operators.
Therefore the ground state is not a state of definite orbital angular momentum.
The angular momentum is still limited by the experimental observations that
the deuteron has spin 1 and even parity. That restricts the orbital angular
momentum quantum number l to the possible values 0 or 2, {A.40}. Various
evidence shows that there is a quantum probability of about 95% that l = 0
and 5% that l = 2.

One consequence of the nonzero orbital angular momentum is that the mag-
netic dipole strength of the deuteron is not exactly what would be expected
based on the dipole strengths of proton and neutron. Since the charged pro-
ton has orbital angular momentum, its acts like a little electromagnet not just
because of its spin, but also because of its orbital motion.

Another consequence of the nonzero orbital angular momentum is that the
charge distribution of the deuteron is not exactly spherically symmetric. This
asymmetric charge distribution allows the deuteron to interact with gradients
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in an external electric field. It is said that the deuteron has a nonzero “electric
quadrupole moment.”

Roughly speaking, you may think of the charge distribution of the deuteron
as elongated in the direction of its spin. That is not quite right, quantum-
mechanically speaking, since angular momentum has uncertainty in direction.
Therefore, instead consider the quantum state in which the deuteron spin has
its maximum component, ~, in the chosen z-direction. In that state, the charge
distribution is elongated in the z-direction.

The nonzero orbital momentum also shows up in experiments where various
particles are scattered off deuterons.

To be sure, the precise probability of the l = 2 state has never been estab-
lished. However, assume that the deuteron is modeled as composed of a proton
and a neutron. (Although in reality it is a system of 6 quarks.) And assume
that the proton and neutron have the same properties as they have in free space.
(That is almost certainly not a good assumption; compare the next section.)
For such a model the l = 2 state needs to have about 4% probability to get the
magnetic moment right. Similar values can be deduced from the quadrupole
moment and scattering experiments, [31].

Key Points

0 The deuteron consists of a proton and a neutron.

0 The deuteron is the simplest nontrivial nucleus. The diproton and
the dineutron do not exist.

0 The deuteron has spin 1 and even parity. The binding energy is 2.225
MeV.

0 There are no excited states. The ground state of lowest energy is all
there is.

0 The deuteron has a nonzero magnetic dipole moment.

0 It also has a nonzero electric quadrupole moment.

14.2.4 Draft: Property summary

Table 14.1 gives a summary of the properties of the three simplest nuclei. The
electron is also included for comparison.

The first data column gives the mass. Note that nuclei are thousands of times
heavier than electrons. As far as the units are concerned, what is really listed
is the energy equivalent of the masses. That means that the mass is multiplied
by the square speed of light following the Einstein mass-energy relation. The
resulting energies in Joules are then converted to MeV. An MeV is the energy
that an electron picks up in a 1 million voltage difference. Yes it is crazy, but
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m q rch jN π µ Q
MeV fm µN e fm2

electron 0.511 −e 0 1/2 +1 −1 838.282 0

Proton 938.272 e 0.86 1/2 +1 2.793 0

Neutron 939.565 0 — 1/2 +1 −1.913 0

Deuteron 1 875.612 e 2.14 1 +1 0.857 0.286

fm = 10−15 m MeV ≈ 1.602 10−13 J

e ≈ 1.602 10−19 C µN =
e~

2mp

≈ 5.051 10−27 J/T

Table 14.1: Properties of the electron and of the simplest nuclei.

that is how you will almost always find masses listed in nuclear references. So
you may as well get used to it.

It can be verified from the given numbers that the deuteron mass is indeed
smaller than the sum of proton and neutron masses by the 2.225 MeV of binding
energy. It is a tenth of a percent, but it is very accurately measurable.

The second column gives the charge. Note that all these charges are whole
multiples of the proton charge e. However, that is not a fundamental require-
ment of physics. In particular, “up” quarks have charge 2

3
e while “down” quarks

have charge−1
3
e. The proton contains two up quarks and a down one, producing

net charge e. The neutron contains one up quark and two down ones, producing
zero net charge.

The third column gives the charge radius. That is a measure of the spatial
extent of the charge distribution. The electron is, as far as is known, a point
particle with no internal structure. For the neutron, with no net charge, it is
not really clear what to define as charge radius.

The fourth column shows the quantum number of net angular momentum.
For the first three particles, that is simply their spin. For the deuteron, it is the
nuclear spin. That includes both the spins and the orbital angular momenta of
the proton and neutron that make up the deuteron.

The fifth column is parity. It is even in all cases. More complicated nuclei
can have negative parity.

The sixth column is the magnetic dipole moment. It is expressed in terms
of the so-called nuclear magneton µN. A proton circling around with one quan-
tum unit of orbital angular momentum has one nuclear magneton of magnetic
moment due to its motion. (Which would be in addition to the intrinsic mag-
netic moment listed in the table. Note that magnetic moments are vectors like
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angular momenta; they may cancel each other when summed.)

As the table shows, nuclei have much smaller magnetic moments than elec-
trons. That is due to their much larger masses. However, using a magnetic
field of just the right frequency, nuclear magnetic moments can be observed.
That is how nuclear magnetic resonance works, chapter 13.6. Therefore nuclear
magnetic moments are important for many applications, including medical ones
like MRI.

The last column lists the electric quadrupole strength. That is a measure for
the deviation of the nuclear charge distribution from a spherically symmetric
shape. It is a complicating factor in nuclear magnetic resonance. Or an addi-
tional source of information, depending on your view point. Nuclei with spin
less than 1 do not have electric quadrupole moments. (That is an implied con-
sequence of the relation between angular momentum and symmetry in quantum
mechanics.)

Note that the SI length unit of femtometer works very nicely for nuclei.
So, since physicists hate perfection, they define a new non-SI unit called the
barn b. A barn is 100 fm2. So you will likely find the quadrupole moment
of the deuteron listed as 0.00286 eb. Note the additional leading zeros. Some
physicists do not like them, for good reason, and then use millibarn, giving 2.86
emb. However, the quadrupole moments for many heavy nuclei are quite large
in terms of millibarn. For example, einsteinium-253 has around 6 700 emb.
Anytime now, physicists are bound to figure out that centibarn works even
better than millibarn. When that happens, let’s all agree that we will not tell
them that a centibarn is the same as that hated fm2. The charge e is commonly
left away from the definition of the quadrupole moment, giving it units of area.

Key Points

0 The properties of the simplest nuclei are summarized in table 14.1.

14.3 Draft: Overview of Nuclei

This section introduces basic terminology and concepts of nuclei. It also gives
an overview of the ways that they can decay.

The number of protons in a nucleus is called its “atomic number” Z. Since
each proton has an electric charge e, equal to 1.602 18 10−19 C, the total nuclear
charge is Ze. While protons attract nearby protons and neutrons in the nucleus
with the short-range nuclear force, they also repel other protons by the long-
range Coulomb force. This force too is very strong at nuclear distances. It
makes nuclei with more than 82 protons unstable, because for such large nuclei
the longer range of the Coulomb forces becomes a major factor.
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The number of neutrons in a nucleus is its neutron number N . Neutrons
have no charge, so they do not produce Coulomb repulsions. Therefore, the
right amount of neutrons has a stabilizing effect on nuclei. However, too many
neutrons is not stable either, because neutrons by themselves are unstable par-
ticles that fall apart in about 10 minutes. Combined with protons in a nucleus,
neutrons can be stable.

Since neutrons have no charge, they also do not attract the electrons in the
atom or molecule that the nucleus is in. Therefore only the atomic number
Z is of much relevance for the chemical properties of an atom. It determines
the position in the periodic table of chemistry, chapter 5.9. Nuclei with the
same atomic number Z, so with the same place in the periodic table, are called
“isotopes.” (In Greek, “iso” means equal and “topos” place.)

However, the number of neutrons does have a secondary effect on the chem-
ical properties, because it changes the mass of the nucleus. And the number
of neutrons is of critical importance for the nuclear properties. Nuclei with the
same number of neutrons are called “isotones.” How clever, to replace the p in
isotopes with an n.

The name of a nucleus indicates its number of protons Z; for example,
“hydrogen” means Z = 1, “helium” Z = 2. To also indicate the number of
neutrons, the convention is to follow the name by the “mass number, or “nucleon
number” A = N + Z. It gives the total number of nucleons in the nucleus.

For example, the normal hydrogen nucleus, which consists of a lone proton,
is hydrogen-1. The deuterium nucleus, which contains both a proton and a
neutron, is hydrogen-2, indicating that it contains two nucleons total. Because
it has the same charge as the normal hydrogen nucleus, a deuterium atom
behaves chemically almost the same as a normal hydrogen atom. For example,
you can create water with deuterium and oxygen just like you can with normal
hydrogen and oxygen. Such water is called “heavy water.” Don’t drink it,
however; the difference in chemical properties is still sufficient to upset biological
systems. Trace amounts are harmless, as can be appreciated from the fact that
deuterium occurs naturally. About 1 in 6 500 hydrogen nuclei in water on earth
are deuterium ones.

The normal helium nucleus contains two protons plus two neutrons, so it
is called helium-4. There is a stable isotope, helium-3, that has only one neu-
tron. In the atmosphere, one in a million helium atoms has a helium-3 nucleus.
While normally, there is no big difference between the two isotopes, at very low
cryogenic temperatures they do behave very differently. The reason is that both
protons and neutrons have spin 1/2, as do electrons, so a difference of one neu-
tron switches the net atomic spin between half-integer (helium-3) and integer
(helium-4). That makes the helium-3 atom a fermion but the helium-4 one a
boson. At extremely low temperatures it makes a big difference in behavior,
chapter 11.

In terms of symbols, it is conventional to precede the element symbol by
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the mass number as a superscript and the atomic number as a subscript. So
normal hydrogen-1 is indicated by H11 , hydrogen-2 by H21 , helium-3 by He3

2 , and
helium-4 by He4

2 .
Nuclei with the same mass number A are called “isobars.” Yes, this conflicts

with the established usage of the word isobar for lines of constant pressure in
meteorology, but in this case physicists have blown it. There is not likely to be
any resulting confusion unless there is a nuclear winter.

Sometimes the element symbol is also followed by the number of neutrons
as a subscript. However, that then raises the question whether H2 stands for
hydrogen-3 or a hydrogen molecule. The neutron number can readily by found
by subtracting the atomic number from the mass number,

N = A− Z (14.1)

so this book will leave it out.
It may also be noted that the atomic number is technically redundant, since

the chemical symbol already implies the number of protons. It is often left away,
because that confuses people who do not remember the atomic number of every
chemical symbol in the periodic table. To create further confusion, deuterium
is often indicated by chemical symbol D instead of H. It is hilarious to see
people who have forgotten this search through a periodic table for element “D.”
For additional fun, the unstable hydrogen-3 nucleus, with one proton and two
neutrons, is also called the “tritium” nucleus, or “triton,” and indicated by T
instead of H31 . The helium-3 nucleus is also called the “helion.” Fortunately for
us all, helion starts with an h.

The nuclei mentioned above are just a tiny sample of the total of 256 nuclei
that are stable and a much greater number still that are observed but unstable.
It is conventional to represent both the stable and unstable nuclei in a “Chart
Of the Nuclides,” (CON), like the one shown in figure 14.1. In the CON, the
tiny green squares are the stable nuclei. Squares of colors other than green
represent unstable nuclei. The horizontal position of each square gives the
number of neutrons N (selected “magic” values are listed along the horizontal
axis). The vertical position gives the number of protons Z, (the crucial number
that determines what chemical properties an atom with that nucleus has). Note
that Z = 82 is lead, the last element with at least one stable nucleus. In fact,
lead has four stable isotopes and naturally occuring lead atoms have a fair chance
of having any one of the four as nucleus. The fact that lead is so unusually stable
has a lot to do with the fact that lead is right on top of the Z = 82 magic line,
and close to the N = 126 magic line. But more on that later.

Before continuing the discussion of the CON, a graphical problem must be
addressed. While you cannot argue about taste, 99.9% of readers would surely
agree that 14.1 is (a) ugly as hell, and (b) requires a magnifying glass to read.
The “Chart Of the Nuclides” is well suited for printing out on two yards of paper
and hanging on the wall of your office in its full glory. But in a book, it really
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Figure 14.1: Chart of the nuclides.

does not work. It could be made slightly bigger if printed out sideways, but
rotating a monitor with coffee cups on it and cables attached is a bit awkward.
And a crick in your neck is not that great either.

Based on these considerations, from now on, this book will no longer plot the
neutron number N along the horizontal axis, but the “neutron excess” N − Z.
The neutron excess is how many more neutrons there are than protons. That is
an important number, maybe even more important than the absolute number of
neutrons. The corresponding modified chart of the nuclides is in figure 14.2. It
will be called the RECON (Revised Chart of the Nuclei). It gives you something
you can view in comfort.

But admittedly there are some disadvantages. In the RECON the isotones
(the lines connecting nuclei with the same number of neutrons) are no longer
vertical; now they slope down by 45◦. That cannot be helped. Similarly the
isobars, the lines connecting nuclei with the same total number of nucleons, no
longer slope down by 45◦ like in the CON. In the RECON they slope down with
the smaller slope 1/2: going down one square to the previous chemical element
now requires that you go two squares to the right to stay on the same isobar.

So be it. The good news is that the neutron excess is a lot more relevant
to nuclear stability than the absolute number of nucleons. For example, at low
values of Z, the green band in RECON figure 14.2 is vertical, demonstrating
very clearly that indeed for light nuclei, the number of neutrons must be about
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Figure 14.2: Nuclear decay modes. [pdf][con]
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equal to the number of protons. Also for heavier nuclei, the RECON shows
much more clearly exactly how much the relative number of neutrons goes up
to mitigate the effect of the Coulomb repulsions between protons.

There is an other advantage to the RECON. It has to do with the fact that
those nuclei in which both the number of protons and the number of neutrons
is even, the “even-even” nuclei, are found to have enhanced stability. On the
other hand those nuclei in which both the number of protons and the number
of neutrons is odd, the “odd-odd” nuclei, are found to have reduced stability.
Simply put, protons like to pair up, and so do neutrons.

It works out that in the RECON, the even-even and odd-odd nuclei end up
on the same vertical lines. (These vertical lines alternate with vertical lines of
even-odd and odd-even nuclei.) So wherever in figure 14.2 you see a vertical line
with alternating green and non-green squares, well, the stable green squares are
the even-even nuclei and the non-green ones in between the odd-odd ones. The
pattern very convincingly demonstrates that indeed even-even nuclei are a lot
more stable than odd-odd ones. (In the CON, the equivalent lines slant by 45◦

and are not by far as striking.)
In the intermediate vertical lines in the RECON, where you do not see such a

periodic variation of stability, you find the even-odd and odd-even nuclei. Note
that on these lines, the vertical extent of green squares is much less than on
the adjacent lines with even-even nuclei. This demonstrates graphically that
even-even nuclei are not just a lot more stable than odd-odd ones; they are also
a lot more stable than even-odd and odd-even ones.

All this also makes it easy to figure out whether a given nucleus is is even-
even or odd-odd in the RECON. Look whether the vertical line it is on has
a series of alternating green and non-green squares; if so, then that is a line
of even-even and odd-odd nuclei. The adjacent two lines then contain even-
odd and odd-even nuclei. (In the region of heaviest nuclei, you can typically
look at the yellow “alpha-decay” nuclei as a substitute for the green nuclei.)
Alternatively, if you see two green squares immediately above each other in the
RECON above Z = 8, then that vertical line consists of even-odd and odd-
even nuclei; there are no stable odd-odd nuclei above Z = 7. (Conversely, the
RECON illustrates that quite clearly too.)

Note also that the mass number A is odd on the even-odd, odd-even vertical
lines. And A is even on the even-even, odd-odd vertical lines. While the mass
number by iself does not have that much physical meaning, nuclear physicists
often use “odd mass number nuclei” as a shorthand for “even-odd and odd-even
nuclei.”

If you are really a CON man or woman, there is nothing wrong with that.
You can always click on the [con] link provided in the legend of the figure to
load the figure in CON format as a separate pdf file. Conversely, if you really
like the RECON format and you want to print it and hang it on your wall, click
on the [pdf] link instead for a printable version. And either type of pdf can be

../../quansup/ZvsNnucdec.pdf
../../quansup/nucdec.pdf
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readily magnified to see details more clearly. [On linux I have to set preferences
in buggy Adobe Acrobat reader to always open links before it works.]

Let’s look at some of the details of RECON figure 14.2. The leftmost green
square in the bottom row (Z = 1) is the hydrogen-1 nucleus, and the green
square immediately to the right of it is hydrogen-2, deuterium. The green
squares on the second-lowest row (Z = 2) are helium-3 and helium-4 respec-
tively.

Like in the CON, isotopes are found on the same horizontal line in the
RECON. As mentioned, the horizontal position of each square in RECON figure
14.2 indicates the neutron excess. For example, hydrogen-2 and helium-4 both
have equal numbers of protons and neutrons. So they are at the same horizontal
position, zero, in the figure. Similarly, hydrogen-1 and helium-3 both have a
neutron excess of minus one. The figure shows that stable light nuclei have about
the same number of neutrons as protons. However, for the heaviest nuclei, there
are about 50% more neutrons than protons. For heavy nuclei, too many closely
packed protons would mean too much Coulomb repulsion.

Many isotopes are unstable and decay spontaneously, liberating energy. For
example, consider the blue square to the right of H21 in figure 14.2. That is
H31 , hydrogen-3 or tritium. It is unstable. After on average about twelve years,
it will turn into helium-3. In particular, one of the two neutrons turns into a
positively charged proton. So there are still three nucleons, the mass number
has stayed the same, but the atomic number has increased one unit. In terms
of RECON figure 14.2, the nucleus has changed into one that is one place up
and two places to the left.

Since charge is conserved, the creation of the positive charge can only happen
if the neutron emits a compensating negative charge; the neutron does so by
emitting an electron. For historical reasons, a decay process of this type is
called “beta decay” (β-decay) instead of “electron emission;” initially it was
not recognized that the observed radiation was merely high energy electrons.
And the name could not be changed later, because that would add clarity. (An
antineutrino is also emitted, but it is almost impossible to detect: solar neutrinos
will readily travel all the way through the earth with only a miniscule chance
of being captured.)

Nuclei with too many neutrons tend to use beta decay to turn the excess
into protons in order to become stable. Figure 14.2 shows nuclei that suffer beta
decay in blue. Since in the decay process they move towards the left, they move
towards the stable green area. Although not shown in the figure, a lone neutron
also suffers beta decay after about 10 minutes and so turns into a proton.

If nuclei have too many protons rather than too many neutrons, they can
turn their excess protons into neutrons by emitting a positron. The positron,
the anti-particle of the electron, carries away one unit of positive charge, turning
a positively charged proton into a neutral neutron.

However, a nucleus has a much easier way to get rid of one unit of net
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positive charge: it can swipe a negatively charged electron from the atom it is
in. This is called “electron capture” (EC). An electron neutrino is emitted in
this process.

Electron capture is also called K-capture of L-capture, depending on the
electron shell from which the electron is swiped. It is also referred to as “inverse
beta decay,” especially within the context of “neutron stars.” These stars are so
massive that their atoms collapse under gravity and the electrons and protons
combine into neutrons. These stars then emit enormous amounts of high-energy
neutrinos, taking along a large amount of the available energy of the star.

Of course, “inverse beta decay” is not really inverse beta decay, because in
beta decay the emitted electron does not go into an empty atomic orbit, and in
beta decay no neutrino is absorbed; instead an antineutrino is emitted.

Positron emission is also often called “beta-plus decay” (β+-decay). After
all, if you do have obsolete terminology, it is fun to use it to the fullest. Note
that NUBASE 2003 uses the term beta-plus decay to indicate either positron
emission or electron capture. In analogy with the beta-plus terminology, elec-
tron emission is also commonly called beta-minus decay or negatron emission.
Some physicists leave the “r” away to save trees and talk about positons and
negatons.

The nuclei that suffer beta-plus decay or electron capture are shown as red
squares in figure 14.2. In the decay, a proton turns into a neutron, so the nucleus
moves one place down and two places towards the right. That means that these
nuclei too move towards the stable green area.

There are a variety of other ways in which nuclei may decay. If the number
of protons or neutrons is really excessive, the nucleus may just kick out one
of the bums instead of convert it. Nuclei that do that are marked with “P,”
respectively “N” in figure 14.2,

Similarly, heavy nuclei that are weakened by Coulomb repulsions tend to
just throw some nucleons out. Commonly, a He4

2 helium-4 nucleus is emitted,
as this is a very stable nucleus that does not require much energy to create.
Such an emission is called “alpha decay” (α-decay) because helium-4 emission
would be easily understandable. Alpha decay reduces the mass number A by 4
and the atomic number Z by 2. The nucleus moves two places straight down in
RECON figure 14.2.

If nuclei are really oversized, they may just fall apart completely; that is
called spontaneous fission.

Another process, “gamma decay,” is not shown in figure 14.2. In gamma
decay, an excited nucleus transitions to a lower energy state and emits the
released energy as very energetic electromagnetic radiation. This is much like
the spontaneous decay of excited electron levels in atoms, which too releases
electromagnetic radiation. However, the electromagnetic radiation emitted in
gamma decay is much more powerful than that emitted by atomic electrons,
as nuclear energies are so much higher than those of atomic electrons. Unlike
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the decays shown in figure 14.2, in gamma decay the type of nucleus does not
change; there is no change in the number of protons nor neutrons.

Unlike gamma decay, the nuclear decays shown in figure 14.2 are from their
their non-excited “ground state.” But the shown decays are commonly asso-
ciated with additional gamma radiation, since the decay tends to leave the
changed nucleus in an excited state.

Gamma decay as a separate process, not directly caused by another process,
is often referred to as an “isomeric transition” (IT) or “internal transition.” In
nuclear physics, an isomer is a long-lived excited state of a nucleus.

Besides gamma decay, a second way that an excited nucleus can get rid
of excess energy is by throwing an electron from the atomic electron cloud
surrounding the nucleus out of the atom. You or I would probably call that
something like electron ejection. But what better name for throwing an electron,
that is already outside the nucleus to start with, completely out of the atom than
“internal conversion” (IC)? It can produce some of that hilarious confusion with
the similar sounding term “internal transition.” Internal conversion is usually
included in the term “isomeric transition.”

Figure 14.2 mixes colors if more than one decay mode occurs for a nucleus.
The dominant decay is often immediately followed by another decay process.
The subsequent decay is not shown. Data are from NUBASE 2003, without
any later updates. The blank square right at the stable region is silver-106,
and has a half-life of 24 minutes. Other sources list it as decaying through the
expected electron capture or positron emission. But NUBASE 2003 lists that
contribution as unknown and only mentions that beta-minus decay is negligible.

RE RaA RaB RaC RaC1 RaC2 RaD RaE RaF
Rn222

86 Po218
84 Pb214

82 Bi214
83 Po214

84 Tl210
81 Pb210

82 Bi210
83 Po210

84

Table 14.2: Alternate names for nuclei.

Since so many outsiders know what nuclear symbols mean, physicists prefer
to use obsolete names to confuse them. Table 14.2 has a list of names used. The
abbreviations refer to historical names for decay products of radium (radium
emanation, radium A, etc.)

Key Points

0 Nuclei consist of protons and neutrons held together by the nuclear
force.

0 Protons and neutrons are collectively referred to as nucleons.

0 Protons also repel each other by the Coulomb force.
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0 The number of protons in a nucleus is the atomic number Z. The
number of neutrons is the neutron number N . The total number of
nucleons Z +N is the mass number or nucleon number A.

0 Nuclei with the same number of protons Z correspond to atoms with
the same place in the periodic table of chemistry. Therefore nuclei
with the same atomic number are called isotopes.

0 To promote confusion, nuclei with the same number of neutrons N
are called isotones, and nuclei with the same total number of nucleons
A are called isobars.

0 For an example nuclear symbol, consider He4
2 . It indicates a helium

atom nucleus consisting of A = 4 nucleons, the left superscript, of
which Z = 2 are protons, the left subscript. Since it would not be
helium if it did not have 2 protons, that subscript is often left away.
If you do not remember Z for, say, Pm146 , you can look it up in a
periodic table, like 5.8. But avoid doing so with “elements” D and
T .

0 Since these rules are too simple, physicists often drag up obsolete
symbols like “RE” and “RaF” from the dark history of nuclear
physics. You can look these up in a table above.

0 The name for the nucleus with symbol He4
2 is helium-4, where the 4

is again the number of nucleons A.

0 An odd mass number A corresponds to either an even-odd nucleus,
a nucleus in which the number of protons is even and the number of
nucleons odd, or to an odd-even nucleus, in which it is the other way
around. An even mass number A corresponds to either an even-even
nucleus, which tends to have relatively high stability, or to an odd-
odd nucleus, which tends to have relatively low stability. The vertical
columns in a RECON plot correspond alternatingly to odd and even
mass numbers A. The two types of columns look very different.

0 Nuclei can decay by various mechanisms. To promote confusion,
emission of a helium-4 nucleus is called alpha decay or alpha decay.
Emission of an electron is called beta decay, or β decay, or beta-minus
decay, or β− decay, or negatron emission, or negaton emission, but
never electron emission. To do the latter would be severely frowned
upon by physicists. Emission of a positron (positon) may be called
beta-plus decay, or β+ decay, but either term might be used to also
indicate electron capture (EC), depending on who uses the term.
Electron capture may also be called K-capture or L-capture or even
inverse beta decay, though it is not. More extreme decay mechanisms
are proton or neutron emission, and spontaneous fission. Kicking an
electron in the electron cloud outside the nucleus completely free of
the atom is called internal conversion. Mere emission of electromag-
netic radiation is called gamma decay or γ decay.
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0 No, this is not a story made up by this book to put physicists in a
bad light.

14.4 Draft: Magic numbers

In nuclear physics, there are certain special values for the number of protons or
the number of neutrons that keep popping up. Those are the values shown by
horizontal and diagonal lines in the decay plot figure 14.2:

magic numbers: 2, 8, 20, 28, 50, 82, 126, . . . (14.2)

These “magic” numbers were historically found to be associated with unusual
stability properties. For example, the magic number of 82 neutrons occurs in 7
stable nuclei, more stable nuclei than for any other number of neutrons. The
runners-up are 20 and 50 neutrons, also both magic numbers, that each occur
in 5 stable nuclei.

Nuclei that have a magic number of protons also tend to have unusual sta-
bility. For example, the element with the most stable isotopes is tin, with 10
of them. Tin has Z = 50 protons, a magic number. To be sure, the runner
up, Xenon with nine stable isotopes, has Z = 54, not a magic number, but the
heaviest of these nine stable isotopes has a magic number of neutrons.

The last element to have any stable isotopes at all is lead, and its number
of protons Z = 82 is magic. The lead isotope Pb208

82 , with 82 protons and 126
neutrons, is doubly magic, and it shows. It holds the triple records of being
the heaviest nucleus that is stable, the heaviest element that is stable, and the
highest number of neutrons that is stable.

The doubly magic He4
2 2 nucleus, the alpha particle, is stable enough to be

emitted in alpha decays of other nuclei.

Nuclei with magic numbers also have unusually great isotopic presence on
earth as well as cosmic abundance. The reason for the magic numbers will
eventually be explained through a simple quantum model for nuclei called the
“shell model.” Their importance will further be apparent throughout the figures
in this chapter.

14.5 Draft: Radioactivity

Nuclear decay is governed by chance. It is impossible to tell exactly when any
specific nucleus will decay. Therefore, the decay is phrased in terms of statistical
quantities like specific decay rate, lifetime and half-life. This section explains
how these are defined.



14.5. DRAFT: RADIOACTIVITY 667

14.5.1 Draft: Half-life and decay rate

As a generic example of an unstable nucleus, consider tritium, an isotope of
hydrogen. The H31 tritium nucleus, the triton, consists of one proton and two
neutrons. The triton suffers beta decay. Eventually it will eject an electron and
an antineutrino. This turns one of the two neutrons into a proton. So the decay
turns the triton into the He3

2 helium nucleus isotope called the “helion.” The
original triton is lost.

Unlike the “normal” He4
2 helium nucleus, the helion contains only one neu-

tron. However, it is stable; there will not be any further spontaneous decays.

(Note that the triton decays even though it has two neutrons, a magic num-
ber. But the helion it decays to has two protons, also magic. And just like a lone
neutron decays into a less heavy proton, two neutrons in the tiny triton is just
too much of a neutron excess compared to the negligible additional Coulomb
repulsion in the helion.)

The big question in this section is, when will an unstable nucleus like the
triton decay? Unfortunately, there is no complete anwer to that question. A
given triton might last for 10 years, or it might last for 20 years or whatever. It
could last less than a year, though that is not very likely. It could last for 100
years, even though that is much less likely still. But there is no way to tell for
sure.

However, suppose you take a very large number of tritons and record for each
how long the triton lives. Then you can average all these times and you get a
number that is called the “lifetime” τ of the triton. The correct term would
be expected or average lifetime, but this is physics, remember. Correct terms
are not allowed. (To be fair, some physicists do use the proper term “mean
lifetime” instead of just lifetime.)

If you average over enough tritons, you will find this mean lifetime of tritons
to be almost 18 years. But not a single triton will decay after exactly 18 years.
It is much like the expected lifetime of a newborn baby in the USA is, say, 80
years. Despite that, almost no one dies on their 80th birthday. Some die at
birth or as kids.

Still, there is one big difference between people and nuclei. If you have a
person who is 80 years old, surely you do not expect them to live until they
become 160 years old. But if you have a bunch of tritons, on average this bunch
of tritons will last for another 18 years. That is regardless of how long these
tritons have survived already when you start observing them. Nuclear decay is
a completely random process that occurs “out of the blue;” it does not depend
on any previous history of the nucleus.

There is another issue. Unless you are an accountant by calling, why would
you want to sit down, measure lifetimes of nuclei, and average them? What is
the use?

A physically much more relevant scenario is that you have managed to create
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a large number of tritons, and you would like to know how long they will last
for doing experiments. In particular, you might want to know how long it takes
before half of the tritons you created with blood, tears, and tax-payer money,
are gone. This physically more meaningful time period is called the “half-life”
τ1/2. It is related to the mean lifetime by a simple factor ln 2:

τ1/2 = τ ln 2 (14.3)

Note that ln 2 is less than one. Half-life is somewhat shorter than mean lifetime.
The half-life of the triton is 12.32 years. So if you initially have a large

collection of tritium nuclei, after 12.32 years only half will be left. After 24.64
years, only a quarter will remain, and after a century only 0.4%. After a mil-
lennium only 4 10−23% will remain. (Since a gram of tritium contains about
2 1023 atoms, after a millenium, not a single atom would be left of a gram of
tritium, if you managed to create that many of them!)

Now the earth is over 4 million millenia old. So you will appreciate that
almost none of the tritium ever present on earth still exists. Some new tritium
is continuously being created in the atmosphere by high-energy cosmic rays, but
because of the geologically short half-life, there is no measurable accumulation.
The total amount of tritium present on earth is virtually zero.

As in an earlier section, figure 14.3 shows again the decay processes of the
nuclei. But unlike in the earlier figure 14.2, this time the square size of each
nucleus has been adjusted to illustrate its half-life.

For the full size squares in the figure, the half-life is 1018 seconds or longer.
Now 1018 seconds is about twice the estimated age of the universe since the Big
Bang. So for nuclei that really have full size squares in figure 14.3, most of these
nuclei that the universe ever created is likely to be still around.

On the other hand, if the square size of a nucleus is even slightly smaller
than full size, then most of these nuclei that the universe ever created will have
decayed. You may note that the square size of the H31 triton is noticably smaller
than full size.

On the other hand, all stable green nuclei have full size squares. You might
also note bismuth-209, Bi209

83 . While not actually stable, for all practical puposes
it is. Its half-life of 6 1026 seconds exceeds the age of the unverse by a factor of
over a billion. In fact, it took physicists until 2003 to observe that bismuth-209
did actually suffer alpha decay; until then it was believed stable. (Note that
bismuth 209 has 126 neutrons, a magic number.) The various double-beta-decay
light green nuclei live even longer, on the order of 1030 seconds.

Based on various arguments, it was decided to take the minimum half-life
shown in figure 14.3 to be one nanosecond. Clearly the figure needs some lower
limit. And a nanosecond is really fast for alpha decay, and much faster than
any beta decay. (Note that you do not see any really small red or blue squares
in figure 14.3, and only a few yellow ones.) And for gamma decay, a nanosecond
is often used as a cut-off between “prompt” and “isomeric” decay.
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Still, some nuclear decay processes are much quicker than a nanosecond.
For example, you might note that the light nuclei that decay though proton or
neutron emission in figure 14.2 have disappeared in figure 14.3. Such a decay
process may have a half life on the order of 100 ys, (i.e. 100 10−24 seconds).
That is much faster than the normal decays. In fact, in terms of quasi-classical
physics, these decay times are comparable to the time for a nucleon with a speed
of say a tenth of that of light to “move” just once through a nucleus with a size
of the order of femtometers.

Another notable nucleus that has disappeared is Be8
4 , beryllium-8. Berylium-

8 falls apart in two He4
2 , helium-4, alpha particles. The half-life of that process

is just 67 as (i.e. 67 10−18 seconds). While it is technically called alpha-decay
because an alpha particle is emitted, it is physically very different from the
normal alpha decay of heavy nuclei. In the alpha decay of heavy nuclei, a heavy
nucleus is left, not a second alpha particle. In particular, the berylium-8 decay
is many orders of magnitude faster than the normal alpha decays discussed in
section 14.11.

Besides (mean) lifetime and half-life, there is one more related term that
is commonly used in describing nuclear decays. It is called the “specific decay
rate” λ. The specific decay rate is the relative amount of nuclei in a large sample
that is lost per unit time. Mathematically, the specific decay rate is just the
inverse of the mean lifetime τ :

λ ≡ 1

τ
(14.4)

To better understand the various variables mathematically, it may be worth-
while to see how the mentioned relationships between them arise. First, accord-
ing to the very definition of the decay rate λ above, if the current number of
nuclei is I, then the number of nuclei that are lost, call it −dI, in an infinitesi-
mally small time interval dt is given by

−dI = λI dt (14.5)

This can be integrated after moving the I to the left-hand side. The result
shows that if the amount of nuclei at time zero is I0, then at an arbitrary later
time t the amount of remaining nuclei I is

I = I0e
−λt (14.6)

(To check this expression, just differentiate it.) To find the half-life, you can
set I = 1

2
I0and t = τ1/2; that shows that τ1/2 must be ln 2/λ. Also, from the

expression above, you can compute the (average) lifetime as

τ =

∫ ∞

0

t
−dI
dt

dt

/∫ ∞

0

−dI
dt

dt

giving τ = 1/λ. That then gives τ1/2 = ln 2τ .
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14.5.2 Draft: More than one decay process

One very important point must be emphasized. Many nuclei undergo more
than one decay process. In that case, each decay process has its own decay rate,
independent of the other decay processes. In such cases,

Always add specific decay rates, never lifetimes or half-lifes.

The sum of the specific decay rates gives the total specific decay rate of the
nucleus. The reciprocal of that total is the actual lifetime. Multiply by ln 2 to
get the actual half-life.

14.5.3 Draft: Other definitions

You probably think that having three different names, the specific decay rate λ,
the lifetime τ , and the half-life τ1/2, for essentially the same physical quantity, is
no good. You want more! Physicists are only too happy to oblige. How about
using the term “decay constant” instead of specific decay rate? Its redeeming
feature is that “constant” is a much more vague term, maximizing confusion.
Even better, how does “disintegration constant” sound? Especially since the
nucleus clearly does not disintegrate in decays other than spontaneous fission?
Why not call it “specific activity,”come to think of it? Activity is another of
these vague terms that the hated nonspecialists cannot make heads or tails of.

How about calling the product λI the “decay rate” or“disintegration rate”
or simply the “activity?”

You probably want some units to go with that! What is more logical than
to take the decay rate or activity to be in units of “curie,” with symbol Ci
and equal 3.7 1010 decays per second. (Of course you guessed that straight
away. If you add 3 and 7 you get 10, not?) There is also the “becquerel,” Bq,
equal to 1 decay per second, defined but almost never used. Why not “dpm,”
disintegrations per minute, come to think of it? Why not indeed. The minute
is just the additional unit the SI system needs, and using an acronym is great
for creating confusion.

Of course the “activity” only tells you the amount of decays, not how bad
the generated radiation is for your health. The “exposure” is the ionization
produced by the radiation in a given mass of air, in SI units of Coulomb per kg.
Exposure is very important for all people made of air. Of course, a better unit
than a blasted SI one is needed, so the “roentgen” or “röntgen” R is defined to
2.58 10−4 C/kg. Why not?

But health-wise you may be more interested in the “absorbed dose” or “total
ionizing dose” or “TID.” That is the radiation energy absorbed per unit mass.
That would be in J/kg or “gray,” Gy, in SI units, but people really use the
“rad” which is one hundredth of a gray.

If an organ or tissue absorbs a given dose of radiation, it is likely to be a lot
worse if all that radiation is concentrated near the surface than if it is spread
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out. The “quality factor” Q or the somewhat differently defined “radiation
weighting factor” wR is designed to correct for that fact. X-rays, beta rays, and
gamma rays have radiation weighting factors (quality factors) of 1, but energetic
neutrons, alpha rays and heavier nuclei go up to 20. Higher quality means worse
for your health. Of course you already guessed that.

The bad effects of the radiation on your health are taken to be approximately
given by the “equivalent dose,” equal to the average absorbed dose of the organ
or tissue times the radiation weighting factor. It is in SI units of J/kg, called
the “sievert” Sv, but people really use the “rem,” equal to one hundredth of a
sievert. Note that the units of dose and equivalent dose are equal; the name is
just a way to indicate what quantity you are talking about. It works if you can
remember all these names.

To get the “effective dose” for your complete body, the equivalent doses for
the organs and tissues must still be multiplied by “tissue weighting factors and
summed. The weighting factors add up to one when summed over all the parts of
your body. The ICRP defines “dose equivalent” different from equivalent dose.
Dose equivalent is used on an operational basis. The personal dose equivalent is
defined as the product of the dose at a point at an appropriate depth in tissue,
(usually below the point where the dosimeter is worn), times the quality factor
(not the radiation weighting factor).

14.6 Draft: Mass and energy

Nuclear masses are not what you would naively expect. For example, since the
deuterium nucleus consists of one proton and one neutron, you might assume
its mass is the sum of that of a proton and a neutron. It is not. It is less.

This weird effect is a consequence of Einstein’s famous relation E = mc2,
in which E is energy, m mass, and c the speed of light, chapter 1.1.2. When
the proton and neutron combine in the deuterium nucleus, they lower their
total energy by the binding energy that keeps the two together. According to
Einstein’s relation, that means that the mass goes down by the binding energy
divided by c2. In general, for a nucleus with Z protons and N neutrons,

mnucleus = Zmp +Nmn −
EB

c2
(14.7)

where

mp = 1.672 621 10−27 kg mn = 1.674 927 10−27 kg

are the mass of a lone proton respectively a lone neutron at rest, and EB is the
binding energy. This result is very important for nuclear physics, because mass
is something that can readily be measured. Measure the mass accurately and
you know the binding energy.
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In fact, even a normal hydrogen atom has a mass lower than that of a proton
and electron by the 12.6 eV (electron volt) binding energy between proton and
electron. But scaled down by c2, the associated change in mass is negligible.

In contrast, nuclear binding energies are on the scale of MeV instead of eV,
a million times higher. It is the devastating difference between a nuclear bomb
and a stick of dynamite. Or between the almost limitless power than can be
obtained from peaceful nuclear reactors and the limited supply of fossil fuels.

At nuclear energy levels the changes in mass become noticeable. For exam-
ple, deuterium has a binding energy of 2.224 5 MeV. The proton has a rest mass
that is equivalent to 938.272 013 MeV in energy, and the neutron 939.565 561
MeV. (You see how accurately physicists can measure masses.) Therefore the
mass of the deuteron nucleus is lower than the combined mass of a proton and
a neutron by about 0.1%. It is not big, but observable. Physicists are able to
measure masses of reasonably stable nuclei extremely accurately by ionizing the
atoms and then sending them through a magnetic field in a mass spectrograph
or mass spectrometer. And the masses of unstable isotopes can be inferred from
the end products of nuclear reactions involving them.

As the above discussion illustrates, in nuclear physics masses are often ex-
pressed in terms of their equivalent energy in MeV instead of in kg. To add
further confusion and need for conversion factors, still another unit is commonly
used in nuclear physics and chemistry. That is the “unified atomic mass unit“
(u), also called “Dalton,” (Da) or “universal mass unit” to maximize confusion.
The “atomic mass unit” (amu) is an older virtually identical unit, or rather two
virtually identical units, since physicists and chemists used different versions of
it in order to achieve that supreme perfection in confusion.

These units are chosen so that atomic or nuclear masses expressed in terms
them are approximately equal to the number of nucleons, (within a percent or
so.) The current official definition is that a carbon-12, C12

6 , atom has a mass of
exactly 12 u. That makes 1 u equivalent 931.494 028 MeV. That is somewhat
less than the mass of a free proton or a neutron.

One final warning about nuclear masses is in order. Almost always, it is
atomic mass that is reported instead of nuclear mass. To get the nuclear mass,
the rest mass of the electrons must be subtracted, and a couple of additional
correction terms applied to compensate for their binding energy, [37]:

mnucleus = matom − Zme + AeZ
2.39 + BeZ

5.35 (14.8)

me = 0.510 998 91 MeV Ae = 1.443 81 10−5 MeV Be = 1.554 68 10−12 MeV

The nuclear mass is taken to be in MeV. So it is really the rest mass energy,
not the mass, but who is complaining? Just divide by c2 to get the actual mass.
The final two correction terms are really small, especially for light nuclei, and
are often left away (but not in the data presented here).
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14.7 Draft: Binding energy

The binding energy of a nucleus is the energy that would be needed to take
it apart into its individual protons and neutrons. Binding energy explains the
overall trends in nuclear reactions.

As explained in the previous section, the binding energy EB can be found
from the mass of the nucleus. The specific binding energy is defined as the
binding energy per nucleon, EB/A. Figure 14.4 shows the specific binding energy
of the nuclei with known masses. The highest specific binding energy is 8.8 MeV,
and occurs for Ni62

28 nickel. Nickel has 28 protons, a magic number. However,
nonmagic Fe58

26 and Fe56
26 are right on its heels.

Nuclei can therefore lower their total energy by evolving towards the nickel-
iron region. Light nuclei can “fusion” together into heavier ones to do so. Heavy
nuclei can emit alpha particles or fission, fall apart in smaller pieces.

Figure 14.4 also shows that the binding energy of most nuclei is roughly 8
MeV per nucleon. However, the very light nuclei are an exception; they tend to
have a quite small binding energy per nucleon. In a light nucleus, each nucleon
only experiences attraction from a small number of other nucleons. For example,
deuterium only has a binding energy of 1.1 MeV per nucleon.

The big exception to the exception is the doubly magic He4
2 nucleus, the alpha

particle. It has a stunning 7.07 MeV binding energy per nucleon, exceeding its
immediate neighbors by far.

The Be8
4 beryllium nucleus is not bad either, also with 7.07 MeV per nucleon,

almost exactly as high as He4
2 , though admittedly that is achieved using eight

nucleons instead of only four. But clearly, Be8
4 is a lot more tightly bound than

its immediate neighbors.
It is therefore ironic that while various of those neighbors are stable, the

much more tightly bound Be8
4 is not. It falls apart in about 67 as (i.e. 67 10−18

s), a tragic consequence of being able to come neatly apart into two alpha
particles that are just a tiny bit more tightly bound. It is the only alpha decay
among the light nuclei. It is an exception to the rule that light nuclei prefer to
fusion into heavier ones.

But despite its immeasurably short half-life, do not think that Be8
4 is not

important. Without it there would be no life on earth. Because of the absence
of stable intermediaries, the Big Bang produced no elements heavier than beryl-
lium, (and only trace amounts of that) including no carbon. As Hoyle pointed
out, the carbon of life is formed in the interior of aging stars when Be8

4 captures
a third alpha particle, to produce C12

6 , which is stable. This is called the “triple
alpha process.” Under the extreme conditions in the interior of collapsing stars,
given time this process produces significant amounts of carbon despite the ex-
tremely short half-life of Be8

4 . The process is far too slow to have occurred in
the Big Bang, however.

For C12
6 6 carbon, the superior number of nucleons has become big enough to
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overcome the doubly magic advantage of the three corresponding alpha particles.
Carbon-12’s binding energy is 7.68 MeV per nucleon, greater than that of alpha
particles.

14.8 Draft: Nucleon separation energies

Nucleon separation energies are the equivalent of atomic ionization energies,
but for nuclei. The proton separation energy is the minimum energy required
to remove a proton from a nucleus. It is how much the rest mass energy of the
nucleus is less than that of the nucleus with one less proton and a free proton.

Similarly, the neutron separation energy is the energy needed to remove a
neutron. Figures 14.5 and 14.6 show proton and neutron separation energies as
grey tones. Note that these energies are quite different from the average binding
energy per nucleon given in the previous subsection. In particular, it takes a
lot of energy to take another proton out of an already proton-deficient nucleus.
And the same for taking a neutron out of an already neutron deficient nucleus.

In addition, the vertical striping in 14.5 shows that the proton separation
energy is noticeably higher if the initial number of protons is even than if it is
odd. Nucleons of the same kind like to pair up. If a proton is removed from a
nucleus with an even number of protons, a pair must be broken up, and that
requires additional energy. The neutron separation energy 14.6 shows diagonal
striping for similar reasons; neutrons too pair up.

There is also a visible step down in overall grey level at the higher magic
numbers. It is not dramatic, but real. It illustrates that the nucleon energy
levels come in “shells” terminated by magic numbers. In fact, this step down in
energy defines the magic numbers. That is discussed further in section 14.12.

Figures 14.7 and 14.8 show the energy to remove two protons, respectively
two neutrons from even-even nuclei. This show up the higher magic numbers
more clearly as the pairing energy effect is removed as a factor.

14.9 Draft: Modeling the Deuteron

This book largely limits itself to relatively simple, but effective, models for nu-
clei. However, the deuteron, the deuterium nucleus, is the most simple nontrivial
nucleus, as it consists of only a single proton. So, to give a rough idea of what
sort of more advanced nuclear theories there are out there, this one section will
look at the deuteron in some more detail.

Addendum {A.41} explores some of the nuclear potentials that you can write
down to model the deuteron. Simple potentials such as those described there
give a lot of insight in the deuteron. They give ballpark values for the potential
and kinetic energies. They also give an explanation for the observations that
the deuteron is only weakly bound and that there is no second bound state.
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They show the relatively large size of the deuteron: there is a good chance
that the proton and neutron can be found way apart. Simple additions to the
potential can describe the spin dependence and the violation of orbital angular
momentum conservation.

However, there is a problem. These potentials describe a deuteron consisting
of a proton and a neutron. But the proton and neutron are not elementary
particles: each consists of three quarks.

This internal structure should not be a much of a concern when the proton
and neutron are relatively far apart. But if the two get really close? Surely
in that case the physics should be described in terms of six quarks that inter-
act through gluons and the Pauli exclusion principle, [5, p. 95]? Eventually
the proton and neutron must lose their identity. Then there is no longer any
reasonable justification for a picture of a free-space proton interacting with a
free-space neutron.

A rough idea of the scales involved may be obtained by looking at charge
radii. The charge radius of a particle is a measure of the size of its charge
distribution. Now the proton has a charge radius of about 0.88 fm. The deuteron
has a charge radius of 2.14 fm. So at least the charge radius of a proton is not
that much smaller than the size of the deuteron. And a quantum description
of the deuteron needs to consider all possible nucleon spacings. Clearly for the
smallest nucleon spacings, the two must intrude nontrivially into each other’s
space.

Consider another example of compound structures, noble gas atoms. When
such atoms are relatively far apart, they can be modeled well as point particles
forming an ideal gas. You might add some simple Van der Waals forces to that
picture. However, when the atoms get pushed close together, the electromag-
netic interactions between them become much more complex. And if you try to
push the atoms even closer together, they resist that very strongly. The reason
is the Pauli exclusion principle, chapter 5.10. More than two electrons cannot
be pushed in the same spatial state.

The big difference is of course that the electromagnetic interactions of the
electrons and nuclei that make up atoms are well understood. There is as yet
no good way to describe the color force interactions between the quarks that
make up nucleons. (Certainly not at the relatively low energies of importance
for nuclear structure.)

Physicists have developed a model that is somewhere intermediate between
that of interacting free-space nucleons and interacting quarks. In the model, the
forces between nucleons are produced by the exchange of particles called “pions.”
That is much like how in relativistic quantum mechanics, electromagnetic forces
are produced by the exchange of photons. Or how the forces between quarks are
believed to be produced by the exchange of gluons. These exchanged particles
are “virtual” ones.

Roughly speaking, relativistic mass-energy equivalence combined with quan-
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tum uncertainty in energy allows some possibility for these particles to be found
near the real particles. (See addendum {A.42} for a more quantitative descrip-
tion of these ideas.)

The picture is now that the proton and neutron are elementary particles but
“dressed” in a coat of virtual pions. Pions consist of two quarks. More precisely,
they consist of a quark and an antiquark. There are three pions; the positively
charged π+, the neutral π0, and the negatively charged π−. Pions have no spin.
They have negative intrinsic parity. The charged pions have a mass of 140 MeV,
while the uncharged one has a slightly smaller mass of 135 MeV.

When the neutron and proton exchange a pion, they also exchange its mo-
mentum. That produces a force between them.

There are a number of redeeming features to this model:
1. It explains the short range of the nuclear force. That is worked out

in addendum {A.42}.
However, the same result is often derived much quicker and easier

in literature. That derivation does not require any Hamiltonians to
be written down, or even any mathematics above the elementary
school level. It uses the popular so-called “energy-time uncertainty
equality,” chapter 7.2.2,

any energy difference you want×any time difference you want = 1
2
~

To apply it to pion exchange, replace “any energy difference you
want” with the rest mass energy of the virtual pion that supposedly
pops up, about 138 MeV on average. Replace “any time difference
you want” with the time that the pion exists. (Model the pion here
as a classical particle with definite values of position versus time.)
From the time that the pion exists, you can compute how far it
travels. That is because clearly it must travel with about half the
speed of light: it cannot travel with a speed less than zero nor more
than the speed of light. Put in the numbers, ignore the stupid factors
1
2
because you do not need to be that accurate, and it shows that

the pion would travel about 1.4 fm if it had a position to begin with.
That range of the pion is consistent with the experimental data on
the range of the nuclear force.
(OK, someone might object the pions do most decidedly not pop

up and disappear again. The ground state of a nucleus is an energy
eigenstate and those are stationary, chapter 7.1.4. But why worry
about such minor details?)

2. It gives a reasonable explanation of the anomalous magnetic mo-
ments of the proton and neutron. The magnetic moment of the
proton can be written as

µp = gp
1
2
µN gp = 5.586 µN =

e~

2mp

≈ 5.051 10−27 J/T
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Here µN is called the nuclear magneton. It is formed with the charge
and mass of the proton. Now, if the proton was an elementary
particle with spin one-half, the factor gp should be two, chapter
13.4. Or at least close to it. The electron is an elementary particle,
and its similarly defined g-factor is 2.002. (Of course that uses the
electron mass instead of the proton one.)
The magnetic moment of the neutron can similarly be written

µn = gn
1
2
µN gn = −3.826 µN =

e~

2mp

≈ 5.051 10−27 J/T

Note that the proton charge and energy are used here. In fact, if
you consider the neutron as an elementary particle with no charge,
it should not have a magnetic moment in the first place.
Suppose however that the neutron occasionally briefly flips out a

negatively charged virtual π−. Because of charge conservation, that
will leave the neutron as a positively charged proton. But the pion
is much lighter than the proton. Lighter particles produce much
greater magnetic moments, all else being the same, chapter 13.4. In
terms of classical physics, lighter particles circle around a lot faster
for the same angular momentum. To be sure, as a spinless particle
the pion has no intrinsic magnetic moment. However, because of
parity conservation, the pion should have at least one unit of orbital
angular momentum to compensate for its intrinsic negative parity.
So the neutral neutron acquires a big chunk of unexpected negative
magnetic moment.
Similar ideas apply for the proton. The proton may temporarily

flip out a positively charged π+, leaving itself a neutron. Because
of the mass difference, this can be expected to significantly increase
the proton magnetic moment.
Apparently then, the virtual π+ pions increase the g-factor of the

proton from 2 to 5.586, an increase of 3.586. So you would expect
that the virtual π− pions decrease the g-factor of the neutron from 0
to −3.586. That is roughly right, the actual g-factor of the neutron
is −3.826.
The slightly larger value seems logical enough too. The fact that

the proton turns occasionally into a neutron should decrease its total
magnetic moment. Conversely, the neutron occasionally turns into a
proton. Assume that the neutron has half a unit of spin in the pos-
itive chosen z-direction. That is consistent with one unit of orbital
angular momentum for the π− and minus half a unit of spin for the
proton that is left behind. So the proton spins in the opposite direc-
tion of the neutron, which means that it increases the magnitude of
the negative neutron magnetic moment. (The other possibility, that
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the π−1 has no z-momentum and the proton has half a positive unit,
would decrease the magnitude. But this possibility has only half
the probability, according to the Clebsch-Gordan coefficients figure
12.6.)

3. The same ideas also provide an explanation for a problem with the
magnetic moments of heavier nuclei. These do not fit theoretical
data that well, figure 14.42. A closer examination of these data
suggests that the intrinsic magnetic moments of nucleons are smaller
inside nuclei than they are in free space. That can reasonably be
explained by assuming that the proximity of other nucleons affects
the coats of virtual pions.

4. It explains a puzzling observation when high-energy neutrons are
scattered off high-energy protons going the opposite way. Because
of the high energies, you would expect that only a few protons and
neutrons would be significantly deflected from their path. Those
would be caused by the few collisions that happen to be almost
head-on. And indeed relatively few are scattered to say about 90◦

angles. But an unexpectedly large number seems to get scattered
almost 180◦, straight back to where they came from. That does not
make much sense.
The more reasonable explanation is that the proton catches a vir-

tual π− from the neutron. Or the neutron catches a virtual π+ from
the proton. Either process turns the proton into a neutron and vice-
versa. So an apparent reflected neutron is really a proton that kept
going straight but changed into a neutron. And the same way for
an apparent reflected proton.

5. It can explain why charge independence is less perfect than charge
symmetry. A pair of neutrons can only exchange the neutral π0.
Exchange of a charged pion would create a proton and a nucleon with
charge −1. The latter does not exist. (At least not for measurable
times, nor at the energies of most interest here.) Similarly, a pair
of protons can normally only exchange a π0. But a neutron and a
proton can also exchange charged pions. So pion interactions are
not charge independent.

6. The nuclear potential that can be written down analytically based
on pion exchange works very well at large nucleon spacings. This
potential is called the “OPEP,” for One Pion Exchange Potential,
{A.42}.

There are also drawbacks to the pion exchange approach.
For one, the magnetic moments of the neutron and proton can be reasonably

explained by simply adding those of the constituent quarks, [31, pp. 74, 745].
To be sure, that does not directly affect the question whether the pion exchange
model is useful. But it does make the dressed nucleon picture look quite con-
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trived.

A bigger problem is nucleon spacings that are not so large. One-pion ex-
change is generally believed to be dominant for nucleon spacings above 3 fm,
and reasonable for spacings above 2 fm, [36, p. 135, 159], [5, p. 86, 91]. However,
things get much more messy for spacings shorter than that. That includes the
vital range of spacings of the primary nucleon attractions and repulsions. For
these, two-pion exchange must be considered. In addition, excited pion states
and an excited nucleon state need to be included. That is much more compli-
cated. See addendum {A.42} for a brief intro to some of the issues involved.

And for still shorter nucleon spacings, things get very messy indeed, includ-
ing multi-pion exchanges and a zoo of other particles. Eventually the question
must be at what spacing nucleons lose their distinctive character and a model of
quarks exchanging gluons becomes unavoidable. Fortunately, very close spac-
ings correspond to very high energies since the nucleons strongly repel each
other at close range. So very close spacings may not be that important for most
nuclear physics.

Because of the above and other issues, many physicists use a less theoretical
approach. The OPEP is still used at large nucleon spacings. But at shorter
spacings, relatively simple chosen potentials are used. The parameters of those
“phenomenological” potentials are adjusted to match the experimental data.

It makes things a lot simpler. And it is not clear whether the theoretical
models used at smaller nucleon spacings are really that much more justified.
However, phenomenological potentials do require that large numbers of param-
eters are fit to experimental data. And they have a nasty habit of not working
that well for experimental data different from that used to define their param-
eters, [32].

Regardless of potential used, it is difficult to come up with an unambiguous
probability for the l = 2 orbital angular momentum. Estimates hover around the
5% value, but a clear value has never been established. This is not encouraging,
since this probability is an integral quantity. If it varies nontrivially from one
model to the next, then there is no real convergence on a single deuteron model.
Of course, if the proton and neutron are modeled as interacting clouds of parti-
cles, it may not even be obvious how to define their orbital angular momentum
in the first place, [Phys. Rev. C 19,20 (1979) 1473,325]. And that in turn raises
questions in what sense these models are really well-defined two-particle ones.

Then there is the very big problem of generalizing all this to systems of
three or more nucleons. One current hope is that closer examination of the
underlying quark model may produce a more theoretically justified model in
terms of nucleons and mesons, [32].
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14.10 Draft: Liquid drop model

Nucleons attract each other with nuclear forces that are not completely under-
stood, but that are known to be short range. That is much like molecules in a
classical liquid drop attract each other with short-range Van der Waals forces.
Indeed, it turns out that a liquid drop model can explain many properties of
nuclei surprisingly well. This section gives an introduction.

14.10.1 Draft: Nuclear radius

The volume of a liquid drop, hence its number of molecules, is proportional to
the cube of its radius R. Conversely, the radius is proportional to the cube root
of the number of molecules. Similarly, the radius of a nucleus is approximately
equal to the cube root of the number of nucleons:

R ≈ RA
3
√
A RA = 1.23 fm (14.9)

Here A is the mass number, equal to the number of protons Z plus the number
of neutrons N . Also fm stands for “femtometer,” equal to 10−15 meter; it may
be referred to as a “fermi” in some older references. Enrico Fermi was a great
curse for early nuclear physicists, quickly doing all sorts of things before they
could.

It should be noted that the above nuclear radius is an average one. A nucleus
does not stop at a very sharply defined radius. (And neither would a liquid drop
if it only contained 100 molecules or so.) Also, the constant RA varies a bit with
the nucleus and with the method used to estimate the radius. Values from 1.2
to 1.25 are typical. This book will use the value 1.23 stated above.

It may be noted that these results for the nuclear radii are quite solidly
established experimentally. Physicists have used a wide variety of ingenious
methods to verify them. For example, they have bounced electrons at various
energy levels off nuclei to probe their Coulomb fields, and alpha particles to
also probe the nuclear forces. They have examined the effect of the nuclear
size on the electron spectra of the atoms; these effects are very small, but if
you substitute a muon for an electron, the effect becomes much larger since the
muon is much heavier. They have dropped pi mesons on nuclei and watched
their decay. They have also compared the energies of nuclei with Z protons and
N neutrons against the corresponding “mirror nuclei” that have with N protons
and Z neutrons. There is good evidence that the nuclear force is the same when
you swap neutrons with protons and vice versa, so comparing such nuclei shows
up the Coulomb energy, which depends on how tightly the protons are packed
together. All these different methods give essentially the same results for the
nuclear radii. They also indicate that the neutrons and protons are well-mixed
throughout the nucleus, [31, pp. 44-59]
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14.10.2 Draft: von Weizsäcker formula

The binding energy of nuclei can be approximated by the “von Weizsäcker
formula,“ or “Bethe-von Weizsäcker formula:”

EB,vW = CvA− CsA2/3 − Cc
Z(Z − Cz)

A1/3
− Cd

(Z −N)2

A
− Cp

oZ + oN − 1

ACe

(14.10)
where the C. are constants, while oZ is 1 if the number of protons is odd and
zero if it is even, and similar for oN for neutrons. This book uses values given
by [37] for the constants:

Cv = 15.409 MeV Cs = 16.873 MeV Cc = 0.695 MeV Cz = 1

Cd = 22.435 MeV Cp = 11.155 MeV Ce = 0.5

where a MeV (mega electron volt) is 1.602 18 10−13 J, equal to the energy that
an electron picks up in a one million volt electric field.

Plugged into the mass-energy relation, the von Weizsäcker formula produces
the so-called “semi-empirical mass formula:”

mnucleus,SE = Zmp +Nmn −
EB,vW

c2
(14.11)

14.10.3 Draft: Explanation of the formula

The various terms in the von Weizsäcker formula of the previous subsection
have quite straightforward explanations. The Cv term is typical for short-range
attractive forces; it expresses that the energy of every nucleon is lowered the
same amount by the presence of the attracting nucleons in its immediate vicinity.
The classical analogue is that the energy needed to boil away a drop of liquid
is proportional to its mass, hence to its number of molecules.

The Cs term expresses that nucleons near the surface are not surrounded
by a complete set of attracting nucleons. It raises their energy. This affects
only a number of nucleons proportional to the surface area, hence proportional
to A2/3. The effect is negligible for a classical drop of liquid, which may have
a million molecules along a diameter, but not for a nucleus with maybe ten
nucleons along it. (Actually, the effect is important for a classical drop too,
even if it does not affect its overall energy, as it gives rise to surface tension.)

The Cc term expresses the Coulomb repulsion between protons. Like the
Coulomb energy of a sphere with constant charge density, it is proportional to
the square net charge, so to Z2 and inversely proportional to the radius, so to
A1/3. However, the empirical constant Cc is somewhat different from that of a
constant charge density. Also, a correction Cz = 1 has been thrown in to ensure
that there is no Coulomb repulsion if there is just one proton.
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The last two terms cheat; they try to deviously include quantum effects
in a supposedly classical model. In particular, the Cd term adds an energy
increasing with the square of the difference in number of protons and neutrons.
It simulates the effect of the Pauli exclusion principle. Assume first that the
number of protons and neutrons is equal, each A/2. In that case the protons
will be able to occupy the lowest A/2 proton energy levels, and the neutrons the
lowest A/2 neutron levels. However, if then, say, some of the protons are turned
into neutrons, they will have to move to energy levels above A/2, because the
lowest A/2 neutron levels are already filled with neutrons. Therefore the energy
goes up if the number of protons and neutrons becomes unequal.

The last Cp term expresses that nucleons of the same type like to pair up.
When both the number of protons and the number of neutrons is even, all
protons can pair up, and all neutrons can, and the energy is lower than average.
When both the number of protons is odd and the number of neutrons is odd,
there will be an unpaired proton as well as an unpaired neutron, and the energy
is higher than average.

14.10.4 Draft: Accuracy of the formula

Figure 14.9 shows the error in the von Weizsäcker formula as colors. Blue means
that the actual binding energy is higher than predicted, red that it is less than
predicted. For very light nuclei, the formula is obviously useless, but for the
remaining nuclei it is quite good. Note that the error is in the order of MeV, to
be compared to a total binding energy of about 8A MeV. So for heavy nuclei
the relative error is small.

Near the magic numbers the binding energy tends to be greater than the
predicted values. This can be qualitatively understood from the quantum energy
levels that the nucleons occupy. When nucleons are successively added to a
nucleus, those that go into energy levels just below the magic numbers have
unusually large binding energy, and the total nuclear binding energy increases
above that predicted by the von Weizsäcker formula. The deviation from the
formula therefore tends to reach a maximum at the magic number. Just above
the magic number, further nucleons have a much lower energy level, and the
deviation from the von Weizsäcker value decreases again.

14.11 Draft: Alpha Decay

In alpha decay a nucleus emits an “alpha particle,” later identified to be simply
a helium-4 nucleus. Since the escaping alpha particle consists of two protons
plus two neutrons, the atomic number Z of the nucleus decreases by two and
the mass number A by four. This section explains why alpha decay occurs.
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Figure 14.9: Error in the von Weizsäcker formula. [pdf][con]
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14.11.1 Draft: Decay mechanism

Figure 14.10 gives decay data for the nuclei that decay exclusively through alpha
decay. Nuclei are much like cherries: they have a variable size that depends
mainly on their mass number A, and a charge Z that can be shown as different
shades of red. You can even define a “stem” for them, as explained later. Nuclei
with the same atomic number Z are joined by branches.

Even-Even Nuclei

All Nuclei

Th and U

1Ey

1Py
τ1/2

1Gy
1My

1ky

1y

1h

1s

1ms

1µs
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1h

1s
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Figure 14.10: Half-life versus energy release for the atomic nuclei marked in
NUBASE 2003 as showing pure alpha decay with unqualified energies. Top:
only the even values of the mass and atomic numbers cherry-picked, omitting
Be8

4 . Inset: really cherry-picking, only a few even mass numbers for thorium
and uranium! Bottom: all the nuclei except Be8

4 (67 as, 0.092 MeV). [pdf]

Not shown in figure 14.10 is the unstable beryllium isotope Be8
4 , which has

a half-life of only 67 as, (i.e. 67 10−18 s), and a decay energy of only 0.092 MeV.
As you can see from the graph, these numbers are wildly different from the
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other, much heavier, alpha-decay nuclei, and inclusion would make the graph
very messy.

Note the tremendous range of half-lives in figure 14.10, from mere nanosec-
onds to quintillions of years. And that excludes beryllium’s attoseconds. In the
early history of alpha decay, it seemed very hard to explain how nuclei that do
not seem that different with respect to their numbers of protons and neutrons
could have such dramatically different half-lives. The energy that is released in
the decay process does not vary that much, as figure 14.10 also shows.

To add to the mystery in those early days of quantum mechanics, if an alpha
particle was shot back at the nucleus with the same energy that it came out,
it would not go back in! It was reflected by the electrostatic repulsion of the
positively charged nucleus. So, it had not enough energy to pass through the
region of high potential energy surrounding the nucleus, yet it did pass through
it when it came out.

Gamow, and independently Gurney & Condon, recognized that the expla-
nation was quantum tunneling. Tunneling allows a particle to get through a
potential energy barrier even if classically it does not have enough energy to do
so, chapter 7.12.2.

E

Vn

r1 r2

VCoulomb

Figure 14.11: Schematic potential for an alpha particle that tunnels out of a
nucleus.

Figure 14.11 gives a rough model of the barrier.The horizontal line represents
the total energy of the alpha particle. Far from the nucleus, the potential energy
V of the alpha particle can be defined to be zero. Closer to the nucleus, the
potential energy of the alpha particle ramps up due to Coulomb repulsion.
However, right at the outer edge r = R of the nucleus itself, the strong but very
short-range attractive nuclear force pops up, and the combined potential energy
plummets almost vertically downwards to some low value Vn. In between the
radial position r1 ≈ R and some larger radius r2, the potential energy exceeds
the total energy that the alpha particle has available. Classically, the alpha
particle cannot penetrate into this region. However, in quantum mechanics it
retains a very small probability of doing so.
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The region in between r1 and r2 is called the “Coulomb barrier.” It is a
poorly chosen name, because the barrier is only a Coulomb one for an alpha
particle trying to get in the nucleus. For an alpha particle trying to get out, it
is a nuclear force barrier; here the Coulomb force assists the tunneling particle
to get through the barrier and escape. The term “nuclear barrier” would avoid
this ambiguity. Therefore physicists do not use it.

Now, to get a rough picture of alpha decay, imagine an alpha particle wave
packet “rattling around” inside the nucleus trying to escape. Each time it hits
the barrier at r1, it has a small chance of escaping. Eventually it gets lucky.

Assume that the alpha particle wave packet is small enough that the motion
can be assumed to be one-dimensional. Then the small chance of escaping each
time it hits the barrier is approximately given by the analysis of chapter 7.13 as

T ≈ e−2γ12 γ12 =
1

~

∫ r2

r1

√
2mα(V − E) dr (14.12)

The fact that this probability involves an exponential is the basic reason for the
tremendous range in half-lives: exponentials can vary greatly in magnitude for
relatively modest changes in their argument.

14.11.2 Draft: Comparison with data

The previous subsection explained alpha decay in terms of an imprisoned alpha
particle tunneling out of the nucleus. To verify whether that is reasonable, the
next step is obviously to put in some ballpark numbers and see whether the
experimental data can be explained.

First, the energy E of the alpha particle may be found from Einstein’s famous
expression E = mc2, section 14.6. Just find the difference between the rest mass
of the original nucleus and the sum of that of the final nucleus and the alpha
particle, and multiply by the square speed of light. That gives the energy
release. It comes out primarily as kinetic energy of the alpha particle, ignoring
any excitation energy of the final nucleus. (A reduced mass can be used to allow
for recoil of the nucleus.) Note that alpha decay cannot occur if E is negative;
the kinetic energy of the alpha particle cannot be negative.

It may be noted that the energy release E in a nuclear process is generally
called the “Q-value.” The reason is that one of the most common other quan-
tities used in nuclear physics is the so-called quadrupole moment Q. Also, the
total nuclear charge is indicated by Q, as is the quality factor of radiation, while
projection and rotation operators, and second points are often also indicted by
Q. The underlying idea is that when you are trying to figure out some technical
explanation, then if almost the only mathematical symbol used is Q, it provides
a pretty strong hint that you are probably reading a book on nuclear physics.

The nuclear radius R approximately defines the start r1 of the region that
the alpha particle has to tunnel through, figure 14.11. It can be ballparked
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reasonably well from the number of nucleons A; according to section 14.10,

R ≈ RA
3
√
A RA = 1.23 fm

where f, femto, is 10−15. That is a lot smaller than the typical Bohr radius over
which electrons are spread out. Electrons are “far away” and are not really
relevant.

It should be pointed out that the results are very sensitive to the assumed
value of r1. The simplest assumption would be that at r1 the alpha particle
would have its center at the nuclear radius of the remaining nucleus, computed
from the above expression. But very noticeable improvements are obtained by
assuming that at r1 the center is already half the radius of the alpha particle
outside. (In literature, it is often assumed that the alpha particle is a full radius
outside, which means fully outside but still touching the remaining nucleus.
However, half works better and is maybe somewhat less implausible.)

The good news about the sensitivity of the results on r1 is that conversely it
makes alpha decay a reasonably accurate way to deduce or verify nuclear radii,
[31, p. 57]. You are hardly likely to get the nuclear radius noticeably wrong
without getting into major trouble explaining alpha decay.

The number of escape attempts per unit time is also needed. If the alpha
particle has a typical velocity vα inside the original nucleus, it will take it a
time of about 2r0/vα to travel the 2r0 diameter of the nucleus. So it will bounce
against the barrier about vα/2r0 times per second. That is sure to be a very
large number of times per second, the nucleus being so small, but each time
it hits the perimeter, it only has a miniscule e−2γ12 chance of escaping. So it
may well take trillions of years before it is successful anyway. Even so, among
a very large number of nuclei a few will get out every time. Remember that a
mol of atoms represents in the order of 1023 nuclei; among that many nuclei,
a few alpha particles are likely to succeed whatever the odds against. The
relative fraction of successful escape attempts per unit time is by definition the
reciprocal of the lifetime τ ;

vα
2r0

e−2γ12 =
1

τ
(14.13)

Multiply the lifetime by ln 2 to get the half-life.
The velocity vα of the alpha particle can be ballparked from its kinetic energy

E − Vn in the nucleus as
√

2(E − Vn)/mα. Unfortunately, finding an accurate
value for the nuclear potential Vn inside the nucleus is not trivial. But have
another look at figure 14.10. Forget about engineering ideas about acceptable
accuracy. A 50% error in half-life would be invisible seen on the tremendous
range of figure 14.10. Being wrong by a factor 10, or even a factor 100, two
orders of magnitude, is ho-hum on the scale that the half-life varies. So, the
potential energy Vn inside the nucleus can be ballparked. The current results
use the typical value of −35 MeV given in [31, p. 252].
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That leaves the value of γ12 to be found from the integral over the barrier in
(14.12). Because the nuclear forces are so short-range, they should be negligible
over most of the integration range. So it seems reasonable to simply substitute
the Coulomb potential everywhere for V . The Coulomb potential is inversely
proportional to the radial position r, and it equals E at r2, so V can be written
as V = Er2/r. Substituting this in, and doing the integral by making a change
of integration variable to u with r = r2 sin

2 u, produces

γ12 =

√
2mαE

~
r2

[
π

2
−
√
r1
r2

(
1− r1

r2

)
− arcsin

√
r1
r2

]

The last two terms within the square brackets are typically relatively small
compared to the first one, because r1 is usually fairly small compared to r2.
Then γ12 is about proportional to

√
Er2. But r2 itself is inversely proportional

to E, because the total energy of the alpha particle equals its potential energy
at r2;

E =
(Z − Zα)eZαe

4πǫ0r2
Zα = 2

That makes γ12 about proportional to 1/
√
E for a given atomic number Z.

So if you plot the half-life on a logarithmic scale, and the energy E on an
reciprocal square root scale, as done in figure 14.10, they should vary linearly
with each other for a given atomic number. This does assume that the variations
in number of escape attempts are also ignored. The predicted slope of linear
variation is indicated by the “stems” on the cherries in figure 14.10. Ideally, all
cherries connected by branches should fall on a single line with this slope. The
figure shows that this is quite reasonable for even-even nuclei, considering the
rough approximations made. For nuclei that are not even-even, the deviations
from the predicted slope are more significant. The next subsection discusses the
major sources of error.

The bottom line question is whether the theory, rough as it may be, can
produce meaningful values for the experimental half-lives, within reason. Figure
14.12 shows predicted half-lives versus the actual ones. Cherries on the black
line indicate that the correct value is predicted. It is clear that there is no
real accuracy to the predictions in any normal sense; they are easily off by
several orders of magnitude. What can you expect without an accurate model
of the nucleus itself? However, the predictions do successfully reproduce the
tremendous range of half-lives and they do not deviate from the correct values
that much compared to that tremendous range. It is hard to imagine any other
theory besides tunneling that could do the same.

The worst performance of the theory is for the Bi209
83 bismuth isotope indi-

cated by the rightmost dot in figure 14.12. Its true half-life of 19 Ey, 19 1018

years, is grossly underestimated to be just 9 Py, 9 1015 years. Then again,
since the universe has only existed about 14 109 years, who is going to live long



14.11. DRAFT: ALPHA DECAY 695

Even-Even Nuclei

1Ey

1Py

1Ty

1Gy

1My

1ky

1y

1h

1s

1ms

1µs

τ1/2

1µs 1s 1y 1My 1Ty 1Ey true

All Nuclei

1Ey

1Py

1Ty

1Gy

1My

1ky

1y

1h

1s

1ms

1µs

τ1/2

1µs 1s 1y 1My 1Ty 1Ey true

Figure 14.12: Half-life predicted by the Gamow / Gurney & Condon theory
versus the true value. Top: even-even nuclei only. Bottom: all the nuclei except
Be8

4 (55 as versus 67 as). [pdf]
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enough to complain about it? Essentially none of the bismuth-209 that has ever
been created in the universe has decayed. It took until 2003 for physicists to
observe that bismuth-209 actually did decay; it is still listed as stable in many
references. For Be8

4 , which is not shown in the figure, the predicted half-life is
55 as (55 10−18 s), versus a true value of 67 as.

14.11.3 Draft: Forbidden decays

You may wonder why there is so much error in the theoretical predictions of
the half life. Or why the theory seems to work so much better for even-even
nuclei than for others. A deviation by a factor 2 000 like for bismuth-209 seems
an awful lot, rough as the theory may be.

Some of the sources of inaccuracy are self-evident from the theoretical de-
scription as given. In particular, there is the already mentioned effect of the
value of r1. It is certainly possible to correct for deviations from the Coulomb
potential near the nucleus by a suitable choice of the value of r1. However, the
precise value that kills off the error is unknown, and unfortunately the results
strongly depend on that value. To fix this would require an accurate evaluation
of the nuclear force potential, and that is very difficult. Also, the potential
of the electrons would have to be included. The alpha particle does reach a
distance of the order of a tenth of a Bohr radius from the nucleus at the end
of tunneling. The Bohr radius is here taken to be based on the actual nuclear
charge, not the hydrogen one.

Also, the picture of a relatively compact wave packet of the alpha parti-
cle “rattling around” assumes that that the size of that wave packet is small
compared to the nucleus. That spatial localization is associated with increased
uncertainty in momentum, which implies increased energy. And the kinetic en-
ergy of the alpha particle is not really known anyway, without an accurate value
for the nuclear force potential.

A very major other problem is the assumption that the final alpha parti-
cle and nucleus end up in their ground states. If either ends up in an excited
state, the energy that the alpha particle has available for escape will be corre-
spondingly reduced. Now the alpha particle will most certainly come out in its
ground state; it takes over 20 MeV to excite an alpha particle. But for most
nuclei, the remaining nucleus cannot be in its ground state if the mechanism is
as described.

The main reason is angular momentum conservation. The alpha particle
has no net internal angular angular momentum. Also, it was assumed that the
alpha particle comes out radially, which means that there is no orbital angular
momentum either. So the angular momentum of the nucleus after emission must
be the same as that of the nucleus before the emission. That is no problem for
even-even nuclei, because it is the same; even-even nuclei all have zero internal
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angular momentum in their ground state. So even-even nuclei do not suffer
from this problem.

However, almost all other nuclei do. All even-odd and odd-even nuclei and
almost all odd-odd ones have nonzero angular momentum in their ground state.
Usually the initial and final nuclei have different values. That means that alpha
decay that leaves the final nucleus in its ground state violates conservation of
angular momentum. The decay process is called “forbidden.” The final nucleus
must be excited if the process is as described. That energy subtracts from that
of the alpha particle. Therefore the alpha particle has less energy to tunnel
through, and the true half-life is much longer than computed.

Note in the bottom half of figure 14.12 how many nuclei that are not even-
even do indeed have half-lifes that are orders of magnitude larger than predicted
by theory. Consider the example of bismuth-209, with a half-life 2 000 times
longer than predicted. Bismuth-209 has a spin, i.e. an azimuthal quantum
number, of 9/2. However, the decay product thallium-205 has spin 1/2 in its
ground state. If you check out the excited states of thallium-205, there is an
excited state with spin 9/2, but its excitation energy would reduce the energy of
the alpha particle from 3.2 MeV to 1.7 MeV, making the tunneling process very
much slower.

And there is another problem with that. The decay to the mentioned exited
state is not possible either, because it violates conservation of parity, chapter
7.3 and 7.4. Saying “the alpha particle comes out radially,” as done above is not
really correct. The proper quantum way to say that the alpha particle comes out
with no orbital angular momentum is to say that its wave function varies with
angular location as the spherical harmonic Y 0

0 , chapter 4.2.3. In spectroscopic
terms, it “comes out in an s-wave.” Now the initial bismuth atom has odd
parity; its complete wave function changes sign if you everywhere replace ~r
by −~r. But the alpha particle, the excited thallium state, and the Y 0

0 orbital
motion all have even parity; there is no change of sign. That means that the
total final parity is even too, so the final parity is not the same as the initial
parity. That violates conservation of parity so the process cannot occur.

Thallium-205 does not have excited states below 3.2 MeV that have been
solidly established to have spin 9/2 and odd parity, so you may start to wonder
whether alpha decay for bismuth-209 is possible at all. However, the alpha
particle could of course come out with orbital angular momentum. In other
words it could come out with a wave function that has an angular dependence
according to Y m

l with the azimuthal quantum number l equal to one or more.
These states have even parity if l is even and odd parity when l is odd. Quantum
mechanics then allows the thallium-205 excited state to have any spin j in the
range |9

2
− l| 6 j 6 9

2
+ l as long as its parity is odd or even whenever l is even

or odd.
For example, bismuth-209 could decay to the ground state of thallium-205 if

the orbital angular momentum of the alpha particle is l = 5. Or it could decay
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to an excited 7/2
+ state with an excitation energy of 0.9 MeV if l = 1. The

problem is that the kinetic energy in the angular motion subtracts from that
available for the radial motion, making the tunneling, once again, much slower.
In terms of the radial motion, the angular momentum introduces an additional
effective potential l(l+1)~2/2mαr

2, compare the analysis of the hydrogen atom
in chapter 4.3.2. Note that this effect increases rapidly with l. However, the
decay of bismuth-209 appears to be to the ground state anyway; the measured
energy of the alpha particle turns out to be 3.14 MeV. The predicted half-life
including the effective potential is found to be 4.6 Ey, much better than the one
computed in the previous section.

One final source of error should be mentioned. Often alpha decay can pro-
ceed in a number of ways and to different final excitation energies. In that case,
the specific decay rates must be added together. This effect can make the true
half-life shorter than the one computed in the previous subsection. But clearly,
this effect should be minor on the scale of half-lifes of figure 14.12. Indeed,
while the predicted half-lifes of many nuclei are way below the true value in the
figure, few are significantly above it.

14.11.4 Draft: Why alpha decay?

The final question that begs an answer is why do so many nuclei so specifically
want to eject an helium-4 nucleus? Why none of the other nuclei? Why not the
less tightly bound, but lighter deuteron, or the more tightly bound, but heavier
carbon-12 nucleus? The answer is subtle.

To understand the reason, reconsider the analysis of the previous subsection
for a more general ejected nucleus. Assume that the ejected particle has an
atomic number Z1 and mass m1. As mentioned, the precise number of escape
attempts is not really that important for the half life; almost all the variation
in half-life is through the quantity γ12. Also, to a first approximation the ratio
of start to end of the tunneling domain, r1/r2, can be ignored. Under those
conditions, γ12 is proportional to

γ12 ∝
√
m1

E
Z1(Z − Z1)

It is pretty much all in there.
As long as the ejected particle has about the usual 8 MeV binding energy

per nucleon, the square root in the expression above does not vary that much.
In such cases the energy release E is about proportional to the amount of
nucleons ejected. Table 14.3 gives some example numbers. That makes γ12
about proportional to Z1, and the greatest chance of tunneling out then occurs
by far for the lightest nuclei. It explains why the alpha particle tunnels out
instead of heavier nuclei. It is not that a heavier nucleus like carbon-14 cannot
be emitted, it is just that an alpha particle has already done so long before
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carbon-14 gets the chance. In fact, for radium-223 it has been found that one
carbon-14 nucleus is ejected for every billion alpha particles. That is about
consistent with the computed half-lifes of the events as shown in table 14.3.

But the argument that Z1 should be as small as possible should make pro-
tons or neutrons, not the alpha particle, the ones that can escape most easily.
However, these do not have any binding energy. While protons or neutrons are
indeed ejected from nuclei that have a very large proton, respectively neutron
excess, normally the energy release for such emissions is negative. Therefore the
emission cannot occur. Beta decay occurs instead to adjust the ratio between
protons and neutrons to the optimum value. Near the optimum value, you
would still think it might be better to eject a deuteron than an alpha. However,
because the binding energy of the deuteron is only a single MeV per nucleon,
the energy release is again negative. Among the light nuclei, the alpha is unique
in having almost the full 8 MeV of binding energy per nucleon. It is therefore
the only one that produces a positive energy release.

The final problem is that the arguments above seem to show that spon-
taneous fission cannot occur. For, is the fission of say fermium-256 into two
tin-128 nuclei not just ejection of a tin-128 nucleus, leaving a tin-128 nucleus?
The arguments above say that alpha decay should occur much before this can
happen.

The problem is that the analysis of alpha decay is inapplicable to fission.
The numbers for fission-scale half-lifes in table 14.3 are all wrong. Fission is
indeed a tunneling event. However, it is one in which the energy barrier is
disintegrating due to a global instability of the nuclear shape. That instability
mechanism strongly favors large scale division over short scale ones. The only
hint of this in table 14.3 are the large values of r1/r2 for fission-scale events.
When r1/r2 becomes one, the tunneling region is gone. But long before that
happens, the region is so small compared to the size of the ejected nucleus that
the basic ideas underlying the analysis have become meaningless. Even ignoring
the fact that the nuclear shapes have been assumed spherical and they are not
in fission.

Thus, unlike table 14.3 suggests, fermium-256 does fission. The two frag-
ments are usually of different size, but not vastly so. About 92% of fermium-
256 nuclei spontaneously fission, while the other 8% experience alpha decay.
Uranium-238 decays for 99.999 95% through α decay, and for only 0.000 05%
through spontaneous fission. Although the amount of fission is very small, it is
not by far as small as the numbers in table 14.3 imply. Fission is not known to
occur for radium-223; this nucleus does indeed show pure alpha decay except
for the mentioned rare carbon-14 emission.
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U238
92 with τ1/2 = 1.4 1017 s

Ejected: H21 H31 He3
2 He4

2 Be8
4 C16

6 O20
8 Pd118

46

E, MeV: −11.2 −10.0 −11.8 4.3 7.9 17.4 35.3 193.4

E/A1: −5.6 −3.3 −3.9 1.1 1.0 1.1 1.8 1.6

r1/r2: – – – 0.14 0.14 0.21 0.33 0.58

γ∗12: – – – 85 172 237 239 580

γ12: – – – 45 92 103 74 79

τ1/2, s: ∞ ∞ ∞ 4 1017 9 1058 2 1068 8 1044 2 1047

Ra223
88 with τ1/2 = 9.9 105 s

Ejected: H21 H31 He3
2 He4

2 Be8
4 C14

6 O18
8 Zr97

40

E, MeV: −9.2 −9.2 −8.3 6.0 12.9 31.9 40.4 172.9

E/A1: −4.6 −3.1 −2.8 1.5 1.6 2.3 2.2 1.8

r1/r2: – – – 0.20 0.23 0.40 0.39 0.56

γ∗12: – – – 69 129 156 203 534

γ12: – – – 32 53 40 53 77

τ1/2, s: ∞ ∞ ∞ 9 104 4 1024 9 1012 2 1024 2 1045

Fm256
100 with τ1/2 = 9.5 103 s

Ejected: H21 H31 He3
2 He4

2 Be8
4 C14

6 O20
8 Sn128

50

E, MeV: −9.6 −8.5 −8.7 7.1 13.2 27.9 39.4 252.8

E/A1: −4.9 −2.8 −2.9 1.8 1.6 2.0 2.0 2.0

r1/r2: – – – 0.22 0.22 0.31 0.35 0.65

γ∗12: – – – 72 145 192 249 622

γ12: – – – 31 63 63 74 61

τ1/2, s: ∞ ∞ ∞ 2 105 8 1032 6 1032 6 1042 2 1031

Table 14.3: Candidates for nuclei ejected by uranium-238, radium-223, and
fermium-256.
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14.12 Draft: Shell model

The liquid drop model gives a very useful description of many nuclear properties.
It helps understand alpha decay quite well. Still, it has definite limitations.
Quantum properties such as the stability of individual nuclei, spin, magnetic
moment, and gamma decay can simply not be explained using a classical liquid
model with a couple of simple fixes applied.

Historically, a major clue about a suitable quantum model came from the
magic numbers. Nuclei tend to be unusually stable if the number of protons
and/or neutrons is one of the

magic numbers: 2, 8, 20, 28, 50, 82, 126, . . . (14.14)

The higher magic number values are quite clearly seen in proton pair and neu-
tron pair removal graphs like figures 14.7 and 14.8 in section 14.8.

If an additional proton is added to a nucleus with a magic number of protons,
or an additional neutron to a nucleus with a magic number of neutrons, then
that additional nucleon is much more weakly bound.

The doubly magic He4
2 helium-4 nucleus, with 2 protons and 2 neutrons, is a

good example. It has more than three times the binding energy of He3
2 helium-3,

which merely has a magic number of protons. Still, if you try to add another
proton or neutron to helium-4, it will not be bound at all, it will be ejected in
less than 10−21 seconds.

That is very reminiscent of the electron structure of the helium atom. The
two electrons in the helium atom are very tightly bound, making helium into an
inert noble gas. In fact, it takes 25 eV of energy to remove an electron from a
helium atom. However, for lithium, with one more electron, the third electron
is very loosely bound, and readily given up in chemical reactions. It takes only
5.4 eV to remove the third electron from lithium. Similar effects appear for
the other noble gasses, neon with 10 electrons, argon with 18, krypton with 36,
etcetera. The numbers 2, 10, 18, 36, . . . , are magic for electrons in atoms.

For atoms, the unusual stability could be explained in chapter 5.9 by ignoring
the direct interactions between electrons. It was assumed that for each electron,
the complicated effects of all the other electrons could be modeled by some
average potential that the electron moves in. That approximation produced
single-electron energy eigenfunctions for the electrons. They then had to occupy
these single-electron states one by one on account of Pauli’s exclusion principle.
Noble gasses completely fill up an energy level, requiring any additional electrons
to go into the next available, significantly higher energy level. That greatly
decreases the binding energy of these additional electrons compared to those
already there.

The similarity suggests that the protons and neutrons in nuclei might be
described similarly. There are now two types of particles but in the approxima-
tion that each particle is not directly affected by the others it does not make
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much of a difference. Also, antisymmetrization requirements only apply when
the particles are identical, either both protons or both neutrons. Therefore,
protons and neutrons can be treated completely separately. Their interactions
occur only indirectly through whatever is used for the average potential that
they move in. The next subsections work out a model along these lines.

14.12.1 Draft: Average potential

The first step will be to identify a suitable average potential for the nucleons.
One obvious difference distinguishing nuclei from atoms is that the Coulomb
potential is not going to hack it. In the electron structure of an atom the
electrons repel each other, and the only reason the atom stays together is that
there is a nucleus to attract the electrons. But inside a nucleus, the nucleons all
attract each other and there is no additional attractive core. Indeed, a Coulomb
potential like the one used for the electrons in atoms would get only the first
magic number, 2, right, predicting 10, instead of 8, total particles for a filled
second energy level.

A better potential is needed. Now in the center of a nucleus, the attractive
forces come from all directions and the net force will be zero by symmetry.
Away from the center, the net force will be directed inwards towards the center
to keep the nucleons together inside the nucleus. The simplest potential that
describes this is the harmonic oscillator one. For that potential, the inward force
is simply proportional to the distance from the center. That makes the potential
energy V proportional to the square distance from the center, as sketched in
figure 14.13a.

(a) (b) (c) (d)

Figure 14.13: Example average nuclear potentials: (a) harmonic oscillator, (b)
impenetrable surface, (c) Woods-Saxon, (d) Woods-Saxon for protons.

The energy eigenvalues of the harmonic oscillator are

En =
(
n+ 1

2

)
~ω n = 1, 2, 3, . . . (14.15)

Also, in spherical coordinates the energy eigenfunctions of the harmonic oscil-
lator can be taken to be of the form, {D.76},

ψho
nlmms

= Rho
nl (r)Y

m
l (θ, φ)l

l = n−1, n−3, . . . > 0
m = −l,−l+1, . . . , l−1, l
ms = ±1

2

(14.16)
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Here l is the azimuthal quantum number that gives the square orbital angular
momentum of the state as l(l + 1)~2; m is the magnetic quantum number that
gives the orbital angular momentum in the direction of the arbitrarily chosen
z-axis as m~, and ms is the spin quantum number that gives the spin angular
momentum of the nucleon in the z-direction as ms~. The “spin-up” state with
ms =

1
2
is commonly indicated by a postfix ↑, and similarly the spin-down one

ms = −1
2
by ↓. The details of the functions Rho

nl and Y m
l are of no particular

interest.
(It may be noted that the above spherical eigenfunctions are different from

the Cartesian ones derived in chapter 4.1, except for the ground state. How-
ever, the spherical eigenfunctions at a given energy level can be written as
combinations of the Cartesian ones at that level, and vice-versa. So there is no
fundamental difference between the two. It just works out that the spherical
versions are much more convenient in the rest of the story.)

Compared to the Coulomb potential of the hydrogen electron as solved in
chapter 4.3, the major difference is in the number of energy states at a given
energy level n. While for the Coulomb potential the azimuthal quantum number
l can have any value from 0 to n− 1, for the harmonic oscillator l must be odd
or even depending on whether n− 1 is odd or even.

It does not make a difference for the lowest energy level n = 1; in that case
only l = 0 is allowed for either potential. And since the number of values of the
magnetic quantum number m at a given value of l is 2l + 1, there is only one
possible value for m. That means that there are only two different energy states
at the lowest energy level, corresponding to ms = 1

2
respectively −1

2
. Those

two states explain the first magic number, 2. Two nucleons of a given type can
occupy the lowest energy level; any further ones of that type must go into a
higher level.

In particular, helium-4 has the lowest energy level for protons completely
filled with its two protons, and the lowest level for neutrons completely filled
with its two neutrons. That makes helium-4 the first doubly-magic nucleus. It
is just like the two electrons in the helium atom completely fill the lowest energy
level for electrons, making helium the first noble gas.

At the second energy level n = 2, where the Coulomb potential allows both l
= 0 and l = 1, only l = 1 is allowed for the harmonic oscillator. So the number of
states available at energy level n = 2 is less than that of the Coulomb potential.
In particular, the azimuthal quantum number l = 1 allows 2l + 1 = 3 values of
the magnetic quantum number m, times 2 values for the spin quantum number
ms. Therefore, l = 1 at n = 2 corresponds to 3 times 2, or 6 energy states.
Combined with the two l = 0 states at energy level n = 1, that gives a total of
8. The second magic number 8 has been explained! It requires 8 nucleons of a
given type to fill the lowest two energy levels.

It makes oxygen-16 with 8 protons and 8 neutrons the second doubly-magic
nucleus. Note that for the electrons in atoms, the second energy level would
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also include two l = 0 states. That is why the second noble gas is neon with 10
electrons, and not oxygen with 8.

Before checking the other magic numbers, first a problem with the above
procedure of counting states must be addressed. It is too easy. Everybody
can evaluate 2l + 1 and multiply by 2 for the spin states! To make it more
challenging, physicists adopt the so-called “spectroscopic notation” in which
they do not tell you the value of l. Instead, they tell you a letter like maybe p,
and you are then supposed to figure out yourself that l = 1. The scheme is:

s, p, d, f, g, h, i, [j], k, . . . =⇒ l = 0, 1, 2, 3, 4, 5, 6, 7, 8, . . .

The latter part is mostly alphabetic, but by convention j is not included. How-
ever, my references on nuclear physics do include j; that is great because it
provides additional challenge. Using spectroscopic notations, the second energy
level states are renotated as

ψ21mms
=⇒ 2p

where the 2 indicates the value of n giving the energy level. The additional
dependence on the magnetic quantum numbers m and ms is kept hidden from
the uninitiated. (To be fair, as long as there is no preferred direction to space,
these quantum numbers are physically not of importance. If an external mag-
netic field is applied, it provides directionality, and magnetic quantum numbers
do become relevant.)

However, physicists figured that this would not provide challenge enough,
since most students already practiced it for atoms. The above notation follows
the one that physicists use for atoms. In this notation, the leading number is n,
the energy level of the simplest theoretical model. To provide more challenge,
for nuclei physicist replace the leading number with a count of states at that
angular momentum. For example, physicists denote 2p above by 1p, because it
is the lowest energy p states. Damn what theoretical energy level it is. For still
more challenge, while most physicists start counting from one, some start from
zero, making it 0p. However, since it gives the author of this book a headache to
count angular momentum states upwards between shells, this book will mostly
follow the atomic convention, and the leading digit will indicate n, the harmonic
oscillator energy level. The “official” eigenfunction designations will be listed in
the final results where appropriate. Most but not all references will follow the
official designations.

In these terms, the energy levels and numbers of states for the harmonic
oscillator potential are as shown in figure 14.14. The third energy level has 2 3s
states and 10 3d states. Added to the 8 from the first two energy levels, that
brings the total count to 20, the third magic number.

Unfortunately, this is where it stops. The fourth energy level should have
only 8 states to reach the next magic number 28, but in reality the fourth
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Figure 14.14: Nuclear energy levels for various assumptions about the average
nuclear potential. The signs indicate the parity of the states.
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harmonic oscillator level has 6 4p states and 14 4f ones. Still, getting 3 magic
numbers right seems like a good start.

The logical next step is to try to improve upon the harmonic oscillator
potential. In an average nucleus, it can be expected that the net force on a
nucleon pretty much averages out to zero everywhere except in a very thin layer
at the outer surface. The reason is that the nuclear forces are very short range;
therefore the forces seem to come equally from all directions unless the nucleon
is very close to the surface. Only right at the surface do the particles experience
a net inward attraction because of the deficit of particles beyond the surface to
provide the full compensating outward force. This suggests a picture in which
the nucleons do not experience a net force within the confines of the nucleus.
However, at the surface, the potential ramps up very steeply. As an idealization
the potential beyond the surface can be taken infinite.

That reasoning results in the “impenetrable-shell” potential shown in figure
14.13. It too is analytically solvable, {D.77}. The energy levels are shown in
figure 14.14. Unfortunately, it does not help any explaining the fourth magic
number 28.

It does help understand why the shell model works at all, [[15]]. That is
not at all obvious; for a long time physicists really believed it would not work.
For the electrons in an atom, the nucleus at least produces some potential that
is independent of the relative positions of the electrons. In a nucleus, there
is nothing: the potential experienced by the nucleons is completely dependent
on relative nucleon positions and spins. So what reasonable justification could
there possibly be to assume that the nucleons act as if they move in an average
potential that is independent of the other nucleons? However, first assume
that the only potential energy is the one that keeps the nucleons within the
experimental nuclear radius. That is the impenetrable shell model. In that
case, the energy eigenfunctions are purely kinetic energy ones, and these have a
shell structure. Now restore the actual complex interactions between nucleons.
You would at first guess that these should greatly change the energy eigenstates.
But if they really do that, it would bring in large amounts of unoccupied kinetic
energy states. That would produce a significant increase in kinetic energy, and
that is not possible because the binding energy is fairly small compared to the
kinetic energy. In particular, therefore, removing the last nucleon should not
require an energy very different from a shell model value regardless of however
complex the true potential energy really is.

Of course, the impenetrable-shell potential too is open to criticism. A nu-
cleus has maybe ten nucleons along a diameter. Surely the thickness of the
surface layer cannot reasonably be much less than the spacing between nucle-
ons. Or much less than the range of the nuclear forces, for that matter. Also,
the potential should not be infinite outside the nucleus; nucleons do escape
from, or enter nuclei without infinite energy. The truth is clearly somewhere
in between the harmonic oscillator and impenetrable shell potentials. A more
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realistic potential along such lines is the “Woods-Saxon” potential

V = − V0
1 + e(r−a)/d

+ constant

which is sketched in figure 14.13c. For protons, there is an additional repulsive
Coulomb potential that will be maximum at the center of the sphere and de-
creases to zero proportional to 1/r outside the nucleus. That gives a combined
potential as sketched in figure 14.13d. Note that the Coulomb potential is not
short-range like the nucleon-nucleon attractions; its nontrivial variation is not
just restricted to a thin layer at the nuclear surface.

Typical energy levels are sketched in figure 14.14. As expected, they are
somewhere in between the extreme cases of the harmonic oscillator and the
impenetrable shell.

The signs behind the realistic energy levels in 14.14 denote the predicted
“parity” of the states. Parity is a very helpful mathematical quantity for study-
ing nuclei. The parity of a wave function is “one,” or “positive,” or “even,” if the
wave function stays the same when the positive direction of the three Cartesian
axes is inverted. That replaces every ~r in the wave function by −~r. The parity is
“minus one,”, or “negative,” or “odd,” if the wave function merely changes sign
under an exes inversion. Parity is uncertain when the wave function changes in
any other way; however, nuclei have definite parity as long as the weak force of
beta decay does not play a role. It turns out that s, d, g, . . . states have positive
parity while p, f, h, . . . states have negative parity, {D.14} or {D.76}. Therefore,
the harmonic oscillator shells have alternatingly positive and negative parity.

For the wave functions of complete nuclei, the net parity is the product of
the parities, (taking them to be one or minus one), of the individual nucleons.
Now physicist can experimentally deduce the parity of nuclei in various ways.
It turns out that the parities of the nuclei up to the third magic number agree
perfectly with the values predicted by the energy levels of figure 14.14. (Only
three unstable, artificially created, nuclei disagree.) It really appears that the
model is onto something.

Unfortunately, the fourth magic number remains unexplained. In fact, any
reasonable spherically symmetric spatial potential will not get the fourth magic
number right. There are 6 4p states and 14 4f ones; how could the additional
8 states needed for the next magic number 28 ever be extracted from that?
Twiddling with the shape of a purely spatial potential is not enough.

14.12.2 Draft: Spin-orbit interaction

Eventually, Mayer in the U.S., and independently Jensen and his co-workers
in Germany, concluded that spin had to be involved in explaining the magic
numbers above 20. To understand why, consider the six 4p and fourteen 4f
energy states at the fourth energy level of the harmonic oscillator model. Clearly,
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the six 4p states cannot produce the eight states of the energy shell needed to
explain the next magic number 28. And neither can the fourteen 4f states,
unless for some reason they split into two different groups whose energy is no
longer equal.

Why would they split? In nonquantum terms, all fourteen states have or-
bital and spin angular momentum vectors of exactly the same lengths. What is
different between states is only the direction of these vectors. And the absolute
directions cannot be relevant since the physics cannot depend on the orientation
of the axis system in which it is viewed. What it can depend on is the rela-
tive alignment between the orbital and spin angular momentum vectors. This
relative alignment is characterized by the dot product between the two vectors.

Therefore, the logical way to get an energy splitting between states with
differently aligned orbital and spin angular momentum is to postulate an addi-
tional contribution to the Hamiltonian of the form

∆H ∝ −~̂L · ~̂S

Here ~̂L is the orbital angular momentum vector and ~̂S the spin one. A con-
tribution to the Hamiltonian of this type is called an “spin-orbit” interaction,
because it couples spin with orbital angular momentum. Spin-orbit interaction
was already known from improved descriptions of the energy levels of the hy-
drogen atom, addendum {A.39}. However, that electromagnetic effect is far too
small to explain the observed spin-orbit interaction in nuclei. Also, it would get
the sign of the correction wrong for neutrons.

While nuclear forces remain incompletely understood, there is no doubt that
it is these much stronger forces, and not electromagnetic ones, that provide the
mechanism. Still, in analogy to the electronic case, the constant of propor-
tionality is usually taken to include the net force ∂V /∂r on the nucleon and
an additional factor 1/r to turn orbital momentum into velocity. None of that
makes a difference for the harmonic oscillator potential, for which the net effect
is still just a constant. Either way, next the strength of the resulting interaction
is adjusted to match the experimental energy levels.

To correctly understand the effect of spin-orbit interaction on the energy
levels of nucleons is not quite trivial. Consider the fourteen ψ43mms

4f states.
They have orbital angular momentum in the chosen z-direction m~, with m =
-3,-2,-1,0,1,2,3, and spin angular momentum ms~ with ms = ±1

2
. Naively, you

might assume that the spin-orbit interaction lowers the energy of the six states
for which m and ms have the same sign, raises it for the six where they have
the opposite sign, and leaves the energy of the two states with m = 0 the same.

That is not true. The problem is that the spin-orbit interaction ~̂L · ~̂S involves
L̂x and L̂y, and these do not commute with L̂z regardless of how you orient the

axis system. And the same for Ŝx and Ŝy.
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With spin-orbit interaction, energy eigenfunctions of nonzero orbital
angular momentum no longer have definite orbital momentum Lz in
a chosen z-direction. And neither do they have definite spin Sz in
such a direction.

Therefore the energy eigenfunctions can no longer be taken to be of the form
Rnl(r)Y

m
l (θ, φ)l. They have uncertainty in both m and ms, so they will be

combinations of states Rnl(r)Y
m
l (θ, φ)l with varying values of m and ms.

However, consider the net angular momentum operator

~̂J ≡ ~̂L+ ~̂S

If you expand its square magnitude,

Ĵ2 = (~̂L+ ~̂S) · (~̂L+ ~̂S) = L̂2 + 2~̂L · ~̂S + Ŝ2

you see that the spin-orbit term can be written in terms of the square magnitudes
of orbital, spin, and net angular momentum operators:

−~̂L · ~̂S = −1
2

[
Ĵ2 − L̂2 − Ŝ2

]

Therefore combination states that have definite square net angular momentum
J2 remain good energy eigenfunctions even in the presence of spin-orbit inter-
action.

Now a quick review is needed of the weird way in which angular momenta
combine into net angular momentum in quantum mechanics, chapter 12.7. In
classical mechanics, the sum of an angular momentum vector with length L and
one with length S could have any combined length J in the range |L− S| 6 J

6 L + S, depending on the angle between the vectors. However, in quantum
mechanics, the length of the final vector must be quantized as

√
j(j + 1)~ where

the quantum number j must satisfy |l − s| 6 j 6 l + s and must change in
integer amounts. In particular, since the spin is given as s = 1/2, the net angular
momentum quantum number j can either be l − 1/2 or l + 1/2. (If l is zero, the
first possibility is also ruled out, since square angular momentum cannot be
negative.)

For the 4f energy level l = 3, so the square net angular momentum quantum
number j can only be 5/2 or

7/2. And for a given value of j, there are 2j+1 values
for the quantum number mj giving the net angular momentum in the chosen
z-direction. That means that there are six states with j = 5/2 and eight states
with j = 7/2. The total is fourteen, still the same number of independent states
at the 4f level. In fact, the fourteen states of definite net angular momentum j
can be written as linear combinations of the fourteen RnlY

m
l l states. (Figure

12.5 shows such combinations up to l = 2; item 2 in chapter 12.8 gives a general
formula.) Pictorially,

7 4f↑ and 7 4f↓ states =⇒ 6 4f5/2 and 8 4f7/2 states
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where the spectroscopic convention is to show the net angular momentum j as
a subscript for states in which its value is unambiguous.

The spin-orbit interaction raises the energy of the six 4f5/2 states, but lowers
it for the eight 4f7/2 states. In fact, from above, for any state of definite square
orbital and square net angular momentum,

−~̂L · ~̂S = −1
2
~
2[j(j + 1)− l(l + 1)− s(s+ 1)] =

{
1
2
(l + 1)~2 for j = l − 1/2
−1

2
l~2 for j = l + 1/2

The eight 4f7/2 states of lowered energy form the shell that is filled at the fourth
magic number 28.
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Figure 14.15: Schematic effect of spin-orbit interaction on the energy levels.
The ordering within bands is realistic for neutrons. The designation behind the
equals sign is the “official” one. (Assuming counting starts at 1).

Figure 14.15 shows how the spin-orbit splitting of the energy levels gives rise
to the remaining magic numbers. In the figure, the coefficient of the spin orbit
term was simply taken to vary linearly with the energy level n. The details
depend on whether it is neutrons or protons, and may vary from nucleus to
nucleus. Especially for the higher energy bands the Coulomb repulsion has an
increasingly large effect on the energies of protons.

The major shells, terminated by magic numbers, are shown as grey bands.
In the numbering system followed here, a subshell with a different number as
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the others in the same major shell comes from a different harmonic oscillator
energy level. Figure 14.15 also shows the “official” enumeration of the states.
You be the judge which numbering system makes the most sense to you.

As sketched in figure 14.15, spin-orbit interaction pushes the 5g9/2 states
down into the band that ends at magic number 50. However, the energy gap
between between the 5g9/2 states and the 4. . . states in the band is relatively
large. That is why you might think of 40 as a semi-magic number if you want.
For example, one good reason to consider this is figure 14.19 discussed later.

The detailed ordering of the subshells above 50 varies with author and even
for a single author. There is no unique answer, because the shell model is only
a simple approximation to a system that does not follow simple rules when
examined closely enough. Still, a specific ordering must be adopted if the shell
model is to be compared to the data. This book will use the orderings:

protons:
1s1/2

2p3/2 2p1/2

3d5/2 3s1/2 3d3/2

4f7/2
4p3/2 4f5/2 4p1/2 5g9/2

5g7/2 5d5/2 6h11/2 5d3/2 5s1/2
6h9/2 6f7/2 6f5/2 6p3/2 6p1/2 7i13/2

neutrons:
1s1/2

2p3/2 2p1/2

3d5/2 3s1/2 3d3/2

4f7/2
4p3/2 4f5/2 4p1/2 5g9/2

5d5/2 5g7/2 5s1/2 5d3/2 6h11/2

6f7/2 6h9/2 6p3/2 6f5/2 7i13/2 6p1/2

7g9/2 7d5/2 7i11/2 7g7/2 7s1/2 7d3/28j15/2

The ordering for protons follows [36, table 7-1], but not [36, p. 223], to
Z=92, and then [31], whose table seems to come from Mayer and Jensen. The
ordering for neutrons follows [36], with the subshells beyond 136 taken from
[[10]]. However, the 7i13/2 and 6p1/2 states were swapped since the shell filling
[36, table 7-1] makes a lot more sense if you do. The same swap is also found
in [40, p. 255], following Klinkenberg, while [31, p. 155] puts the 7i13/2 subshell
even farther down below the 6p3/2 state.

14.12.3 Draft: Example occupation levels

The purpose of this section is to explore how the shell model works out for
sample nuclei.
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Figure 14.16: Energy levels for doubly-magic oxygen-16 and neighbors. [pdf]
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Figure 14.16 shows experimental energy spectra of various nuclei at the left.
The energy values are in MeV. The ground state is defined to be the zero level
of energy. The length and color of the energy lines indicates the spin of the
nucleus, and the parity is indicated by a plus or minus sign. Some important
spin values are also listed explicitly. Yellow lines indicate states for which no
unique spin and/or parity are determined or are established with reservations.
At the right in the figure, a sketch of the occupation levels according to the shell
model is displayed for easy reference.

The top of the figure shows data for oxygen-16, the normal oxygen that
makes up 99.8% of the oxygen in the atmosphere. Oxygen-16 is a doubly-magic
nucleus with 8 protons and 8 neutrons. As the right-hand diagram indicates,
these completely fill up the lowest two major shells.

As the left-hand spectrum shows, the oxygen-16 nucleus has zero net spin
in the ground state. That is exactly what the shell model predicts. In fact, it
is a consequence of quantum mechanics that:

Completely filled subshells have zero net angular momentum.

Since the shell model says all shells are filled, the zero spin follows. The shell
model got the first one right. Indeed, it passes this test with flying colors for
all doubly-magic nuclei.

Next,

Subshells with an even number of nucleons have even parity.

That is just a consequence of the fact that even if the subshell is a negative
parity one, negative parities multiply out pairwise to positive ones. Since all
subshells of oxygen-16 contain an even number of nucleons, the combined parity
of the complete oxygen-16 nucleus should be positive. It is. And it is for the
other doubly-magic nuclei.

The shell model implies that a doubly-magic nucleus like oxygen-16 should
be be particularly stable. So it should require a great deal of energy to excite
it. Indeed it does: figure 14.16 shows that exciting oxygen-16 takes over 6 MeV
of energy.

Following the shell model picture, one obvious way to excite the nucleus
would be to kick a single proton or neutron out of the 2p1/2 subshell into the
next higher energy 3d5/2 subshell. The net result is a nucleon with spin 5/2 in
the 3d5/2 subshell and one remaining nucleon with spin 1/2 in the 2p1/2 subshell.
Quantum mechanics allows these two nucleons to combine their spins into a net
spin of either 5

2
+ 1

2
= 3 or 5

2
− 1

2
= 2. In addition, since the nucleon kicked into

the 3f5/2 changes parity, so should the complete nucleus. And indeed, there is
an excited level a bit above 6 MeV with a spin 3 and odd parity, a 3− level. It
appears the shell model may be onto something.

Still, the exited 0+ state suggests there may be a bit more to the story. In a
shell model explanation, the parity of this state would require a pair of nucleons
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to be kicked up. In the basic shell model, it would seem that this should require
twice the energy of kicking up one nucleon. Not all nuclear excitations can
be explained by the excitation of just one or two nucleons, especially if the
mass number gets over 50 or the excitation energy high enough. This will be
explored in section 14.13. However, before summarily dismissing a shell model
explanation for this state, first consider the following sections on pairing and
configuration mixing.

Next consider oxygen-17 and fluorine-17 in figure 14.16. These two are
examples of so-called “mirror nuclei;” they have the numbers of protons and
neutrons reversed. Oxygen-17 has 8 protons and 9 neutrons while its twin
fluorine-17 has 9 protons and 8 neutrons. The similarity in energy levels between
the two illustrates the idea of charge symmetry: nuclear forces are the same if
the protons are turned into neutrons and vice versa. (Of course, this swap does
mess up the Coulomb forces, but Coulomb forces are not very important for
light nuclei.)

Each of these two nuclei has one more nucleon in addition to an oxygen-16
“core”. Since the filled subshells of the oxygen-16 core have zero spin, the net
nuclear spin should be that of the odd nucleon in the 3d5/2 subshell. And the
parity should be even, since the odd nucleon is in an even parity shell. And
indeed each ground state has the predicted spin of 5/2 and even parity. Chalk
up another two for the shell model.

This is a big test for the shell model, because if a doubly-magic-plus-one
nucleus did not have the predicted spin and parity of the final odd nucleon,
there would be no reasonable way to explain it. Fortunately, all nuclei of this
type pass the test.

For both oxygen-17 and fluorine-17, there is also a low-energy 1/2
+ excited

state, likely corresponding to kicking the odd nucleon up to the next minor shell,
the 3s1/2 one. And so there is an excited 3/2

+ state, for kicking up the nucleon
to the 3d3/2 state instead.

However, from the shell model, in particular figure 14.15, you would expect
the spacing between the 3d5/2 and 3s1/2 subshells to be more than that between
the 3s1/2 and 3d3/2 ones. Clearly it is not. One consideration not in a shell model
with a straightforward average potential is that a nucleon in an unusually far-
out s orbit could be closer to the other nucleons in lower orbits than one in
a far-out p orbit; the s orbit has larger values near the center of the nucleus,
{N.8}. While the shell model gets a considerable number of things right, it is
certainly not a very accurate model.

Then there are the odd parity states. These are not so easy to understand:
they require a nucleon to be kicked up past a major shell boundary. That should
require a lot of energy according to the ideas of the shell model. It seems to
make them hard to reconcile with the much higher energy of the 3/2

+ state. Some
thoughts on these states will be given in the next subsection.

The fourth nucleus in figure 14.16 is nitrogen-14. This is an odd-odd nucleus,
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with both an odd number of protons and of neutrons. The odd proton and odd
neutron are in the 2p1/2 shell, so each has spin 1/2. Quantum mechanics allows
the two to combine their spins into a triplet state of net spin one, like they do
in deuterium, or in a singlet state of spin zero. Indeed the ground state is a 1+

one like deuterium. The lowest excited state is a 0+ one.

The most obvious way to further excite the nucleus with minimal energy
would be to kick up a nucleon from the 2p3/2 subshell to the 2p1/2 one. That
fills the 2p1/2 shell, making its net spin zero. However, there is now a “hole,” a
missing particle, in the 2p3/2 shell.

Holes in an otherwise filled subshell have the same possible angular
momentum values as particles in an otherwise empty shell.

Therefore the hole must have the spin 3/2 of a single particle. This can combine
with the 1/2 of the odd nucleon of the opposite type to either spin 1 or spin 2.
A relatively low energy 1+ state can be observed in the experimental spectrum.

The next higher 0− state would require a particle to cross a major shell
boundary. Then again, the energy of this excited state is quite substantial at
5 MeV. It seems simpler to assume that a 1s1/2 nucleon is kicked to the 2p1/2

shell than that a 2p3/2 nucleon is kicked to the 3d5/2 one. In the latter case, it
seems harder to explain why the four odd nucleons would want to particularly
combine their spins to zero. And you could give an argument based on the ideas
of the next subsection that 4 odd nucleons is a lot.

14.12.4 Draft: Shell model with pairing

This section examines some nuclei with more than a single nucleon in an unfilled
shell.

Consider first oxygen-18 in figure 14.17, with both an even number of protons
and an even number of neutrons. As always, the filled subshells have no angular
momentum. That leaves the two 3d5/2 neutrons. These could have combined
integer spin from 0 to 5 if they were distinguishable particles. However, the two
neutrons are identical fermions, and the wave function must be antisymmetric
with respect to their exchange. It can be seen from chapter 12.8 item 3, or more
simply from table 12.1, that only the 0, 2, and 4 combined spins are allowed.
Still, that leaves three possibilities for the net spin of the entire nucleus.

Now the basic shell model is an “independent particle model:” there are
no direct interactions between the particles. Each particle moves in a given
average potential, regardless of what the others are doing. Therefore, if the
shell model as covered so far would be strictly true, all three spin states 0, 2,
and 4 of oxygen-18 should have equal energy. Then the ground state should be
any combination of these spins. But that is untrue. The ground-state has zero
spin:
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Figure 14.17: Nucleon pairing effect. [pdf]
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All even-even nuclei have zero spin and even parity in the ground
state.

There are zero known exceptions to this rule among either the stable or unstable
nuclei.

So physicists have concluded that besides the average potential included
in the shell model, there must be an additional “pairing energy” that makes
nucleons of the same type want to combine pairwise into states of zero spin. In
order to treat this effect mathematically without losing the basic shell model,
the pairing energy must be treated as a relatively small perturbation to the
shell model energy. Theories that do so are beyond the scope of this book,
although the general ideas of perturbation theories can be found in addendum
{A.38}. Here it must be suffice to note that the pairing effect exists and is due
to interactions between nucleons not included in the basic shell model potential.

Therefore the basic shell model will from here on be referred to as the “un-
perturbed” shell model. The “perturbed shell model” will refer to the shell
model in which additional energy corrections are assumed to exist that account
for nontrivial interactions between individual nucleons. These corrections will
not be explicitly discussed, but some of their effects will be demonstrated by
means of experimental energy spectra.

If the pairing energy is a relatively small perturbation to the shell model,
then for oxygen-18 you would expect that besides the zero spin ground state,
the other possibilities of spin 2 and 4 would show up as low-lying excited states.
Indeed the experimental spectrum in figure 14.17 shows 2+ and 4+ states of the
right spin and parity, though their energy is obviously not so very low. To put it
in context, the von Weizsäcker formula puts the pairing energy at 22/

√
A MeV,

which would be of the rough order of 5 MeV for oxygen-18.
If one neutron of the pair is kicked up to the 3s1/2 state, a 2+ or 3+ state

should result. This will require the pair to be broken up and a subshell boundary
to be crossed. A potential 2+ candidate is present in the spectrum.

Like for oxygen-16, there is again an excited 0+ state of relatively low energy.
In this case however, its energy seems rather high in view that the two 3d5/2

neutrons could simply be kicked up across the minor shell boundary to the very
nearby 3s1/2 shell. An explanation can be found in the fact that physicists have
concluded that:

The pairing energy increases with the angular momentum of the sub-
shell.

When the neutron pair is kicked from the 3d5/2 shell to the 3s1/2, its pairing
energy decreases. Therefore this excitation requires additional energy besides
the crossing of the minor shell boundary.

It seems therefore that the perturbed shell model can give a plausible expla-
nation for the various features of the energy spectrum. However, care must be
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taken not to attach too much finality to such explanations. Section 14.13 will
give a very different take on the excited states of oxygen-18. Presumably, nei-
ther explanation will be very accurate. Only additional considerations beyond
mere energy levels can decide which explanation gives the better description of
the excited states.

The purpose in this section is to examine what features seem to have
a reasonable explanation within a shell model context, not how ab-
solutely accurate that explanation really is.

Consider again the 0+ excited state of oxygen-16 in figure 14.16 as discussed
in the previous subsection. Some of the energy needed for a pair of 2p1/2 nucleons
to cross the major shell boundary to the 3d5/2 subshell will be compensated for
by the higher pairing energy in the new subshell. It still seems curious that the
state would end up below the 3− one, though.

Similarly, the relatively low energy 1/2
− state in oxygen-17 and fluorine-17

can now be made a bit more plausible. To explain the negative parity, a nu-
cleon must be kicked across the major shell boundary from the 2p1/2 subshell
to the 3d5/2 one. That should require quite a bit of energy, but this will in
part be compensated for by the fact that pairing now occurs at higher angular
momentum.

So what to make of the next 5/2
− state? One possibility is that a 2p1/2

nucleon is kicked to the 3s1/2 subshell. The three spins could then combine into
5/2, [31, p. 131]. If true however, this would be a quite significant violation of
the basic ideas of the perturbed shell model. Just consider: it requires breaking
up the 2p1/2 pair and kicking one of the two neutrons across both a major
shell boundary and a subshell one. That would require less energy than the
3/2

+ excitation in which the odd nucleon is merely kicked over two subshell
boundaries and no pair is broken up? An alternative that is more consistent
with the perturbed shell model ideas would be that the 5/2

− excitation is like
the 3/2

− one, but with an additional partial break up of the resulting pair. The
energy seems still low.

How about nuclei with an odd number of neutrons and/or protons in a
subshell that is greater than one? For these:

The “odd-particle shell model” predicts that even if the number of
nucleons in a subshell is odd, in the ground state all nucleons except
the final odd one still combine into spherically symmetric states of
zero spin.

That leaves only the final odd nucleon to provide any nonzero spin and corre-
sponding nontrivial electromagnetic properties.

Figure 14.17 shows the example of oxygen-19, with three neutrons in the
unfilled 3d5/2 subshell. The odd-particle shell model predicts that the first two
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neutrons still combine into a state of zero spin like in oxygen-18. That leaves
only the spin of the third neutron. And indeed, the total nuclear spin of oxygen-
18 is observed to be 5/2 in the ground state, the spin of this odd neutron. The
odd-particle shell model got it right.

It is important to recognize that the odd-particle shell model only applies
to the ground state. This is not always sufficiently stressed. Theoretically,
three 3d5/2 neutrons can combine their spins not just to spin 5/2, but also to
3/2 or 9/2 while still satisfying the antisymmetrization requirement, table 12.1.
And indeed, the oxygen-19 energy spectrum in figure 14.17 shows relatively
low energy 3/2

+ and 9/2
+ states. To explain the energies of these states would

require computation using an actual perturbed shell model, rather than just the
odd-particle assumption that such a model will lead to perfect pairing of even
numbers of nucleons.

It is also important to recognize that the odd-particle shell model is only a
prediction. It does fail for a fair number of nuclei. That is true even excluding
the very heavy nuclei for which the shell model does not apply period. For
example, note in figure 14.17 how close together are the 5/2

+ and 3/2
+ energy

levels. You might guess that the order of those two states could easily be
reversed for another nucleus. And so it can; there are a number of nuclei in
which the spins combine into a net spin one unit less than that of the last odd
nucleon. While the unperturbed shell model does not fundamentally fail for such
nuclei, (because it does not predict the spin at all), the additional odd-particle
assumption does.

It should be noted that different terms are used in literature for the odd-
particle shell model. The term “shell model with pairing” is accurate and un-
derstandable, so that is not used. Some authors use the term “extreme inde-
pendent particle model.” You read that right. While the unperturbed shell
model is an independent particle model, the shell model with pairing has be-
come a dependent particle model: there are now postulated direct interactions
between the nucleons causing them to pair. So what better way to confuse stu-
dents than to call a dependent particle model an extreme independent particle
model? However, this term is too blatantly wrong even for some physicists. So,
some other books use instead “extreme single-particle model,” and still others
use “one-particle shell model.” Unfortunately, it is fundamentally a multiple-
particle model. You cannot have particle interactions with a single particle.
Only physicists would come up with three different names for the same model
and get it wrong in each single case. This book uses the term odd-particle shell
model, (with odd in dictionary rather than mathematical sense), since it is not
wrong and sounds much like the other names being bandied around. (The of-
ficial names could be fixed up by adding the word “almost,” like in “extreme
almost independent particle model.” This book will not go there, but you could
substitute “asymptotically” for “almost” to sound more scientific.)

While the odd-particle model applies only to the ground state, some excited
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states can still be described as purely odd-particle effects. In particular, for
the oxygen-19 example, the odd 3d5/2 neutron could be kicked up to the 3s1/2
subshell with no further changes. That would leave the two remaining 3d5/2 neu-
trons with zero spin, and the nucleus with the new spin 1/2 of the odd neutron.
Indeed a low-lying 1/2

+ state is observed. (Because of the antisymmetrization
requirement, this state cannot result from three neutrons in the 3d5/2 subshell.)

It may further be noted that “pairing” is not really the right quantum term.
If two nucleons have paired into the combination of zero net spin, the next two
cannot just enter the same combination without violating the antisymmetriza-
tion requirements between the pairs. What really happens is that all four as
a group combine into a state of zero spin. However, everyone uses the term
pairing, and so will this book.

Examples that highlight the perturbation effects of the shell model are shown
in figure 14.18. These nuclei have unfilled 4d7/2 shells. Since that is a major
shell with no subshells, nucleon transitions to different shells require quite a bit
of energy.

First observe that all three nuclei have a final odd 4f7/2 nucleon and a cor-
responding ground state spin of 7/2 just like the odd-particle shell model says
they should. And the net nuclear parity is negative like that of the odd nucleon.
That is quite gratifying.

As far as calcium-41 is concerned, one obvious minimal-energy excitation
would be that the odd neutron is kicked up from the 4f7/2 shell to the 4p3/2

shell. This will produce a 3/2
− excited state. Such a state does indeed exist and

it has relatively high energy, as you would expect from the fact that a major
shell boundary must be crossed.

Another obvious minimal-energy excitation would be that a nucleon is kicked
up from the filled 3d3/2 shell to pair up with the odd nucleon already in the 4f7/2
shell. This requires again that a major shell boundary is crossed, though some
energy can be recovered by the fact that the new nucleon pairing is now at
higher spin. Since here a nucleon changes shells from the positive parity 3d3/2

subshell to the negative 4f7/2 one, the nuclear parity reverses and the excited
state will be a 3/2

+ one. Such a state is indeed observed.
The unstable mirror twin of calcium-41, scandium-41 has energy levels that

are very much the same.
Next consider calcium-43. The odd-particle shell model correctly predicts

that in the ground state, the first two 4f7/2 neutrons pair up into zero spin,
leaving the 7/2 spin of the third neutron as the net nuclear spin. However, even
allowing for the antisymmetrization requirements, the three 4f7/2 neutrons could
instead combine into spin 3/2,

5/2,
9/2,

11/2, or
15/2, table 12.1. A low-energy 5/2

−

excited state, one unit of spin less than the ground state, is indeed observed.
A 3/2

− state is just above it. On the other hand, the lowest known 9/2
− state

has more energy than the lowest 11/2
− one. Then again, consider the spin values

that are not possible for the three neutrons if they stay in the 4f7/2 shell. The
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Figure 14.18: Energy levels for neighbors of doubly-magic calcium-40. [pdf]
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first 13/2
− and 17/2

− states occur at energies well beyond the 15/2
− one, and the

first 1/2
− state only appears at 2.6 MeV.

The lowest 3/2
+ state energy is half that of the one for calcium-41. Appar-

ently, the 3d3/2 neutron would rather pair up with 3 other attracting neutrons
in the 4f7/2 shell than with just one. That seems reasonable enough. The overall
picture seems in encouraging agreement with the perturbed shell model ideas.

Scandium-43 has one proton and two neutrons in the 4f7/2 shells. The odd-
particle model predicts that in the ground state, the two neutrons combine into
zero spin. However, the antisymmetrization requirement allows excited spins
of 2, 4, and 6 without any nucleons changing shells. The lowest excited spin
value 2 can combine with the 7/2 spin of the odd proton into excited nuclear
states from 3/2

− up to 11/2
−. Relatively low-lying 3/2

−, 5/2
−, and 7/2

− states, but
not a 1/2

− one, are observed. (The lowest-lying potential 9/2
− state is at 1.9 MeV.

The lowest lying potential 1/2
− state is at 3.3 MeV, though there are 4 states of

unknown spin before that.)
Note how low the lowest 3/2

+ state has sunk. That was maybe not quite
unpredictable. Two protons plus two neutrons in the 4f7/2 shells have to obey
less antisymmetrization requirements than four protons do, while the attrac-
tive nuclear forces between the four are about the same according to charge
independence.

The difference between the energy levels of scandium-41 versus scandium-43
is dramatic. After all, the unperturbed shell model would almost completely
ignore the two additional neutrons that scandium-43 has. Protons and neutrons
are solved for independently in the model. It brings up a point that is often
not sufficiently emphasized in other expositions of nuclear physics. The odd-
particle shell model is not an “only the last odd particle is important” model.
It is a “the last odd particle provides the ground-state spin and electromagnetic
properties, because the other particles are paired up in spherically symmetric
states” model. The theoretical justification for the model, which is weak enough
as it is already, only applies to the second statement.

14.12.5 Draft: Configuration mixing

To better understand the shell model and its limitations, combinations of states
must be considered.

Take once again the excited 0+ state of oxygen-16 shown in figure 14.16. To
create this state within the shell model picture, a pair of 2p1/2 nucleons must
be kicked up to the 3d5/2 subshell. Since that requires a major shell boundary
crossing by two nucleons, it should take a considerable amount of energy. Some
of it will be recovered by the fact that the nucleon pairing now occurs at higher
angular momentum. But there is another effect.

First of all, there are two ways to do it: either the 2p1/2 protons or the two
2p1/2 neutrons can be kicked up. One produces an excited wave function that



14.12. DRAFT: SHELL MODEL 723

will be indicated by ψ2p and the other by ψ2n. Because of charge symmetry,
and because the Coulomb force is minor for light nuclei, these two states should
have very nearly the same energy.

Quantummechanics allows for linear combinations of the two wave functions:

Ψ = c1ψ2p + c2ψ2n

Within the strict context of the unperturbed shell model, it does not make a
difference. That model assumes that the nucleons do not interact directly with
each other, only with an average potential. Therefore the combination should
still have the same energy as the individual states.

But now consider the possibility that both the protons and the neutrons
would be in the 3d5/2 subshell. In that case, surely you would agree that these
four, mutually attracting, nucleons in the same spacial orbits would significantly
interact and lower their energy. Even if the unperturbed shell model ignores
that.

Of course, the four nucleons are not all in the 3d5/2 state; that would require
four major shell crossing and make things worse. Each component state has only
two nucleons in the 3d5/2 subshell. However, quantum mechanical uncertainty
makes the two states interact through “twilight” terms, chapter 5.3. These act
in some sense as if all four nucleons are indeed in the 3d5/2 subshell at the same
time. It has the weird effect that the right combination of the states ψ2p and ψ2n

can have significantly less energy than the lowest of the two individual states.
That is particularly true if the two original states have about the same energy,
as they have here.

The amount of energy lowering is hard to predict. It depends on the amount
of nucleon positions that have a reasonable probability for both states and the
amount of interaction of the nucleons. Intuition still suggests it should be quite
considerable. And there is a more solid argument. If the strictly unperturbed
shell model applies, there should be two 0+ energy states with almost the same
energy; one for protons and one for neutrons. However, if there is significant
twilight interaction between the two, the energy of one of the pair will be pushed
way down and the other way up. There is no known second excited 0+ state
with almost the same energy as the first one for oxygen-16.

Of course, a weird excited state at 6 MeV in a nucleus is not such a big deal.
But there is more. Consider figure 14.19. It gives the excitation energy of the
lowest 2+ state for all even-even nuclei.

For all nuclei except the crossed-out ones, the 2+ state is the lowest excited
state of all. That seems curious already. Why would the lowest excited state
not be a 0+ one for a lot of even-even nuclei? Based on the shell model you
would assume there are two ways to excite an even-even nucleus with minimal
energy. The first way would be to kick a pair of nucleons up to the next subshell.
That would create a 0+ excited state. It could require very little energy if the
subshells are close together.
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The alternative way to excite an even-even nucleus with minimal energy
would break up a pair, but leave them in the same subshell. This would at the
minimum create a 2+ state. (For partially filled shells of high enough angular
momentum, it may also be possible to reconfigure the nucleons into a different
state that still has zero angular momentum, but that does not affect the argu-
ment.) Breaking the pairing should require an appreciable amount of energy,
on the MeV level. So why is the 2+ state almost invariably the lowest energy
one?

Then there is the magnitude of the 2+ energy levels. In figure 14.19 the
energies have been normalized with the von Weizsäcker value for the pairing
energy,

2Cp
ACe

You would expect all squares to have roughly the full size, showing that it takes
about the von Weizsäcker energy to break up the pair. Doubly magic nuclei are
quite happy to obey. Singly magic nuclei seem a bit low, but hey, the break-up
is usually only partial, you know.

But for nuclei that are not close to any magic number for either protons and
neutrons all hell breaks loose. Break-up energies one to two orders of magnitude
less than the von Weizsäcker value are common. How can the pairing energy
just suddenly stop to exist?

Consider a couple of examples in figure 14.20. In case of ruthenium-104, it
takes a measly 0.36 MeV to excite the 2+ state. But there are 10 different ways
to combine the four 5g9.2 protons into a 2+ state, table 12.1. Kick up the pair
of protons from the 4p1/2 shell, and there are another 10 2+ states. The four
5g7/2 neutrons can produce another 10 of them. Kick up a pair of neutrons from
the 5d5/2 subshell, and there is 10 more. Presumably, all these states will have
similar energy. And there might be many other low-energy ways to create 2+

states, [31, pp. 135-136].
Consider now the following simplistic model. Assume that the nucleus can

be in any of Q different global states of the same energy,

ψ1, ψ2, ψ3, . . . , ψQ

Watch what happens when such states are mixed together. The energy follows
from the Hamiltonian coefficients

E1 ≡ 〈ψ1|Hψ1〉 ε12 ≡ 〈ψ1|Hψ2〉 ε13 ≡ 〈ψ1|Hψ3〉 . . . ε1Q ≡ 〈ψ1|HψQ〉
ε∗12 ≡ 〈ψ2|Hψ1〉 E2 ≡ 〈ψ2|Hψ1〉 ε23 ≡ 〈ψ2|Hψ3〉 . . . ε2Q ≡ 〈ψ2|HψQ〉
ε∗13 ≡ 〈ψ3|Hψ1〉 ε∗23 ≡ 〈ψ3|Hψ2〉 E3 ≡ 〈ψ3|Hψ3〉 . . . ε3Q ≡ 〈ψ3|HψQ〉

...
...

...
. . .

...
ε∗1Q ≡ 〈ψQ|Hψ1〉 ε∗2Q ≡ 〈ψQ|Hψ2〉 ε∗3Q ≡ 〈ψQ|Hψ3〉 . . . EQ ≡ 〈ψQ|HψQ〉

By assumption, the energy levels E1, E2, . . . of the states are all about the same,
and if the unperturbed shell model was exact, the perturbations ε.. would all be
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Figure 14.20: Collective motion effects. [pdf]
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zero. But since the shell model is only a rough approximation of what is going
on inside nuclei, the shell model states will not be true energy eigenfunctions.
Therefore the coefficients ε.. will surely not be zero, though what they will be
is hard to say.

To get an idea of what can happen, assume for now that the ε.. are all equal
and negative. In that case, following similar ideas as in chapter 5.3, a state of
lowered energy exists that is an equal combination of each of the Q individual
excited states; its energy will be lower than the original states by an amount
(Q − 1)ε. Even if ε is relatively small, that will be a significant amount if the
number Q of states with the same energy is large.

Of course, the coefficients ε.. will not all be equal and negative. Presumably
they will vary in both sign and magnitude. Interactions between states will also
be limited by symmetries. (If states combine into an equivalent state that is
merely rotated in space, there is no energy lowering.) Still, the lowest excitation
energy will be defined by the largest negative accumulation of shell model errors
that is possible.

The picture that emerges then is that the 2+ excitation for ruthenium-104,
and most other nuclei in the rough range 50 < A < 150, is not just a matter
of just one or two nucleons changing. It apparently involves the collaborative
motion of a large number of nucleons. This would be quite a challenge to
describe in the context of the shell model. Therefore physicists have developed
different models, ones that allow for collective motion of the entire nucleus, like
in section 14.13.

When the energy of the excitation hits zero, the bottom quite literally drops
out of the shell model. In fact, even if the energy merely becomes low, the shell
model must crash. If energy states are almost degenerate, the slightest thing
will throw the nucleus from one to the other. In particular, small perturbation
theory shows that originally small effects blow up as the reciprocal of the energy
difference, addendum {A.38}. Physicists have found that nuclei in the rough
ranges 150 < A < 190 and A > 220 acquire an intrinsic nonspherical shape,
fundamentally invalidating the shell model as covered here. More physically,
as figure 14.19 suggests, it happens for pretty much all heavy nuclei except
ones close to the magic lines. The energy spectrum of a typical nucleus in the
nonspherical range, hafnium-176, is shown in figure 14.20.

14.12.6 Draft: Shell model failures

The previous subsection already indicated two cases in which the shell model
has major problems with the excited states. But in a number of cases the shell
model may also predict an incorrect ground state. Figure 14.21 shows some
typical examples.

In case of titanium-47, the shell model predicts that there will be five neu-
trons in an unfilled 4f7/2 subshell. It is believed that this is indeed correct [36,
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Figure 14.21: Failures of the shell model. [pdf]
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p. 224]. The unperturbed shell model makes no predictions about the nuclear
spin. However, the odd-particle shell model says that in the ground state the
nuclear spin should be that of the odd neutron, 7

2
. But it is not, the spin is

5
2
. The pairing of the even number of neutrons in the 4f7/2 shell is not com-

plete. While unfortunate, this is really not that surprising. The perturbation
Hamiltonian used to derive the prediction of nucleon pairing is a very crude
one. It is quite common to see subshells with at least three particles and three
holes (three places for additional particles) end up with a unit less spin than the
odd-particle model predicts. It almost happened for oxygen-19 in figure 14.17.

In fact, 5 particles in a shell in which the single-particle spin is 7/2 can combine
their spin into a variety of net values. Table 12.1 shows that 3/2,

5/2,
7/2,

9/2,
11/2,

and 15/2 are all possible. Compared to that, the odd-particle prediction does
not seem that bad. Note that the predicted state of spin 7/2 has only slightly
more energy than the ground state. On the other hand, other states that might
be produced through the combined spin of the five neutrons have much more
energy.

Fluorine-19 shows a more fundamental failure of the shell model. The shell
model would predict that the odd proton is in the 3d5/2 state, giving the nucleus
spin 5/2 and even parity. In fact, it should be just like fluorine-17 in figure 14.16.
For the unperturbed shell model, the additional two neutrons should not make
a significant difference. But the nuclear spin is 1/2, and that means that the
odd proton must be in the 3s1/2 state. A look at figure 14.15 shows that the
unperturbed shell model cannot qualitatively explain this swapping of the two
states.

It is the theoretician’s loss, but the experimentalist’s gain. The fact that
fluorine has spin one-half makes it a popular target for nuclear magnetic reso-
nance studies. Spin one-half nuclei are easy to analyze and they do not have
nontrivial electric fields that mess up the nice sharp signals in nuclei with larger
spin.

And maybe the theoretician can take some comfort in the fact that this
complete failure is rare among the light nuclei. In fact, the main other example
is fluorine-19’s mirror twin neon-19. Also, there is an excited state with the
correct spin and parity just above the ground state. But no funny business
here; if you are going to call fluorine-19 almost right, you have to call fluorine-
17 almost wrong.

Note also how low the 1/2
− excited state has become. Maybe this can be

somewhat understood from the fact that the kicked-up 2p1/2 proton is now in a
similar spatial orbit with three other nucleons, rather than just one like in the
case of fluorine-17. In any case, it would surely require a rather sophisticated
perturbed shell model to describe it, one that includes nucleons of both type in
the perturbation.

And note that formulating a perturbed shell model from physical principles is
not easy anyway, because the basic shell model already includes the interactions
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between nucleons in an average sense. The perturbations must not just identify
the interactions, but more importantly, what part of these interactions is still
missing from the unperturbed shell model.

For the highly unstable beryllium-11 and nitrogen-11 mirror nuclei, the shell
model gets the spin right, but the parity wrong! In shell model terms, a change
of parity requires the crossing of a major shell boundary. Beryllium-11 is known
to be a “halo nucleus,” a nucleus whose radius is noticeably larger than that
predicted by the liquid drop formula (14.9). This is associated with a gross
inequality between the number of protons and neutrons. Beryllium-11 has only
4 protons, but 7 neutrons; far too many for such a light nucleus. Beryllium-13
with 9 neutrons presumably starts to simply throw the bums out. Beryllium-
11 does not do that, but it keeps one neutron at arms length. The halo of
beryllium-11 is a single neutron one. (That of its beta-decay parent lithium-11
is a two-neutron one. Such a nucleus is called “Borromean,” after the three
interlocking rings in the shield of the princes of Borromeo. Like the rings, the
three-body system lithium-9 plus two neutrons hangs together but if any of
the three is removed, the other two fall apart too. Both lithium-10 and the
dineutron are not bound.) Halo nucleons tend to prefer states of low orbital
angular momentum, because in classical terms it reduces the kinetic energy
they need for angular motion. The potential energy is less significant so far out.
In shell model terms, the beryllium-11 neutron has the 3s1/2 state available to
go to; that state does indeed have the 1/2 spin and positive parity observed. Very
little seems to be known about nitrogen-11 at the time of writing; no energy
levels, no electric quadrupole moment (but neither is there for beryllium-11).
It is hard to do experiments at your leisure on a nucleus that lives for less than
10−21 s.

For much heavier nuclei, the subshells are often very close together. Also,
unlike for the 3d5/2 and 3s1/2 states, the shell model often does not produce an
unambiguous ordering for them. In that case, it is up to you whether you want
to call it a failure if a particle does not follow whatever ambiguous ordering you
have adopted.

Selenium-77 illustrates a more fundamental reason why the odd particle may
end up in the wrong state. The final odd neutron would normally be the third
one in the 5g9/2 state. That would give the nucleus a net spin of 9

2
and positive

parity. There is indeed a low-lying excited state like that. (It is just above
a 7

2
one that might be an effect of incomplete pairing.) However, the nucleus

finds that if it promotes a neutron from the 4p1/2 shell to the 5g9/2 one just
above, that neutron can pair up at higher angular momentum, lowering the
overall nuclear energy. That leaves the odd neutron in the 4p1/2 state, giving
the nucleus a net spin of 1/2 and negative parity. Promotion happens quite often
if there are more than 32 nucleons of a given type and there is a state of lower
spin immediately below the one being filled.

Tantalum-181 is an example nucleus that is not spherical. For it, the shell
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model simply does not apply as derived here. So there is no need to worry
about it. Which is a good thing, because it does not seem easy to justify a 7/2

+

ground state based on the shell model. As noted in the previous subsection,
nonspherical nuclei appear near the stable line for mass numbers of about 150
to 190 and above 220. There are also a few with mass numbers between 20 and
30.

Preston & Bhaduri [36, p. 224ff] give an extensive table of nucleons with
odd mass number, listing shell occupation numbers and spin. Notable is iron-
57, believed to have three neutrons in the 4p3/2 shell as the shell model says,
but with a net nuclear spin of 1/2

−. Since the three neutrons cannot produce
that spin, in a shell model explanation the 6 protons in the 4f7/2 shell will need
to contribute. Similarly neodymium-149 with, maybe, 7 neutrons in the 6f7/2
shell has an unexpected 5/2

− ground state. Palladium-101 with 5 neutrons in
the 5d5/2 shell has an unexpected spin 7/2 according to the table; however, the
more recent data of [3] list the nucleus at the expected 5/2

+ value. In general the
table shows that the ground state spin values of spherical nuclei with odd mass
numbers are almost all correctly predicted if you know the correct occupation
numbers of the shells. However, predicting those numbers for heavy nuclei is
often nontrivial.

14.13 Draft: Collective Structure

Some nuclear properties are difficult to explain using the shell model approach
as covered here. Therefore physicists have developed different models.

For example, nuclei may have excited states with unexpectedly low energy.
One example is ruthenium-104 in figure 14.20, and many other even-even nuclei
with such energies may be found in figure 14.19. If you try to explain the
excitation energy within a shell model context, you are led to the idea that
many shell model excitations combine forces, as in section 14.12.5.

Then there are nuclei for which the normal shell model does not work at all.
They are called the nonspherical or deformed nuclei. Among the line of most
stable nuclei, they are roughly the “rare earth” lanthanides and the extremely
heavy actinides that are deformed. In terms of the mass number, the ranges
are about 150 < A < 190 and 220 < A. (However, various very unstable lighter
nuclei are quite nonspherical too. None of this is written in stone.) In terms
of figure 14.19, they are the very small squares. Examples are hafnium-176 in
figure 14.20 and tantalum-181 in figure 14.21.

It seems clear that many or all nuclei participate in these effects. Trying
to explain such organized massive nucleon participation based on a perturbed
basic shell model alone would be very difficult, and mathematically unsound in
the case of deformed nuclei. A completely different approach is desirable.
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Nuclei with many nucleons and densely spaced energy levels bear some sim-
ilarity to macroscopic systems. Based on that idea, physicists had another look
at the classical liquid drop model for nuclei. That model was quite successful
in explaining the size and ground state energy levels of nuclei in section 14.10.

But liquid drops are not necessarily static; they can vibrate. Vibrating states
provide a model for low-energy excited states in which the nucleons as a group
participate nontrivially. Furthermore, the vibrations can become unstable, pro-
viding a model for permanent nuclear deformation or nuclear fission. Deformed
nuclei can display effects of rotation of the nuclei. This section will give a basic
description of these effects.

14.13.1 Draft: Classical liquid drop

This section reviews the mechanics of a classical liquid drop, like say a droplet
of water. However, there will be one additional effect included that you would
be unlikely to see in a drop of water: it will be assumed that the liquid con-
tains distributed positively charged ions. This is needed to allow for the very
important destabilizing effect of the Coulomb forces in a nucleus.

It will be assumed that the nuclear “liquid” is homogeneous throughout.
That is a somewhat doubtful assumption for a model of a nucleus; there is no
a priori reason to assume that the proton and neutron motions are the same.
But a two-liquid model, such as found in [40, p. 183ff], is beyond the current
coverage.

It will further be assumed that the nuclear liquid preserves its volume. This
assumption is consistent with the formula (14.9) for the nuclear radius, and it
greatly simplifies the classical analysis.

The von Weizsäcker formula showed that the nuclear potential energy in-
creases with the surface area. The reason is that nucleons near the surface of
the nucleus are not surrounded by a full set of attracting neighboring nucleons.
Macroscopically, this effect is explained as “surface tension.” Surface tension
is defined as increased potential energy per unit surface area. (The work in
expanding the length of a rectangular surface area must equal the increased
potential energy of the surface molecules. From that it is seen that the surface
tension is also the tension force at the perimeter of the surface per unit length.)

Using the surface term in the von Weizsäcker formula (14.10) and (14.9),
the nuclear equivalent of the surface tension is

σ =
Cs

4πR2
A

(14.17)

The Cd term in the von Weizsäcker formula might also be affected by the nu-
clear surface area because of its unavoidable effect on the nuclear shape, but to
simplify things this will be ignored.
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The surface tension wants to make the surface of the drop as small as pos-
sible. It can do so by making the drop spherical. However, this also crowds
the protons together the closest, and the Coulomb repulsions resist that. So
the Coulomb term fights the trend towards a spherical shape. This can cause
heavy nuclei, for which the Coulomb term is big, to fission into pieces. It also
makes lighter nuclei less resistant to deformation, promoting nuclear vibrations
or even permanent deformations. To include the Coulomb term in the analysis
of a classical drop of liquid, it can be assumed that the liquid is charged, with
total charge Ze.

Infinitesimal vibrations of such a liquid drop can be analyzed, {A.43}. It is
then seen that the drop can vibrate around the spherical shape with different
natural frequencies. For a single mode of vibration, the radial displacement of
the surface of the drop away from the spherical value takes the form

δ = εl sin(ωt− ϕ)Ȳ m
l (θ, φ) (14.18)

Here εl is the infinitesimal amplitude of vibration, ω the frequency, and ϕ a
phase angle. Also θ and φ are the coordinate angles of a spherical coordinate
system with its origin at the center of the drop, N.3. The Ȳ m

l are essentially the
spherical harmonics of orbital angular momentum fame, chapter 4.2.3. However,
in the classical analysis it is more convenient to use the real version of the Y m

l .
For m = 0, there is no change, and for m 6= 0 they can be obtained from the
complex version by taking Y m

l ±Y −ml and dividing by
√
2 or
√
2i as appropriate.

Vibration with l = 0 is not possible, because it would mean that the radius
increased or decreased everywhere, (Y 0

0 is a constant), which would change the
volume of the liquid. Motion with l = 1 is possible, but it can be seen from the
spherical harmonics that this corresponds to translation of the drop at constant
velocity, not to vibration.

Vibration occurs only for l > 2, and the frequency of vibration is then,
{A.43}:

ω =

√
E2
s,l

~2

1

A
−
E2
c,l

~2

Z2

A2
(14.19)

The constants Es,l and Ec,l express the relative strengths of the surface ten-
sion and Coulomb repulsions, respectively. The values of these constants are,
expressed in energy units,

Es,l =
~c

RA

√
(l − 1)l(l + 2)

3

Cs
mpc2

Ec,l =
~c

RA

√
2(l − 1)l

2l + 1

e2

4πǫ0RAmpc2

(14.20)
The most important mode of vibration is the one at the lowest frequency, which
means l = 2. In that case the numerical values of the constants are

Es,2 ≈ 35 MeV Ec,2 ≈ 5.1 MeV (14.21)
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Of course a nucleus with a limited number of nucleons and energy levels is
not a classical system with countless molecules and energy levels. The best you
may hope for that there will be some reasonable qualitative agreement between
the two.

It turns out that the liquid drop model significantly overestimates the stabil-
ity of nuclei with respect to relatively small deviations from spherical. However,
it does much a better job of estimating the stability against the large scale de-
formations associated with nuclear fission.

Also, the inertia of a nucleus can be quite different from that of a liquid
drop, [36, p. 345, 576]. This however affects Es,l and Ec,l equally, and so it does
not fundamentally change the balance between surface tension and Coulomb
repulsions.

14.13.2 Draft: Nuclear vibrations

In the previous subsection, the vibrational frequencies of nuclei were derived
using a classical liquid drop model. They apply to vibrations of infinitely small
amplitude, hence infinitesimal energy.

However, for a quantum system like a nucleus, energy should be quantized.
In particular, just like the vibrations of the electromagnetic field come in photons
of energy ~ω, you expect vibrations of matter to come in “phonons” of energy
~ω. Plugging in the classical expression for the lowest frequency gives

Evibration =

√
E2
s,2

1

A
− E2

c,2

Z2

A2
Es,2 ≈ 35 MeV Ec,2 ≈ 5.1 MeV (14.22)

That is in the ballpark of excitation energies for nuclei, suggesting that collective
motion of the nucleons is something that must be considered.

In particular, for light nuclei, the predicted energy is about 35/
√
A MeV,

comparable to the von Weizsäcker approximation for the pairing energy, 22/
√
A

MeV. Therefore, it is in the ballpark to explain the energy of the 2+ excitation
of light even-even nuclei in figure 14.19. The predicted energies are however
definitely too high. That reflects the fact mentioned in the previous subsection
that the classical liquid drop overestimates the stability of nuclei with respect
to small deformations. Note also the big discrete effects of the magic numbers
in the figure. Such quantum effects are completely missed in the classical liquid
drop model.

It should also be pointed out that now that the energy is quantized, the
basic assumption that the amplitude of the vibrations is infinitesimal is violated.
A quick ballpark shows the peak quantized surface deflections to be in the fm
range, which is not really small compared to the nuclear radius. If the amplitude
was indeed infinitesimal, the nucleus would electrically appear as a spherically
symmetric charge distribution. Whether you want to call the deviations from
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that prediction appreciable, [36, p. 342, 354] or small, [31, p. 152], nonzero
values should certainly be expected.

As far as the spin is concerned, the classical perturbation of the surface of
the drop is given in terms of the spherical harmonics Y m

2 . The overall mass
distribution has the same dependence on angular position. In quantum terms
you would associate such an angular dependence with an azimuthal quantum
number 2 and even parity, hence with a 2+ state. It all seems to fit together
rather nicely.

There is more. You would expect the possibility of a two-phonon excitation
at twice the energy. Phonons, like photons, are bosons; if you combine two of
them in a set of single-particle states of square angular momentum l = 2, then
the net square angular momentum can be either 0, 2, or 4, table 12.2. So you
would expect a triplet of excited 0+, 2+, and 4+ states at roughly twice the
energy of the lowest 2+ excited state.

And indeed, oxygen-18 in figure 14.17 shows a nicely compact triplet of this
kind at about twice the energy of the lowest 2+ state. Earlier, these states were
seemingly satisfactorily explained using single-nucleon excitations, or combina-
tions of a few of them. Now however, the liquid drop theory explains them, also
seemingly satisfactory, as motion of the entire nucleus!

That does not necessarily mean that one theory must be wrong and one right.
There is no doubt that neither theory has any real accuracy for this nucleus.
The complex actual dynamics is quite likely to include nontrivial aspects of each
theory. The question is whether the theories can reasonably predict correct
properties of the nucleus, regardless of the approximate way that they arrive at
those predictions. Moreover, a nuclear physicist would always want to look at
the decay of the excited states, as well as their electromagnetic properties where
available, before classifying their nature. That however is beyond the scope of
this book.

Many, but by no means all, even-even nuclei show similar vibrational char-
acteristics. That is illustrated in figure 14.22. This figure shows the ratio of the
second excited energy level E2, regardless of spin, divided by the energy E2+

of the lowest 2+ excited state. Normally E2+ is the lowest excited state of all,
so E2 will be larger, making the ratio greater than one. That are the nuclei
we are interested in here. Helium 4, the little black square at the Z = N = 2
intersection, is of no interest.

Now the theoretically-ideal vibrating nucleus would have a 2+ lowest excited
state, corresponding to a single phonon of vibration. It would also have a triplet
of states with two phonons, where ideally speaking all three of these states
should each have an energy E2 that is exactly twice the energy E2+ of the state
with one phonon. That makes the ideal energy ratio E2/E2+ equal to 2. The
nuclei that do have that energy ratio are shown as bright green squares in figure
14.22. These bright green squares are likely candidates for nuclei with vibrating
excited states of low energy. But in addition, for the ideal vibrating nucleus, the
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triplet of exited two-phonon states must consist of exactly one 0+ state, exactly
one 2+ state, and exactly one 4+ state, because that are the only three states
that the two phonons can produce. The nuclei four which the lowest excited
state is 2+ one, and the next three states consist of one 0+ state, one 2+ state,
and one 4+ state, are marked with an “V” in figure 14.22. So bright green
squares in figure 14.22 with an “V” in them are surely nuclei willing to vibrate.
Anything else would be too much of a coincidence to believe. You can see that
nuclei with vibrating excited states are quite common below N = 82 neutrons,
or near magic numbers.

Still, many even-even nuclei do not seem to have vibrational excited states.
But many of those who do not still have that unexpected lowest exited state
that has spin 2+ and very little energy. Obviously, then, liquid-drop vibrations
must be only a part of the story.
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Figure 14.23: Textbook vibrating nucleus tellurium-120. [pdf]

Much heavier vibrating nuclei than oxygen-18 are tellurium-120 in figure
14.23 as well as the earlier example of ruthenium-104 in figure 14.20. Both
nuclei have again a fairly compact 0+, 2+, 4+ triplet at roughly twice the energy
of the lowest 2+ excited state. But these more “macroscopic” nuclei also show
a nice 0+, 2+, 3+, 4+, 6+ quintuplet at very roughly three times the energy of
the lowest 2+ state. Yes, three identical phonons of spin 2 can have a combined
spin of 0, 2, 3, 4, and 6, but not 1 or 5 (c.f. 12.2).

As subsection 14.13.1 showed, liquid drops can also vibrate according to
spherical harmonics Y m

l for l > 2. The lowest such possibility l = 3 has spin 3
and negative parity. Vibration of this type is called “octupole vibration,” while
l = 2 is referred to as “quadrupole vibration.” For very light nuclei, the energy
of octupole vibration is about twice that of the quadrupole type. That would
put the 3− octupole vibration right in the middle of the two-phonon quadrupole
triplet. However, for heavier nuclei the 3− state will be relatively higher, since
the energy reduction due to the Coulomb term is relatively smaller in the case l
= 3. Indeed, the first 3− states for tellurium-120 and ruthenium-104 are found
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well above the quadrupole quintuplet. The lowest 3− state for much lighter
oxygen-18 is relatively lower.

14.13.3 Draft: Nonspherical nuclei

The classical liquid drop model predicts that the nucleus cannot maintain a
spherical ground state if the destabilizing Coulomb energy exceeds the stabiliz-
ing nuclear surface tension. Indeed, from electromagnetic measurements, it is
seen that many very heavy nuclei do acquire a permanent nonspherical shape.
These are called “deformed nuclei”.

They are roughly the red squares and yellow squares marked with “R” in
figure 14.22. Near the stable line, their mass number ranges are from about 150
to 190 and above 220. But many unstable much lighter nuclei are deformed too.

The liquid drop model, in particular (14.19), predicts that the nuclear shape
becomes unstable at

Z2

A
=
E2
s,2

E2
c,2

≈ 48

If that was true, essentially all nuclei would be spherical. A mass number
of 150 corresponds to about Z2/A equal to 26. However, as pointed out in
subsection 14.13.1, the liquid drop model overestimates the stability with respect
to relatively small deformations. However, it does a fairly good job of explaining
the stability with respect to large ones. That explains why the deformation of
the deformed nuclei does not progress until they have fissioned into pieces.

Physicists have found that most deformed nuclei can be modeled well as
spheroids, i.e. ellipsoids of revolution. The nucleus is no longer assumed to
be spherically symmetric, but still axially symmetric. Compared to spherical
nuclei, there is now an additional nondimensional number that will affect the
various properties: the ratio of the lengths of the two principal axes of the
spheroid. That complicates analysis. A single theoretical number now becomes
an entire set of numbers, depending on the value of the nondimensional param-
eter. For some nuclei furthermore, axial symmetry is insufficient and a model
of an ellipsoid with three unequal axes is needed. In that case there are two
nondimensional parameters. Things get much messier still then.

14.13.4 Draft: Rotational bands

Vibration is not the only semi-classical collective motion that nuclei can perform.
Deformed nuclei can also rotate as a whole. This section gives a simplified semi-
classical description of it.
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14.13.4.1 Draft: Basic notions in nuclear rotation

Classically speaking, the kinetic energy of a solid body due to rotation around
an axis is TR = 1

2
IRω2, where IR is the moment of inertia around the axis and

ω the angular velocity. Quantum mechanics does not use angular velocity but
angular momentum J = IRω, and in these terms the kinetic energy is TR =
J2/2IR. Also, the square angular momentum J2 of a nucleus is quantized to be
~
2j(j + 1) where j is the net “spin” of the nucleus, i.e. the azimuthal quantum

number of its net angular momentum.
Therefore, the kinetic energy of a nucleus due to its overall rotation becomes:

TR =
~
2

2IR
j(j + 1)− ~

2

2IR
jmin(jmin + 1) (jmin 6= 1/2) (14.23)

Here jmin is the azimuthal quantum number of the “intrinsic state” in which
the nucleus is not rotating as a whole. The angular momentum of this state is
in the individual nucleons and not available for nuclear rotation, so it must be
subtracted. The total energy of a state with spin j is then

Ej = Emin + TR

where Emin is the energy of the intrinsic state.
Consider now first a rough ballpark of the energies involved. Since j is integer

or half integer, the rotational energy comes in discrete amounts of ~2/2IR. The
classical value for the moment of inertia IR of a rigid sphere of mass m and
radius R is 2

5
mR2. For a nucleus the mass m is about A times the proton mass

and the nuclear radius is given by (14.9). Plugging in the numbers, the ballpark
for rotational energies becomes

35

A5/3
[j(j + 1)− jmin(jmin + 1)] MeV

For a typical nonspherical nucleus like hafnium-177 in figure 14.24, taking the
intrinsic state to be the ground state with jmin equal to 7/2, the state 9/2 with
an additional unit of spin due to nuclear rotation would have a kinetic energy
of about 0.06 MeV. The lowest excited state is indeed a 9/2 one, but its energy
above the ground state is about twice 0.06 MeV. A nucleus is not at all like
a rigid body in classical mechanics. It has already been pointed out in the
subsection on nuclear vibrations that in many ways a nucleus is much like a
classical fluid. Still, it remains true that rotational energies are small compared
to typical single-nucleon excitation energies. Therefore rotational effects must
be included if the low-energy excited states are to be understood.

To better understand the discrepancy in kinetic energy, drop the dubious
assumption that the nuclear material is a rigid solid. Picture the nucleus instead
as a spheroid shape rotating around an axis normal to the axis of symmetry. As
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Figure 14.24: Rotational bands of hafnium-177. [pdf]
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far as the individual nucleons are concerned, this shape is standing still because
the nucleons are going so much faster than the nuclear shape. A typical nucleon
has a kinetic energy in the order of 20 MeV, not a tenth of a MeV, and it is so
much lighter than the entire nucleus to boot. Still, on the larger time scale of
the nuclear rotations, the nucleons do follow the overall motion of the nuclear
shape, compare chapter 7.1.5. To describe this, consider the nuclear substance
to be an ideal liquid, one without internal viscosity. Without viscosity, the
nuclear liquid will not pick up the overall rotation of the nuclear shape, so if the
nuclear shape is spherical, the nuclear liquid will not be affected at all. This
reflect the fact that

Nuclear rotations can only be observed in nuclei with a nonspherical
equilibrium state, [31, p. 142].

But if the rotating nuclear shape is not spherical, the nuclear liquid cannot
be at rest. Then it will still have to move radially inwards or outwards to
follow the changing nuclear surface radius at a given angular position. This
will involve some angular motion too, but it will remain limited. (Technically
speaking, the motion will remain irrotational, which means that the curl of the
velocity field will remain zero.) In the liquid picture, the moment of inertia has
no physical meaning and is simply defined by the relation TR = 1

2
IRω2, with

TR the kinetic energy of the liquid. If typical numbers are plugged into this
picture, [31, p. 145], you find that the predicted rotational energies are now
too high. Therefore the conclusion must be that the nuclear substance behaves
like something in between a solid and an ideal liquid, at least as far as nuclear
rotations are concerned. Fairly good values for the moment of inertia can be
computed by modeling the nucleon pairing effect using a superfluid model, [40,
pp. 493ff]

14.13.4.2 Draft: Basic rotational bands

Consider the spectrum of the deformed nucleus hafnium-177 in figure 14.24.
At first the spectrum seems a mess. However, take the ground state to be an
“intrinsic state” with a spin jmin equal to 7/2. Then you would expect that
there would also be energy levels with the nucleus still in the same state but
additionally rotating as a whole. Since quantum mechanics requires that j
increases in integer steps, the rotating versions of the ground state should have
spin j equal to any one of 9/2,

11/2,
13/2, . . . And indeed, a sequence of such

excited states can be identified in the spectrum, as shown in the top right of
figure 14.24. Such a sequence of energy states is called a “rotational band.”
Note that all states in the band have the same parity. That is exactly what you
would expect based on the classical picture of a rotating nucleus: the parity
operator is a purely spatial one, so mere rotation of the nucleus in time should
not change it.
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How about quantitative agreement with the predicted kinetic energies of
rotation (14.23)? Well, as seen in the previous subsubsection, the effective
moment of inertia is hard to find theoretically. However, it can be computed
from the measured energy of the 9/2

− rotating state relative to the 7/2
− ground

state using (14.23). That produces a moment of inertia equal to 49% of the
corresponding solid sphere value. Then that value can be used to compute the
energies of the 11/2

−, 13/2
−, . . . states, using again (14.23). The energies obtained

in this way are indicated by the spin-colored tick marks on the axis in the
top-right graph of figure 14.24. The lower energies agree very well with the
experimental values. Of course, the agreement of the 7/2

− and 9/2
− levels is

automatic, but that of the higher levels is not.

For example, the predicted energy of the 11/2
− state is 0.251 MeV, and the

experimental value is 0.250 MeV. That is just a fraction of a percent error,
which is very much nontrivial. For higher rotational energies, the experimental
energies do gradually become somewhat lower than predicted, but nothing ma-
jor. There are many effects that could explain the lowering, but an important
one is “centrifugal stretching.” As noted, a nucleus is not really a rigid body,
and under the centrifugal forces of rapid rotation, it can stretch a bit. This
increases the effective moment of inertia and hence lowers the kinetic energy,
(14.23).

How about all these other excited energy levels of hafnium-177? Well, first
consider the nature of the ground state. Since hafnium-177 does not have a
spherical shape, the normal shell model does not apply to it. In particular,
the normal shell model would have the hafnium-177’s odd neutron alone in
the 6f5/2 subshell; therefore it offers no logical way to explain the 7/2 ground
state spin. However, the Schrödinger equation can solved using a nonspherical,
but still axially symmetric, potential to find suitable single particle states. Us-
ing such states, it turns out that the final odd neutron goes into a state with
magnetic quantum number 7/22 around the nuclear axis and odd parity. (For a
nonspherical potential, the square angular momentum no longer commutes with
the Hamiltonian and both l and j become uncertain.) With rotation, or better,
with uncertainty in axial orientation, this state gives rise to the 7/2

− ground state
of definite nuclear spin j. Increasing angular momentum then gives rise to the
9/2
−, 11/2

−, 13/2
−, . . . rotational band build on this ground state.

It is found that the next higher single-particle state has magnetic quantum
number 9/2 and even parity. If the odd neutron is kicked into that state, it
produces a low-energy 9/2

+ excited nuclear state. Adding rotational motion to
this intrinsic state produces the 9/2

+, 11/2
+, 13/2

+, . . . rotational band shown in the
middle left of figure 14.24. (Note that for this band, the experimental energies
are larger than predicted. Centrifugal stretching is certainly not the only effect
causing deviations from the simple theory.) In this case, the estimated moment
of inertia is about 64% of the solid sphere value. There is no reason to assume
that the moment of inertia remains the same if the intrinsic state of the nucleus
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changes. However, clearly the value must remain sensible.

The low-lying 5/2
− state is believed to be a result of promotion, where a

neutron from a 5/2
− single-particle state is kicked up to the 7/2

− state where it
can pair up with the 105th neutron already there. Its rotating versions give rise
to the rotational band in the middle right of figure 14.24. The moment of inertia
is about 45% of the solid sphere value. The last two bands have moments of
inertia of 54% and 46%, in the expected ballpark.

The general approach as outlined above has been extraordinarily successful
in explaining the excited states of deformed nuclei, [31, p. 156].

14.13.4.3 Draft: Bands with intrinsic spin one-half

The semi-classical explanation of rotational bands was very simplistic. While
it works fine if the intrinsic spin of the rotating nuclear state is at least one, it
develops problems if it becomes one-half or zero. The most tricky case is spin
one-half.

Despite less than stellar results in the past, the discussion of the problem
will stick with a semi-classical approach. Recall first that angular momentum
is a vector. In vector terms, the total angular momentum of the nucleus con-
sists of rotational angular momentum and intrinsic angular momentum of the
nonrotating nucleus:

~J = ~Jrot + ~Jmin

Now in the expression for rotational energy, (14.23) it was implicitly assumed
that the square angular momentum of the nucleus is the sum of the square an-
gular momentum of rotation plus the square angular momentum of the intrinsic
state. But classically the Pythagorean theorem shows that this is only true if
the two angular momentum vectors are orthogonal.

Indeed, a more careful quantum treatment, [40, pp. 356-389], gives rise to
a semi-classical picture in which the axis of the rotation is normal to the axis
of symmetry of the nucleus. In terms of the inviscid liquid model of subsub-
section 14.13.4.1, rotation about an axis of symmetry “does not do anything.”
That leaves only the intrinsic angular momentum for the component of angular
momentum along the axis of symmetry. The magnetic quantum number of this
component is jmin, equal to the spin of the intrinsic state. Correct that: the
direction of the axis of symmetry should not make a difference. Therefore, the
complete wave function should be an equal combination of a state |jmin〉 with
magnetic quantum number jmin along the axis and a state |−jmin〉 with magnetic
quantum −jmin.

Next, the kinetic energy of rotation is, since ~Jrot = ~J − ~Jmin,

1

2IR
~J2
rot =

1

2IR
~J2 − 1

IR
~J · ~Jmin +

1

2IR
~J2
min
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As long as the middle term in the right hand side averages away, the normal
formula (14.23) for the energy of the rotational states is fine. This happens

if there is no correlation between the angular momentum vectors ~J and ~Jmin,
because then opposite and parallel alignments will cancel each other.

But not too quick. There is an obvious correlation since the axial components
are equal. The term can be written out in components to give

1

IR
~J · ~Jmin =

1

IR
[JxJx,min + JyJy,min + JzJz,min]

where the z-axis is taken as the axis of symmetry of the nucleus. Now think of
these components as quantum operators. The z components are no problem:
since the magnetic quantum number is constant along the axis, this term will
just shift the all energy levels in the band by the same amount, leaving the
spacings between energy levels the same.

However, the x and y components have the effect of turning a state |±jmin〉
into some combination of states |±jmin ± 1〉, chapter 12.11. Since there is no

rotational momentum in the axial direction, ~J and ~Jmin have quite similar ef-
fects on the wave function, but it is not the same, for one because ~J “sees” the
complete nuclear momentum. If jmin is 1 or more, the effects remain inconse-
quential: then the produced states are part of a different vibrational band, with
different energies. A bit of interaction between states of different energy is usu-
ally not a big deal, chapter 5.3. But if jmin = 1

2
then |jmin − 1〉 and |−jmin + 1〉

are part of the state itself. In that case, the x and y components of the ~J · ~Jmin

term produces a contribution to the energy that does not average out, and the
larger ~J is, the larger the contribution.

The expression for the kinetic energy of nuclear rotation then becomes

TR =
~
2

2IR

{[
j(j + 1) + a(−1)j+ 1

2 (j + 1/2)
]
− [jmin(jmin + 1)− a]

}
jmin = 1/2

(14.24)
where a is a constant. Note that the additional term is alternatingly positive
and negative. Averaged over the entire rotational band, the additional term
does still pretty much vanish.

As an example, consider the 1/2
− ground state rotational band of tungsten-

183, figure 14.25. To compute the rotational kinetic energies in the band using
(14.24) requires the values of both IR and a. The measured energies of the 3/2

−

and 5/2
− states above the ground state can be used to do so. That produces a

moment of inertia equal to 45% of the solid sphere value and a nondimension-
al constant a equal to 0.19. Next then the formula can be used to predict the
energies of the remaining states in the band. As the axial tick marks in the right
graph of figure 14.25 show, the prediction is quite good. Note in particular that
the energy interval between the 9/2

− and 7/2
− states is less than that between
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Figure 14.25: Ground state rotational band of tungsten-183. [pdf]

the 7/2
− and 5/2

− states. Without the alternating term, there would be no way
to explain that.

Much larger values of a are observed for lighter nuclei. As an example, con-
sider aluminum-25 in figure 14.26. This nucleus has been studied in detail, and
a number of bands with an intrinsic spin 1/2 have been identified. Particularly
interesting is the 1/2

− band in the bottom left of figure 14.26. For this band a
= −3.2, and that is big enough to change the order of the states in the band!
For this nucleus, the moments of inertia are 70%, 96%, 107%, 141% and 207%
respectively of the solid sphere value.

14.13.4.4 Draft: Bands with intrinsic spin zero

The case that the intrinsic state has spin zero is particularly important, because
all even-even nuclei have a 0+ ground state. For bands build on a zero-spin
intrinsic state, the thing to remember is that the only values in the band are
even spin and even parity: 0+, 2+, 4+, . . .

This can be thought of as a consequence of the fact that the |jmin〉 and
|−jmin〉 states of the previous subsubsection become equal. Their odd or even
combinations must be constrained to prevent them from canceling each other.

As an example, consider erbium-164. The ground state band in the top right
of figure 14.27 consists of the states 0+, 2+, 4+, . . . as expected. The energies
initially agree well with the theoretical prediction (14.23) shown as tick marks.
For example, the prediction for the 4+ level has less than 2% error. Deviations
from theory show up at higher angular momenta, which may have to do with
centrifugal stretching.

Other bands have been identified that are build upon vibrational intrinsic
states. (A β or beta vibration maintains the assumed intrinsic axial symmetry
of the nucleus, a γ or gamma one does not.) Their energy spacings follow (14.23)

../../quansup/levels183W.pdf


746 CHAPTER 14. NUCLEI [UNFINISHED DRAFT]

Al25
13

Al25
13

full spectrum

E

1

0

9/2??

7/2??

5/2

9/2??

7/2

5/2

3/2

1/2

5/2

3/2
1/2

1/2 7/2

3/2

5/2

3/2

5/2+ ground state band

E

1

0

9/2??

7/2??

5/2

1/2+ band

E

1

0

9/2??

7/2

5/2

3/2

1/2

1/2+ band

E

1

0

5/2

3/2
1/2

1/2− band

E

1

0

1/2 7/2

3/2

3/2+ band

E

1

0

5/2

3/2

spin: 0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

6 13
2

7 >
15
2

>29
2

?

Figure 14.26: Rotational bands of aluminum-25. [pdf]
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Figure 14.27: Rotational bands of erbium-164. [pdf]
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again well. The moments of inertia are 46%, 49% and 61% of the solid sphere
value.
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Figure 14.28: Ground state rotational band of magnesium-24. [pdf]

Light even-even nuclei can also be deformed and show rotational bands. As
an example, figure 14.28 shows the ground state band of magnesium-24. The
moment of inertia is 75% of the solid sphere value.

It may also be mentioned that nuclei with intrinsic spin zero combined with
an octupole vibration can give rise to bands that are purely odd spin/odd parity
ones, 1−, 3−, 5−, . . . , [40, p. 368]. The lowest odd parity states for erbium-164
are 1− and 3− ones, with no 2− state in between, for a really high estimated
moment of inertia of 148%, and a potential 5− state at roughly, but not accu-
rately, the predicted position. Anomalous bands that have the parity inverted
may also be possible; hafnium-176 is believed to have a couple of excited states
like that, 0− at 1.819 MeV and 2− at 1.857 MeV, with a moment of inertia of
98%.

Centrifugal effects can be severe enough to change the internal structure of
the nucleus nontrivially. Typically, zero-spin pairings between nucleons may be
broken up, allowing the nucleons to start rotating along with the nucleus. That
creates a new band build on the changed intrinsic state. Physicists then define
the state of lowest energy at a given angular momentum as the “yrast state.”
The term is not an acronym, but Swedish for “that what rotates more.” For a
discussion, a book for specialists will need to be consulted.

14.13.4.5 Draft: Even-even nuclei

All nuclei with even numbers of both protons and neutrons have a 0+ ground
state. For nonspherical ones, the rotational model predicts a ground state band
of low-lying 2+, 4+, 6+, . . . states. The ratio of the energy levels of the 4+ and

../../quansup/levels24MG.pdf
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2+ states is given by (14.23)

~
2

2IR
4(4 + 1)

/
~
2

2IR
2(2 + 1) =

10

3

For spherical nuclei, the vibrational model also predicts a 2+ lowest excited
state, but the 4+ excited state is now part of a triplet, and the triplet has only
twice the energy of the 2+ state. Therefore, if the ratio of the energy of the
second excited state to the lowest 2+ state is plotted, as done in figure 14.22,
then vibrating nuclei should be indicated by a value 2 (green) and rotating
nuclei by a value 3.33 (red). If the figure is examined, it may be open to some
doubt whether green squares are necessarily vibrational, but the red squares
quite nicely locate the rotational ones.

In the figure, nuclei marked with “V” have 0+, 2+, and a 0+, 2+, 4+ triplet
as the lowest 5 energy states, the triplet allowed to be in any order. Nuclei
marked with an “R” have the sequence 0+, 2+, 4+, and 6+ as the lowest four
energy states. Note that this criterion misses the light rotational nuclei like
magnesium-24; for light nuclei the rotational energies are not small enough to
be well separated from shell effects. Near the stable line, rotating nuclei are
found in the approximate mass number ranges 20 < A < 30, 150 < A < 190,
and 220 < A. However, away from the stable line rotating nuclei are also found
at other mass numbers.

14.13.4.6 Draft: Nonaxial nuclei

While most nuclei are well modeled as axially symmetric, some nuclei are not.
For such nuclei, an ellipsoidal model can be used with the three major axes all off
different length. There are now two nondimensional axis ratios that characterize
the nucleus, rather than just one.

This additional nondimensional parameter makes the spectrum much more
complex. In particular, in addition to the normal rotational bands, associated
“anomalous” secondary bands appear. The first is a 2+, 3+, 4+, . . . one, the sec-
ond a 4+, 5+, . . . one, etcetera. The energies in these bands are not independent,
but related to those in the primary band.

Figure 14.29 shows an example. The primary ground state band in the top
right quickly develops big deviations from the axially symmetric theory (14.23)
values (thin tick marks.) Computation using the ellipsoidal model for a suitable
value of the deviation from axial symmetry is much better (thick tick marks.)
The predicted energy levels of the first anomalous band also agree well with the
predicted values. The identification of the bands was taken from [40, p. 416],
but since they do not list the energies of the second anomalous band, that value
was taken from [36, p. 388].

In the limit that the nuclear shape becomes axially symmetric, the anoma-
lous bands disappear towards infinite energy. In the limit that the nuclear shape



750 CHAPTER 14. NUCLEI [UNFINISHED DRAFT]

Os190
76

full spectrum

E

1

0

10?

8?

6?

4

2
0

6?

5

4
3

2

4

ground state band

E

1

0

?

8?

6?

4

2
0

first anomalous band

E

1

0

?

4
3

2

second anomalous band

E

1

0

4

spin: 0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

6 13
2

7 >
15
2

>29
2

?

Figure 14.29: Rotational bands of osmium-190. [pdf]
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becomes spherical, all states in the primary bands except the lowest one also
disappear to infinity, assuming that the “moment of inertia” becomes zero as
the ideal liquid model says.

14.14 Draft: Fission

In spontaneous fission, a very heavy nucleus falls apart into big fragments. If
there are two fragments, it is called binary fission. In some cases, there are three
fragments. That is called ternary fission; the third fragment is usually an alpha
particle. This section summarizes some of the basic ideas.

14.14.1 Draft: Basic concepts

What makes fission energetically possible is that very heavy nuclei have less
binding energy per nucleon than those in the nickel/iron range, as shown earlier
in figure 14.4. The main culprit is the Coulomb repulsion between the pro-
tons. It has a much longer range than the nuclear attractions between nucleons.
Therefore, Coulomb repulsion disproportionally increases the energy for heavy
nuclei. If a nucleus like uranium-238 divides cleanly into two palladium-119
nuclei, the energy liberated is on the order of 200 MeV (200 000 000 eV). That
is obviously a very large amount of energy. Chemical reactions produce maybe
a few eV per atom.

The liquid drop model predicts that the nuclear shape will become unstable
at Z2/A about equal to 48. However, only the weirdest nuclei like Ei293

118 come
close to that value. Below Z = 100 the nuclei that decay primarily through
spontaneous fission are curium-250, with Z2/A equal to 37 and a half life of
8 300 years, californium-254, 38 and two months, and fermium-256, 39 and less
than 3 hours.

Indeed, while the fission products may have lower energy than the original
nucleus, in taking the nucleus apart, the nuclear binding energy must be pro-
vided right up front. On the other hand the Coulomb energy gets recovered only
after the fragments have been brought far apart. As a result, there is normally a
energy barrier that must be crossed for the nucleus to come apart. That means
that an “activation energy” must be provided in nuclear reactions, much like in
most chemical reactions.

For example, uranium has an activation energy of about 6.5 MeV. By itself,
uranium-235 will last a billion years or so. However, it can be made to fission
by hitting it with a neutron that has only a thermal amount of energy. (Zero
is enough, actually.) When hit, the nucleus will fall apart into a couple of big
pieces and immediately release an average of 2.4 “prompt neutrons.” These
new neutrons allow the process to repeat for other uranium-235 nuclei, making
a “chain reaction” possible.
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In addition to prompt neutrons, fusion processes may also emit a small
fraction of “delayed neutrons” neutrons somewhat later. Despite their small
number, they are critically important for controlling nuclear reactors because
of their slower response. If you tune the reactor so that the presence of delayed
neutrons is essential to maintain the reaction, you can control it mechanically
on their slower time scale.

Returning to spontaneous fission, that is possible without the need for an
activation energy through quantum mechanical tunneling. Note that this makes
spontaneous fission much like alpha decay. However, as section 14.11.2 showed,
there are definite differences. In particular, the basic theory of alpha decay
does not explain why the nucleus would want to fall apart into two big pieces,
instead of one big piece and a small alpha particle. This can only be understood
qualitatively in terms of the liquid drop model: a charged classical liquid drop
is most unstable to large-scale deformations, not small scale ones, subsection
14.13.1.

14.14.2 Draft: Some basic features

While fission is qualitatively close to alpha decay, its actual mechanics is much
more complicated. It is still an area of much research, and beyond the scope
of this book. A very readable description is given by [36]. This subsection
describes some of the ideas.

From a variety of experimental data and their interpretation, the following
qualitative picture emerges. Visualize the nucleus before fission as a classical
liquid drop. It may already be deformed, but the deformed shape is classically
stable. To fission, the nucleus must deform more, which means it must tunnel
through more deformed states. When the nucleus has deformed into a suffi-
ciently elongated shape, it becomes energetically more favorable to reduce the
surface area by breaking the connection between the ends of the nucleus. The
connection thins and eventually breaks, leaving two separate fragments. During
the messy process in which the thin connection breaks an alpha particle could
well be ejected. Now typical heavy nuclei contain relatively more neutrons than
lighter ones. So when the separated fragments take inventory, they find them-
selves overly neutron-rich. They may well find it worthwhile to eject one or two
right away. This does not change the strong mutual Coulomb repulsion between
the fragments, and they are propelled to increasing speed away from each other.

Consider now a very simple model in which a nucleus like fermium-256 falls
cleanly apart into two smaller nuclear fragments. As a first approximation,
ignore neutron and other energy emission in the process and ignore excitation
of the fragments. In that case, the final kinetic energy of the fragments can be
computed from the difference between their masses and the mass of the original
nucleus.
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In the fission process, the fragments supposedly pick up this kinetic energy
from the Coulomb repulsion between the separated fragments. If it is assumed
that the fragments are spherical throughout this final phase of the fission pro-
cess, then its properties can be computed. In particular, it can be computed
at which separation between the fragments the kinetic energy was zero. That
is important because it indicates the end of the tunneling phase. Putting in
the numbers, it is seen that the separation between the fragments at the end
of tunneling is at least 15% more than that at which they are touching. So the
model is at least reasonably self-consistent.

Figure 14.30 shows the energetics of this model. Increasing redness indicates
increasing energy release in the fission. Also, the spacing between the squares
indicates the spacing between the nuclei at the point where tunneling ends. Note
in particular the doubly magic point of 50 protons and 82 neutrons. This point
is very neutron rich, just what is needed for fission fragments. And because
it is doubly magic, nuclei in this vicinity have unusually high binding energy,
as seen from figure 14.9. Indeed, nuclei with 50 protons are seen to have the
highest fission energy release in figure 14.30. Also, they have the smallest relative
spacing between the nuclei at the end of tunneling, so likely the shortest relative
distance that must be tunneled through. The conclusion is clear. The logical
thing for fermium-256 to do is to come apart into two almost equal fragments
with a magic number of 50 protons and about 78 neutrons, giving the fragments
a mass number of 128. Less plausibly, one fragment could have the magic
number of 82 neutrons, giving fragment mass numbers of 132 and 124. But the
most unstable deformation for the liquid drop model is symmetric. And so is a
spheroidal or ellipsoidal model for the deformed nucleus. It all seems to add up
very nicely. The fragments must be about the same size, with a mass number
of 128.

Except that that is all wrong.

Fermium 258 acts like that, and fermium-257 also mostly, but not fermium
256. It is rare for fermium-256 to come apart into two fragments of about equal
size. Instead, the most likely mass number of the large fragment is about 140,
with only a small probability of a mass number 132 or lower. A mass number
of 140 clearly does not seem to make much sense based on figure 14.30.

The precise solution to this riddle is still a matter of current research, but
physicists have identified quantum effects as the primary cause. The potential
energy barrier that the fissioning nucleus must pass through is relatively low, on
the order of say 5 MeV. That is certainly small enough to be significantly affected
by quantum shell effects. Based on that idea, you would expect that mass
asymmetry would decrease if the excitation energy of the nucleus is increased,
and such an effect is indeed observed. Also, the separation of the fragments
occurs at very low energy, and is believed to be slow enough that the fragments
can develop some shell structure. Physicists have found that for many fissioning
nuclei, quantum shell effects can create a relatively stable intermediate state in
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the fission process. Such a state produces resonances in response to specific
excitation energies of the nucleus. Shell corrections can also lower the energy of
asymmetric nuclear fissioning shapes below those of symmetric ones, providing
an explanation for the mass asymmetry.

Imagine then a very distorted stage in which a neutron-rich, doubly magic
50/82 core develops along with a smaller nuclear core, the two being connected
by a cloud of neutrons and protons. Each could pick up part of the cloud in
the final separation process. That picture would explain why the mass number
of the large fragment exceeds 132 by a fairly constant amount while the mass
number of the smaller segment varies with the initial nuclear mass. Whether
or not there is much truth to this picture, at least it is a good mnemonic to
remember the fragment masses for the nuclei that fission asymmetrically.

14.15 Draft: Spin Data

The net internal angular momentum of a nucleus is called the “nuclear spin.”
It is an important quantity for applications such as NMR and MRI, and it is
also important for what nuclear decays and reactions occur and at what rate.
One previous example was the categorical refusal of bismuth-209 to decay at
the rate it was supposed to in section 14.11.3.

This section provides an overview of the ground-state spins of nuclei. Ac-
cording to the rules of quantum mechanics, the spin must be integer if the total
number of nucleons is even, and half-integer if it is odd. The shell model can
do a pretty good job of predicting actual values. Historically, this was one of
the major reasons for physicists to accept the validity of the shell model.

14.15.1 Draft: Even-even nuclei

For nuclei with both an even number of protons and an even number of neutrons,
the odd-particle shell model predicts that the spin is zero. This prediction is
fully vindicated by the experimental data, figure 14.31. There are no known
exceptions to this rule.

14.15.2 Draft: Odd mass number nuclei

Nuclei with an odd mass number A have either an odd number of protons or an
odd number of neutrons. For such nuclei, the odd-particle shell model predicts
that the nuclear spin is the net angular momentum (orbital plus spin) of the
last odd nucleon. To find it, the subshell that the last particle is in must be
identified. That can be done by assuming that the subshells fill in the order
given in section 14.12.2. This ordering is indicated by the colored lines in figures
14.32 and 14.33. Nuclei for which the resulting nuclear spin prediction is correct
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are indicated with a black check mark. (If the check mark is white rather than
black, some reservation was expressed about the measured spin in NUBASE
2003.)

The prediction is correct right off the bat for a considerable number of nuclei.
That is very much nontrivial. Still, there is an even larger number for which
the prediction is not correct.

One major reason is that many heavy nuclei are not spherical in shape. The
shell model was derived assuming a spherical nuclear shape and simply does
not apply for such nuclei. These are the nonspherical, rotational nuclei, the
ones that are easily excited; the nonsmall squares in 14.45, the red (or yellow)
big “R” squares in figure 14.22, the small squares in figure 14.19. Their main
regions are for neutron number N above 132 and in the deep interior of the Z
< 82, N > 82 wedge. For these nuclei, the shell model simply does not work.

For almost all remaining nuclei near the stable line, the spin can be explained
in terms of the shell model using various reasonable excuses, [36, p. 224ff]. Some
excuses are marked.

In particular, if the subshell with the odd neutron is above a subshell of
lower spin, a particle from the lower subshell may be promoted to the higher
one. This particle can then pair up at a higher spin, which is believed to be
energetically favorable. Since an odd nucleon occurs now in the lower shell, the
spin of the nucleus is predicted to be the one of that shell. So the nuclear spin
is lowered compared to the bare shell model.

Nuclei for which such spin lowering due to promotion can explain the ob-
served spin are indicated with an “L” or “l” in figures 14.32 and 14.33. For
the nuclei marked with “L,” the odd nucleon cannot be in the normal subshell
because the nucleus has the wrong parity for that. Therefore, for these nuclei
there is a solid additional reason besides the spin to assume that promotion has
occurred.

Promotion was only allowed for subshells immediately above one with lower
spin in the same major shell, so the nucleon could only be promoted a single
subshell. The idea is that the gained pairing energy should not be big enough
to make major modifications to the shell model.

For some nuclei, the basic shell model is valid but the odd-particle assump-
tion fails. The odd particle assumption implies that all nucleons except the odd
one pair up in states of zero spin. But sometimes at least three nucleons com-
bine in a state with one unit less spin than the single odd particle would have.
This is only possible for subshells with at least three particles and three holes
(empty spots for additional nucleons). Nuclei for which this unit spin reduction
might to be the case are marked with a minus sign. It is evident, for example,
for odd nucleon numbers 23 and 25.

Fluorine-19 and its mirror twin neon-19 are rare outright failures of the shell
model, as already discussed in section 14.12.6.
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Among the remaining failures, notable are nuclei with odd proton numbers
just above 50. The 5g7/2 and 5d5/2 subshells are very close together and it
depends on the details which one gets filled first.

In a few exceptional cases, like the highly unstable nitrogen-11 and beryl-
lium-11 “halo” nuclei, the theoretical model predicted the right spin, but it was
not counted as a hit because the nuclear parity was inconsistent with the pre-
dicted subshell. In all cases, it was demanded that the nuclear parity, if known,
did not conflict with the proposed shell model verification (or explanation) of
the spin.

For nuclei marked with a cross, no explanation for the spin using the above
rules could be found. In general, you might not want to take nuclei well away
from the stable line that serious. For yellow squares, NUBASE 2003 gave either
no value for the spin or more than one possible value.

14.15.3 Draft: Odd-odd nuclei

If both the number of protons and the number of neutrons is odd, the nuclear
spin becomes much more difficult to predict. According to the odd-particle shell
model, the net nuclear spin jN comes from combining the net angular momenta
jp of the odd proton and jn of the odd neutron. Then according to quantum
mechanics, the net nuclear spin jN can be any integer in the range

|jp − jn| 6 jN 6 jp + jn (14.25)

That gives a total of 2min(jp, jn) + 1 different possibilities, or at least two.
That is not very satisfactory of course. You would like to get a specific

prediction for the spin, not a range. The so-called “Nordheim rules” attempt
to do so. The underlying idea is that nuclei like to align the spins of the odd
proton and odd neutron, just like the deuterium nucleus does.

To describe the rules, forget about quantum mechanics for now. Just think
of the spin and orbital angular momenta involved as simple vectors that can
either point up or down. And take “up” to be the direction that the aligned
proton and neutron spin vectors sp and sn point. Now suppose first that for both
neutron and proton the orbital angular momenta lp and ln also point upwards
(or are zero). Then for both proton and neutron, the orbital and spin angular
momenta add up to a total momentum jp = lp + sp respectively jn = ln + sn

that also point upwards. So the sum of the two, the total nuclear spin jN points
upwards and has magnitude jN = jp + jn.

Conversely, if both orbital momenta point downwards (and are nonzero),
then spin and orbital angular momenta are in opposite directions and subtract.
Then proton and neutron have net angular momenta of magnitude jp = lp− sp
respectively jn = ln−sn that point downwards. (Recall from quantum mechanics
that l is at least 1 if nonzero, so is bigger than the s = 1/2 pointing upwards.)
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The combined nuclear angular momentum is then again jN = jp + jn (pointing
downwards).

However, if for one nucleon the orbital angular momentum is zero or points
in the direction of the spin and the other is nonzero and points in the direction
opposite to the spin, then one of jp and jn points upwards and the other down-
wards. That then means that now they are in opposite directions and subtract;
jN = |jp − jn|.

That then gives the Nordheim rules as, [36, p. 239]:
1. If for both proton and neutron, j = l+ s, or for both j = l− s, then

the angular momenta of the two add up and jN = jp + jn.
2. Otherwise they subtract and jN = |jp − jn|.
3. New and improved version: if number 1 above fails, assume that

the two angular momenta are opposite anyway and the spin is j =
|jp − jn| like in number 2.

Of course, the real quantum rules for angular momentum are a lot more
complicated than the simplified picture above. Note in particular from the
Clebsch-Gordan coefficients in figure 12.5 that if j = l − s, then that nucleon
cannot be just in the spin-up state. The two nucleons cannot fully align then.

To check those rules is not trivial, because it requires the values of l for the
odd proton and neutron. Who will say in what shells the odd proton and odd
neutron really are? The simplest solution is to simply take the shells to be the
ones that the shell model predicts, assuming the subshell ordering from section
14.12.2. The nuclei that satisfy the Nordheim rules under that assumption are
indicated with a check mark in figure 14.34. A blue check mark means that the
new and improved version has been used. (Yellow is used if there is uncertainty
about the measurement.) It is seen that the rules get a number of nuclei right.

An “L” or “l” indicates that it has been assumed that the spin of at least
one odd nucleon has been lowered due to promotion. The rules are the same
as in the previous subsection. In case of “L,” the Nordheim rules were really
verified. More specifically, for these nuclei there was no possibility consistent
with nuclear spin and parity to violate the rules. For nuclei with an “l” there
was, and the case that satisfied the Nordheim rules was cherry-picked among
other otherwise valid possibilities that did not.

A further weakening of standards applies to nuclei marked with “N” or
“n.” For those, one or two subshells of the odd nucleons were taken based
on the spins of the immediately neighboring nuclei of odd mass number. For
nuclei marked with “N” the Nordheim rules were again really verified, with no
possibility of violation within the now larger context. For nuclei marked “n,”
other possibilities violated the rules; obviously, for these nuclei the standards
have become miserably low. Note how many “correct” predictions there are in
the regions of nonspherical nuclei in which the shell model is quite meaningless.

Preston and Bhaduri [36, p. 239] suggest that the proton and neutron angular
momenta be taken from the neighboring pairs of nuclei of odd mass number.
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Figure 14.35 shows results according to that approach. To minimize failures
due to other causes than the Nordheim rules, it was demanded that both spin
and parity of the odd-odd nucleus were solidly established. For the two pairs of
odd mass nuclei, it was demanded that both spin and parity were known, and
that the two members of each pair agreed on the values. It was also demanded
that the orbital momenta of the pairs could be confidently predicted from the
spins and parities. Correct predictions for these superclean cases are indicated
by check marks in figure 14.35, incorrect ones by an “E” or cross. Light check
marks indicate cases in which the spin of a pair of odd mass nuclei is not the
spin of the odd nucleon.

Preston and Bhaduri [36, p. 239] write: “When confronted with experimental
data, Nordheim’s rules are found to work quite well, most of the exceptions being
for light nuclei.” So be it. The results are definitely better than chance. Below
Z = 50, the rules get 43 right out of 71. It may be noted that if you simply take
the shells directly from theory with no promotion, like in figure 14.36, you get
only 41 right, so using the spins of the neighbors seems to help. The “Nuclear
Data Sheets” policies assume that the (unimproved) Nordheim rules may be
helpful if there is supporting evidence.

The nuclei marked with “E” in figure 14.35 are particularly interesting. For
these nuclei spin or parity show that it is impossible for the odd proton and
neutron to be in the same shells as their neighbors. In four cases, the discrepancy
is in parity, which is particularly clear. It shows that for an odd proton, having
an odd neutron is not necessarily intermediate between having no odd neutron
and having one additional neutron besides the odd one. Or vice-versa for an
odd neutron. Proton and neutron shells interact nontrivially.

It may be noted that the unmodified Nordheim rules imply that there cannot
be any odd-odd nuclei with 0+ or 1− ground states. However, some do exist,
as is seen in figure 14.34 from the nuclei with spin zero (grey) and blue check
marks.

14.16 Draft: Parity Data

The parity of a nucleus is even, or one, if its wave function stays the same if the
positive direction of all three Cartesian axes is inverted. That replaces every ~r in
the wave function by −~r. The parity is odd, or minus one, if the wave function
gets multiplied by −1 under axes inversion. Nuclei have definite parity, (as long
as the weak force is not an active factor), so one of the two must be the case.
It is an important quantity for what nuclear decays and reactions occur and at
what rate.

This section provides an overview of the ground-state spins of nuclei. It will
be seen that the shell model does a pretty good job of predicting them.
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14.16.1 Draft: Even-even nuclei

For nuclei with both an even number of protons and an even number of neutrons,
the odd-particle shell model predicts that the parity is even. This prediction
is fully vindicated by the experimental data, figure 14.37. There are no known
exceptions to this rule.

14.16.2 Draft: Odd mass number nuclei

For nuclei with an odd mass number A, there is an odd proton or neutron. The
odd-particle shell model says that the parity is that of the odd nucleon. To find
it, the subshell that the last particle is in must be identified, section 14.12.2.
This can be done with a fair amount of confidence based on the spin of the
nuclei. Nuclei for which the parity is correctly predicted in this way are shown
in green in figures 14.38 and 14.39. Failures are in red. Small grey signs are
shell model values if the nucleons fill the shells in the normal order.

The failures above Z = 50 and inside the Z < 82, N > 82 wedge are expected.
The shell model does not apply in these regions, because the nuclei are known
to be nonspherical there. Besides that, there are very few failures. Those near
the N = 40 and N = 60 lines away from the stable line are presumably also
due to nonspherical nuclei. The highly unstable nitrogen-11 and beryllium-11
mirror nuclei were discussed in section 14.12.6.

14.16.3 Draft: Odd-odd nuclei

For odd-odd nuclei, the odd-particle shell model predicts that the parity is the
product of those of the surrounding even-odd and odd-even nuclei. The results
are shown in figure 14.40. Hits are green, failures red, and unable-to-tell black.
Small grey signs are shell model values for the surrounding even-odd and odd-
even nuclei. However actual even-odd and odd-even values were used in the
prediction.

Failures for spherical nuclei indicate that sometimes the odd proton or neu-
tron is in a different shell than in the corresponding odd-mass neighbors. A
similar conclusion can be reached based on the spin data.

Note that the predictions also do a fairly good job in the regions in which the
nuclei are not spherical. The reason is that the predictions make no assumptions
about what sort of state, spherical or nonspherical, the odd nucleons are in. It
merely assumes that they are in the same state as their neighbors.

14.16.4 Draft: Parity Summary

Figure 14.41 shows a summary of the parity of all nuclei together. To identify
the type of nucleus more easily, the even-even nuclei have been shown as green
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check marks. The odd-odd nuclei are found on the same vertical lines as the
check marks. The even-odd nuclei are on the same horizontal lines as the check
marks, and the odd-even ones on the same diagonal lines.

Parities that the shell model predicts correctly are in green, and those that
it predicts incorrectly are in red. The parities were taken straight from section
14.12.2 with no tricks. Note that the shell model does get a large number of
parities right straight off the bat. And much of the errors can be explained by
promotion or nonspherical nuclei.

For parities in light green and light red, NUBASE 2003 expressed some
reservation about the correct value. For parities shown as yellow crosses, no
(unique) value was given.

14.17 Draft: Electromagnetic Moments

The most important electromagnetic property of nuclei is their net charge. It
is what keeps the electrons in atoms and molecules together. However, nuclei
are not really electric point charges. They have a small size. In a spatially
varying electric field most respond somewhat different than a point charge. It is
said that they have an electric quadrupole moment. Also, most nuclei act like
little electromagnets. It is said that they have a “magnetic dipole moment.”
These properties are important for applications like NMR and MRI, and for
experimentally examining nuclei.

14.17.1 Draft: Classical description

This subsection explains the magnetic dipole and electric quadrupole moments
from a classical point of view.

14.17.1.1 Draft: Magnetic dipole moment

The most basic description of an electromagnet is charges going around in cir-
cles. It can be seen from either classical or quantum electromagnetics that the
strength of an electromagnet is proportional to the angular momentum ~L of the
charges times the ratio of their charge q to their mass m, chapter 13.2 or 13.4.

This leads to the definition of the magnetic dipole moment as

~µ ≡ q

2m
~L

In particular, a magnet wants to align itself with an external magnetic field
~Bext. The energy involved in this alignment is

−~µ · ~Bext
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14.17.1.2 Draft: Electric quadrupole moment

Consider a nuclear charge distribution with charge density ρc placed in an exter-
nal electrical potential, or “voltage” ϕ. The potential energy due to the external
field is

V =

∫
ϕρc d

3~r

It may be noted that since nuclear energies are of the order of MeV, an
external field is not going to change the nuclear charge distribution ρ. It would
need to have a million volt drop over a couple of femtometers to make a dent
in it. Unless you shoot very high energy charged particles at the nucleus, that
is not going to happen. Also, the current discussion assumes that the external
field is steady or at least quasi-steady. That should be reasonable in many cases,
as nuclear internal time scales are very fast.

Since nuclei are so small compared to normal external fields, the electric
potential ϕ can be well represented by a Taylor series. That gives the potential
energy as

V = ϕ0

∫
ρc d

3~r +
3∑

i=1

(
∂ϕ

∂ri

)

0

∫
riρ d

3~r +
3∑

i=1

3∑

j=1

1

2

(
∂2ϕ

∂ri∂rj

)

0

∫
rirjρ d

3~r

where (r1, r2, r3) = (x, y, z) are the three components of position and 0 indicates
that the derivative is evaluated at the origin, the center of the nucleus.

The first integral in the expression above is just the net nuclear charge
q. This makes the first term exactly the same as the potential energy of a
point charge. The second integral defines the “electric dipole moment” in the
i-direction. It is nonzero if on average the charge is shifted somewhat towards
one side of the nucleus. But nuclei do not have nonzero electric dipole moments.
The reason is that nuclei have definite parity; the wave function is either the
same or the same save for a minus sign when you look at the opposite side of
the nucleus. Since the probability of a proton to be found at a given position
is proportional to the square magnitude of the wave function, it is just as likely
to be found at one side as the other one. (That should really be put more
precisely for the picky. The dipole contribution of any set of positions of the
protons is canceled by an opposite contribution from the set of opposite nucleon
positions.)

The last integral in the expression for the potential energy defines the qua-
drupole matrix or tensor. You may note a mathematical similarity with the
moment of inertia matrix of a solid body in classical mechanics. Just like there,
the quadrupole matrix can be simplified by rotating the coordinate system to
principal axes. That rotation gets rid of the integrals

∫
rirjρd

3~r for i 6= j, so
what is left is

V = Vpc +
1

2

(
∂2ϕ

∂x2

)

0

∫
x2ρ d3~r +

1

2

(
∂2ϕ

∂y2

)

0

∫
y2ρ d3~r +

1

2

(
∂2ϕ

∂z2

)

0

∫
z2ρ d3~r
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where the first term is the potential of the point charge.

Note that the average of x2, y2, and z2 is 1
3
r2. It is convenient to subtract

that average in each integral. The subtraction does not change the value of the
potential energy. The reason is that the sum of the three second order derivatives
of the external field ϕ is zero due to Maxwell”s first equation, chapter 13.2. All
that then leads to a definition of an electric quadrupole moment for a single
axis, taken to be the z-axis, as

Q ≡ 1

e

∫
(3z2 − r2)ρ d3~r

For simplicity, the nasty fractions have been excluded from the definition of Q.
Also, it has been scaled with the charge e of a single proton.

That gives Q units of square length, which is easy to put in context. Recall
that nuclear sizes are of the order of a few femtometer. So the SI unit square
femtometer, fm2 or 10−30 m2, works quite nicely for the quadrupole moment Q
as defined. It is therefore needless to say that most sources do not use it. They
use the “barn,” a non-SI unit equal to 10−28 m2. The reason is historical; during
the second world war some physicists figured that the word “barn” would hide
the fact that work was being done on nuclear bombs from the Germans. Of
course, that did not work since so few memos and reports are one-word ones.
However, physicists discovered that it did help confuse students, so the term
has become very widely used in the half century since then. Also, unlike a
square femtometer, the barn is much too large compared to a typical nuclear
cross section, producing all these sophisticated looking tiny decimal fractions.

To better understand the likely values of the quadrupole moment, consider
the effect of the charge distribution of a single proton. If the charge distribution
is spherically symmetric, the averages of x2, y2 and z2 are equal, making Q zero.
However, consider the possibility that the charge distribution is not spherical,
but an ellipsoid of revolution, a “spheroid.”. If the axis of symmetry is the z-
axis, and the charge distribution hugs closely to that axis, the spheroid will
look like a cigar or zeppelin. Such a spheroid is called“prolate.” The value of
Q is then about 2

5
of the square nuclear radius R. If the charge distribution

stays close to the xy-plane, the spheroid will look like a flattened sphere. Such
a spheroid is called “oblate.” In that case the value of Q is about −2

5
of the

square nuclear radius. Either way, the values of Q are noticeably less than the
square nuclear radius.

It may be noted that the quadrupole integrals also pop up in the description
of the electric field of the nucleus itself. Far from the nucleus, the deviations
in its electric field from that of a point charge are proportional to the same
integrals, compare chapter 13.3.3.
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14.17.2 Draft: Quantum description

Quantum mechanics makes for some changes to the classical description of the
electromagnetic moments. Angular momentum is quantized, and spin must be
included.

14.17.2.1 Draft: Magnetic dipole moment

As the classical description showed, the strength of an electromagnet is essen-
tially the angular momentum of the charges going around, times the ratio of
their charge to their mass. In quantum mechanics angular momentum comes in
units of ~. Also, for nuclei the charged particles are protons with charge e and
mass mp. Therefore, a good unit to describe magnetic strengths in terms of is
the so-called “nuclear magneton”

µN ≡
e~

2mp

(14.26)

In those terms, the magnetic magnetic dipole moment operator of a single proton
is

1

~

~̂LpµN

But quantum mechanics brings in a complication, chapter 13.4. Protons have
intrinsic angular momentum, called spin. That also acts as an electromagnet.
In addition the magnetic strength per unit of angular momentum is different for
spin than for orbital angular momentum. The factor that it is different is called
the proton g-factor gp. That then makes the total magnetic dipole moment
operator of a single proton equal to

~̂µp =
1

~

(
~̂L+ gp ~̂S

)
µN gp ≈ 5.59 (14.27)

The above value of the proton g-factor is experimental.
Neutrons do not have charge and therefore their orbital motion creates no

magnetic moment. However, neutrons do create a magnetic moment through
their spin:

~̂µn =
1

~
gn ~̂SµN gn ≈ −3.83 (14.28)

The reason is that the neutron consists of three charged quarks; they produce
a net magnetic moment even if they do not produce a net charge.

The net magnetic dipole moment operator of the complete nucleus is

~̂µ =
1

~

[
Z∑

i=1

(
~̂Li + gp ~̂Si

)
+

A∑

i=Z+1

gn ~̂Si

]
µN (14.29)
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where i is the nucleon number, the first Z being protons and the rest neutrons.
Now assume that the nucleus is placed in an external magnetic field B and

take the z-axis in the direction of the field. Because nuclear energies are so
large, external electromagnetic fields are far too weak to change the quantum
structure of the nucleus; its wave function remains unchanged to a very good
approximation. However, the field does produce a tiny change in the energy
levels of the quantum states. These may be found using expectation values:

∆E = 〈Ψ|−µ̂zB|Ψ〉

The fact that that is possible is a consequence of small perturbation theory, as
covered in addendum {A.38}.

However, it is not immediately clear what nuclear wave function Ψ to use
in the expectation value above. Because of the large values of nuclear energies,
a nucleus is affected very little by its surroundings. It behaves essentially as if
it is isolated in empty space. That means that while the nuclear energy may

depend on the magnitude of the nuclear spin ~̂J , (i.e. the net nuclear angular
momentum), it does not depend on its direction. In quantum terms, the energy

does not depend on the component Ĵz in the chosen z-direction. So, what
should be used in the above expectation value to find the change in the energy
of a nucleus in a state of spin j? States with definite values of Jz? Linear
combinations of such states? You get a difference answer depending on what
you choose.

Now a nucleus is a composite structure, consisting of protons or neutrons,
each contributing to the net magnetic moment. However, the protons and neu-
trons themselves are composite structures too, each consisting of three quarks.
Yet at normal energy levels protons and neutrons act as elementary particles,
whose magnetic dipole moment is a scalar multiple gµN of their spin. Their
energies in a magnetic field split into two values, one for the state with Jz =
1
2
~ and the other with Jz = −1

2
~. One state corresponds to magnetic quantum

number mj =
1
2
, the other to mj = −1

2
.

The same turns out to be true for nuclei; they too behave as elementary
particles as long as their wave functions stay intact. In a magnetic field, the
original energy level of a nucleus with spin j splits into equally spaced levels
corresponding to nuclear magnetic quantum numbers mj = j, j−1, . . . ,−j. The
numerical value of the magnetic dipole moment µ is therefore defined to be the
expectation value of µ̂z in the nuclear state in which mj has its largest value j,
call it the |jj〉 state:

µ ≡ 〈jj|µ̂z|jj〉 (14.30)

The fact that nuclei would behave so simple is related to the fact that nuclei
are essentially in empty space. That implies that the complete wave function of
a nucleus in the ground state, or another energy eigenstate, will vary in a very
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simple way with angular direction. Furthermore, that variation is directly given
by the angular momentum of the nucleus. A brief discussion can be found in
chapter 7.3 and its note. See also the discussion of the Zeeman effect, and in
particular the weak Zeeman effect, in addendum {A.38}.

The most important consequence of those ideas is that

Nuclei with spin zero do not have magnetic dipole moments.

That is not very easy to see from the general expression for the magnetic mo-
ment, cluttered as it is with g-factors. However, zero spin means on a very
fundamental level that the complete wave function of a nucleus is independent
of direction, chapter 4.2.3. A magnetic dipole strength requires directionality,
there must be a north pole and a south pole. That cannot occur for nuclei of
spin zero.

14.17.2.2 Draft: Electric quadrupole moment

The definition of the electric quadrupole moment follows the same ideas as that
of the magnetic dipole moment. The numerical value of the quadrupole moment
is defined as the expectation value of 3z2 − r2, summed over all protons, in the
state in which the net nuclear magnetic quantum number mj equals the nuclear
spin j:

Q ≡ 〈jj|
Z∑

i=1

3z2i − r2i |jj〉 (14.31)

Note that there is a close relation with the spherical harmonics;

3z2 − r2 =
√

16π

5
r2Y 0

2 (14.32)

That is important because it implies that

Nuclei with spin zero or with spin one-half do not have electric
quadrupole moments.

To see why, note that the expectation value involves the absolute square of the
wave function. Now if you multiply two wave functions together that have an
angular dependence corresponding to a spin j, mathematically speaking you
get pretty much the angular dependence of two particles of spin j. That cannot
become more than an angular dependence of spin 2j, in other words an angular
dependence with terms proportional to Y m

2j . Since the spherical harmonics are
mutually orthonormal, Y m

2j integrates away against Y 0
2 for j 6

1
2
.

It makes nuclei with spin 1/2 popular for nuclear magnetic resonance studies.
Without the perturbing effects due to quadrupole interaction with the electric
field, they give nice sharp signals. Also of course, analysis is easier with only
two spin states and no quadrupole moment.
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14.17.2.3 Draft: Shell model values

According to the odd-particle shell model, all even-even nuclei have spin zero
and therefore no magnetic or electric moments. That is perfectly correct.

For nuclei with an odd mass number, the model says that all nucleons except
for the last odd one are paired up in spherically symmetric states of zero spin
that produce no magnetic moment. Therefore, the magnetic moment comes
from the last proton or neutron. To get it, according to the second last sub-
subsection, what is needed is the expectation value of the magnetic moment
operator µ̂z as given there. Assume the shell that the odd nucleon is in has
single-particle net momentum j. According to the definition of magnetic mo-
ment, the magnetic quantum number must have its maximum value mj = j.
Call the corresponding state the ψnljj one because the spectroscopic notation is
useless as always. In particular for an odd-even nucleus,

µ =
1

~
〈ψnljj|Lz + gpŜz|ψnljj〉µN

while for an even-odd nucleus

µ =
1

~
〈ψnljj|gnŜz|ψnljj〉µN

The unit µN is the nuclear magneton. The expectation values can be evaluated
by writing the state ψnljj in terms of the component states ψnlmms

of definite

angular momentum L̂z and spin Ŝz following chapter 12.8, 2.
It is then found that for an odd proton, the magnetic moment is

j = l − 1/2 : µp1 =
1
2

j

j + 1
(2j + 3− gp)µN

j = l + 1/2 : µp2 =
1
2
(2j − 1 + gp)µN

(14.33)

while for an odd neutron

j = l − 1/2 : µn1 = −1
2

j

j + 1
gnµN

j = l + 1/2 : µn2 =
1
2
gnµN

(14.34)

These are called the “Schmidt values.”
Odd-odd nuclei are too messy to be covered here, even if the Nordheim rules

would be reliable.
For the quadrupole moments of nuclei of odd mass number, filled shells

do not produce a quadrupole moment, because they are spherically symmet-
ric. Consider now first the case that there is a single proton in an otherwise
empty shell with single-particle momentum j. Then the magnetic moment of
the nucleus can be found as the one of that proton:

Q = Qp = 〈ψnljj|3z2 − r2|ψnljj〉
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Evaluation, {D.78}, gives

Qp = −2j − 1

2j + 2
〈r2〉 (14.35)

where 〈r2〉 is the expectation value of r2 for the proton. Note that this is zero as
it should if the spin j = 1

2
. Since the spin j must be half-integer, zero spin is not

a consideration. For all other values of j, the one-proton quadrupole moment
is negative.

The expectation value 〈r2〉 can hardly be much more than the square nuclear
radius, excepting maybe halo nuclei. A reasonable guess would be to assume
that the proton is homogeneously distributed within the nuclear radius R. That
gives a ballpark value

〈r2〉 ≈ 3
5
R2

Next consider the case that there are not one but I > 3 protons in the
unfilled shell. The picture of the odd-particle shell model as usually painted is:
the first I−1 protons are pairwise combined in spherically symmetric states and
the last odd proton is in a single particle state, blissfully unaware of the other
protons in the shell. In that case, the quadrupole moment would self evidently
be the same as for one proton in the shell. But as already pointed out in section
14.12.4, the painted picture is not really correct. For one, it does not satisfy the
antisymmetrization requirement for all combinations on protons. There really
are I protons in the shell sharing one wave function that produces a net spin
equal to j.

In particular consider the case that there are 2j protons in the shell. Then
the wave function takes the form of a filled shell, having no quadrupole moment,
plus a “hole”, a state of angular momentum j for the missing proton. Since a
proton hole has minus the charge of a proton, the quadrupole moment for a
single hole is opposite to that of one proton:

Q2jp = −Qp (14.36)

In other words, the quadrupole moment for a single hole is predicted to be
positive. For j = 1

2
, a single proton also means a single hole, so the quadrupole

moment must, once more, be zero. It has been found that the quadrupole
moment changes linearly with the odd number of protons, [31, p, 129]. Therefore
for shells with more than one proton and more than one hole, the quadrupole
moment is in between the one-proton and one-hole values. It follows that the
one-proton value provides an upper bound to the magnitude of the quadrupole
moment for any number of protons in the shell.

Since neutrons have no charge, even-odd nuclei would in the simplest ap-
proximation have no quadrupole moment at all. However, consider the odd
neutron and the spherical remainder of the nucleus as a two-body system going
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around their common center of gravity. In that picture, the charged remain-
der of the nucleus will create a quadrupole moment. The position vector of
the remainder of the nucleus is about 1/A times shorter than that of the odd
neutron, so quadratic lengths are a factor 1/A2 shorter. However, the nucleus
has Z times as much charge as a single proton. Therefore you expect nuclei
with an odd neutron to have about Z/A2 times the quadrupole moment of the
corresponding nucleus with an odd proton instead of an odd neutron. For heavy
nuclei, that would still be very much smaller than the magnetic moment of a
similar odd-even nucleus.

14.17.2.4 Draft: Values for deformed nuclei

For deformed nuclei, part of the angular momentum is due to rotation of the
nucleus as a whole. In particular, for the ground state rotational band of de-
formed even-even nuclei, all angular momentum is in rotation of the nucleus
as a whole. This is orbital angular momentum. Protons with orbital angular
momentum produce a magnetic dipole moment equal to their angular momen-
tum, provided the dipole moment is expressed in terms of the nuclear magneton
µN. Uncharged neutrons do not produce a dipole moment from orbital angular
momentum. Therefore. the magnetic dipole moment of the nucleus is about

even-even, ground state band: µ = gRjµN gR ≈
Z

A
(14.37)

where the g-factor reflects the relative amount of the nuclear angular momentum
that belongs to the protons. This also works for vibrational nuclei, since their
angular momentum too is in global motion of the nucleus.

If a rotational band has a minimum spin jmin that is not zero, the dipole
moment is, [40, p. 392],

µ =

[
gRj +

j2min

j + 1
(gint − gR)

]
µN gR ≈

Z

A
jmin 6= 1/2 (14.38)

where gintjminµN reflects an internal magnetic dipole strength. If jmin = 1
2
, the

top of the first ratio has an additional term that has a magnitude proportional
to 2j + 1 and alternates in sign.

The quadrupole moment of deformed nuclei is typically many times larger
than that of a shell model one. According to the shell model, all protons except
at most one are in spherical orbits producing no quadrupole moment. But if the
nucleus is deformed, typically into about the shape of some spheroid instead of
a sphere, then all protons contribute. Such a nucleus has a very large “intrinsic”
quadrupole moment Qint.

However, that intrinsic quadrupole moment is not the one measured. For
example, many heavy even-even nuclei have very distorted intrinsic shapes but
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all even-even nuclei have a measured quadrupole moment that is zero in their
ground state. That is a pure quantum effect. Consider the state in which the
axis of the nucleus is aligned with the z-direction. In that state a big quadrupole
moment would be observed due to the directional charge distribution. But
there are also states in which the nucleus is aligned with the x-direction, the
y-direction, and any other direction for that matter. No big deal classically:
you just grab hold of the nucleus and measure its quadrupole moment. But
quantum mechanics makes the complete wave function a linear combination of
all these different possible orientations; in fact an equal combination of them by
symmetry. If all directions are equal, there is no directionality left; the measured
quadrupole moment is zero. Also, directionality means angular momentum in
quantum mechanics; if all directions are equal the spin is zero. “Grabbing hold”
of the nucleus means adding directionality, adding angular momentum. That
creates an excited state.

A simple known system that shows such effects is the hydrogen atom. Clas-
sically the atom is just an electron and a proton at opposite sides of their center
of gravity. If they are both on the z-axis, say, that system would have a nonzero
quadrupole moment. But such a state is not an exact energy eigenstate, far
from it. It interacts with states in which the direction of the connecting line is
different. By symmetry, the ground state is the one in which all directions have
the same probability. The atom has become spherically symmetric. Still, the
atom has not become intrinsically spherically symmetric; the wave function is
not of a form like ψ1(re)ψ2(rp). The positions of electron and proton are still
correlated, {A.5}.

A model of a spheroidal nucleus produces the following relationship between
the intrinsic quadrupole moment and the one that is measured:

Q =
3j2min − j(j + 1)

(j + 1)(2j + 3)
Qint (14.39)

where jmin is the angular momentum of the nucleus when it is not rotating.
Derivations may be found in [40] or [36]. It can be seen that when the nucleus
is not rotating, the measured quadrupole moment is much smaller than the
intrinsic one unless the angular momentum is really large. When the nucleus gets
additional rotational angular momentum, the measured quadrupole moment
decreases even more and eventually ends up with the opposite sign.

14.17.3 Draft: Magnetic moment data

Figure 14.42 shows ground state magnetic moments in units of the nuclear
magneton µN. Even-even nuclei do not have magnetic moments in their ground
state, so they are not shown. The red and blue horizontal lines are the Schmidt
values predicted by the shell model. They differ in whether spin subtracts from
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or adds to the net angular momentum j to produce the orbital momentum l.
Red dots should be on the red lines, blue dots on the blue lines. For black
dots, no confident prediction of the orbital angular momentum could be made.
The values have an error of no more than about 0.1 µN, based on a subjective
evaluation of both reported errors as well as differences between results obtained
by different studies for the same number. These differences are often much larger
than the reported errors for the individual numbers.

One good thing to say about it all is that the general magnitude is well
predicted. Few nuclei end up outside the Schmidt lines. (Rhodium-103, a stable
odd-even 1/2

− nucleus, is a notable exception.) Also, some nuclei are actually
on their line. And the others tend to at least be on the right side of the cloud.
The bad news is, of course, that the agreement is only qualitatively.

The main excuses that are offered are:
1. The g-factors gp and gn describe the effectiveness of proton and neu-

tron spins in generating magnetic moments in free space. They may
be reduced when these nucleons are inside a nucleus. Indeed, it
seems reasonable enough to assume that the motion of the quarks
that make up the protons and neutrons could be affected if there are
other quarks nearby. Reduction of the g-factors drives the Schmidt
lines towards each other, and that can clearly reduce the average er-
rors. Unfortunately, different nuclei would need different reductions
to obtain quantitative agreement.

2. Collective motion. If some of the angular momentum is into collec-
tive motion, it tends to drift the magnetic moment towards about
1
2
jµN, compare (14.38). To compute the effect requires the inter-

nal magnetic moment of the nucleus to be known. For some nuclei,
fairly good magnetic moments can be obtained by using the Schmidt
values for the internal magnetic moment, [40, p. 393].

For odd-odd nuclei, the data average out to about 0.5j nuclear magnetons,
with a standard deviation of about one magneton. These average values are
shown as yellow lines in figure 14.42. Interestingly enough, the average is like a
collective rotation, (14.37).

According to the shell model, two odd particles contribute to the spin and
magnetic moment of odd-odd nuclei. So they could have significantly larger
spins and magnetic moments than odd mass nuclei. Note from the data in
figure 14.42 that that just does not happen.

Even-even nuclei do not have magnetic moments in their ground state. Fig-
ure 14.43 shows the magnetic moments of the first exited 2+ state of these nuclei.
The values are in fairly good agreement with the prediction (14.37) of collec-
tive motion that the magnetic moment equals Zj/A nuclear magnetons. Bright
green squares are correct. Big deviations occur only near magic numbers. The
maximum error in the shown data is about a quarter of a nuclear magneton,
subjectively evaluated.
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Figure 14.42: Magnetic dipole moments of the ground-state nuclei. [pdf]
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Figure 14.43: 2+ magnetic moment of even-even nuclei. [pdf][con]
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14.17.4 Draft: Quadrupole moment data

If you love the shell model, you may want to skip this subsection. It is going to
get a beating.

The prediction of the shell model is relatively straightforward. The elec-
tric quadrupole moment of a single proton in an unfilled shell of high angular
momentum can quite well be ballparked as

Qp ballpark ∼ 3
5
R2

where R is the nuclear radius computed from (14.9). This value corresponds
to the area of the square marked “a proton’s” in the legend of figure 14.44.
As discussed in subsection 14.17.2.3, if there are more protons in the shell,
the magnitude is less, though the sign will eventually reverse. If the angular
momentum is not very high, the magnitude is less. If there is no odd proton,
the magnitude will be almost zero. So, essentially all squares in figure 14.44
must be smaller, most a lot smaller, and those on lines of even Z very much
smaller, than the single proton square in the legend. . .

Well, you might be able to find a smaller square somewhere. For example, the
square for lithium-6, straight above doubly-magic He4

2 , has about the right size
and the right color, blue. The data shown have a subjectively estimated error of
up to 40%, [sic], and the area of the squares gives the scaled quadrupole moment.
Nitrogen-14, straight below doubly-magic O16

8 , has a suitably small square of the
right color, red. So does potassium-39 with one proton less than doubly-magic
Ca40

20 . Bismuth-209, with one more proton than Pb208
82 has a relatively small

square of the right color. Some nuclei on magic proton number lines have quite
small scaled quadrupole moments, though hardly almost zero as they should.
Nuclei one proton above magic proton numbers tend to be of the right color,
blue, as long as their squares are small. Nuclei one proton below the magic
proton numbers should be red; however, promotion can mess that up.

Back to reality. Note that many nuclei in the Z < 82, N > 82 wedge,
and above Z = 82, as well as various other nuclei, especially away from the
stable line, have quadrupole moments that are very many times larger than
the ballpark for a single proton. That is simply not possible unless many or
all protons contribute to the quadrupole moment. The odd-particle shell model
picture of a spherically symmetric nuclear core plus an odd proton, and maybe a
neutron, in nonspherical orbits hanging on is completely wrong for these nuclei.
These nuclei have a global shape that simply is not spherical. And because the
shell model was derived based on a spherical potential, its results are invalid
for these nuclei. They are the deformed nuclei that also showed up in figures
14.19 and 14.22. It is the quadrupole moment that shows that it was not just an
empty excuse to exclude these nuclei in shell model comparisons. The measured
quadrupole moments show without a shadow of a doubt that the shell model
cannot be valid.
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Figure 14.44: Electric quadrupole moment. [pdf][con]
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You might however wonder about the apparently large amount in random
scatter in the quadrupole moments of these nuclei. Does the amount of defor-
mation vary that randomly? Before that can be answered, a correction to the
data must be applied. Measured quadrupole moments of a deformed nucleus are
often much too small for the actual nuclear deformation. The reason is uncer-
tainty in the angular orientation of these nuclei. In particular, nuclei with spin
zero have complete uncertainty in orientation. Such nuclei have zero measured
quadrupole moment regardless how big the deformation of the nucleus is. Nu-
clei with spin one-half still have enough uncertainty in orientation to measure
as zero.

Figure 14.45 shows what happens if you try to estimate the “intrinsic”
quadrupole moment of the nuclei in absence of uncertainty in angular orien-
tation. For nuclei whose spin is at least one, the estimate was made based on
the measured value using (14.39), with both jmin and j equal to the spin. This
assumes that the intrinsic shape is roughly spheroidal. For shell-model nuclei,
this also roughly corrects for the spin effect, though it overcorrects to some
extent for nuclei of low spin.

To estimate the intrinsic quadrupole moment of nuclei with zero ground
state spin, including all even-even nuclei, the quadrupole moment of the lowest
excited 2+ state was used, if it had been measured. For spin one-half the lowest
3/2 state was used. In either case, jmin was taken to be the spin of the ground
state and j that of the excited state. Regrettably, these estimates do not make
much sense if the nucleus is not a rotating one.

Note in figure 14.45 how much more uniform the squares in the regions of
deformed nuclei have become. And that the squares of nuclei of spin zero and
one-half have similar sizes. These nuclei were not really more spherical; it was
just hidden from experiments.

The observed intrinsic quadrupole moments in the regions of deformed nuclei
correspond to roughly 20% radial deviation from the spherical value. Clearly,
that means quite a large change in shape.

It may be noted that figure 14.44 leaves out magnesium-23, whose reported
quadrupole moment of 1.25 barn is far larger that that of similar nuclei. If this
value is correct, clearly magnesium-23 must be a halo nucleus with two protons
outside a neon-21 core.

14.18 Draft: Isospin

Isospin is another way of thinking about the two types of nucleons. It has proved
quite useful in understanding nuclei, as well as elementary particles.
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Figure 14.45: Electric quadrupole moment corrected for spin. [pdf][con]
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14.18.1 Draft: Basic ideas

Normally, you think of nuclei as consisting of protons and neutrons. But protons
and neutrons are very similar in properties, if you ignore the Coulomb force.
They have almost the same mass. Also, according to charge independence, the
nuclear force is almost the same whether it is protons or neutrons.

So suppose you define only one particle, called nucleon. Then you can give
that particle an additional property called “nucleon type.” If the nucleon type
is 1

2
, it is a proton, and if the nucleon type is −1

2
it is a neutron. That makes

nucleon type a property that is mathematically much like the spin Sz of a
nucleon in a chosen z-direction. But of course, there is no physical “nucleon-
type axis.” Therefore nucleon type is conventionally indicated by the symbol
T3, not Tz, with no physical meaning attached to the 3-axis. In short, nucleon
type is defined as:

proton: T3 =
1
2

neutron: T3 = −1
2

(14.40)

So far, all this it may seem like a stupid mathematical trick. And normally
it would be. The purpose of mathematical analysis is to understand systems,
not to make them even more incomprehensible.

But to the approximation that the nuclear force is charge-independent, nu-
cleon type is not so stupid after all. If the nuclear force is charge-independent,
and the Coulomb force is ignored, you can write down nuclear wave functions
without looking at the nucleon type. Now suppose that in doing so, you find
some energy eigenfunction of the form

ψA = ψs(~r2 −~r1)|1 1〉

This is a wave function for two nucleons labeled 1 and 2. Assume here that the
spatial part ψs is unchanged under nucleon exchange (swapping the nucleons):

ψs(~r2 −~r1) = ψs(~r1 −~r2)

(This is equivalent to assuming that the wave function has even parity.) Further
recall from chapter 5.5.6 that the triplet spin state |1 1〉 is unchanged under
nucleon exchange too. So the total wave function ψA above is unchanged under
nucleon exchange.

That is fine if nucleon 1 is a proton and nucleon 2 a neutron. Or vice-versa.
But it is not OK if both nucleons are protons, or if they are both neutrons. Wave
functions must change sign if two identical fermions are exchanged. That is the
antisymmetrization requirement. The wave function above stays the same. So
it is only acceptable for the deuteron, with one proton and one neutron.

Next suppose you could find a different wave function of the form

ψB = ψs(~r2 −~r1)|0 0〉
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(Here ψs is not necessarily the same as before, but assume it still has even parity.)
The singlet spin state |0 0〉 changes sign under nucleon exchange. Then so does
the entire wave function ψB. And that then means that ψB is acceptable even if
the nucleons are both protons or both neutrons. This wave function works not
just for the deuteron, but also for the “diproton” and the “dineutron.” (The
prefix “di” means two.)

That would give nontrivial insight in nuclear energy levels. It would mean
physically that the diproton, the dineutron, and the deuteron can be in an iden-
tical energy state. Such identical energy states, occurring for different nuclei, are
called “isobaric analog (or analogue) states.” Or “charge states.” Or “isobaric
multiplets.” Or “T -multiplets.” Hey, don’t blame the messenger.

Disappointingly, in real life there is no bound state of the form ψB. Still the
bottom line stays:

Within the approximations of charge independence and negligible
Coulomb effects, whether a given state applies to a given set of nu-
cleon types depends only on the antisymmetrization requirements.

Now for bigger systems of nucleons, the antisymmetrization requirements get
much more complex. A suitable formalism for dealing with that has already
been developed in the context of the spin of systems of identical fermions. It is
convenient to adopt that formalism also for nucleon type.

As an example, consider the above three hypothetical isobaric analog states
for the diproton, dineutron, and deuteron. They can be written out separately
as, respectively,

ψs(~r2−~r1)|0 0〉 ⇑1⇑2 ψs(~r2−~r1)|0 0〉 ⇓1⇓2 ψs(~r2−~r1)|0 0〉
⇑1⇓2 + ⇓1⇑2√

2

Here ⇑ means the nucleon is a proton and ⇓ means it is a neutron. If you want,
you can write out the above wave functions explicitly in terms of the nucleon
type T3 as

ψs(~r2 −~r1)|0 0〉(12 + T31)(
1
2
+ T32)

ψs(~r2 −~r1)|0 0〉(12 − T31)(12 − T32)

ψs(~r2 −~r1)|0 0〉
(1
2
+ T31)(

1
2
− T32) + (1

2
− T31)(12 + T32)√

2

Note, for example, that the first wave function is zero if either T31 or T32 is
equal to −1

2
. So it is zero if either nucleon is a neutron. The only way to get

something nonzero is if both nucleons are protons, with T31 = T32 =
1
2
. Similarly,

the second wave function is only nonzero if both nucleons are neutrons, with
T31 = T32 = −1

2
.
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The third wave function represents something of a change in thinking. It
requires that one nucleon is a proton and the other a neutron. So it is a wave
function for the deuteron. But the actual wave function above is a superposition
of two states. In the first state, nucleon 1 is the proton and nucleon 2 the
neutron. In the second state, nucleon 1 is the neutron and nucleon 2 the proton.
In the combined state the nucleons have lost their identity. It is uncertain
whether nucleon 1 is the proton and nucleon 2 the neutron, or vice-versa.

Within the formalism of identical nucleons that have an additional nucleon-
type property, this uncertainty in nucleon types is unavoidable. The wave func-
tion would not be antisymmetric under nucleon exchange without it. But if you
think about it, this may actually be an improvement in the description of the
physics. Protons and neutrons do swap identities. That happens if they ex-
change a charged pion. Proton-neutron scattering experiments show that they
can do that. For nucleons that have a probability of swapping type, assigning
a fixed type in energy eigenstates is not right. Energy eigenstates must be sta-
tionary. And having a better description of the physics can affect what sort of
potentials you would want to write down for the nucleons.

(You might think that without charge independence, the additional anti-
symmetrization requirement for identical nucleons would change the physics.
But actually, it does not. The antisymmetrization requirement can be acco-
modated by uncertainty in which nucleon you label 1 and which 2. Consider
some completely general proton-neutron wave function Ψ(~rp, Szp,~rn, Szn), one
that would not be the same if you swap the proton and neutron. It might be a
subsystem in some larger nucleus for which charge-independence is not a good
approximation. The antisymmetrized identical-nucleon wave function is

1√
2
Ψ(~r1, Sz1,~r2, Sz2) ⇑1⇓2 −

1√
2
Ψ(~r2, Sz2,~r1, Sz1) ⇓1⇑2 (14.41)

This is a superposition of two parts. In the first part the proton is labeled 1 and
the neutron 2. In the second part, the proton is labeled 2 and the neutron 1. The
physics has stayed exactly the same. What has changed is that there is now
confusion about whether the particle labeled 1 is the proton or the neutron.
This illustrates that without charge independence, the mathematical trickery
employed here is not really wrong. But it is “entirely useless,” as Wigner was
the first to point out, [50, p. 4].)

Now compare the trailing nucleon-type factors in the three hypothetical
isobaric analog states above with the possible combined spin states of two spin
1/2 fermions. It is seen that the nucleon-type factors take the exact same form
as the so-called “triplet” spin states, (5.26). So define similarly

⇑1⇑2≡ |1 1〉T ⇓1⇓2≡ |1 1〉T
⇑1⇓2 + ⇓1⇑2√

2
≡ |1 0〉T (14.42)
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In those terms, the isobaric analog states are all three of the form

ψs(~r2 −~r1)|0 0〉|1mT 〉T

where mT is 1, −1, or 0 for the diproton, dineutron, and deuteron respectively.
Note that that is just the sum of the T3 values of the two nucleons,

mT = T31 + T32

Now reconsider the wave function for two nucleons that was written down
first. The one that was only acceptable for the deuteron. In the same terminol-
ogy, it can be written as

ψs(~r2 −~r1)|1 1〉|0 0〉T |0 0〉T ≡
⇑1⇓2 − ⇓1⇑2√

2

The formalism of identical nucleons with nucleon type forces again uncertainty
in the nucleon types. But now there is a minus sign. That makes the nucleon-
type state a singlet state in the terminology of spin.

Of course, all this raises the question what to make of the leading 0 in the
singlet state |0 0〉T , and the leading 1 in the triplet states |1mT 〉? If this was
spin angular momentum, the 0 or 1 would indicate the quantum number s of
the square spin angular momentum. Square spin angular momentum is the sum
of the square spin components in the x, y, and z directions. But at first that
seems to make no sense for nucleon type. Nucleon type is just a simple number,
not a vector. While it has been formally associated with some abstract 3-axis,
there are no “T1” and “T2” components.

However, it is possible to define such components in complete analogy with
the x and y components of spin. In quantum mechanics the components of
spin are the eigenvalues of operators. And using advanced concepts of angular
momentum, chapter 12, the operators of x and y angular momenta can be found
without referring explicitly to their axes. The same procedure can be followed
for nucleon type.

To do so, first an operator T̂3 for the nucleon type T3 is defined as

T̂3 ⇑= 1
2
⇑ T̂3 ⇓= −1

2
⇓ (14.43)

In words, the proton state is an eigenstate of this operator with eigenvalue 1
2
.

The neutron state is an eigenstate with eigenvalue −1
2
. That follows the usual

rules of quantum mechanics; observable quantities, (here nucleon type), are the
eigenvalues of Hermitian operators.

Next a “charge creation operator” is defined by

T̂+ ⇓=⇑ T̂+ ⇑= 0 (14.44)
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In words, it turns a neutron into a proton. In effect it adds a unit of charge to
it. Since a nucleon with two units of charge does not exist, the operator needs
to turn a proton state into zero. Similarly a “charge annihilation operator” is
defined by

T̂− ⇑=⇓ T̂− ⇓= 0 (14.45)

Operators for nucleon type in the 1 and 2 directions can now be defined as

T̂1 =
1
2
T̂+ + 1

2
T̂− T̂2 = −1

2
iT̂+ + 1

2
iT̂− (14.46)

The eigenvalues of these operators are by definition the values of T1 respectively
T2.

With these operators, square nucleon type can be defined just like square
spin. All the mathematics has been forced to be the same.

The quantum number of square nucleon type will be indicated by tT in this
book. Different sources use different notations. Many sources swap case, using
lower case for the operators and upper case for the quantum numbers. Or they
use lower case if it is for a single nucleon and upper case for the entire nucleus.
They often do the same for angular momentum. Some sources come up with I
for the square nucleon type quantum number, using J for the angular momen-
tum one. However, this book cannot adopt completely inconsistent notations
just for nuclear physics. Especially if there is no generally agreed-upon notation
in the first place.

In any case there are three scaled operators whose definition and symbols
are fairly standard in most sources. These are defined as

τ1 = 2T̂1 τ2 = 2T̂2 τ3 = 2T̂3 τ+ = 2T̂+ τ− = 2T̂−1 (14.47)

The first three are the direct equivalents of the famous Pauli spin matrices,
chapter 12.10. Note that they simply scale away the factors 1

2
in the nucleon

type. The Pauli spin matrices also scale away the factor ~ that appears in the
values of spin.

14.18.2 Draft: Heavier nuclei

Now consider an example of isobaric analog states that actually exist. In this
case the nucleons involved are carbon-14, nitrogen-14, and oxygen-14. All three
have 14 nucleons, so they are isobars. However, carbon-14 has 6 protons and 8
neutrons, while oxygen-14 has 8 protons and 6 neutrons. Such pairs of nuclei,
that have their numbers of protons and neutrons swapped, are called “conju-
gate” nuclei. Or “mirror” nuclei. Nitrogen-14 has 7 protons and 7 neutrons and
is called “self-conjugate.”
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Since T3 values add up, carbon-14 with 6 protons at 1
2
each and 8 neutrons

at −1
2
each has net T3 = −1. Similarly, nitrogen-14 has T3 = 0, as any self-

conjugate nucleus, while oxygen-14 has T3 = 1. In general,

T3 =
1
2
(Z −N) (14.48)

where Z is the number of protons and N the number of neutrons. Note that
the value of T3 is fixed for a given nucleus. It is minus half the neutron excess
of the nucleus.

In general, 14 nucleons can have a maximum T3 = 7, if all 14 are protons.
The minimum is −7, if all 14 are neutrons.

Here is where the analogy with spin angular momentum gets interesting.
Angular momentum is a vector. A given angular momentum vector can still
have different directions. And different directions means different values of the
z-component of its spin Sz. In particular, the quantum numbers of the possible
z components are

ms ≡ Sz/~ = −s, −s+1, . . . , s−1, s

Here s is the quantum number of the square spin of the vector.
Since nucleon type has been defined to be completely equivalent to spin,

essentially the same holds. A given nucleon energy state can still have different
values of T3:

mT ≡ T3 = −tT , −tT+1, . . . , tT−1, tT (14.49)

Here tT is the square nucleon-type quantum number of the state. The different
values for T3 above correspond to isobaric analog states for different nuclei.
They are the same energy state, but for different nuclei.

You could say that isobaric analog states arise because “rotating” an energy
state in the abstract 1,2,3-space defined above does not make a difference. And
the reason it does not make a difference is charge independence.

Based on the values of T3 above, consider the possible values of tT for 14
nucleons. The value of tT cannot be greater than 7. Otherwise there would be
isobaric analog states with T3 greater than 7, and that is not possible for 14
nucleons. As far as the lowest possible value of tT is concerned, it varies with
nucleus. As the expression above shows, the value of |T3| cannot be greater than
tT . So tT cannot be less than |T3|. Since carbon-14 and oxygen-14 have |T3| =
1, for these nuclei, tT cannot be less than 1. However, nitrogen-14, with T3 =
0, also allows states with tT = 0.

It turns out that light nuclei in their ground state generally have the smallest
value of tT consistent with their value of T3. One way to get some idea of why
that would be so is to look at the antisymmetrization requirements. A set of
states with tT = 7 for 14 nucleons allows the state T3 = 7, in which all 14
nucleons are protons. In that state, the wave function must be antisymmetric
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when any nucleon is interchanged with any other. On the other hand, a tT =
0 state only needs to satisfy the antisymmetrization requirements for 7 protons
and 7 neutrons. It does not have to be antisymmetric if a proton is exchanged
with any one of the 7 neutrons. So antisymmetrization is less confining. In
general, a state with tT greater than |T3| must work for more nuclei than one
with tT = |T3|.

(Another argument, offered in literature, is essentially the reverse of the one
that gives rise to the so-called “Hund rule” for atoms. Simply put, the Hund rule
says that a couple of electrons maximize their spin, given the option between
single-particle states of the same energy. The reason is that this allows electrons
to stay farther apart, reducing their Coulomb repulsion, {A.34}. This argument
reverses for nucleons, since they normally attract rather than repel each other.
However, surely this is a relatively minor effect? Consider 3 nucleons. For these,
the highest value tT = 3

2
allows the possibility that all 3 are protons. Within

a single-particle-state picture, only one can go into the lowest energy state; the
second must go into the second lowest energy state, and the third in the third
lowest. On the other hand, for say 2 protons and 1 neutron, the neutron can
go into the lowest energy state with the first proton. So the lower value tT = 1

2

should normally have significantly less energy.)

For the deuteron T3 = 0, so the lowest possible value of tT is 0. Then
according to the general rule above, the ground state of the deuteron should have
tT = 0. That was already established above; it was the bound state not shared
with the diproton and dineutron. Nitrogen-14 also has T3 = 0, which means it
too must have tT = 0 in its ground state. This lowest energy state cannot occur
for carbon-14 or oxygen-14, because they have |T3| = 1. So nitrogen-14 should
have less energy in its ground state than carbon-14 and oxygen-14. That seems
at first surprising since nitrogen-14 has odd numbers of protons and neutrons,
while carbon-14 and oxygen-14 have even numbers. Normally odd-odd nuclei
are less tightly bound than even-even ones.
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Figure 14.46: Isobaric analog states. [pdf]
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But it is true. Figure 14.46 shows the energy levels of carbon-14, nitrogen-
14, and oxygen-14. More precisely, it shows their binding energy, relative to the
ground state value for nitrogen-14. In addition the von Weizsäcker value for the
Coulomb energy has been subtracted to more clearly isolate the nuclear force
effects. (The combined effect is simply to shift the normal spectra of carbon-14
and oxygen-14 up by 2.83, respectively 1.89 MeV.) It is seen that nitrogen-14 is
indeed more tightly bound in its ground state than carbon-14 and oxygen-14.
Qualitatively, since nitrogen-14 does not have 8 nucleons of the same kind, it
has an easier job with satisfying the antisymmetrization requirements.

Traces of the lower energy of light nuclei with T3 = 0 can also be detected in
figures like 14.4, and 14.5 through 14.8. In these figures T3 = 0 straight above the
Z =N = 2 helium nucleus. Note in particular a distinct dark/light discontinuity
in figures 14.5 through 14.8 along this vertical line. This discontinuity is quite
distinct both from the magic numbers and from the average stability line that
curves away from it.

Carbon-14 and oxygen-14 are mirror nuclei, so you would expect them to
have pretty much the same sort of energy levels. Indeed, any oxygen-14 state,
having T3 = 1, must be part of a multiplet with tT at least 1. Such a multiplet
must have an equivalent state with T3 = −1, which means an equivalent carbon-
14 state. To the extent that the nuclear force is truly charge-independent, and
the Coulomb effect has been properly removed, these two states should have
the same energy. And indeed, the lowest four energy states of carbon-14 and
oxygen-14 have identical spin and parity and similar energies. Also, both even-
even nuclei have a 0+ ground state, as even-even nuclei should. These ground
states have tT = 1, the smallest possible.

Now each of these multiplets should also have a version with T3 = 0, which
means a nitrogen-14 state. So any state that carbon-14 and oxygen-14 have
should also exist for nitrogen-14. For example, the ground states of carbon-14
and oxygen-14 should also appear as a 0+ state with tT = 1 in the nitrogen-14
spectrum. Indeed, if you inspect the energy levels for nitrogen-14 in figure 14.46,
exactly halfway in between the carbon-14 and oxygen-14 ground state energies,
there it is!

Ideally speaking, these three states should have the same height in the figure.
But it would be difficult to remove the Coulomb effect completely. And charge
independence is not exact either, even though it is quite accurate.

A similar T3 = 0 state can readily be found for the first three excited levels of
carbon-14 and oxygen-14. In each case there is a nitrogen-14 state with exactly
the same spin and parity and tT = 1 right in between the matching carbon-
14 and oxygen-14 levels. (To be sure, ENSDF does not list the tT values for
carbon-14 above the ground state. But common sense says they must be the
same as the corresponding states in nitrogen-14 and carbon-14. For the first
excited state of carbon-14, this is confirmed in [50, p. 11].)

Figure 14.46 also shows that nitrogen-14 has a lot more low energy states
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than carbon-14 or oxygen-14. Square nucleon type can explain that too: all the
low-lying states of nitrogen-14 that are not shared with carbon-14 and oxygen-14
are tT = 0 states. These states are not possible for the other two nuclei.

Nothing is perfect, of course. The first state with nonzero tT in the nitrogen
spectrum besides the mentioned four isobaric analog states is the 0−, tT = 1
state at 8.8 MeV, just below the 3− analog state. Carbon-14 has a 0− state
immediately above the 3− state, but oxygen-14 has no obvious candidate.

Despite such imperfections, consideration of nucleon type is quite helpful for
understanding the energy levels of light nuclei. And a lot of it carries over to
heavier nuclei, [50, p. 12] and [36, p. 57]. While heavier nuclei have significant
Coulomb energy, this long-range force is apparently often not that important
here.

Now all that is needed is a good name. “Nucleon type” or “nucleon class”
are not acceptable; they would give those hated outsiders and pesky students a
general idea of what physicists were talking about. However, physicists noted
that there is a considerable potential for confusion between nucleon type and
spin, since both are described by the same mathematics. To maximize that
potential for confusion, physicists decided that nucleon type should be called
“spin.”

Of course, physicists themselves still have to know whether they are talk-
ing about nucleon type or spin. Therefore some physicists called nucleon type
“isobaric spin,” because what differentiates isobars is the value of the net T3.
Other physicists talked about “isotopic spin,” because physicists like to think
of isotopes, and hey, isotopes have nucleon type too. Some physicists took the
isowhatever spin to be 1

2
for the proton, others for the neutron. However, that

confused physicists themselves, so eventually it was decided that the proton has
1
2
. Also, a great fear arose that the names might cause some outsiders to suspect

that the “spin” being talked about was not really spin. If you think about it,
“isobaric angular momentum” or “isotopic angular momentum” does not make
much sense. So physicists shortened the name to “isospin.” Isospin means
“equal spin” plain and simple; there is no longer anything to give the secret
away that it is something completely different from spin. However, the confu-
sion of having two different names for the same quantity was missed. Therefore,
the alternate term “i -spin” was coined besides isospin. It too has nothing to
give the secret away, and it restores that additional touch of confusion.

Isospin is conserved when only the nuclear force is relevant. As an example,
consider the reaction in which a deuteron kicks an alpha particle out of an
oxygen-16 nucleus:

O16
8 + H21 → N14

7 + He4
2

The oxygen is assumed to be in the ground state. That is a tT = 0 state, in
agreement with the fact that oxygen-16 is a light nucleus with T3 = 0. The
deuteron can only be in a tT = 0 state; that is the only bound state. The
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alpha particle will normally be in the ground state, since it takes over 20 MeV
to excite it. That ground state is a tT = 0 one, since it is a light T3 = 0
nucleus. Conservation of isospin then implies that the nitrogen-14 must have tT
= 0 too. The nitrogen can come out excited, but it should not come out in its
lowest excited state, the 0+ tT = 1 state shared with carbon-14 and oxygen-14
in figure 14.46. Indeed, experiments show that this lowest excited state is only
produced in negligible amounts compared to the surrounding states.

Selection rules for which nuclear decays occur can also be formulated based
on isospin. If the electromagnetic force plays a significant part, T3 but not ~T is
conserved. The weak force does not conserve T3 either, as beta decay shows. For
example, the ground states of oxygen-14 and carbon-14 in figure 14.46 will beta-
decay to the ground state of nitrogen 14, changing both T3 and tT . (Oxygen-16
will also beta-decay to the corresponding isobaric analog state of nitrogen-14,
a decay that is called “superallowed,” because it is unusually fast. It is much
faster than to the ground state, even though decay to the ground state releases
more energy. Carbon-14 has too little energy to decay to the analog state.)

Despite the lack of isospin conservation, isospin turns out to be very useful
for understanding beta and gamma decay. See for example the discussion of
superallowed beta decays in chapter 14.19, and the isospin selection rules for
gamma decay in section 14.20.2.

14.18.3 Draft: Additional points

There are other particles besides nucleons that are also pretty much the same
except for electric charge, and that can also be described using isospin. For ex-
ample, the positive, neutral, and negatively charged pions form an isospin triplet
of states with tT = 1. Isospin was quite helpful in recognizing the existence of
the more basic particles called quarks that make up baryons like nucleons and
mesons like pions. In final analysis, the usefulness of isospin is a consequence of
the approximate properties of these quarks.

Some sources incorrectly credit the concept of isospin to Heisenberg. But
he did not understand what he was doing. Heisenberg did correctly guess that
protons and neutrons might be described as two variants of the same parti-
cle. He then applied the only quantum approach for a two-state particle to it
that he knew, that of spin. However, the mathematical machinery of spin is
designed to deal with two-state properties that are preserved under rotations
of an axis system, compare {A.19}. That is an inappropriate mathematical
approach to describe nucleon type in the absence of charge independence. And
at the time Heisenberg himself believed that the nuclear force was far from
charge-independent.

(Because the nuclear force is in fact approximately charge-independent, un-
like Heisenberg assumed, isospin is preserved under rotations of the abstract
1,2,3 coordinate system as defined in the first subsection. Phrased more simply,
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without charge independence, energy eigenfunctions would not have definite
values of square isospin tT . That would make isospin self-evidently “entirely
useless,” as Wigner pointed out. This point is not very clear from the example
of two nucleons in empty space, as discussed above. That is because there the
spatial wave function happens to be symmetric under particle exchange even
without charge independence. But if you express the isospin states in the gen-
eral wave function (14.41) in terms of the singlet and triplet states, you quickly
see the problem.)

The recognition that isospin was meaningful only in the presence of charge
independence, and the proposal that the nuclear force is indeed quite accurately
charge-independent, was mostly due to Wigner, in part with Feenberg. Some
initial steps had already been taken by other authors. In particular, Cassen
& Condon had already proposed to write wave functions in a form to include
isospin,

ψ = ψ(~r1, Sz1, T31,~r2, Sz2, T32, . . .)

and proposed symmetry under particle exchange in that form. This is the form
of wave functions as written down earlier for the two-nucleon system. Still
Wigner is considered the founding father of the study of isospin. His identifica-
tion of isospin for complex nuclei as we know it today, as a preserved quantum
number due to charge independence, is the foundation charter of nuclear isospin.
Wigner is also the infernal idiot who decided that “nucleon type” should be
called “spin.”

See Wilkinson, [50, p. vi, 1-13], for a more extensive discussion of these
historical issues. A very different history is painted by Henley in the next chapter
in the same book. In this history, Heisenberg receives all the credit. Wigner does
not exist. However, the author of this history implicitly admits that Heisenberg
did think that the nuclear force was far from charge-independent. Maybe the
author understood isospin too poorly to recognize that that is a rather big
problem. Certainly there is no discussion. Or the author had a personal issue
with Wigner and was willing to sacrifice his scientific integrity for it. Either
way, the credibility of the author of this particular history is zero.

14.18.4 Draft: Why does this work?

It may seem astonishing that all this works. Why would nucleon type resemble
spin? Spin is a vector in three-dimensional space, not a simple number. Why
would energy eigenstates be unchanged under rotations in some weird abstract
space?

The simplest and maybe best answer is that nature likes this sort of math-
ematics. Nature just loves creation and annihilation operators. But still, why
would that lead to preserved lengths of vectors in an abstract spaces?

An answer can be obtained by looking a bit closer at square spin. Consider
first two spin 1/2 fermions. Compare the dot product of their spins to the operator
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P̂ s
12 that exchanges their spins:

~̂S1 · ~̂S2|0 0〉 = −3
4
~
2|0 0〉

~̂S1 · ~̂S2|1ms〉 = 1
4
~
2|1ms〉

P̂ s
12|0 0〉 = −|0 0〉

P̂ s
12|1ms〉 = |1ms〉

The first set of relations is derived in {A.10}. The second set can be verified by
looking at the expressions of the spin states (5.26).

Comparing the two sets of relations, it is seen that the dot product of two
spins is closely related to the operator that exchanges the two spins:

~̂S1 · ~̂S2 =
1
4
~
2(2P̂ s

12 − 1)

Now consider the square spin of a system of I fermions. By definition

~̂S
2

≡
(

I∑

i=1

~̂Si

)
·
(

I∑

i=1

~̂Si

)
=

I∑

i=1

I∑

i=1

~̂Si · ~̂Si

Split up the sum into terms that have i and i equal, respectively not equal:

~̂S
2

=
I∑

i=1

~̂S
2

i + 2
I∑

i=1

I∑

i=i+1

~̂Si · ~̂Si

The first sum is just the square spin angular momentum of the individual fermi-
ons. The second sum can be written in terms of the exchange operators using
the expression above. Doing so and cleaning up gives:

~̂S
2

= ~
2(I − 1

4
I2) + ~

2

I∑

i=1

I∑

i=i+1

P̂ s
ii

Similarly then for isospin as defined in the first subsection,

~̂T
2

= (I − 1
4
I2) +

I∑

i=1

I∑

i=i+1

P̂ T
ii

Square isospin by itself does not have direct physical meaning. However, the
exchange operators do. In particular, charge independence means that exchang-
ing nucleon types does not make a difference for the energy. That then means

that ~̂T
2

commutes with the Hamiltonian. That makes it a conserved quantity
according to the rules of quantum mechanics, chapter 4.5.1 and/or {A.19}.

It may be noted that the exchange operators do not commute among them-
selves. That makes the symmetry requirements so messy. However, it is possible
to restrict consideration to exchange operators of the form P̂i i+1. See [14] for
more.
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Infinitesimal “rotations” of a state in 1,2,3 isospin state correspond to apply-
ing small multiples of the operators T̂1, T̂2 and T̂3, compare {A.19}. According
to the definitions of T̂1 and T̂2, this corresponds to applying small multiples
of the charge creation and annihilation operators. So it amounts to gradually
changing protons into neutrons and vice-versa. As a simple example, a 180◦

rotation around the 1 or 2 axis inverts the 3-component of every nucleon. That
turns every proton into a neutron and vice-versa.

14.19 Draft: Beta decay

14.19.1 Draft: Introduction

Beta decay is the decay mechanism that affects the largest number of nuclei.
It is important in a wide variety of applications, such as betavoltaics and PET
imaging.

In standard beta decay, or more specifically, beta-minus decay, a nucleus
converts a neutron into a proton. The number of neutrons N decreases by one
unit, and the number of protons Z increases by one. So the neutron excess
decreases by two. Beta decay moves nuclei with too many neutrons closer to
the stable range.

Unlike the neutron, the proton has a positive charge, so by itself, converting
a neutron into a proton would create charge out of nothing. However, that is
not possible as net charge is preserved in nature. In beta decay, the nucleus
also emits a negatively charged electron, making the net charge that is created
zero as it should.

But there is another problem with that. Now a neutron with spin 1/2 is
converted into a proton and an electron, each with spin 1/2. That violates angular
momentum conservation. (Regardless of any orbital angular momentum, the net
angular momentum would change from half-integer to integer.) In beta decay,
the nucleus also emits a second particle of spin 1/2, thus keeping the net angular
momentum half-integer. Fermi called that second particle the neutrino, since it
was electrically neutral and so small that it was initially impossible to observe.
In fact, even at the time of writing, almost a century later, the mass of the
neutrino, though known to be nonzero, is too small to measure.

Nowadays the neutrino emitted in beta decay is more accurately identified
as the electron antineutrino. An antineutrino is the antiparticle of an ordinary
neutrino, just like the positron is the antiparticle of the electron. (Particles and
antiparticles are exact opposites in all properties except mass, but including
charge, allowing a particle and the corresponding antiparticle to annihilate each
other, leaving only photons.)

The reason that an antineutrino is emitted rather than a neutrino is known as
“conservation of lepton number.” Leptons are elementary particles that do not
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respond to the “strong force,” including electrons and neutrinos. The net lepton
number is defined as the number of leptons, minus the number of antileptons.
It is found that this number is conserved in nature. So when in beta decay
the nucleus emits an electron, a lepton, and an antineutrino, an antilepton, the
lepton number stays unchanged as it should (like net angular momentum and
net charge stay unchanged, as already noted).

The antineutrino does not affect the basics of beta decay, as it has no charge
and virtually zero mass. However, the antineutrino does affect the detailed
analysis; for one, the antineutrino can come out with a lot of kinetic energy,
thus reducing the otherwise expected kinetic energy of the electron.

In beta decay, the new nucleus must be lighter than the original one. Classi-
cal mass conservation would say that the reduction in nuclear mass must equal
the mass of the emitted electron plus the (negligible) mass of the antineutrino.
However, Einstein’s mass-energy relation implies that that is not quite right.
Mass is equivalent to energy, and the rest mass reduction of the nucleus must
also provide the kinetic energies of the electron and neutrino, as well as the
(much smaller) one that the nucleus itself picks up during the decay by “recoil”.

Still, the bottom line is that the nuclear mass reduction must be at least
the rest mass of the electron (plus antineutrino). In energy units, it must be
at least 0.511 MeV, the rest mass energy of the electron. The first subsection
below will graphically examine which nuclei have enough energy to beta decay.

Beta-plus decay is the opposite of beta decay. In beta-plus decay, the nucleus
converts a neutron into a proton instead of the other way around. To conserve
charge, the nucleus can emit a positron, and with it, an electron neutrino to
conserve angular momentum and lepton number.

However, while converting a proton into a neutron, the nucleus has a much
easier way to conserve charge. Instead of emitting a positively charged positron,
it can absorb a negatively charged electron from the atom it is in. The elec-
tron’s charge then cancels that of the proton. To preserve angular momentum
and lepton number, an electron neutrino is again emitted. This process is called
“electron capture” (or also “K-capture” or “L-Capture” depending on the elec-
tron shell name from which the electron is swiped). Now the nuclear mass re-
duction does not need to provide the 0.512 MeV rest mass energy of a positron.
Instead the nuclear mass can increase up to the 0.512 MeV rest mass energy of
the electron that disappears.

So electron capture can occur in circumstances where positron creation is
not possible. However, if the nuclear mass reduction is plenty for both electron
capture and positron emission, the latter tends to dominate. The reason is
the large quantum mechanical uncertainty in position of the low-energy atomic
electron. This uncertainty dwarfs the size of the nucleus. It makes it very
unlikely for the electron to be found inside the nucleus. A high-energy positron
created by the nucleus itself can be created in any state, including high energy
ones with short wave lengths.
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Also note electron capture is of course not possible if somehow the nucleus
has been stripped of all its atomic electrons, like might occur in space.

Electron capture is also called “inverse beta decay,” because an electron
being absorbed by a nucleus is much like a movie of an electron being emitted
played backwards in time. But there are some problems with this idea. For one,
the time-reversed movie would also have an electron antineutrino going into the
nucleus, not an electron neutrino coming out.

Still, absorption of a particle is much like the emission of the corresponding
antiparticle, at least as far as conservation laws other than energy are concerned.
For example, capture of an electron adds one unit of negative charge, while
emission of a positron removes one unit of positive charge. Either way, the
nuclear charge becomes one unit more negative. In those terms, the notion of
“inverse beta decay” may not be that far out, especially since the neutrino is a
minor actor in the first place.

14.19.2 Draft: Energetics Data

As the introduction explained, in beta decay a nucleus converts a neutron into
a proton, thus changing into a different nucleus. It can only occur if the nuclear
mass reduction exceeds the 0.511 MeV rest mass energy of the electron emitted
in the process.

Figures 14.47 through 14.50 show the nuclear mass reduction for beta decay
as the vertical coordinate. The reduction exceeds the rest mass energy of the
electron only above the horizontal center bands. The left half of each square
indicates the nucleus before beta decay, the right half the one after the decay.
The horizontal coordinate indicates the atomic numbers, with the values and
element symbols as indicated. Neutron numbers are listed at the square itself.
Lines connect pairs of nuclei with equal neutron excess.

If the left-half square is colored blue, beta decay is observed. Blue left-half
squares are only found above the center bands, so the mass reduction is indeed
at least the mass of the electron. However, some blue left-half squares are right
on top of the band. Their beta decay should be very slow.

Note that some left-half squares above the band may not be blue. The
color indicates the dominant decay process, so if the left-hand nucleus also
experiences another decay mode in addition to beta decay, like alpha decay or
beta-plus decay with another nucleus, and at a higher rate, its half square will
not be blue. However, there should be no left-half squares above the band that
are stable green.

Note here that even-even nuclei Ca48
20 and Zr96

40 are not stable, However, their
beta decay is so extremely slow that double-beta decay dominates. Normal beta-
decay has never been observed for them. This is not just because the energy
release is small, but more importantly because these transitions are strongly
“forbidden” in the sense discussed in section 14.19.6.
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Figure 14.47: Energy release in beta decay of even-odd nuclei. [pdf]
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Figure 14.48: Energy release in beta decay of odd-even nuclei. [pdf]
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Figure 14.49: Energy release in beta decay of odd-odd nuclei. [pdf]
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Figure 14.50: Energy release in beta decay of even-even nuclei. [pdf]
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In beta-plus decay, the nucleus converts a proton into a neutron instead of
the other way around. To find the energy release in that process, the figures
may be read the other way around. The nucleus before the decay is now the
right hand one, and the decay is observed when the right-half square is red.

The energy release is now positive downward, and it is now below the center
bands that the nuclear mass reduction is sufficient to produce the rest mass of
a positron that can carry the proton’ positive charge away. The positron, the
anti-particle of the electron, has the same mass as the electron but opposite
charge.

But note that red right-half squares extend to within the center bands. The
reason is that instead of emitting a positron, the nucleus can capture an electron
from the atomic electron cloud surrounding the nucleus. In that case, rather
than having to come up with an electron mass worth of energy, the nucleus
receives an infusion of that amount of energy. So the required energy goes down
by two electron masses.

It follows that the left-hand nucleus will suffer beta decay if the square is
above the top of the band, while the right-hand nucleus will suffer electron
capture if the square is below the top of the band. Therefore at most one
nucleus of each pair can be stable.

Note, once more, that color indicates the dominant decay mode. So right-
half squares below the top of the band do not have to be red; they just should
not be stable green. This is especially relevant for the odd-odd nuclei in figures
14.49 and 14.50. Odd-odd nuclei are unusually unstable, and the even-even
nuclei they decay into are unusually stable. So it is quite likely that an odd-odd
nuclei in the region of relatively stable nuclei finds that it has enough energy to
both beta decay to the neighboring even-even nucleus of higher Z and beta-plus
decay / electron capture to the neighboring even-even nucleus of lower Z. Then,
if one of the two processes is relatively slow, because the process is just above
the top of the band in figure 14.49, or just below the top of the band in figure
14.50, then the other process is likely to dominate. So the half square does not
have the expected color. Left-hand squares just above the top of the band in
figure 14.49 will be red, and right-hand squares just below the top of the band
in figure 14.49 will be blue.

One example is K40
19 potassium-40, with 21 neutrons. It appears above the

band in figure 14.49, indicating that it suffers beta decay. But it also appears
below the band in figure 14.50, so that it also suffers electron capture and
positron emission. In this case, beta decay dominates beta-plus decay and
electron capture 9 to 1. Recall that electron capture is relatively slow and the
nucleus is just below the bottom of the band in figure 14.50, so beta-plus decay
will be too.
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14.19.3 Draft: Beta decay and magic numbers

The magic neutron numbers are quite visible in figures 14.47 through 14.50.
For example, diagonal bands at neutron numbers 50, 82, and 126 are prominent
in all four figures. Consider for example figure 14.48. For the 50/49 neutron
nuclei, beta decay takes the tightly bound 50th neutron to turn into a proton.
That requires relatively large energy, so the energy release is reduced. For the
neighboring 52/51 nuclei, beta decay takes the much less tightly bound 52nd
neutron, and the energy release is correspondingly higher.

The magic proton numbers tend to show up as step-downs in the curves. For
example, consider the nuclei at the vertical Z = 50 line also in figure 14.48. In
the In/Sn (indium/tin) beta decay, the beta decay neutron becomes the tightly
bound 50th proton, and the energy release is correspondingly high. In the Sb/Te
(antimony/tellurium) decay, the neutron becomes the less tightly bound 52nd
proton, and the energy release is lower.

When the neutron and proton magic number lines intersect, combined ef-
fects can be seen. One pointed out by Mayer in her Noble prize acceptance
lecture [[10]] is the decay of argon-39. It has 18 protons and 21 neutrons. If you
interpolate between the neighboring pairs of nuclei on the same neutron excess
line in figure 14.47, you would expect argon-39 to be below the top of the center
band, hence to be stable against beta decay. But the actual energy release for
argon-39 is unusually high, and beta decay it does. Why is it unusually high?
For the previous pairs of nuclei, beta decay converts a neutron in the neutron
shell that ends at magic number 20 into a proton in the corresponding proton
shell. For the suvsequent pairs, beta decay converts a neutron in the neutron
shell that ends at magic number 28 to a proton in the corresponding proton
shell. Only for argon-39, beta decay converts a neutron in the neutron shell
that end at magic number 28 into a proton in the lower energy proton shell that
ends at magic number 20. The lowering of the major shell releases additional
energy, and the decay has enough energy to proceed.

In figures 14.47 and 14.48, the lowest line for the lightest nuclei is unusually
smooth. These lines correspond to a neutron excess of 1 or −1, depending
on whether it is before or after the decay. The pairs of nuclei on these two
lines are mirror nuclei. During beta decay the neutron that turns into a proton
transfers from the neutron shells into the exact same position in the proton
shells. Because of charge independence, the nuclear energy does not change.
The Coulomb energy does change, but as a relatively small, long-range effect,
it changes fairly gradually.

These lines also show that beta-plus decay and electron capture become
energetically favored when the nuclei get heavier. That is to be expected since
this are nuclei with almost no neutron excess. For the heavier ones, it is therefore
energetically favorable to convert protons into neutrons, rather than the other
way around.
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14.19.4 Draft: Von Weizsäcker approximation

Since the von Weizsäcker formula of section 14.10.2 predicts nuclear mass, it
can be used to predict whether beta-minus or beta-plus/electron capture will
occur.

The mathematics is relatively simple, because the mass number A remains
constant during beta decay. For a given mass number, the von Weizsäcker
formula is just a quadratic in Z. Like in the previous subsection, consider again
pairs of nuclei with the same A and one unit difference in Z. Set the mass
difference equal to the electron mass and solve the resulting equation for Z
using simple algebra.

It is then seen that beta-minus decay, respectively beta-plus decay / electron
capture occurs for a pair of nuclei depending whether the average Z value is
less, respectively greater, than

Zbd = A
4Ca +mn −mp −me + CcCzA

−1/3

8Ca + 2CcA2/3
(14.50)

where the constants C. are as given in section 14.10.2. The nucleon pairing
energy must be ignored in the derivation, so the result may be off by a pair of
nuclei for even-even and odd-odd nuclei.

The result is plotted as the black curve in the decay graph figure 14.51. It
gives the location where the change in nuclear mass is just enough for either
beta-minus decay or electron capture to occur, with nothing to spare. The curve
locates the stable nuclei fairly well. For light nuclei, the curve is about vertical,
indicating there are equal numbers of protons and neutrons in stable nuclei.
For heavier nuclei, there are more neutrons than protons, causing the curve to
deviate to the right, the direction of increasing neutron excess.

Because of the pairing energy, stable even-even nuclei can be found well
away from the curve. Conversely, stable odd-odd nuclei are hard to find at all.
In fact, there are only four: hydrogen-2 (deuterium), lithium-6, boron-10, and
nitrogen-14. For comparison, there are 150 stable even-even ones. For nuclei
of odd mass number, it does not make much difference whether the number of
protons is odd or the number of neutrons: there are 49 stable odd-even nuclei
and 53 stable even-odd ones.

(There is also the bizarre excited Ta180m
73 nucleus that is stable, and is odd-

odd to boot. But that is an excited state and another story, which is discussed
under gamma decay. The ground state Ta180

73 has a half life of only 8 hours, as
a relatively heavy odd-odd nucleus should.)

As an example of the instability of odd-odd nuclei, consider the curious
case of potassium-40, K40

19 . It has both an odd number of protons, 19, and
of neutrons, 21. Potassium-40 is pretty much on top of the stable line, as
evident from the fact that both its neighbors, odd-even isotopes potassium-39
and potassium-41, are stable. But potassium-40 itself is unstable. It does have
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a lifetime comparable to the age of the universe; long enough for significant
quantities to accumulate. About 0.01% of natural potassium is potassium-40.

But decay it does. Despite the two billion year average lifetime, there are so
many potassium-40 nuclei in a human body that almost 5 000 decay per second
anyway. About 90% do so through beta decay and end up as the doubly-magic
calcium-40. The other 10% decay by electron capture or positron emission and
end up as even-even argon-40, with 18 protons and 22 neutrons. So potassium-
40 suffers all three beta decay modes, the only relatively common nucleus in
nature that does.

Admittedly only 0.001% decays through positron emission. The nuclear
mass difference of 0.99 MeV with argon-40 is enough to create a positron, but
not by much. Before a positron can be created, potassium is almost sure to have
captured an electron already. For a nucleus like xenon-119 the mass difference
with iodine-119 is substantially larger, 4.5 MeV, and about 4 in 5 xenon-119
nuclei decay by positron emission, and the fifth by electron capture.

It is energetically possible for the potassium-40 decay product calcium-40 to
decay further into argon-40, by capturing two electrons from the atom. Energet-
ically possible means that this does not require addition of energy, it liberates
energy, so it can occur spontaneously. Note that calcium-40 would have to cap-
ture two electrons at the same time; capturing just one electron would turn it
into potassium-40, and that requires external energy addition. In other words,
calcium-40 would have to skip over the intermediate odd-odd potassium 40.
While it is possible, it is believed that calcium-40 is stable; if it decays at all,
its half-life must be more than 5.9 zettayear (5.9 1021 year).

But some even-even nuclei do decay through “double beta-minus” decay.
For example, germanium-76 with 32 protons and 44 neutrons will in a couple of
zettayear emit two electrons and so turn into even-even selenium-76, skipping
over odd-odd arsenic-76 in the process. However, since the entire lifetime of
the universe is much less than the blink of an eye compared to a zettayear, this
does not get rid of much germanium-76. About 7.5% of natural germanium is
germanium-76.

The reduced stability of odd-odd nuclei is the main reason that technetium
(Tc) and promethium (Pm) can end up with no stable isotopes at all while
their immediate neighbors have many. Both technetium and promethium have
an odd-odd isotope sitting right on top of the separating line between beta-minus
and beta-plus decay; technetium-98 respectively promethium-146. Because of
the approximation errors in the von Weizsäcker formula, they are not quite on
the theoretical curve in figure 14.51. However, examination of the experimen-
tal nuclear masses shows the excess mass reduction for beta-minus decay and
electron capture to be virtually identical for these odd-odd nuclei. And in fact
promethium-146 does indeed decay both ways. Technetium-98 could too, but
does not; it finds it quicker to create an electron than to capture one from the
surrounding atom.
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Because the theoretical stable line slopes towards the right in figure 14.51,
only one of the two odd-even isotopes next to technetium-98 should be unsta-
ble, and the same for the ones next to promethium-146. However, the energy
liberated in the decay of these odd-even nuclei is only a few hundred keV in
each case, far below the level for which the von Weizsäcker formula is anywhere
meaningful. For technetium and promethium, neither neighboring isotope is
stable. This is a qualitative failure of the von Weizsäcker model. But it is rare;
it happens only for these two out of the lowest 82 elements. Few books even
mention it is a fundamental failure of the formula.

14.19.5 Draft: Kinetic Energies

The kinetic energy of nuclear decay products is important to understand the
correct nature of the decay.

Historically, one puzzling observation in beta decay was the kinetic energies
with which the electrons came out. When the beta decay of a collection of
nuclei of a given type is observed, the electrons come out with a range of kinetic
energies. In contrast, in the alpha decay of a collection of nuclei of a given type,
all alpha particles come out with pretty much the exact same kinetic energy.

Consider the reason. The total kinetic energy release in the decay of a given
nucleus is called the “Q value.” Following Einstein’s famous relation E = mc2,
the Q value in alpha decay is given by the reduction in the net rest mass energy
during the decay:

Q = mN1c
2 −mN2c

2 −mαc
2 (14.51)

where 1 indicates the nucleus before the decay and 2 the nucleus after the decay.
Since energy must be conserved, the reduction in rest mass energy given by

the Q-value is converted into kinetic energy of the decay products. Classical
analysis makes that:

Q = 1
2
mN2v

2
N2 +

1
2
mαv

2
α

This assumes that the initial nucleus is at rest, or more generally that the decay
is observed in a coordinate system moving with the initial nucleus. Linear
momentum must also be conserved:

mN1~vN1 = mN2~vN2 +mα~vα

but since the velocity of the initial nucleus is zero,

mN2~vN2 = −mα~vα

Square both sides and divide by 2mN2 to get:

1
2
mN2v

2
N2 =

mα

mN2

1
2
mαv

2
α
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Now, excluding the special case of beryllium-8, the mass of the alpha particle
is much smaller than that of the final nucleus. So the expression above shows
that the kinetic energy of the final nucleus is much less than that of the alpha
particle. The alpha particle runs away with almost all the kinetic energy. Its
kinetic energy is almost equal to Q. Therefore it is always the same for a given
initial nucleus, as claimed above. In the special case that the initial nucleus is
beryllium-8, the final nucleus is also an alpha particle, and each alpha particle
runs away with half the kinetic energy. But still, each alpha particle always
comes out with a single value for its kinetic energy, in this case 1

2
Q.

In beta decay, things would be pretty much the same if just an electron was
emitted. The electron too would come out with a single kinetic energy. The
fact that it did not led Pauli to propose that another small particle also comes
out. That particle could carry away the rest of the kinetic energy. It had to be
electrically neutral like a neutron, because the nuclear charge change is already
accounted for by the charge taken away by the electron. The small neutral
particle was called the “neutrino” by Fermi. The neutrino was also required for
angular momentum conservation: a proton and an electron each with spin 1/2
have net spin 0 or 1, not 1/2 like the original neutron.

The neutrino that comes out in beta-minus decay is more accurately called
an electron antineutrino and usually indicated by ν̄. The bar indicates that it
is counted as an antiparticle.

The analysis of the kinetic energy of the decay products changes because of
the presence of an additional particle. The Q-value for beta decay is

Q = mN1c
2 −mN2c

2 −mec
2 −mν̄c

2 (14.52)

However, the rest mass energy of the neutrino can safely be ignored. At the
time of writing, numbers less than a single eV are bandied around. That is im-
measurably small compared to the nuclear rest mass energies which are in terms
of GeV. In fact, physicists would love the neutrino mass to be nonnegligible:
then they could figure out what is was!

As an aside, it should be noted that the nuclear masses in the Q values
are nuclear masses. Tabulated values are invariably atomic masses. They are
different by the mass of the electrons and their binding energy. Other books
therefore typically convert the Q-values to atomic masses, usually by ignoring
the electronic binding energy. But using atomic masses in a description of nuclei,
not atoms, is confusing. It is also a likely cause of mistakes. (For example, [31,
fig. 11.5] seems to have mistakenly used atomic masses to relate isobaric nuclear
energies.)

It should also be noted that if the initial and/or final nucleus is in an excited
state, its mass can be computed from that of the ground state nucleus by adding
the excitation energy, converted to mass units using E = mc2. Actually, nuclear
masses are usually given in energy units rather than mass units, so no conversion
is needed.
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Because the amount of kinetic energy that the neutrino takes away varies,
so does the kinetic energy of the electron. One extreme case is that the neutrino
comes out at rest. In that case, the given analysis for alpha decay applies pretty
much the same way for beta decay if the alpha is replaced by the electron. This
gives the maximum kinetic energy at which the electron can come out to be
Q. (Unlike for the alpha particle, the mass of the electron is always small
compared to the nucleus, and the nucleus always ends up with essentially none
of the kinetic energy.) The other extreme is that the electron comes out at rest.
In that case, it is the neutrino that pretty much takes all the kinetic energy.
Normally, both electron and neutrino each take their fair share of kinetic energy.
So usually the kinetic energy of the electron is somewhere in between zero and
Q.

A further modification to the analysis for the alpha particle must be made.
Because of the relatively small masses of the electron and neutrino, they come
out moving at speeds close to the speed of light. Therefore the relativistic
expressions for momentum and kinetic energy must be used, chapter 1.1.2.

Consider first the extreme case that the electron comes out at rest. The
relativistic energy expression gives for the kinetic energy of the neutrino:

Tν̄ =
√
(mν̄c2)2 + (pc)2 −mν̄c

2 (14.53)

where c is the speed of light and p the momentum. The nucleus takes only a
very small fraction of the kinetic energy, so Tν̄ ≈ Q. Also, whatever the neutrino
rest mass energy mν̄c

2 may be exactly, it is certainly negligibly small. It follows
that Tν̄ ≈ Q ≈ pc.

The small fraction of the kinetic energy that does end up with the nucleus
may now be estimated, because the nucleus has the same magnitude of momen-
tum p. For the nucleus, the nonrelativistic expression may be used:

TN2 =
p2

2mN2

= pc
pc

2mN2c2
(14.54)

The final fraction is very small because the energy release pc ≈ Q is in MeV
while the nuclear mass is in GeV. Therefore the kinetic energy of the nucleus
is indeed very small compared to that of the neutrino. If higher accuracy is
desired, the entire computation may now be repeated, starting from the more
accurate value Tν̄ = Q− TN2 for the kinetic energy of the neutrino.

The extreme case that the neutrino is at rest can be computed in much the
same way, except that the rest mass energy of the electron is comparable to Q
and must be included in the computation of pc. If iteration is not desired, an
exact expression for pc can be derived using a bit of algebra:

pc =

√
[E2 − (EN2 + Ee)2][E2 − (EN2 − Ee)2]

4E2
E = EN2 + Ee +Q (14.55)



816 CHAPTER 14. NUCLEI [UNFINISHED DRAFT]

where EN2 = mN2c
2 and Ee = mec

2 are the rest mass energies of the final
nucleus and electron. The same formula may be used in the extreme case that
the electron is at rest and the neutrino is not, by replacing Ee by the neutrino
rest mass, which is to all practical purposes zero.

In the case of beta-plus decay, the electron becomes a positron and the
electron antineutrino becomes an electron neutrino. However, antiparticles have
the same mass as the normal particle, so there is no change in the energetics.
(There is a difference if it is written in terms of atomic instead of nuclear masses.)
In case of electron capture, it must be taken into account that the nucleus
receives an infusion of mass equal to that of the captured electron. The Q-value
becomes

Q = mN1c
2 +mec

2 −mN2c
2 −mν̄c

2 − EB,ce (14.56)

where EB,ce is the electronic binding energy of the captured electron. Because
this is an inner electron, normally a K or L shell one, it has quite a lot of
binding energy, too large to be ignored. After the electron capture, an electron
farther out will drop into the created hole, producing an X-ray. If that electron
leaves a hole behind too, there will be more X-rays. The energy in these X-rays
subtracts from that available to the neutrino.

The binding energy may be ballparked from the hydrogen ground state en-
ergy, chapter 4.3, by simply replacing e2 in it by e2Z. That gives:

EB,ce ∼ 13.6Z2 eV (14.57)

The ballparks for electron capture in figure 14.54 use

EB,ce ∼ 1
2
(αZ)2mec

2
(
1 + 1

4
(αZ)2

)
(14.58)

in an attempt to partially correct for relativistic effects, which are significant
for heavier nuclei. Here α ≈ 1/137 is the so-called fine structure constant. The
second term in the parentheses is the relativistic correction. Without that term,
the result is the same as (14.57). See addendum {A.39} for a justification.

14.19.6 Draft: Forbidden decays

Energetics is not all there is to beta decay. Some decays are energetically fine but
occur extremely slowly or not at all. Consider calcium-48 in figure fig:betdec2e.
The square is well above the center band, so energy-wise there is no problem at
all for the decay to scandium-48. But it just does not happen. The half life of
calcium-48 is 64 1018 years, more than three billion times the entire lifetime of
the universe. And when decay does happen, it is due to double beta decay; as
of 2016, normal beta decay of calcium-48 has never been observed.

The big problem is angular momentum conservation. As an even-even nu-
cleus, calcium-48 has zero spin, while scandium-48 has spin 6 in its ground
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state. To conserve angular momentum during the decay, the electron and the
antineutrino must therefore take six units of spin along. But to the extend that
the nuclear size can be ignored, the electron and antineutrino come out of a
mathematical point. That means that they come out with zero orbital angular
momentum. They have half a unit of spin each, and there is no way to produce
six units of net spin from that. The decay is forbidden by angular momentum
conservation.

Of course, calcium-48 could decay to an excited state of scandium-48. Un-
fortunately, only the lowest two excited states are energetically possible, and
these have spins 5 and 4. They too are forbidden.

14.19.6.1 Draft: Allowed decays

To understand what beta decays are forbidden, the first step is to examine what
decays are allowed.

Consider the spins of the electron and antineutrino. They could combine
into a net spin of zero. If they do, it is called a “Fermi decay.” Since the
electron and antineutrino take no spin away, in Fermi decays the nuclear spin
cannot change.

The only other possibility allowed by quantum mechanics is that the spins
of electron and antineutrino combine into a net spin of one; that is called a
“Gamow-Teller decay.” The rules of quantum mechanics for the addition of
angular momentum vectors imply:

|jN1 − jeν̄ | 6 jN2 6 jN1 + jeν̄ (14.59)

where jN1 indicates the spin of the nucleus before the decay, jN2 the one after it,
and jeν̄ is the combined angular momentum of electron and antineutrino. Since
jeν̄ = 1 for allowed Gamow-Teller decays, spin can change one unit or stay the
same. There is one exception; if the initial nuclear spin is zero, the final spin
cannot be zero but must be one. Transitions from spin zero to zero are only
allowed if they are Fermi ones. But they are allowed.

Putting it together, the angular momentum can change by up to one unit
in an allowed beta decay. Also, if there is no orbital angular momentum, the
parities of the electron and antineutrino are even, so the nuclear parity cannot
change. In short

allowed: |∆jN| 6 1 ∆πN = no (14.60)

where ∆ indicates the nuclear change during the decay, jN the spin of the
nucleus, and πN its parity.

One simple example of an allowed decay is that of a single neutron into a
proton. Since this is a 1/2

+ to 1/2
+ decay, both Fermi and Gamow-Teller decays
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occur. The neutron has a half-life of about ten minutes. It can be estimated
that the decay is 18% Fermi and 82% Gamow-Teller, [31, p. 290].

Some disclaimers are in order. Both the discussion above and the following
one for forbidden decays are nonrelativistic. But neutrinos are very light parti-
cles that travel at very close to the speed of light. For such relativistic particles,
orbital angular momentum and spin get mixed-up. That is much like they get
mixed-up for the photon. That was such a headache in describing electromag-
netic transitions in chapter 7.4.3. Fortunately, neutrinos turn out to have some
mass. So the given arguments apply at least under some conditions, even if such
conditions are never observed.

A much bigger problem is that neutrinos and antineutrinos do not conserve
parity. That is discussed in more detail a later subsection, Above, this book
simply told you a blatant lie when it said that the electron-antineutrino system,
(or the positron-neutrino system in beta-plus decay), comes off with zero parity.
A system involving a single neutrino or antineutrino does not have definite
parity. And parity is not conserved in the decay process anyway. But the initial
and final nuclear states do have definite parity (to within very high accuracy).
Fortunately, it turns out that you get the right answers for the change in nuclear
parity if you simply assume that the electron and antineutrino come off with
the parity given by their “orbital” angular momentum.

No you cannot have your money back. You did not pay any.
A relativistic description of neutrinos can be found in {A.44}.

14.19.6.2 Draft: Forbidden decays allowed

As noted at the start of this subsection, beta decay of calcium-48 requires a spin
change of at least 4 and that is solidly forbidden. But forbidden is not quite
the same as impossible. There is a small loophole. A nucleus is not really a
mathematical point, it has a nonzero size.

Classically that would not make a difference, because the orbital angular
momentum would be much too small to make up the deficit in spin. A rough
ballpark of the angular momentum of, say, the electron would be pR, with p its
linear momentum and R the nuclear radius. Compare this with the quantum
unit of angular momentum, which is ~. The ratio is

pR

~
=
pcR

~c
=

pcR

197 MeV fm

with c the speed of light. The product pc is comparable to the energy release
in the beta decay and can be ballparked as on the order of 1 MeV. The nuclear
radius ballparks to 5 fm. As a result, the classical orbital momentum is just a
few percent of ~.

But quantum mechanics says that the orbital momentum cannot be a small
fraction of ~. Angular momentum is quantized to values

√
l(l + 1)~ where lmust
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be an integer. For l = 0 the angular momentum is zero, for l = 1 the angular
momentum is

√
2~. There is nothing in between. An angular momentum that

is a small fraction of ~ is not possible. Instead, what is small in quantum
mechanics is the probability that the electron has angular momentum l = 1. If
you try long enough, it may happen.

In particular, pR/~ gives a rough ballpark for the quantum amplitude of
the l = 1 state. (The so-called Fermi theory of beta decay, {A.45}, can be
used to justify this and other assumptions in this section.) The probability is
the square magnitude of the quantum amplitude, so the probability of getting
l = 1 is roughly (pR/~)2 smaller than getting l = 0. That is about 3 or 4
orders of magnitude less. It makes decays that have l = 1 that many orders of
magnitude slower than allowed decays, all else being the same. But if the decay
is energetically possible, and allowed decays are not, it will eventually happen.
(Assuming of course that some completely different decay like alpha decay does
not happen first.)

Decays with l = 1 are called “first-forbidden decays.” The electron and
neutrino can then take up to 2 units of angular momentum away through their
combined orbital angular momentum and spin. So the nuclear spin can change
up to two units. Orbital angular momentum has negative parity if l is odd, so
the parity of the nucleus must change during the decay. Therefore the possible
changes in nuclear spin and parity are:

first-forbidden: |∆jN| 6 2 ∆πN = yes (14.61)

That will not do for calcium-48, because at least 4 units of spin change is
needed. In “second-forbidden decays,” the electron and neutrino come out with
a net orbital angular momentum l = 2. Second forbidden decays are another
3 or 4 order of magnitude slower still than first forbidden ones. The nuclear
parity remains unchanged like in allowed decays. Where both allowed and
second forbidden decays are possible, the allowed decay should be expected to
have occurred long before the second forbidden one has a chance. Therefore,
the interesting second-forbidden cases cases are those that are not allowed ones:

second-forbidden: |∆jN| = 2 or 3 ∆πN = no (14.62)

In third forbidden decays, l = 3. The transitions that become possible that
were not in first forbidden ones are:

third-forbidden: |∆jN| = 3 or 4 ∆πN = yes (14.63)

These transitions are still another 3 or 4 orders of magnitude slower than second
forbidden ones. And they do not work for calcium-48, as both the calcium-48
ground state and the three reachable scandium-48 states all have equal, positive,
parity.
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Beta decay of calcium-48 is possible through fourth-forbidden transitions:

fourth-forbidden: |∆jN| = 4 or 5 ∆πN = no (14.64)

This allows decay to either the 5+ and 4+ excited states of scandium-48. How-
ever, fourth forbidden decays are generally impossibly slow.

14.19.6.3 Draft: The energy effect

There is an additional effect slowing down the beta decay of the 0+ calcium-48
ground state to the 5+ excited scandium-48 state. The energy release, or Q-
value, of the decay is only about 0.15 MeV.

One reason that is bad news, (or good news, if you like calcium-48), is
because it makes the momentum of the electron and neutrino correspondingly
small. The ratio pR/~ is therefore quite small at about 0.01. And because
this is a fourth forbidden decay, the transition is slowed down by a ballpark
((pR/~)−2)4; that means a humongous factor 1016 for pR/~ = 0.01. If a 1 MeV
allowed beta decay may take on the order of a day, you can see why calcium-48
is effectively stable against beta decay.
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Figure 14.52: The Fermi integral. It shows the effects of energy release and
nuclear charge on the beta decay rate of allowed transitions. Other effects
exists. [pdf]
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There is another, smaller, effect. Even if the final nucleus is the 5+ excited
scandium-48 state, with a single value for the magnetic quantum number, there
is still more than one final state to decay to. The reason is that the relative
amounts of energy taken by the electron and neutrino can vary. Additionally,
their directions of motion can also vary. The actual net decay rate is an integral
of the individual decay rates to all these different states. If the Q-value is low,
there are relatively few states available, and this reduces the total decay rate
too. The amount of reduction is given by the so-called “Fermi integral” shown
in figure 14.52. A decay with a Q value of about 0.15 MeV is slowed down by
roughly a factor thousand compared to one with a Q value of 1 MeV.

The Fermi integral shows beta plus decay is additionally slowed down, be-
cause it is more difficult to create a positron at a strongly repelling positively
charged nucleus. The relativistic Fermi integral also depends on the nuclear
radius, hence a bit on the mass number. Figure 14.52 used a ballpark value of
the mass number for each Z value, {A.45}.

The Fermi integral applies to allowed decays, but the general idea is the
same for forbidden decays. In fact, half-lives τ1/2 are commonly multiplied by
the Fermi integral f to produce a “comparative half-life,” or “ft-value” that is
relatively insensitive to the details of the decay besides the degree to which it
is forbidden. The ft-value of a given decay can therefore be used to ballpark to
what extent the decay is forbidden.

You see how calcium-48 can resist beta-decay for 64 1018 years. (Zirconium-
96 with a half-life of 24 1018 years has similar resistance to plain beta decay.)

14.19.7 Draft: Data and Fermi theory

Figure 14.53 shows nuclei that decay primarily through beta-minus decay in
blue. Nuclei that decay primarily through electron capture and beta-plus decay
are shown in red. The sizes of the squares indicate the decay rates. For reference,
the stable and double-beta decay nuclei are shown as full-size green squares.

Note the tremendous range of decay rates. It corresponds to half-lives rang-
ing from milliseconds to 1017 years. This is much like the tremendous range
of half-lives in alpha decay. Decays lasting more than about twenty years are
shown as a minimum-size dot in figure 14.53; many would be invisible shown
on the true scale.

The decay rates in figure 14.53 are color coded according to a guesstimated
value for how forbidden the decay is. Darker red or blue indicate more forbidden
decays. Note that more forbidden decays tend to have much lower decay rates.
(Lightly colored squares indicate nuclei for which the degree to which the decay
is forbidden could not be guesstimated by the automated procedures used.)

Figure 14.54 shows the decay rates normalized with a theoretical guesstimate
for them. Note the greatly reduced range of variation that the guesstimate
achieves, crude as it may be. One major success story is for forbidden decays.
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These are often so slow that they must be shown as minimum-size dots in figure
14.53 to be visible. However, in figure 14.54 they join the allowed decays as full-
size squares. Consider in particular the three slowest decays among the data
set. The slowest of all is vanadium-50, with a half-life of 150 1015 year, followed
by cadmium-113 with 8 1015 year, followed by indium-115 with 441 1012 year.
(Tellurium-123 has only a lower bound on its half life listed and is not included.)
These decay times are long enough that all three isotopes occur naturally. In
fact, almost all naturally occurring indium is the “unstable” isotope indium-115.
Their dots in figure 14.53 become full squares in figure 14.54.

Another eye-catching success story is H31 , the triton, which suffers beta decay
into He3

2 , the stable helion. The decay is allowed, but because of its miniscule
energy release, or Q-value, it takes 12 years anyway. Scaled with the ballpark,
this slow decay too becomes a full size square.

The ballparks were obtained from the “Fermi theory” of beta decay, as dis-
cussed in detail in addendum {A.45}. Unlike the relatively simple theory of
alpha decay, the Fermi theory is elaborate even in a crude form. Taking beta-
minus decay as an example, the Fermi theory assumes a pointwise interaction
between the wave functions of the neutron that turns into a proton and those
of the electron/antineutrino pair produced by the decay. (Quantum mechanics
allows the neutron before the decay to interact with the electron and neutrino
that would exist if it had already decayed. That is a “twilight” effect, as dis-
cussed in chapter 5.3 and more specifically in addendum {A.24} for gamma
decay.) The strength of the interaction is given by empirical constants.

Note that for many nuclei no ballparks were found. One major reason is that
the primary decay mechanism is not necessarily to the ground state of the final
nucleus. If decay to the ground state is forbidden, decay to a less-forbidden
excited state may dominate. Therefore, to correctly estimate the decay rate
for a given nucleus requires detailed knowledge about the excited energy states
of the final nucleus. The energies of these excited states must be sufficiently
accurately known, and they may not be. In particular, for a few nuclei, the
energy release of the decay, or Q-value, was computed to be negative even for
the ground state. This occurred for the electron capture of Ho163

67 , Pt193
78 , Hg194

80 ,
Pb202

82 , and Pb205
82 , and for the beta decay of Re187

75 and Pu241
94 . According to

the Fermi theory, the decay cannot occur if the Q-value is negative. However,
the Q-values in question are much smaller than the estimated electronic binding
energy (14.8). In fact they are comparable to the difference in electronic binding
energy between initial and final nucleus or less. Since the binding energy is just
an estimate, the computed Q-values, and therefore the guesstimated decay rate,
should not be trusted.

In addition to the energy of the excited states, their spins and parities must
also be accurately known. The reason is that they determine to what level the
decay is forbidden, hence slowed down. The computer program that produced
figures 14.53 and 14.54 assumed conservatively that if no unique value for spin
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and/or parity was given, it might be anything. Also, while there was obviously
no way for the program to account for any excited states whose existence is not
known, the program did allow for the possibility that there might be additional
excited states above the highest energy level known. This is especially impor-
tant well away from the stable line where the excited data are often sparse or
missing altogether. All together, for about one third of the nuclei processed, the
uncertainty in the ballparked decay rate was judged too large to be accepted.
For the remaining nuclei, the level to which the decay was forbidden was taken
from the excited state that gave the largest contribution to the decay rate.

The Fermi ballparks were constructed such that the true decay rate should
not be significantly more than the ballparked one. In general they met that
requirement, although for about 1% of the nuclei, the true decay rate was more
ten times the ballparked ones, reaching up to 370 times for Fm253

100 . All these cases
were for first-forbidden decays with relatively low Q-values. Since they included
both beta minus and electron capture decays, a plausible explanation may be
poor Q-values. However, for forbidden decays, the correction of the electron/
positron wave function for the effect of the nuclear charge is also suspect.

Note that while the true decay rate should not be much more than the
ballparked one, it is very possible for it to be much less. The ballpark does
not consider the details of the nuclear wave function, because that is in general
prohibitively difficult. The ballpark simply hopes that if a decay is not strictly
forbidden by spin or parity at level l, the nuclear wave function change will
not for some other reason make it almost forbidden. But in fact, even if the
decay is theoretically possible, the part of the Hamiltonian that gives rise to
the decay may produce a nuclear wave function that has little probability of
being the right one. In that case the decay is slowed down proportional to that
probability.

As an example, compare the decay processes of scandium-41 and calcium-
47. Scandium-41, with 21 protons and 20 neutrons, decays into its mirror twin
calcium-41, with 20 protons and 21 neutrons. The decay is almost all due to
beta-plus decay to the ground state of calcium-41. According to the shell model,
the lone proton in the 4f7/2 proton shell turns into a lone neutron in the 4f7/2
neutron shell. That means that the nucleon that changes type is already in the
right state. The only thing that beta decay has to do is turn it from a proton
into a neutron. And that is in fact all that the decay Hamiltonian does in the
case of Fermi decay. Gamow-Teller decays also change the spin. The nucleon
does not have to be moved around spatially. Decays of this type are called
“superallowed.” (More generally, superallowed decays are defined as decays
between isobaric analog states, or isospin multiplets. Such states differ only in
nucleon type. In other words, they differ only in the net isospin component T3.)
Superallowed decays proceed at the maximum rate possible. Indeed the decay
of scandium-41 is at 1.6 times the ballparked value.

All the electron capture / beta-plus decays of the nuclei immediately to the
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left of the vertical Z = N line in figures 14.53 and 14.54 are between mirror
nuclei, and all are superallowed. They are full-size squares in figure 14.54.
Superallowed beta-minus decays occur for the triton mentioned earlier, as well
as for a lone neutron.

But now consider the beta-minus decay process of calcium-47 to scandium-
47. Calcium-47 has no protons in the 4f7/2 proton shell, but it has 7 neutrons in
the 4f7/2 neutron shell. That means that it has a 1-neutron “hole” in the 4f7/2
neutron shell. Beta decay to scandium-47 will turn one of the 7 neutrons into a
lone proton in the 4f7/2 proton shell.

At least one source claims that in the odd-particle shell model “all odd par-
ticles are treated equivalently,” so that we might expect that the calcium-47
decay is superallowed just like the scandium-41 one. That is of course not true.
The odd-particle shell model does emphatically not treat all odd particles equiv-
alently. It only says that, effectively, an even number of nucleons in the shell
pair up into a state of zero net spin, leaving the odd particle to provide the net
spin and electromagnetic moments. That does not mean that the seventh 4f7/2
neutron can be in the same state as the lone proton after the decay. In fact,
if the seventh neutron was in the same state as the lone proton, it would bla-
tantly violate the antisymmetrization requirements, chapter 5.7. Whatever the
state of the lone proton might be, 7 neutrons require 6 more independent states.
And each of the 7 neutrons must occupy all these 7 states equally. It shows.
The nuclear wave function of calcium-47 produced by the decay Hamiltonian
matches up very poorly with the correct final wave function of scandium-47.
The true decay rate of calcium-47 is therefore about 10 000 times smaller than
the ballpark.

As another example, consider the beta-plus decay of oxygen-14 to nitrogen-
14. Their isobaric analog states were identified in figure 14.46. Decay to the
ground state is allowed by spin and parity, at a ballparked decay rate of 0.23/s.
However, the true decay proceeds at a rate 0.01/s, which just happens to be
1.6 times the ballparked decay rate to the 0+ excited isobaric analog state. One
source notes additionally that over 99% of the decay is to the analog state. So
decay to the ground state must be contributing less than a percent to the total
decay. And that is despite the fact that decay to the ground state is allowed
too and has the greater Q-value. The effect gets even clearer if you look at
the carbon-14 to nitrogen-14 beta-minus decay. Here the decay to the isobaric
analog state violates energy conservation. The decay to the ground state is
allowed, but it is more than 10 000 times slower than ballpark.

Superallowed decays like the one of oxygen-14 to the corresponding isobaric
analog state of nitrogen-14 are particularly interesting because they are 0+ to
0+ decays. Such decays cannot occur through the Gamow-Teller mechanism,
because in Gamow-Teller decays the electron and neutrino take away one unit
of angular momentum. That means that decays of this type can be used to
study the Fermi mechanism in isolation.
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The horror story of a poor match up between the nuclear wave function pro-
duced by the decay Hamiltonian and the final nuclear wave function is lutetium-
176. Lutetium-176 has a 7− ground state, and that solidly forbids decay to the
0+ hafnium-176 ground state. However, hafnium has energetically allowed 6+

and 8+ excited states that are only first-forbidden. Therefore you would not re-
ally expect the decay of lutetium-176 to be particularly slow. But the spin of the
excited states of hafnium is due to collective nuclear rotation, and these states
match up extremely poorly with the ground state of lutetium-176 in which the
spin is intrinsic. The decay rate is a stunning 12 orders of magnitude slower
than ballpark. While technically the decay is only first-forbidden, lutetium is
among the slowest decaying unstable nuclei, with a half-life of almost 40 1012

year. As a result, it occurs in significant quantities naturally. It is commonly
used to determine the age of meteorites. No other ground state nucleus gets
anywhere close to that much below ballpark. The runner up is neptunium-236,
which is 8 orders of magnitude below ballpark. Its circumstances are similar to
those of lutetium-176.

The discussed examples show that the Fermi theory does an excellent job
of predicting decay rates if the differences in nuclear wave functions are taken
into account. In fact, if the nuclear wave function can be accurately accounted
for, like in 0+ to 0+ superallowed decays, the theory will produce decay rates
to 3 digits accurate, [31, table 9.2]. The theory is also able to give accurate
predictions for the distribution of velocities with which the electrons or positrons
come out. Data on the velocity distributions can in fact be used to solidly
determine the level to which the decay is forbidden by plotting them in so-
called “Fermi-Kurie plots.” These and many other details are outside the scope
of this book.

14.19.8 Draft: Parity violation

For a long time, physicists believed that the fundamental laws of nature behaved
the same when seen in the mirror. The strong nuclear force, electromagnetism,
and gravity all do behave the same when seen in the mirror. However, in 1956
Lee and Yang pointed out that the claim had not been tested for the weak force.
If it was untrue there, it could explain why what seemed to be a single type of
K-meson could decay into end products of different parity. The symmetry of
nature under mirroring leads to the law of conservation of parity, chapter 7.3.
However, if the weak force is not the same under mirroring, parity can change
in weak processes, and therefore, the decay products could have any net parity,
not just that of the original K-meson.

Wu and her coworkers therefore tested parity conservation for the beta decay
of cobalt-60 nuclei. These nuclei were cooled down to extremely low temper-
atures to cut down on their thermal motion. That allowed their spins to be
aligned with a magnetic field, as in the left of figure 14.55. It was then observed
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Figure 14.55: Parity violation. In the beta decay of cobalt-60, left, the elec-
tron preferentially comes out in the direction that a left-handed screw rotating
with the nuclear spin would move. Seen in the mirror, right, that becomes the
direction of a right-handed screw.

that the electrons preferentially came out in the direction of motion of a left-
handed screw rotating with the nuclear spin. Since a left-handed screw turns
into a right-handed one seen in the mirror, it followed that indeed the weak
force is not the same seen in the mirror. The physics in the mirror is not the
correct physics that is observed.

Since the weak force is weak, this does not affect parity conservation in other
circumstances too much. Formally it means that eigenfunctions of the Hamil-
tonian are not eigenfunctions of the parity operator. However, nuclear wave
functions still have a single parity to very good approximation; the amplitude
of the state of opposite parity mixed in is of the order of 10−7, [31, p. 313].
The probability of measuring the opposite parity is the square of that, much
smaller still. Still, if a decay is absolutely forbidden when parity is strictly pre-
served, then it might barely be possible to observe the rare decays allowed by
the component of the wave function of opposite parity.

An additional operation can be applied to the mirror image in 14.55 to turn
it back into a physically correct decay. All particles can be replaced by their an-
tiparticles. This operation is called “charge conjugation,” because among other
things it changes the sign of the charge for each charged particle. In physics, you
are always lucky if a name gets some of it right. Some of the particles involved
may actually be charged, and “conjugation” is a sophisticated-sounding term
to some people. It is also a vague term that quite conceivably could be taken
to mean “reversal of sign” by people naive enough to consider “conjugation”
sophisticated. Charge conjugation turns the electrons going around in the loops
of the electromagnet in figure 14.55 into positrons, so the current reverses direc-
tion. That must reverse the sign of the magnetic field if the physics is right. But
so will the magnetic moment of anticobalt-60 nucleus change sign, so it stays
aligned with the magnetic field. And physicist believe the positrons will pref-
erentially come out of anticobalt-60 nuclei along the motion of a right-handed
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screw.

Besides this combined charge conjugation plus parity (CP) symmetry of
nature, time symmetry is also of interest here. Physical processes should re-
main physically correct when run backwards in time, the same way you can
run a movie backwards. It turns out that time symmetry too is not completely
absolute, and neither is CP symmetry for that matter. However, if all three
operations, charge conjugation (C), mirroring (P), and time inversion (T), to-
gether are applied to a physical process, the resulting process is believed to
always be physically correct. There is a theorem, the CPT theorem, that says
so under relatively mild assumptions.

14.20 Draft: Gamma Decay

Nuclear reactions and decays often leave the final nucleus in an quantum state
of elevated energy. Such an excited state may lower its energy by emitting
a photon of electromagnetic radiation. That is called gamma decay. It is a
common way to evolve to the ground state.

Gamma decay is in many respect similar to alpha and beta decay discussed
in earlier sections. However, the type of nucleus does not change in gamma
decay. Both the atomic and mass number of the nucleus stay the same. (Of
course, an excited nuclear state can suffer alpha or beta decay instead of gamma
decay. That however is not the subject of this section.)

Gamma decay of excited nuclei is the direct equivalent of the decay of excited
electron states in atoms. The big difference between gamma decay and the
radiation emitted by the electrons in atoms is energy. The energy of the photons
emitted by nuclei is typically even higher than that of the X-ray photons emitted
by inner electrons. Therefore the radiation emitted by nuclei is generally referred
to as “gamma rays.”

Both atomic radiation and nuclear gamma decay were analyzed in consid-
erable detail in chapter 7.4 through 7.8 and addenda {A.20} through {A.25}.
There is no point in repeating all that here. Instead this section will merely
summarize the key points and discuss some actual observations.

However, the existing data on gamma decay is enormous. Consider NuDat
2, a standard data base. At the time of writing, it contains over 3 100 nuclei.
Almost every nucleus but the deuteron has many excited energy levels; there
are over 160 000 in NuDat 2. Gamma decays can proceed between different
states, and NuDat 2 contains over 240 000 of them. There is no way that this
book can cover all that data. The coverage given in this section will therefore
be anecdotal or random rather than comprehensive.

However, based on a simple model, at least ballpark transition rates will be
established. These are called the Weisskopf units. They are commonly used as
reference values, to give some context to the measured transition rates.
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One big limitation of gamma decay is for nuclear states of zero spin. A state
of zero spin cannot transition to another state of zero spin by emitting a photon.
As discussed in chapter 7.4, this violates conservation of angular momentum.

But there are other ways that a nucleus can get rid of excess energy besides
emitting an electromagnetic photon. One way is by kicking an atomic electron
out of the surrounding atom. This process is called “internal conversion” be-
cause the electron is outside the nucleus. It allows transitions between states of
zero spin.

For atoms, two-photon emission is a common way to achieve decays be-
tween states of zero angular momentum. However, for nuclei this process is less
important because internal conversion usually works so well.

Internal conversion is also important for other transitions. Gamma decay is
slow between states that have little difference in energy and/or a big difference
in spin. For such decays, internal conversion can provide a faster alternative.

If the excitation energy is high, it is also possible for the nucleus to create
an electron and positron pair from scratch. Since the quantum uncertainty in
position of the pair is far too large for them to be confined within the small
nucleus, this is called “internal pair creation.”

14.20.1 Draft: Energetics

The reduction in nuclear energy during gamma decay is called the Q-value. This
energy comes out primarily as the energy of the photon, though the nucleus will
also pick up a bit of kinetic energy, called the recoil energy.

Recoil energy will usually be ignored, so that Q gives the energy of the
photon. The photon energy is related to its momentum and frequency through
the relativistic mass-energy and Planck-Einstein relations:

Q = EN1 − EN2 = pc = ~ω (14.65)

Typical tabulations list nuclear excitation energies as energies, rather than as
nuclear masses. Unfortunately, the energies are usually in eV instead of SI units.

In internal conversion, the nucleus does not emit a photon, but kicks an
electron out of the surrounding atomic electron cloud. The nuclear energy re-
duction goes into kinetic energy of the electron, plus the binding energy required
to remove the electron from its orbit:

Q = EN1 − EN2 = Te + EB,e (14.66)

14.20.2 Draft: Forbidden decays

The decay rate in gamma decay is to a large extent dictated by what is allowed
by conservation of angular momentum and parity. The nucleus is almost a
mathematical point compared to the wave length of a typical photon emitted
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in gamma decay. Therefore, it is difficult for the nucleus to give the photon
additional orbital angular momentum. That is much like what happens in alpha
and beta decay.

The photon has one unit of spin. If the nucleus does not give it additional
orbital angular momentum, the total angular momentum that the photon carries
off is one unit. That means that the nuclear spin cannot change by more than
one unit.

(While this is true, the issue is actually somewhat more subtle than in the
decay types discussed previously. For a photon, spin and orbital angular mo-
mentum are intrinsically linked. Because of that, a photon always has some
orbital angular momentum. That was discussed in chapter 7.4.3 and in detail
in various addenda such as {A.21}. However, the inherent orbital angular mo-
mentum does not really change the story. The bottom line remains that it is
unlikely for the photon to be emitted with more than one unit of net angular
momentum.)

The nuclear spin can also stay the same, instead of change by one unit, even
if a photon with one unit of angular momentum is emitted, In classical terms
the one unit of angular momentum can go into changing the direction of the
nuclear spin instead of its magnitude, chapter 7.4.2. However, this only works
if the nuclear spin is nonzero.

Parity must also be preserved, chapter 7.4. Parity is even, or 1, if the wave
function stays the same when the positive direction of all three Cartesian axes
is reversed. Parity is odd, or −1, if the wave function changes sign. Parities
of separate sources are multiplied together to combine them. That is unlike for
angular momentum, where separate angular momenta are added together.

In the normal, or “allowed,” decays the photon is emitted with odd parity.
Therefore, the nuclear parity must reverse during the transition, chapter 7.4.2.

(To be picky, the so-called weak force does not preserve parity. This creates
a very small uncertainty in nuclear parities. That then allows a very small
probability for transitions in which the apparent parity is not conserved. But
the probability for this is so small that it can almost always be ignored.)

Allowed transitions are called electric transitions because the nucleus inter-
acts mainly with the electric field of the photon. More specifically, they are
called “electric dipole transitions” for reasons originating in classical electro-
magnetics, chapter 7.7.2. For practical purposes, a dipole transition is one in
which the photon is emitted with one unit of net angular momentum.

Transitions in which the nuclear spin change is greater than one unit, or in
which the nuclear parity does not change, or in which the spin stays zero, are
called “forbidden.” Despite the name, most such decays will usually occur given
enough time. However they are generally much slower.

One way that forbidden transitions can occur is that the nucleus interacts
with the magnetic field instead of the electric field. This produces what are
called magnetic transitions. Magnetic transitions tend to be noticeably slower
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than corresponding electric ones. In magnetic dipole transitions, the photon
has one unit of net angular momentum just like in electric dipole transitions.
However, the photon now has even parity. Therefore magnetic dipole transitions
allow the nuclear parity to stay the same.

Transitions in which the nuclear spin changes by more than one unit are pos-
sible through emission of a photon with additional orbital angular momentum.
That allows a net angular momentum of the photon greater than one. But at
a price. Each unit of additional net angular momentum slows down the typical
decay rate by roughly 5 orders of magnitude.

The horror story is tantalum-180m. There are at the time of writing 256
ground state nuclei that are classified as stable. And then there is the excited
nucleus tantalum-180m. Stable nuclei should be in their ground state, because
states of higher energy decay into lower energy ones. But tantalum-180m has
never been observed to decay. If it decays at all, it has been established that its
half life cannot be less than 1015 year. The universe has only existed for roughly
1010 years, and so tantalum-180m occurs naturally.

Ta180
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10? 3
4 82

1 30
9
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Figure 14.56: Energy levels of tantalum-180. [pdf]

The tantalum-180 ground state shows no such idiocy. It is unstable as any
self-respecting heavy odd-odd nucleus should be. In fact it disintegrates within
about 8 hours through both electron capture and beta-minus decay at compa-
rable rates. But tantalum-180m is an excited state with a humongous spin of 9.
Figure 14.56 shows the excited energy levels of tantalum-180; tantalum-180m
is the second excited energy level. It can only decay to the 1+ ground state
and to an 2+ excited state. It has very little energy available to do either. The
decay would require the emission of a photon with at least seven units of orbital
angular momentum, and that just does not happen in a thousand years. Nor in
a petayear.

You might think that tantalum-180m could just disintegrate directly through
electron capture or beta decay. But those processes have the same problem.
There is just no way for tantalum-180m to get rid of all that spin without
emitting particles with unlikely large orbital angular momentum. So tantalum-
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180m will live forever, spinning too fast to reach the sweet oblivion of the quick
death that waits below.

Electric transitions are often generically indicated as Eℓ and magnetic ones
as Mℓ. Here ℓ indicates the net angular momentum of the photon. That is the
maximum nuclear spin change that the transition can achieve. So electric dipole
transitions are E1, and magnetic dipole transitions are M1. Names have also
been given to the higher multipole orders. For example, ℓ = 2 transitions are
quadrupole ones, ℓ = 3 octupole, ℓ = 4 hexadecapole, ℓ = 5 triakontadipole, ℓ
= 6 hexacontatetrapole, etcetera. (If you are wondering, the prefixes in these
names are powers of two, expressed in a mixture of Latin and Greek.)

For electric transitions, the nuclear parity changes when ℓ is odd. For mag-
netic transitions, it changes when ℓ is even. The transition rules are summarized
in table 14.4.

maximum spin change nuclear parity change

Eℓ: ℓ if ℓ is odd

Mℓ: ℓ if ℓ is even

No spin 0 to spin 0 transitions.

Table 14.4: Nuclear spin and parity changes in electromagnetic multipole tran-
sitions.

That leaves transitions from nuclear spin 0 to nuclear spin 0. Such transi-
tions cannot occur through emission of a photon, period. For such transitions,
conservation of angular momentum would require that the photon is emitted
without angular momentum. But a photon cannot have zero net angular mo-
mentum. You might think that the spin of the photon could be canceled through
one unit of orbital angular momentum. However, because the spin and orbital
angular momentum of a photon are linked, it turns out that this is not possible,
{A.21}.

Decay from an excited state with spin zero to another state that also has
spin zero is possible through internal conversion or internal pair production. In
principle, it could also be achieved through two-photon emission, but that is a
very slow process that has trouble competing with the other two.

One other approximate conservation law might be mentioned here, isospin.
Isospin is conserved by nuclear forces, and its charge component is conserved
by electromagnetic forces, section 14.18. It can be shown that to the extent
that isospin is conserved, certain additional selection rules apply. These involve
the quantum number of square isospin tT , which is the isospin equivalent of
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the azimuthal quantum number for the spin angular momentum of systems of
fermions. Warburton & Weneser [48] give the following rules:

1. Electromagnetic transitions are forbidden unless ∆tT = 0, or ±1.
(Here “∆” means the difference between the initial and final nuclear
states).

2. Corresponding ∆tT = ±1 transitions in conjugate nuclei are identi-
cal in all properties. (“Conjugate” means that the two nuclei have
the numbers of protons and neutrons swapped. “Corresponding”
transitions means transitions between equivalent levels, as discussed
in section 14.18.)

3. Corresponding E1 transitions in conjugate nuclei — whether ∆tT =
0 or ±1 — have equal strengths.

4. ∆tT = 0 E1 transitions in self-conjugate nuclei are forbidden. (Self-
conjugate nuclei have the same number of protons as neutrons.)

5. Corresponding ∆tT = 0 M1 transitions in conjugate nuclei are ex-
pected to be of approximately equal strength, within, say, a factor
of two if the transitions are of average strength or stronger.

6. ∆tT = 0 M1 transitions in self-conjugate nuclei are expected to be
weaker by a factor of 100 than the average M1 transition strength.

7. ∆tT = 0 Mℓ transitions in conjugate nuclei are expected to be of ap-
proximately equal strength if the transitions are of average strength
or stronger.

8. ∆tT = 0 Mℓ transitions in self-conjugate nuclei are expected to be
appreciably weaker than average.

The last four rules involve an additional approximation besides the assumption
that isospin is conserved.

In a nutshell, expect that the transitions will be unexpectedly slow if the
isospin changes by more than one unit. Expect the same for nuclei with equal
numbers of protons and neutrons if the isospin does not change at all and it is
an E1 or magnetic transition.

As an example, [31, p. 390], consider the decay of the 1− isobaric analog
state common to carbon-14, nitrogen-14, and oxygen-14 in figure 14.46. This
state has tT = 1. For oxygen-14, it is the lowest excited state. Its decay to the
tT = 1, 0+, ground state is an E1 transition that is allowed by the spin, parity,
and isospin selection rules. And indeed, the 1− excited state decays rapidly to
the ground state; the half-life is about 0.000 012 fs (femtoseconds). That is even
faster than the Weisskopf ballpark for a fully allowed decay, subsection 14.20.4,
which gives about 0.009 fs here. But for nitrogen-14, the equivalent transition is
not allowed because of rule 4 above. Nitrogen-14 has 7 protons and 7 neutrons.
And indeed, the partial half life of this transition is 2.7 fs. That is very much
longer. Based on rule 3 above, it is expected that the decay rate of the 1− state
in carbon-14 is similar to the one in oxygen-14. Unfortunately, experimentally
it has only been established that its half-life is less than 7 fs.
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Some disclaimers are appropriate for this example. As far as the oxygen
transition is concerned, the NuDat 2 [[12]] data do not say what the dominant
decay process for the oxygen-14 state is. Nor what the final state is. So it might
be another decay process that dominates. The next higher excited state, with
0.75 MeV more energy, decays 100% through proton emission. And two orders
of magnitude faster than Weisskopf does seem a lot, figure 14.63.

As far as the nitrogen transition is concerned, the decay processes are listed
in NuDat 2. The decay is almost totally due to proton emission, not gamma
decay. The actual half-life of this state is 0.000 02 fs; the 2.7 fs mentioned above
is computed using the given decay branching ratios. The 2.7 fs is way above the
0.006 fs Weisskopf estimate, but that is quite common for E1 transitions.

It may be more reasonable to compare the forbidden nitrogen 8 MeV to 2.3
MeV transition to the allowed 8 MeV to ground state, and 8 MeV to 4 MeV
transitions. They are all three E1 transitions. Corrected for the differences
in energy release, the forbidden transition is 20 times slower than the one to
the ground state, and 25 times slower than the one to the 4 MeV state. So
apparently, being forbidden seems to slow down this transition by a factor of
roughly 20. It is significant, though it is not that big on the scale of figure 14.63.

As another example, the nitrogen transition from the 1− 5.7 MeV tT = 0
state to the tT = 0 ground state is also forbidden, while the transition to the
0+ tT = 1 state is now permitted. And indeed, the decay to the ground state is
about ten times slower, when corrected for energy release, [31, p. 391].

More comprehensive data may be found in [48].

14.20.3 Draft: Isomers

An “isomer” is a long lasting excited state of a nucleus. Usually, an excited
nucleus that does not disintegrate through other means will drop down to lower
energies through the emission of photons in the gamma ray range. It will then
end up back in the ground state within a typical time in terms of fs, or about
10−15 second.

But sometimes a nucleus gets stuck in a metastable state that takes far
longer to decay. Such a state is called an isomeric state. Krane [31, p. 174] ball-
parks the minimum lifetime to be considered a true isomeric state at roughly
10−9 s, Bertulani [5, p. 244] gives 10−15 s, and NuDat 2 [[12]] uses 10−1 s with
qualification in their policies and 10−9 s in their glossary. Don’t you love stan-
dardization? In any case, this book will not take isomers serious unless they
have a lifetime comparable to 10−9 second. Why would an excited state that
cannot survive for a millisecond be given the same respect as tantalum-180m,
which shows no sign of kicking the bucket after 1015 years?

But then, why would any excited state be able to last very much more than
the typical 10−15 s gamma decay time in the first place? The main reason
is angular momentum conservation. It is very difficult for a tiny object like
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a nucleus to give a photon much angular momentum. Therefore, transitions
between states of very different angular momentum will be extremely slow, if
they occur at all. Such transitions are highly “forbidden,” or using a better
term, “hindered.”

If an excited state has a very different spin than the ground state, and there
are no states in between the two that are more compatible, then that excited
state is stuck. But why would low spin states be right next to high spin states?
The main reason is found in the shell model, and in particular figure 14.15.
According to the shell model, just below the magic numbers of 50, 82, and
126, high spin states are pushed into regions of low spin states by the so-called
spin-orbit interaction. That is a recipe for isomerism if there ever was one.

Therefore, it should be expected that there will be many isomers below the
magic numbers of 50, 82, and 126. And that these isomers will have the opposite
parity of the ground state, because the high spin states are pushed into low spin
states of opposite parity.

And so it is. Figure 14.57 shows the half-lifes of the longest-lasting exited
states of even Z and odd N nuclei. The groups of isomers below the magic
neutron numbers are called the “islands of isomerism.” The difference in spin
from the ground state is indicated by the color. A difference in parity is indicated
by a minus sign. Half-lives over 1014 s are shown as full-size squares.

Figure 14.58 shows the islands for odd Z, even N nuclei.
For odd-odd nuclei, figure 14.59, the effects of proton and neutron magic

numbers get mixed up. Proton and neutron excitations may combine into larger
spin changes, providing one possible explanation for the isomers of light nuclei
without parity change.

Besides tantalum-180m, which lives forever, also note bismuth-210m in figure
14.59. Bismuth-210m has the same spin 9− as tantalum-180m, but it does
manage to decay after about 3 million years. But it does so through alpha-
decay, rather than gamma-decay,

For even-even nuclei, figure 14.60, there is very little isomeric activity.

14.20.4 Draft: Weisskopf estimates

Gamma decay rates can be ballparked using the so-called “Weisskopf estimates:”

λEℓ = CEℓA
2ℓ/3Q2ℓ+1 λMℓ = CMℓA

(2ℓ−2)/3Q2ℓ+1 (14.67)

ℓ : 1 2 3 4 5

CEℓ : 1.0 1014 7.3 107 34 1.1 10−5 2.4 10−12

CMℓ : 3.1 1013 2.2 107 10 3.3 10−6 7.4 10−13

Here the decay rates are per second, A is the mass number, and Q is the energy
release of the decay in MeV. Also ℓ is the maximum nuclear spin change pos-
sible for that transition. As discussed in subsection 14.20.2, electric transitions
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Figure 14.57: Half-life of the longest-lived even-odd isomers. [pdf][con]
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Figure 14.58: Half-life of the longest-lived odd-even isomers. [pdf][con]
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../../quansup/isomeroo.pdf
../../quansup/ZvsNisomeroo.pdf


840 CHAPTER 14. NUCLEI [UNFINISHED DRAFT]

2

8

20

28

50

82

Z

q
2 8 20 28 50

82

126

N

half-life
>1018

109

1
10−9

s
s
s
s

spin change

0

1

2

3

4

5

6

7

>8uncertain

Figure 14.60: Half-life of the longest-lived even-even isomers. [pdf][con]
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require that the nuclear parity flips over when ℓ is odd, and magnetic ones that
it flips over when ℓ is even. In the opposite cases, the nuclear parity must stay
the same. If there is more than one decay process involved, add the individual
decay rates.

The estimates are plotted in figure 14.61. For magnetic transitions the bet-
ter Moszkowski estimates are shown in figure 14.62. (Internal conversion is
discussed in subsection 14.20.6, where the ballparks are given.)

A complete derivation and discussion of these estimates can be found {A.25}.
Note that many sources have errors in their formulae and/or graphs or use non-
SI units, {A.25.9}. The correct formulae in SI units are in {A.25.8}.

These estimates are derived under the assumption that only a single proton
changes states in the transition. They also assume that the multipole order
is the lowest possible, given by the change in nuclear spin. And that the final
state of the proton has angular momentum 1/2. Some correction factors are avail-
able to allow for different multipole orders and different final angular momenta,
{A.25.8}. There are also correction factors to allow for the fact that really the
proton and the rest of the nucleus move around their common center of gravity.
Similar correction factors can allow for the case that a single neutron instead of
a proton makes the transition. See {A.25.8} for more.

The initial and final proton states assumed in the estimates are further very
simple, {A.25.8}. They are like a shell model state with a simplified radial
dependence. Corrections exist for that radial dependence too. But the way the
estimates are mostly used in practice is as a reference. The actual decay rate
in a transition is compared to the Weisskopf or Moszkowski estimates. These
estimates are therefore used as “units” to express decay rates in.

If there is a big difference, it gives hints about the nature of the transition
process. For example, the actual decay rate is often orders of magnitude smaller
than the estimate. That can indicate that the state produced by the decay
Hamiltonian has only a small probability of being the correct final nuclear state.
In other words, there may be a “poor match-up” or “little overlap” between the
initial and final nuclear states. It is implicit in the simple proton states used
in the estimates that the state produced by the decay Hamiltonian has a good
chance of being right. But actual E1 transitions can easily be three or more
orders of magnitude slower than estimate, as shown in the next subsection. That
is similar to what was observed for the ballparks for beta decays given in section
14.19.7. One reason may be that some of these transitions are approximately
forbidden by isospin conservation.

Conversely, the observed transition rate may be several orders of magnitude
more rapid than the estimate. That may indicate that a lot of nucleons are
involved in the transition. Their contributions can add up. This is frequently
related to shape changes in nonspherical nuclei. For example, E2 transitions,
which are particularly relevant to deformed nuclei, may easily be orders of mag-
nitude faster than estimate.
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Figure 14.61: Weisskopf ballpark half-lifes for electromagnetic transitions versus
energy release. Broken lines include ballparked internal conversion. [pdf]
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Figure 14.62: Moszkowski ballpark half-lifes for magnetic transitions versus
energy release. Broken lines include ballparked internal conversion. [pdf]

Interestingly, M4 transitions tend to be quite close to the mark. Recall that
the shell model puts the highest spin states of one harmonic oscillator shell right
among the lowest spin states of the next lower shell, 14.15. Transitions between
these states involve a parity change and a large change in spin, leading to E3
and M4 transitions. They resemble single-particle transitions as the Weisskopf
and Moszkowski estimates assume. The estimates tend to work well for them.
One possible reason that they do not end up that much below ballpark as E1
transitions may be that these are heavy nuclei. For heavy nuclei the restrictions
put on by isospin may be less confining.

Finally, what other books do not point out is that there is a problem with
electrical transitions in the islands of isomerism. There is serious concern about
the correctness of the very Hamiltonian used in such transitions, {N.14}. This
problem does not seem to affect magnetic multipole transitions in the nonrela-
tivistic approximation.

Another problem not pointed out in various other books is for magnetic
transitions. Consider the shell model states, figure 14.15. They allow many
transitions inside the bands that by their unit change in angular momentum and
unchanged parity are M1 transitions. However, these states have a change in or-
bital angular momentum equal to two units. The single-particle model on which
the Weisskopf and Moszkowski estimates are based predicts zero transition rate
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for such M1 transitions. It does not predict the Moszkowski or Weisskopf val-
ues given above and in the figures. In general, the predicted single-particle
transition rates are zero unless the multipole order ℓ satisfies, {A.25.8}

|l1 − l2| 6 ℓ 6 l1 + l2

where l1 and l2 are the initial and final orbital azimuthal quantum numbers.
Fortunately this is only an issue for magnetic transitions, {A.25.8}.

Note that the single-particle model does give a nontrivial prediction for say
an 2p1/2 to 2p3/2 M1 transition. That is despite the fact that the simplified
Hamiltonian on which it is based would predict zero transition rate for the
model system. For say a 4p3/2 to 2p transition, the Weisskopf and Moszkowski
units also give a nontrivial prediction. That, however, is due to the incorrect
radial estimate (A.187). The correct single-particle model on which they are
based would give this transition rate as zero. Fortunately, transitions like 4p3/2

to 2p are not likely to be much of a concern.

14.20.5 Draft: Comparison with data

This subsection compares the theoretical Weisskopf and Moszkowski estimates
of the previous section with actual data. The data are from NuDat 2, [[12]]. The
plotted values are a broad but further quite random selection of data of appar-
ently good quality. A more precise description of the data selection procedure is
in {N.34}. Internal conversion effects, as discussed in subsection 14.20.6, have
been mathematically removed using the conversion constants given by NuDat
2. Computed decay rates were checked against the decay rates in W.u. as given
by NuDat 2.

Figures 14.63 and 14.64 show the results. What is plotted is the half life,
scaled to an (harmonic) average nucleus size. In particular,

Eℓ: τ1/2,red = τ1/2

(
A

32

)2ℓ/3

Mℓ: τ1/2,red = τ1/2

(
A

32

)2(ℓ−1)/3

The horizontal coordinate in the figures indicates the energy release Q.

The multipole levels are color coded. The Weisskopf values are shown as
broken lines. The solid lines are an attempt at a “best guess” based on the
single-particle model. For the electric transitions, they simply use the empirical
radial factor {A.25.8} (A.187). For the magnetic transitions, the best guess
was based on the more accurate Moszkowski estimates. The empirical radial
factor was again used. The momentum factor {A.25.8} (A.189) at minimum
multipole order was averaged between the proton and neutron values. The
g values in those factors were in turn averaged between their free space and
theoretical values.
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Figure 14.63: Comparison of electric gamma decay rates with theory. [pdf]

../../quansup/E.pdf


846 CHAPTER 14. NUCLEI [UNFINISHED DRAFT]

0.1 MeV 1

τ1/2,red

1 fs

1 ps

1 ns

1 µs

1 ms

1 s

1 h

1 y

1 ky

1 My

1 Gy

M1

M2

M3

M4

A = 32 108 256
even-even
odd-even
even-odd
odd-odd

Figure 14.64: Comparison of magnetic gamma decay rates with theory. [pdf]
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Symbol size indicates the nucleus size. Symbol shape indicates whether the
numbers of protons and neutrons are even or odd. A minus sign indicates that
the initial parity is odd; otherwise it is even. The final parity follows from the
multipole order and type. An open symbol center indicates that the multipole
level ℓ is higher than needed in the transition. More precisely, it indicates that
it is higher than the change in nuclear spin.

Please, your mouth is hanging open. It makes you look very goofy. You can
almost pretend that the magnetic data are not really as bad as they look, if you
cover up those numbers along the vertical axis with your arm.

There is no doubt that if engineers got data like that, they would conclude
that something is terribly and fundamentally wrong. Physicists however pooh-
pooh the problems.

First of all, physics textbooks typically only present the M4 data graphically
like this. Yes, the M4 transitions are typically “only” an order of magnitude or
so off. According to the figures here, this “good” agreement happens only for
the M4 data. Have a look at the E1 and E2 data. They end up pretty much
in the same humongous cloud of scattered data. In physics textbooks you do
not really see it, as these data are presented in separate histograms. And for
some reason, in those histograms the E2 transitions are typically only half an
order of magnitude above estimate, rather than 2.5 orders. (The E1 transitions
in those histograms are similar to the data presented here.)

Consider now a typical basic nuclear textbook for physicist. According to
the book, disagreements of several orders of magnitude from theory can happen.
The difference between “can happen” and “are normal” is not defined. The book
further explains: “In particular, experimental disintegration rates smaller than
the ones predicted by [the Weisskopf estimates] can mean that [the Weisskopf
radial factor {A.25.8} (A.187)] is not very reasonable and that the small overlap
of the [initial and final nuclear wave functions] decreases the values of λ.”

However, the “best guess” E1 line in figure 14.63 uses a better radial esti-
mate. It is not exactly enough to get anywhere near the typical data.

And “poor overlap” is an easy cop-out since nuclear wave functions are not
known. For example, it does not explain why some multipole orders like E1
have a very poor overlap of wave functions, and others do not.

Transition rates many orders of magnitude smaller than theory must have
a good reason. Random deviations from theory are not a reasonable explana-
tion. Having a transition rate typically four orders of magnitude smaller than
a reasonable theoretical estimate is like routinely hitting the bull’s eye of a 10
cm target to within a mm. There must be something causing this.

But what might that be? Conservation of angular momentum and parity
are already fully accounted for. To be sure, conservation of isospin is not.
However, isospin is an approximate symmetry. It is not accurate enough to
explain reductions by 4 or 5 orders of magnitude. The two examples mentioned
in subsection 14.20.2 managed just 1 order of magnitude slow down. And not
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all E1 transitions are forbidden anyway. And light nuclei, for which isospin
conservation is presumably more accurate, seem no worse than heavier ones in
figure 14.63. Actually, the two best data are small nuclei.

To be sure, the above arguments implicitly assume that a bull’s eye is hit
by an incredibly accurate cancelation of opposite terms in the so-called matrix
element that describes transitions. There is an alternate possibility. The final
nuclear wave function could be zero where the initial one is nonzero and vice
versa. In that case, the integrand in the matrix element is everywhere zero, and
no accurate cancellations are needed.

But consider now the top half of figure 14.65. Here mixed E1 +M2 transi-
tions are plotted. These transitions take sometimes place through the electric
dipole mechanism and sometimes through the magnetic quadrupole one. Note
that there are three very fast M2 transitions, the first, fourth, and tenth. These
transitions occur at rates of 49, 58, respectively 21 times faster than the best
guess based on the single-particle model. So the initial and final wave functions
must unavoidably “overlap” very well. But how then to explain that the corre-
sponding electric rates are 31 000, 7 800, and 200 times slower than best guess?
The initial and final wave functions are the same. While there is a different
operator sandwiched in between, {A.25}, the picture still becomes that one op-
erator apparently achieves a bull’s eye of perfect cancellation. There should be
an explanation.

The example textbook also notes: “Experimental values higher than pre-
dicted by [the Weisskopf estimates] can mean, on the other hand, that the
transition involves the participation of more than one nucleon or even a collec-
tive participation of the whole nucleus.” The textbook notes in particular that
the reason that most E2 transitions are faster than theory is due to the fact
that these transitions are common among collective bands, especially rotational
bands in deformed nuclei.

This is a well established argument. In principle 50 protons transitioning
could indeed explain why many E2 transitions in figure 14.63 end up on the
order of a rough factor 502 faster than theory.

But there are again some problems. For one, the mixed E1 +M2 transitions
discussed earlier are not among states in the same rotational bands. The nuclear
parity flips over in them. But the mentioned examples showed that several M2
transitions were also much faster than single-particle theory. While that might
still be due to collective motion, it does not explain why the E1 transitions then
were so slow.

Consider also the bottom of figure 14.65. Here mixed M1 + E2 transitions
are plotted. Note that the E2 transitions are again much faster than theory,
with few exceptions. But how then to explain that the M1 transitions between
the same initial and final states are much slower than theory? More of these
miraculously accurate cancellations? There are quite a few transitions at the
higher energies where the M1 transition proceeds slower than the E2 one, despite
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Figure 14.65: Comparisons of decay rates between the same initial and final
states.
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the difference in multipole order.
It is true that the orbital effect is relatively minor in magnetic transitions of

minimal multipole order, {A.25.8}. But the transitions given by black symbols
with open centers in the bottom of figure 14.65 are not of minimal multipole
order. And in any case, “relatively minor” gets nowhere near to explaining
differences of four or five orders of magnitude in relative decay rates.

The same problem exists for the idea that the special nature of transitions
within rotational bands might somehow be responsible. Surely the idea of rota-
tional bands is not be far accurate enough to explain the humongous differences?
And some of the worst offenders in figure 14.65 are definitely not between states
in the same rotational band. Those are again the ones where the black symbol
has an open center; the nuclear spin does not change in those transitions.

There are 65 randomly chosen E1 transitions plotted in figure 14.63. Out
of these 65, only one manages to achieve the “best guess” theoretical transition
rate. That is a boron-10 transition. (You may have to strain your eyes to see
it, it is such a small nucleus. It is right on top of the best-guess line, just before
1 MeV.) On the other hand, one transition is slower than best guess by more
than 8 orders of magnitude, and another three are slower by more than 7 orders
of magnitude.

Compare that with the 67 E2 transitions. Only one manages the three orders
of magnitude slower than best guess that is so ho-hum for E1 transitions. That
transition is a 2 340 keV 29/2

+ to 2 063 keV 25/2
+ At205

85 one. The amount of spin
that is involved here is not exactly run-of-the mill. Note also that the three
runners-up for being far above the E2 line are E1 transitions, rather than E2
ones. . .

Also, why do E3 transitions act much like E1 transitions in the first half of
the energy range and like E2 ones over the second half? It seems weird.

The example textbook concludes: “In figure [. . . ] one notes very good agree-
ment between theoretical values and experimental ones for M4. This behavior is
typical for transitions of high multipolarity.” Based on figures 14.63 and 14.64,
it seems very optimistic to call M4 transitions “typical” for high multipolarity.

Needless to say, then, the author of this book finds the discussion of measured
gamma decay versus theory in standard nuclear text books grossly inadequate,
and highly unconvincing where it is given at all. If you feel the same way, see
note {N.36} for one alternative idea.

14.20.6 Draft: Internal conversion

In internal conversion, a nucleus gets rid of excitation energy by kicking an
atomic electron out of the atom. This is most important for transitions between
states of zero spin. For such transitions, the normal gamma decay process
of emitting a photon is not possible since a photon cannot be emitted with
zero angular momentum. However, the ejected electron, called the “conversion
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electron,” can keep whatever angular momentum it has. (For practical purposes,
that is zero. Electrons that are not in s states have negligible probabilility of
being found inside the nucleus.) Transitions in which no angular momentum is
emitted by the nucleus are called E0 transitions.

A ballpark decay rate for E0 internal conversion can be found in Blatt &
Weisskopf [7, 8, p. 621]. Where else. Converted to look similar to the gamma
decay Weisskopf estimate (A.190), it reads

λE0Blatt&Weisskopf ∼ αω(kR)4
2

25
α(αZ)3

(
2mec

2

Q

)9/2

ω ≡ Q

~
k ≡ Q

~c

(14.68)
Here α = e2/4πǫ0~c ≈ 1/137 is the fine structure constant and Q is the energy
release. Further mec

2 is the rest mass energy of the electron, which is about
half an MeV. The initial and final parities need to be the same.

Note that the first three factors in the expression above look much like an
E2 electric transition. However, the next three factors are very small, though
less so for heavy nuclei. On the other hand the final factor can be very large
if the energy release Q is much less than an MeV. So E0 internal conversion is
relatively speaking most effective for low-energy transitions in heavy nuclei.

Putting in the numbers gives the equivalent of (14.67) as

λE0 = 3.8Z3A4/3Q1/2 (14.69)

Once again, the energy release should be in MeV and then the decay rate will be
per second. Note that absolutely speaking the decay rate does in fact increase
with the energy release, but very weakly.

Table 14.5 shows how the estimate stands up to scrutiny. The listed E0
transitions are all those for which NuDat 2, [[12]], gives useful and unambiguous
data. All these turn out to be 0+ to 0+ transitions.

The second-last column in the table shows a scaled half life. It is scaled to
some (harmonic) average nucleus size Z = 16, A = 32. In particular

τ1/2,red ≡ τ1/2
Z3

163
A4/3

324/3

The final column shows what the scaled half life should be according to the
theoretical estimate above. Note that, excluding the final three nuclei, the
agreement is not too bad, as they come. What is an order of magnitude or so
between friends? After the previous subsections everything would look accurate.

However, the final three nuclei decay much more rapidly than internal con-
version predicts. A second decay process occurs here: electron-positron pair
creation. This requires that the nuclear energy release Q is at least large enough
to provide the rest mass energy of the electron and positron. That is a bit over
a MeV. However, as the table suggests, to get a significant effect, more energy
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Nucleus Q τ1/2 τ1/2,red I.C. Theory
µs µs µs

Hg184
80 0.375 0.00062 0.80 0.72

Kr72
36 0.671 0.0263 0.88 0.54

Ge72
32 0.691 0.4442 10. 0.53

Mo98
42 0.735 0.0218 1.8 0.51

Pb192
82 0.769 0.00075 1.1 0.50

Zr98
40 0.854 0.064 4.4 0.47

Pb194
82 0.931 0.0011 1.6 0.45

Zr96
40 1.582 0.0380 2.6 0.35

Zr90
40 1.761 0.0613 3.8 0.33

Ni68
28 1.770 0.2760 4.0 0.33

Ca40
20 3.353 0.00216 0.0057 0.24

S32
16 3.778 0.00254 0.0025 0.23

O16
8 6.048 0.00007 0.000003 0.18

Table 14.5: Half lifes for E0 transitions.

is needed. There should be enough additional energy to give the electron and
positron relativistically nontrivial kinetic energies.

In transitions other than between states of zero spin, normal gamma decay is
possible. But even in those decays, internal conversion and pair production may
compete with gamma decay. They are especially important in highly forbidden
gamma decays.

The so-called “internal conversion coefficient” αℓ gives the internal conver-
sion rate of a transition as a fraction of its gamma decay rate:

αℓ =
λIC
λγ

(14.70)

The following ballpark values for the internal conversion coefficient in electric
and magnetic transitions can be derived ignoring relativistic effects and electron
binding energy:

αEℓ =
1

n3

ℓ

ℓ+ 1
α(αZ)3

(
2mec

2

Q

)ℓ+5/2

αMℓ =
1

n3
α(αZ)3

(
2mec

2

Q

)ℓ+3/2

(14.71)
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Here, once again, ℓ is the multipole order of the decay, Q the nuclear energy
release, and α ≈ 1/137 the fine structure constant. Further n is the principal
quantum number of the atomic shell that the conversion electron comes from,
Note the brilliance of using the same symbol for the internal conversion coeffi-
cients as for the fine structure constant. This book will use subscripts to keep
them apart.

The above estimates are very rough. They are routinely off by a couple of
orders of magnitude. However, they do predict a few correct trends. Internal
conversion is relatively more important compared to gamma decay if the energy
release Q of the decay is low, if the multipolarity ℓ is high, and if the nucleus
is heavy. Ejection from the n = 1 K shell tends to dominate ejection from the
other shells, but not to a dramatic amount.

(You might wonder why the earlier ballpark for E0 transitions looks math-
ematically like an ℓ = 2 rate, instead of some ℓ = 0 one. The reason is that E0
transitions do not create an electromagnetic field outside the nucleus, compare
for example chapter 7.4.3. So the interaction with the electron is limited to the
interior of the nucleus. That reduces the magnitude of the interaction greatly.)

Internal conversion is especially useful for investigating nuclei because the
conversion coefficients are different for electric and magnetic transitions. There-
fore, detailed decay measurements can shed light on the question whether a given
transition is an electric or a magnetic one. Since they also depend strongly on
the multipole order, they also help establish that. To be sure, the estimates
above are not by far accurate enough to do these things. But much more accu-
rate values have been computed using relativistic theories and tabulated.

Internal pair formation supplements internal conversion, [7, 8, p. 622]. The
pair formation rate is largest where the internal conversion rate is smallest.
That is in the region of low atomic number and high transition energies.

One very old reference incorrectly states that internal conversion happens
when a gamma ray emitted by the nucleus knocks a surrounding electron out of
the atom. Such a process, the photoelectric effect, is in principle possible, but its
probability would be negligibly small. Note in particular that in many decays,
almost no gamma rays are emitted but lots of conversion electrons. (While the
interaction between the nucleus and the conversion electron is of course caused
by photons, these are virtual photons. They would not come out of the nucleus
even if you stripped away the atomic electrons.)

It may be noted that “internal conversion” is not unique to nuclei. Energetic
atomic electron transitions can also get rid of their energy by ejection of another
electron. The ejected electrons are called “Auger electrons.” They are named
after the physicist Auger, who was the first man to discover the process. (Some
unscrupulous woman, Lise Meitner, had discovered and published it earlier,
selfishly attempting to steal Auger’s credit, {N.35}). In fact, internal conversion
can give rise to additional Auger electrons as other electrons rush in to fill the
internal converion electron hole. And so can electron capture.
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Appendix A

Addenda

This appendix describes a number of additional topics. They did not seem
important enough to warrant including them in the main text. An addition is
always a distraction; at the minimum you have to worry about whether you need
to worry about it. However, many of the topics below are covered in well-known
other texts. Obviously many other authors disagree about their importance. If
they turn out to be right, you can find it here.

A.1 Classical Lagrangian mechanics

Lagrangian mechanics is a way to simplify complicated dynamical problems.
This note gives a brief overview. For details and practical examples you will
need to consult a good book on mechanics.

A.1.1 Introduction

As a trivial example of how Lagrangian mechanics works, consider a simple
molecular dynamics simulation. Assume that the forces on the particles are
given by a potential that only depends on the positions of the particles.

The difference between the net kinetic energy and the net potential energy
is called the “Lagrangian.” For a system of particles as considered here it takes
the form

L =
∑

j

1
2
mj|~vj|2 − V (~r1,~r2, . . .)

where j indicates the particle number and V the potential of the attractions
between the particles and any external forces.

It is important to note that in Lagrangian dynamics, the Lagrangian must
mathematically be treated as a function of the velocities and positions of the
particles. While for a given motion, the positions and velocities are in turn a
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function of time, time derivatives must be implemented through the chain rule,
i.e. by means of total derivatives of the Lagrangian.

The “canonical momentum” pcj,i of particle j in the i direction, (with i = 1,
2, or 3 for the x, y, or z components respectively), is defined as

pcj,i ≡
∂L
∂vj,i

For the Lagrangian above, this is simply the normal momentum mvj,i of the
particle in the i-direction.

The Lagrangian equations of motion are

dpcj,i
dt

=
∂L
∂rj,i

This is simply Newton’s second law in disguise: the left hand side is the time
derivative of the linear momentum of particle j in the i-direction, giving mass
times acceleration in that direction; the right hand side is the minus the spatial
derivative of the potential, which gives the force in the i direction on particle j.
Obviously then, use of Lagrangian dynamics does not help here.

A.1.2 Generalized coordinates

One place where Lagrangian dynamics is very helpful is for macroscopic objects.
Consider for example the dynamics of a Frisbee. Nobody is going to do a
molecular dynamics computation of a Frisbee. What you do is approximate the
thing as a “solid body,” (or more accurately, a rigid body). The position of every
part of a solid body can be fully determined using only six parameters, instead
of the countless position coordinates of the individual atoms. For example,
knowing the three position coordinates of the center of gravity of the Frisbee
and three angles is enough to fully fix it. Or you could just choose three reference
points on the Frisbee: giving three position coordinates for the first point, two
for the second, and one for the third is another possible way to fix its position.

Such parameters that fix a system are called “generalized coordinates.” The
word generalized indicates that they do not need to be Cartesian coordinates;
often they are angles or distances, or relative coordinates or angles. The number
of generalized coordinates is called the number of degrees of freedom. It varies
with the system. A bunch of solid bodies moving around freely will have six per
solid body; but if there are linkages between them, like the bars in your car’s
suspension system, it reduces the number of degrees of freedom. A rigid wheel
spinning around a fixed axis has only one degree of freedom, and so does a solid
pendulum swinging around a fixed axis. Attach a second pendulum to its end,
maybe not in the same plane, and the resulting compound pendulum has two
degrees of freedom.
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If you try to describe such systems using plain old Newtonian mechanics,
it can get ugly. For each solid body you can apply that the sum of the forces
must equal mass times acceleration of the center of gravity, and that the net
moment around the center of gravity must equal the rate of change of angular
momentum, which you then presumably deduce using the principal axis system.

Instead of messing with all that complex vector algebra, Lagrangian dynam-
ics allows you to deal with just a single scalar, the Lagrangian. If you can merely
figure out the net kinetic and potential energy of your system in terms of your
generalized coordinates and their time derivatives, you are in business.

If there are linkages between the members of the system, the benefits mag-
nify. A brute-force Newtonian solution of the three-dimensional compound pen-
dulum would involve six linear momentum equations and six angular ones. Yet
the thing has only two degrees of freedom; the angular orientations of the in-
dividual pendulums around their axes of rotation. The reason that there are
twelve equations in the Newtonian approach is that the support forces and
moments exerted by the two axes add another 10 unknowns. A Lagrangian
approach allows you to just write two equations for your two degrees of free-
dom; the support forces do not appear in the story. That provides a great
simplification.

A.1.3 Lagrangian equations of motion

This section describes the Lagrangian approach to dynamics in general. Assume
that you have chosen suitable generalized coordinates that fully determine the
state of your system. Call these generalized coordinates q1, q2, . . . and their
time derivatives q̇1, q̇2, . . . . The number of generalized coordinates K is the
number of degrees of freedom in the system. A generic canonical coordinate
will be indicated as qk.

Now find the kinetic energy T and the potential energy V of your system in
terms of these generalized coordinates and their time derivatives. The difference
is the Lagrangian:

L(q1, q2, . . . , qK , q̇1, q̇2, . . . , q̇K , t)

≡ T (q1, q2, . . . , qK , q̇1, q̇2, . . . , q̇K , t)− V (q1, q2, . . . , qK , t)

Note that the potential energy depends only on the position coordinates of the
system, but the kinetic energy also depends on how fast they change with time.
Dynamics books give lots of helpful formulae for the kinetic energy of the solid
members of your system, and the potential energy of gravity and within springs.

The canonical momenta are defined as

pck ≡
∂L
∂q̇k

(A.1)
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for each individual generalized coordinate qk. The equations of motion are

dpck
dt

=
∂L
∂qk

+Qk (A.2)

There is one such equation for each generalized coordinate qk, so there are
exactly as many equations as there are degrees of freedom. The equations are
second order in time, because the canonical momenta involve first order time
derivatives of the qk.

The Qk terms are called generalized forces, and are only needed if there are
forces that cannot be modeled by the potential V . That includes any frictional
forces that are not ignored. To find the generalized force Qk at a given time,
imagine that the system is displaced slightly at that time by changing the cor-
responding generalized coordinate qk by an infinitesimal amount δqk. Since this
displacement is imaginary, it is called a “virtual displacement.” During such a
displacement, each force that is not modelled by V produces a small amount
of “virtual work.” The net virtual work divided by δqk gives the generalized
force Qk. Note that frictionless supports normally do not perform work, because
there is no displacement in the direction of the support force. Also, frictionless
linkages between members do not perform net work, since the forces between
the members are equal and opposite. Similarly, the internal forces that keep a
solid body rigid do not perform work.

The bottom line is that normally the Qk are zero if you ignore friction. How-
ever, any collisions against rigid constraints have to be modeled separately, just
like in normal Newtonian mechanics. For an infinitely rigid constraint to absorb
the kinetic energy of an impact requires infinite force, and Qk would have to
be an infinite spike if described normally. Of course, you could instead consider
describing the constraint as somewhat flexible, with a very high potential energy
penalty for violating it. Then make sure to use an adaptive time step in any
numerical integration.

It may be noted that in relativistic mechanics, the Lagrangian is not the
difference between potential and kinetic energy. However, the Lagrangian equa-
tions of motion (A.1) and (A.2) still apply.

The general concept that applies both nonrelativistically and relativistically
is that of “action.” The action S is defined as the time integral of the La-
grangian:

S ≡
∫ t2

t1

L dt (A.3)

Here t1 and t2 are suitably chosen starting and ending times that enclose the
time interval of interest. The action is unchanged by infinitesimal imaginary
displacements of the system. It turns out that that is all that is needed for the
Lagrangian equations of motion to apply.

See {D.3.1} for a derivation of the above claims.
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A.1.4 Hamiltonian dynamics

For a system with K generalized coordinates the Lagrangian approach provides
one equation for each generalized coordinate qk. These K equations involve
second order time derivatives of the K unknown generalized coordinates qk.
However, if you consider the time derivatives q̇k as K additional unknowns, you
get K first order equations for these 2K unknowns. An additional K equations
are:

dqk
dt

= q̇k

These are no longer trivial because they now give the time derivatives of the
first K unknowns in terms of the second K of them. This trick is often needed
when using canned software to integrate the equations, because canned software
typically only does systems of first order equations.

However, there is a much neater way to get 2K first order equations in 2K
unknowns, and it is particularly close to concepts in quantum mechanics. Define
the “Hamiltonian” as

H(q1, q2, . . . , qK , p
c
1, p

c
2, . . . , p

c
K , t) ≡

K∑

k=1

q̇kp
c
k − L(q1, q2, . . . , qK , q̇1, q̇2, . . . , q̇K , t)

(A.4)
In the right hand side expression, you must rewrite all the time derivatives q̇k
in terms of the canonical momenta

pck ≡
∂L
∂q̇k

because the Hamiltonian must be a function of the generalized coordinates and
the canonical momenta only. (In case you are not able to readily solve for the q̇k
in terms of the pck, things could become messy. But in principle, the equations
to solve are linear for given values of the qk.)

In terms of the Hamiltonian, the equations of motion are

dqk
dt

=
∂H

∂pck

dpck
dt

= −∂H
∂qk

+Qk (A.5)

where the Qk, if any, are the generalized forces as before.
If the Hamiltonian does not explicitly depend on time and the generalized

forces are zero, these evolution equations imply that the Hamiltonian does not
change with time at all. For such systems, the Hamiltonian is the conserved total
energy of the system. In particular for a nonrelativistic system, the Hamiltonian
is the sum of the kinetic and potential energies, provided that the position of
the system only depends on the generalized coordinates and not also explicitly
on time.

See {D.3.2} for a derivation of the above claims.
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A.1.5 Fields

The previous subsections discussed discrete mechanical objects like molecules,
Frisbees, and pendulums. However, the Lagrangian and Hamiltonian formalisms
can be generalized to fields like the electromagnetic field. That is mainly im-
portant for advanced physics like quantum field theories; these are not really
covered in this book. But since it does appear in one advanced addendum,
{A.22}, this subsection will summarize the main points.

The simplest classical field is the electrostatic potential ϕ. However, there
may be more than one potential in a system. For example, in electrodynamics
there are also vector potentials. So the generic potential will be indicated as ϕα,
where the index α indicates what particular potential it is. A single potential
ϕα is still characterized by infinitely many variables: there is a value of the
potential at each position.

In addition there may be discrete variables. Electromagnetics would be
pretty boring if you would not have some charged particles around. A generic
coordinate of such a particle will be indicated as qk. For example, if there is just
one charged particle, q1, q2, and q3 could represent the x, y, and z components
of the position of the particle. If there are more particles, just keep increasing
k.

Under the above conditions, the Lagrangian will involve an integral:

L = L0 +

∫
£ d3~r

Here £ is called the “Lagrangian density.” It is essentially a Lagrangian per
unit volume. The integral is over all space.

The first part L0 is as before. It will depend on the discrete variables and
their time derivatives:

L0 = L0(. . . ; qk, q̇k; . . .)

The dot indicates the time derivative of the variable.
The Lagrangian density £ will depend on both the fields and the discrete

coordinates:

£ = £(. . . ;ϕα, ϕαt, ϕαx, ϕαy, ϕαz; . . . ; qk; q̇k; . . .)

Here the subscripts on the field indicate partial derivatives:

ϕαt =
∂ϕα
∂t

ϕαx =
∂ϕα
∂x

ϕαy =
∂ϕα
∂y

ϕαz =
∂ϕα
∂z

In principle, there is no reason why the Lagrangian could not contain higher
order derivatives, but fortunately you do not see such things in quantum field
theories.
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This brings up one practical point. Consider a contribution such as the
potential energy of a particle called P with charge q̄P in an electrostatic field
ϕ. Assuming that the particle is a point charge, that potential energy is q̄PϕP

where ϕP is the potential evaluated at the position ~rP of the particle. But
potentials evaluated at a point are problematic. You would really want the
potentials to always appear inside integrals. To achieve that, you can assume
that the particle is not really a point charge. That its charge is spread out just
a little bit around the nominal position ~rP. In that case, the potential energy
takes the form: ∫

q̄Pδ
3
ε(~r −~rP)ϕ(~r; t) d3~r ≈ q̄Pϕ(~rP; t)

Here δ3ε(~r − ~rP) is some chosen function that is zero except within some small
distance ε of ~rP, and that integrates to one. Because this function is zero except
very close to ~rp, you can approximate ϕ(~r; t) by ϕ(~rP; t) and then take it out
of the integral. That gives the original expression for the potential energy. But
the integral is easier to use in the Lagrangian. Its integrand becomes part of
the Lagrangian density. And you can always take the limit ε→ 0 at the end of
the day to get point charges.

The Lagrangian equations for the discrete parameters are exactly the same
as before, but of course now the Lagrangian includes the integral, {D.3.3}:

d

dt

(
∂L0

∂q̇k
+

∫
∂£

∂q̇k
d3~r

)
=
∂L0

∂qk
+

∫
∂£

∂qk
d3~r (A.6)

There is one such equation for each discrete parameter qk, valid at any time.
The Lagrangian equations for the field are based on the Lagrangian density

instead of the Lagrangian itself. That is why you really want to have the terms
involving the field as integrals. The equations are

∂

∂t

(
∂£

∂ϕαt

)
+

∂

∂x

(
∂£

∂ϕαx

)
+

∂

∂y

(
∂£

∂ϕαy

)
+

∂

∂z

(
∂£

∂ϕαz

)
=

∂£

∂ϕα
(A.7)

There is one such equation for each field ϕα, valid at any position and time.
The canonical momenta are now

pck ≡
∂L0

∂q̇k
+

∫
∂£

∂q̇k
d3~r πc

α ≡
∂£

∂ϕαt
(A.8)

Note that the field momentum πc
α is per unit volume.

The Hamiltonian is

H =
∑

k

pckq̇k +
∑

α

∫
πc
αϕαt d

3~r − L (A.9)

The time derivatives q̇k and ϕαt must again be expressed in terms of the corre-
sponding canonical momenta.
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Hamilton’s equations for discrete variables are as before:

dqk
dt

=
∂H

∂pck

dpck
dt

= −∂H
∂qk

(A.10)

The equations for the fields are a bit tricky. If there are no discrete vari-
ables, there is no problem. Then the Hamiltonian can be written in terms of a
Hamiltonian density h as

H =

∫
h d3~r

In that case Hamilton’s equations are

∂ϕα
∂t

=
∂h

∂πc
α

∂πc
α

∂t
= − ∂h

∂ϕα
+

∂

∂x

(
∂h

∂ϕαx

)
+

∂

∂y

(
∂h

∂ϕαy

)
+

∂

∂z

(
∂h

∂ϕαz

)

Unfortunately, if there are discrete parameters, products of integrals will
appear. Then there is no Hamiltonian density. So the only thing you can do do
is differentiate the full Hamiltonian H instead of a Hamiltonian density h. At
the end of every differentiation, you will then need to drop an

∫
and a d3~r. In

particular, differentiate the HamiltonianH until you have to start differentiating
inside an integral, like, say,

∂

∂ϕα

∫
£ d3~r

At that time, make the substitution

∂

∂ϕα

∫
£ d3~r =⇒ ∂£

∂ϕα

This will produce the right answer, although the left hand side above is math-
ematically complete nonsense.

See {D.3.3} for a justification of this procedure and the other claims in this
subsection.

A.2 An example of variational calculus

The problem to solve in addendum {A.22.1} provides a simple example of vari-
ational calculus.

The problem can be summarized as follows. Given is the following expression
for the net energy of a system:

E =
ǫ1
2

∫
(∇ϕ)2 d3~r −

∫
σpϕ d3~r (1)



A.2. AN EXAMPLE OF VARIATIONAL CALCULUS 865

Here the operator ∇ is defined as

∇ ≡ ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z
=⇒ ∇ϕ ≡ ı̂

∂ϕ

∂x
+ ̂

∂ϕ

∂y
+ k̂

∂ϕ

∂z

The integrals are over all space, or over some other given region. Further ǫ1 is
assumed to be a given positive constant and σp = σp(~r) is a given function of
the position ~r. The function ϕ = ϕ(~r) will be called the potential and is not
given. Obviously the energy depends on what this potential is. Mathematicians
would say that E is a “functional,” a number that depends on what a function
is.

The energy E will be minimal for some specific potential ϕmin. The objective
is now to find an equation for this potential ϕmin using variational calculus.

To do so, the basic idea is the following: imagine that you start at ϕmin and
then make an infinitesimally small change dϕ to it. In that case there should
be no change dE in energy. After all, if there was an negative change in E,
then E would decrease. That would contradict that ϕmin produces the lowest
energy of all. If there was an positive infinitesimal change in E, then a change
in potential of opposite sign would give a negative change in E. Again that
produces a contradiction to what is given.

The typical physicist would now work out the details as follows. The slightly
perturbed potential is written as

ϕ(~r) = ϕmin(~r) + δϕ(~r)

Note that the d in dϕ has been renotated as δ. That is because everyone does
so in variational calculus. The symbol does not make a difference, the idea
remains the same. Note also that δϕ is a function of position; the change away
from ϕmin is normally different at different locations. You are in fact allowed to
choose anything you like for the function δϕ, as long as it is sufficiently small
and it is zero at the limits of integration.

Now just take differentials like you typically do it in calculus or physics. If
in calculus you had some expression like f 2, you would say df 2 = 2fdf . (For
example, if f is a function of a variable t, then df 2/dt = 2fdf/dt. But physicists
usually do not bother with the dt; then they do not have to worry what exactly
f is a function of.) Similarly

δ(∇ϕ)2 = 2(∇ϕ) · δ(∇ϕ)

where

δ∇ϕ = ∇(ϕmin + δϕ)−∇(ϕmin) = ∇δϕ
so

δ(∇ϕ)2 = 2(∇ϕ) · (∇δϕ)
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For a change starting from ϕmin:

δ(∇ϕ)2 = 2(∇ϕmin) · (∇δϕ)

(Note that ϕ by itself gets approximated as ϕmin, but δϕ is the completely
arbitrary change that can be anything.) Also,

δ(σpϕ) = σpδϕ

because σp is a given constant at every position.
Total you get for the change in energy that must be zero

0 = δE =
ǫ1
2

∫
2(∇ϕmin) · (∇δϕ) d3~r −

∫
σpδϕ d3~r (2)

A conscientious mathematician would shudder at the above manipulations.
And for good reason. Small changes are not good mathematical concepts. There
is no such thing as “small” in mathematics. There are just limits where things go
to zero. What a mathematician would do instead is write the change in potential
as a some multiple λ of a chosen function ϕc. So the changed potential is written
as

ϕ(~r) = ϕmin(~r) + λϕc(~r)

The chosen function ϕc can still be anything that you want that vanishes at
the limits of integration. But it is not assumed to be “small.” So now no
mathematical nonsense is written. The energy for this changed potential is

E =
ǫ1
2

∫
[∇(ϕmin + λϕc)]

2 d3~r −
∫
σp(ϕmin + λϕc) d

3~r

Now this energy is a function of the multiple λ. And that is a simple numerical
variable. The energy must be smallest at λ = 0, because ϕmin gives the minimum
energy. So the above function of λ must have a minimum at λ = 0. That means
that it must have a zero derivative at λ = 0. So just differentiate the expression
with respect to λ. (You can differentiate as is, or simplify first and bring λ
outside the integrals.) Set this derivative to zero at λ = 0. That gives the same
result (2) as derived by physicists, except that ϕc takes the place of δϕ. The
result is the same, but the derivation is nowhere fishy.

This derivation will return to the notations of physicists. The next step is
to get rid of the derivatives on δϕ. Note that
∫
(∇ϕmin) · (∇δϕ) d3~r =

∫∫∫
∂ϕmin

∂x

∂δϕ

∂x
+
∂ϕmin

∂y

∂δϕ

∂y
+
∂ϕmin

∂z

∂δϕ

∂z
dxdydz

The way to get rid of the derivatives on δϕ is by integration by parts. Integration
by parts pushes a derivative from one factor on another. Here you see the real
reason why the changes in potential must vanish at the limits of integration. If
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they did not, integrations by parts would bring in contributions from the limits
of integration. That would be a mess.

Integrations by parts of the three terms in the integral in the x, y, and z
directions respectively produce

∫
(∇ϕmin) · (∇δϕ) d3~r =

∫∫∫
−∂

2ϕmin

∂x2
δϕ− ∂2ϕmin

∂y2
δϕ− ∂2ϕmin

∂z2
δϕ dxdydz

In vector notation, that becomes
∫
(∇ϕmin) · (∇δϕ) d3~r = −

∫
(∇2ϕmin)δϕ d3~r

Substituting that in the change of energy (2) gives

0 = δE =

∫
(−ǫ1∇2ϕmin − σp)δϕ d3~r

The final step is to say that this can only be true for whatever change δϕ
you take if the parenthetical expression is zero. That gives the final looked-for
equation for ϕmin:

−ǫ1∇2ϕmin − σp = 0 (3)

To justify the above final step, call the parenthetical expression f for short.
Then the variational statement above is of the form

∫
fδϕ d3~r = 0

where δϕ can be arbitrarily chosen as long as it is zero at the limits of integration.
It is now to be shown that this implies that f is everywhere zero inside the region
of integration.

(Note here that whatever function f is, it should not contain δϕ. And
there should not be any derivatives of δϕ anywhere at all. Otherwise the above
statement is not valid.)

The best way to see that f must be zero everywhere is first assume the
opposite. Assume that f is nonzero at some point P. In that case select a
function δϕ that is zero everywhere except in a small vicinity of P, where it is
positive. (Make sure the vicinity is small enough that f does not change sign
in it.) Then the integral above is nonzero; in particular, it will have the same
sign as f at P. But that is a contradiction, since the integral must be zero. So
the function f cannot be nonzero at a point P; it must be zero everywhere.

(There are more sophisticated ways to do this. You could take δϕ as a
positive multiple of f that fades away to zero away from point P. In that case
the integral will be positive unless f is everywhere zero. And sign changes in f
are no longer a problem.)
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A.3 Galilean transformation

The Galilean transformation describes coordinate system transformations in
nonrelativistic Newtonian physics. This note explains these transformation
rules. Essentially the same analysis also applies to Lorentz transformations
between observers using arbitrarily chosen coordinate systems. The small dif-
ference will be indicated.

Consider two observers A’ and B’ that are in inertial motion. In other
words, they do not experience accelerating forces. The two observers move
with a relative velocity of magnitude V relative to each other. Observer A’
determines the time of events using a suitable clock. This clock displays the
time tA′ as a single number, say as the number of seconds since a suitably chosen
reference event. To specify the position of events, observer A’ uses a Cartesian
coordinate system (xA′ , yA′ , zA′) that is at rest compared to him. The origin of
the coordinate system is chosen at a suitable location, maybe the location of
the reference event that is used as the zero of time.

Observer B’ determines time using a clock that indicates a time tB′ . This
time might be zero at a different reference event than the time tA′ . To specify the
position of events, observer B’ uses a Cartesian coordinate system (xB′ , yB′ , zB′)
that is at rest compared to her. The origin of this coordinate system is differ-
ent from the one used by observer A’. For one, the two origins are in motion
compared to each other with a relative speed V .

The question is now, what is the relationship between the times and positions
that these two observers attach to arbitrary events.

To answer this, it is convenient to introduce two additional observers A and
B. Observer A is at rest compared to observer A’. However, she takes her zero
of time and the origin of her coordinate system from observer B’. In particular,
the location and time that A associates with her origin at time zero is also the
origin at time zero for observer B’:

(xA, yA, zA, tA) = (0, 0, 0, 0) ⇐⇒ (xB′ , yB′ , zB′ , tB′) = (0, 0, 0, 0)

The other additional observer, B, is at rest compared to B’. Like observer
A, observer B uses the same origin and zero of time as observer B’:

(xB, yB, zB, tB) = (0, 0, 0, 0) ⇐⇒ (xB′ , yB′ , zB′ , tB′) = (0, 0, 0, 0)

Observer B orients her coordinate system like A does.
That makes the relationship between A and B just like A and B as dis-

cussed for the Lorentz transform, figure 1.2. However, the classical Galilean
transformation is much simpler than the Lorentz transformation. It is

tB = tA xB = xA − V tA yB = yA zB = zA (A.11)

Note however that these classical formulae are only an approximation. They
can only be used if the relative velocity V between the observers is much smaller



A.3. GALILEAN TRANSFORMATION 869

than the speed of light. In fact, if you take the limit c → ∞ of the Lorentz
transformation (1.6), you get the Galilean transformation above.

The question still is how to relate the times and locations that observer
A’ attaches to events to those that observer B’ does. To answer that, it is
convenient to do it in stages. First relate the times and locations that A’
attaches to events to the ones that A does. Then use the formulae above to
relate the times and locations that A attaches to events to the ones that B does.
Or, if you want the relativistic transformation, at this stage use the Lorentz
transformation (1.6). Finally, relate the times and locations that B attaches to
events to the ones that B’ does.

Consider then now the relationship between the times and locations that A’
attaches to events and the ones that A does. Since observer A and A’ are at
rest relative to each other, they agree about differences in time between events.
However, A’ uses a different zero for time. Therefore, the relation between the
times used by the two observers is

tA = tA′ − τAA′

Here τAA′ is the time that observer A’ associates with the reference event that
observer A uses as time zero. It is a constant, and equal to −τA′A. The latter
can be seen by simply setting tA′ zero in the formula above.

To specify the location of events, both observers A’ and A use Cartesian
coordinate systems. Since the two observers are at rest compared to each other,
they agree on distances between locations. However, their coordinate systems
have different origins. And they are also oriented under different angles. That
makes the unit vectors ı̂, ̂, and k̂ along the coordinate axes different. In vector
form the relation between the coordinates is then:

xAı̂A + yÂA + zAk̂A = (xA′ − ξAA′ )̂ıA′ + (yA′ − ηAA′)̂A′ + (zA′ − ζAA′)k̂A′

(A.12)
Here ξAA′ , ηAA′ , and θAA′ are the position coordinates that observer A’ associates
with the origin of the coordinate system of A. By putting (xA′ , yA′ , zA′) to zero
in the expression above, you can relate this to the coordinates that A attaches
to the origin of A’.

The above equations can be used to find the coordinates of A in terms of
those of A. To do so, you will need to know the components of the unit vectors
used by A’ in terms of those used by A. In other words, you need to know the
dot products in

ı̂A′ = (̂ıA′ · ı̂A)̂ıA + (̂ıA′ · ̂A)̂A + (̂ıA′ · k̂A)k̂A
̂A′ = (̂A′ · ı̂A)̂ıA + (̂A′ · ̂A)̂A + (̂A′ · k̂A)k̂A
k̂A′ = (k̂A′ · ı̂A)̂ıA + (k̂A′ · ̂A)̂A + (k̂A′ · k̂A)k̂A
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Then these relations allow you to sum the ı̂A components in the right hand
side of (A.12) to give xA. Similarly the ̂A components sum to yA and the k̂A
components to zA.

Note also that if you know these dot products, you also know the ones for
the inverse transformation, from A to A’. For example,

(̂ıA · ı̂A′) = (̂ıA′ · ı̂A) (̂ıA · ̂A′) = (̂A′ · ı̂A) etcetera

(In terms of linear algebra, the dot products form a 3 × 3 matrix. This matrix is
called “unitary,” or as a real matrix also more specifically “orthonormal,” since
it preserves distances between locations. The matrix for the reverse transform
is found by taking a transpose.)

The relationship between observers B and B’ is a simplified version of the
one between observers A and A’. It is simpler because B and B’ use the same
zero of time and the same origin. Therefore the formulae can be obtained from
the ones given above by replacing A’ and A by B and B’ and dropping the terms
related to time and origin shifts.

A.4 More on index notation

Engineering students are often much more familiar with linear algebra than with
tensor algebra. So it may be worthwhile to look at the Lorentz transformation
from a linear algebra point of view. The relation to tensor algebra will be
indicated. If you do not know linear algebra, there is little point in reading this
addendum.

A contravariant four-vector like position can be pictured as a column vector
that transforms with the Lorentz matrix Λ. A covariant four-vector like the
gradient of a scalar function can be pictured as a row vector that transforms
with the inverse Lorentz matrix Λ−1:

→֒
rB = Λ

→֒
rA

(
→֒

∇f
)T
B
=
(

→֒

∇f
)T
A
Λ−1

In linear algebra, a superscript T transforms columns into rows and vice-versa.
Since you think of the gradient by itself as a column vector, the T turns it into
a row vector. Note also that putting the factors in a product in the correct
order is essential in linear algebra. In the second equation above, the gradient,
written as a row, premultiplies the inverse Lorentz matrix.

In tensor notation, the above expressions are written as

xµB = λµνx
ν
A ∂µ,Bf = ∂ν,Af

(
λ−1
)
ν
µ

The order of the factors is now no longer a concern; the correct way of multi-
plying follows from the names of the indices.
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The key property of the Lorentz transformation is that it preserves dot
products. Pretty much everything else follows from that. Therefore the dot
product must now be formulated in terms of linear algebra. That can be done
as follows:

→֒
r1 · →֒

r2 ≡ →֒
r T
1 G

→֒
r2 where G =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The matrix G is called the “Minkowski metric.” The effect of G on
→֒
r2 is to flip

over the sign of the zeroth, time, entry. Looking at it another way, the effect of
G on the preceding

→֒
r T
1 is to flip over the sign of its zeroth entry. Either way,

G provides the minus sign for the product of the time coordinates in the dot
product.

In tensor notation, the above expression must be written as

→֒
r1 · →֒

r2 ≡ xµ1gµνx
ν
2

In particular, since space-time positions have superscripts, the metric matrix G
needs to be assigned subscripts. That maintains the convention that a summa-
tion index appears once as a subscript and once as a superscript.

Since dot products are invariant,

→֒
r T
1AG

→֒
r2A =

→֒
r T
1BG

→֒
r2B =

→֒
r T
1AΛ

TGΛ
→֒
r2A

Here the final equality substituted the Lorentz transformation from A to B.
Recall that if you take a transpose of a product, the order of the factors gets
inverted. If the expression to the far left is always equal to the one to the far
right, it follows that

ΛTGΛ = G (A.13)

This must be true for any Lorentz transform. In fact, many sources define
Lorentz transforms as transforms that satisfy the above relationship. Therefore,
this relationship will be called the “defining relation.” It is very convenient for
doing the various mathematics. However, this sort of abstract definition does
not really promote easy physical understanding.

And there are a couple of other problems with the defining relation. For
one, it allows Lorentz transforms in which one observer uses a left-handed co-
ordinate system instead of a right-handed one. Such an observer observes a
mirror image of the universe. Mathematically at least. A Lorentz transform
that switches from a normal right-handed coordinate system to a left handed
one, (or vice-versa), is called “improper.” The simplest example of such an im-
proper transformation is Λ = −G. That is called the “parity transformation.”
Its effect is to flip over all spatial position vectors. (If you make a picture of
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it, you can see that inverting the directions of the x, y, and z axes of a right-
handed coordinate system produces a left-handed system.) To see that Λ = −G
satisfies the defining relation above, note that G is symmetric, GT = G, and its
own inverse, GG = I.

Another problem with the defining relation is that it allows one observer to
use an inverted direction of time. Such an observer observes the universe evolv-
ing to smaller values of her time coordinate. A Lorentz transform that switches
the direction of time from one observer to the next is called “nonorthochronous.”
(Ortho indicates correct, and chronous time.) The simplest example of a non-
orthochronous transformation is Λ = G. That transformation is called “time-
reversal.” Its effect is to simply replace the time t by −t. It satisfies the defining
relation for the same reasons as the parity transformation.

As a result, there are four types of Lorentz transformations that satisfy
the defining relation. First of all there are the normal proper orthochronous
ones. The simplest example is the unit matrix I, corresponding to the case that
the observers A and B are identical. Second, there are the improper ones like
−G that switch the handedness of the coordinate system. Third there are the
nonorthochronous ones like G that switch the correct direction of time. And
fourth, there are improper nonorthochronous transforms, like −GG = −I, that
switch both the handedness and the direction of time.

These four types of Lorentz transforms form four distinct groups. You cannot
gradually change from a right-handed coordinate system to a left-handed one.
Either a coordinate system is right-handed or it is left-handed. There is nothing
in between. By the same token, either a coordinate system has the proper
direction of time or the exactly opposite direction.

These four groups are reflected in mathematical properties of the Lorentz
transforms. Lorentz transform matrices have determinants that are either 1 or
−1. That is easily seen from taking determinants of both sides of the defining
equation (A.13), splitting the left determinant in its three separate factors. Also,
Lorentz transforms have values of the entry λ00 that are either greater or equal
to 1 or less or equal to −1. That is readily seen from writing out the 0

0 entry
of (A.13).

Proper orthochronous Lorentz transforms have a determinant 1 and an entry
λ00 greater or equal to 1. That can readily be checked for the simplest example
Λ = I. More generally, it can easily be checked that λ00 is the time dilatation
factor for events that happen right in the hands of observer A. That is the
physical reason that λ00 must always be greater or equal to 1. Transforms
that have λ00 less or equal to −1 flip over the correct direction of time. So
they are nonorthochronous. Transforms that switch over the handedness of the
coordinate system produce a negative determinant. But so do nonorthochronous
transforms. If a transform flips over both handedness and the direction of time,
it has a time dilatation less or equal to −1 but a positive determinant.

For reasons given above, if you start with some proper orthochronous Lorentz
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transform like Λ = I and gradually change it, it stays proper and orthochronous.
But in addition its determinant stays 1 and its time-dilatation entry stays
greater or equal to 1. The reasons are essentially the same as before. You
cannot gradually change from a value of 1 or above to a value of −1 or below if
there is nothing in between.

One consequence of the defining relation (A.13) merits mentioning. If you
premultiply both sides of the relation by G−1, you immediately see that

Λ−1 = G−1ΛTG (A.14)

This is the easy way to find inverses of Lorentz transforms. Also, since G2 =
I, G−1 = G. However, it cannot hurt to leave the expression as written. There
are other applications in tensor algebra in which G−1 is not equal to G.

As already illustrated above, what multiplications by G do is flip over the
sign of some entries. So to find an inverse of a Lorentz transform, just flip over
the right entries. To be precise, flip over the entries in which one index is 0 and
the other is not.

The above observations can be readily converted to tensor notation. First an
equivalent is needed to some definitions used in tensor algebra but not normally
in linear algebra. The “ lowered covector” to a contravariant vector like position
will be defined as

→֒
r L ≡ →֒

r TG

In words, take a transpose and postmultiply with the metric G. The result is a
row vector while the original is a column vector.

Note that the dot product can now be written as

→֒
r1 · →֒

r2 =
→֒
r L
1

→֒
r2

Note also that lowered covectors are covariant vectors; they are row vectors that
transform with the inverse Lorentz transform. To check that, simply plug in
the Lorentz transformation of the original vector and use the expression for the
inverse Lorentz transform above.

Similarly, the “raised contravector” to a covariant vector like a gradient will
be defined as (

→֒

∇f
)TR

≡ G−1
→֒

∇f

In words, take a transpose and premultiply by the inverse metric. The raised
contravector is a contravariant vector. Forming a raised contravector of a low-
ered covector gives back the original vector. And vice-versa. (Note that metrics
are symmetric matrices in checking that.)

In tensor notation, the lowered covector is written as

xµ = xνgνµ
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Note that the graphical effect of multiplying by the metric tensor is to “lower”
the vector index.

Similarly, the raised contravector to a covector is

∂µf =
(
g−1
)µν

∂νf

It shows that the inverse metric can be used to “raise” indices. But do not
forget the golden rule: raising or lowering an index is much more than cosmetic:
you produce a fundamentally different vector.

(That is not true for so-called “Cartesian tensors” like purely spatial position
vectors. For these the metric G is the unit matrix. Then raising or lowering an
index has no real effect. By the way, the unit matrix is in tensor notation δµν .
That is called the Kronecker delta. Its entries are 1 if the two indices are equal
and 0 otherwise.)

Using the above notations, the dot product becomes as stated in chapter
1.2.5,

x1,µx
µ
2

More interestingly, consider the inverse Lorentz transform. According to the
expression given above Λ−1 = G−1ΛTG, so:

(
λ−1
)
µ
ν =

(
g−1
)
µαλβαgβν

(A transpose of a matrix, in this case Λ, swaps the indices.) According the
index raising/lowering conventions above, in the right hand side the heights of
the indices of Λ are inverted. So you can define a new matrix with entries

λν
µ ≡

(
λ−1
)
µ
ν

But note that the so-defined matrix is not the Lorentz transform matrix:

λν
µ 6= λµν

It is a different matrix. In particular, the signs on some entries are swapped.
(Needless to say, various supposedly authoritative sources list both matrices

as λµν for that exquisite final bit of confusion. It is apparently not easy to get
subscripts and superscripts straight if you use some horrible product like MS
Word. Of course, the simple answer would be to use a place holder in the empty
position that indicates whether or not the index has been raised or lowered. For
example:

λLµνR 6= λµNNν

However, this is not possible because it would add clarity.)
Now consider another very confusing result. Start with

G−1GG−1 = G−1 =⇒
(
g−1
)
µαgαβ

(
g−1
)
βν =

(
g−1
)
µν
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According to the raising conventions, that can be written as

gµν ≡
(
g−1
)
µν (A.15)

Does this not look exactly as if G = G−1? That may be true in the case of
Lorentz transforms and the associated Minkowski metric. But for more general
applications of tensor algebra it is most definitely not true. Always remember
the golden rule: names of tensors are only meaningful if the indices are at the
right height. The right height for the indices of G is subscripts. So gµν does not
indicate an entry of G. Instead it turns out to represent an entry of G−1.

So physicists now have two options. They can write the entries of G−1 in
the understandable form (g−1) µν . Or they can use the confusing, error-prone
form gµν . So what do you think they all do? If you guessed option (b), you are
making real progress in your study of modern physics.

Often the best way to verify some arcane tensor expression is to convert it
to linear algebra. (Remember to check the heights of the indices when doing so.
If they are on the wrong height, restore the omitted factor g.. or (g

−1) ...) Some
additional results that are useful in this context are

Λ−TGΛ−1 = G ΛG−1ΛT = G−1 ΛGΛT = G

The first of these implies that the inverse of a Lorentz transform is a Lorentz
transform too. That is readily verified from the defining relation (A.13) by
premultiplying by Λ−T and postmultiplying by Λ−1. The second expression is
simply the matrix inverse of the first. Both of these expressions generalize to
any symmetric metric G. The final expression implies that the transpose of a
Lorentz transform is a Lorentz transform too. That is only true for Lorentz
transforms and the associated Minkowski metric. Or actually, it is also true
for any other metric in which G−1 = G, including Cartesian tensors. For these
metrics, the final expression above is the same as the second expression.

A.5 The reduced mass

Two-body systems, like the earth-moon system of celestial mechanics or the
proton-electron hydrogen atom of quantum mechanics, can be analyzed more
simply using reduced mass. In this note both a classical and a quantum deriva-
tion will be given. The quantum derivation will need to anticipate some results
on multi-particle systems from chapter 5.1.

In two-body systems the two bodies move around their combined center
of gravity. However, in examples such as the ones mentioned, one body is
much more massive than the other. In that case the center of gravity almost
coincides with the heavy body, (earth or proton). Therefore, in a naive first
approximation it may be assumed that the heavy body is at rest and that the
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lighter one moves around it. It turns out that this naive approximation can be
made exact by replacing the mass of the lighter body by an reduced mass. That
simplifies the mathematics greatly by reducing the two-body problem to that
of a single one. Also, it now produces the exact answer regardless of the ratio
of masses involved.

The classical derivation is first. Let m1 and ~r1 be the mass and position
of the massive body (earth or proton), and m2 and ~r2 those of the lighter one

(moon or electron). Classically the force ~F between the masses will be a function
of the difference ~r21 = ~r2−~r1 in their positions. In the naive approach the heavy
mass is assumed to be at rest at the origin. Then ~r21 = ~r2, and so the naive
equation of motion for the lighter mass is, according to Newton’s second law,

m2~̈r21 = ~F (~r21)

Now consider the true motion. The center of gravity is defined as a mass-
weighted average of the positions of the two masses:

~rcg = w1~r1 + w2~r2 w1 =
m1

m1 +m2

w2 =
m2

m1 +m2

It is shown in basic physics that the net external force on the system equals the
total mass times the acceleration of the center of gravity. Since in this case it
will be assumed that there are no external forces, the center of gravity moves at
a constant velocity. Therefore, the center of gravity can be taken as the origin
of an inertial coordinate system. In that coordinate system, the positions of the
two masses are given by

~r1 = −w2~r21 ~r2 = w1~r21

because the position w1~r1 + w2~r2 of the center of gravity must be zero in this
system, and the difference ~r2 − ~r1 must be ~r21. (Note that the sum of the two
weight factors is one.) Solve these two equations for ~r1 and ~r2 and you get the
result above.

The true equation of motion for the lighter body is m2~̈r2 = ~F (~r21), or plug-
ging in the above expression for ~r2 in the center of gravity system,

m2w1~̈r21 = ~F (~r21)

That is exactly the naive equation of motion if you replace m2 in it by the
reduced mass m2w1, i.e. by

mred =
m1m2

m1 +m2

(A.16)

The reduced mass is almost the same as the lighter mass if the difference between
the masses is large, like it is in the cited examples, because then m2 can be
ignored compared to m1 in the denominator.
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The bottom line is that the motion of the two-body system consists of the
motion of its center of gravity plus motion around its center of gravity. The
motion around the center of gravity can be described in terms of a single reduced
mass moving around a fixed center.

The next question is if this reduced mass idea is still valid in quantum
mechanics. Quantum mechanics is in terms of a wave function ψ that for a two-
particle system is a function of both ~r1 and ~r2. Also, quantum mechanics uses
the potential V (~r21) instead of the force. The Hamiltonian eigenvalue problem
for the two particles is:

Hψ = Eψ H = − ~
2

2m1

∇2
1 −

~
2

2m2

∇2
2 + V (~r21)

where the two kinetic energy Laplacians in the Hamiltonian H are with respect
to the position coordinates of the two particles:

∇2
1ψ ≡

3∑

j=1

∂2ψ

∂r21,j
∇2

2ψ ≡
3∑

j=1

∂2ψ

∂r22,j

Now make a change of variables from ~r1 and ~r2 to ~rcg and ~r21 where

~rcg = w1~r1 + w2~r2 ~r21 = ~r2 −~r1

The derivatives of ψ can be converted using the chain rule of differentiation:

∂ψ

∂r1,j
=

∂ψ

∂rcg,j

∂rcg,j
∂r1,j

+
∂ψ

∂r21,j

∂r21,j
∂r1,j

=
∂ψ

∂rcg,j
w1 −

∂ψ

∂r21,j

or differentiating once more and summing

∇2
1ψ =

3∑

j=1

∂2ψ

∂r21,j
= w2

1

3∑

j=1

∂2ψ

∂r2cg,j
− 2w1

3∑

j=1

∂2ψ

∂rcg,j∂r21,j
+

3∑

j=1

∂2ψ

∂r221,j

and a similar expression for ∇2
2ψ, but with w2 instead of w1 and a plus sign

instead of the minus sign. Combining them together in the Hamiltonian, and
substituting for w1 and w2, the mixed derivatives drop out against each other
and what is left is

H = − ~
2

2(m1 +m2)
∇2

cg −
~
2

2mred

∇2
21 + V (~r21)

The first term is the kinetic energy that the total mass would have if it was
at the center of gravity; the next two terms are kinetic and potential energy
around the center of gravity, in terms of the distance between the masses and
the reduced mass.
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The Hamiltonian eigenvalue problem Hψ = Eψ has separation of variables
solutions of the form

ψ = ψcg(~rcg)ψ21(~r21)

Substituting this and the Hamiltonian above into Hψ = Eψ and dividing by
ψcgψ21 produces

− ~
2

2(m1 +m2)

1

ψcg

∇2
cgψcg +

1

ψ21

[
− ~

2

2mred

∇2
21 + V

]
ψ21 = E

Call the first term in the left hand side Ecg and the second E21. By that
definition, Ecg would normally be a function of ~rcg, because ψcg is, but since it
is equal to E−E21 and those do not depend on ~rcg, Ecg cannot either, and must
be a constant. By similar reasoning, E21 cannot depend on ~r21 and must be a
constant too. Therefore, rewriting the definitions of Ecg and E21, two separate
eigenvalue problems are obtained:

− ~
2

2(m1 +m2)
∇2

cgψcg = Ecgψcg

[
− ~

2

2mred

∇2
21 + V

]
ψ21 = E21ψ21

The first describes the quantum mechanics of an imaginary total mass m1+m2

located at the center of gravity. The second describes an imaginary reduced
mass mred at a location ~r21 away from a fixed center that experiences a potential
V (~r21).

For the hydrogen atom, it means that if the problem with a stationary proton
is solved using an reduced electron mass mpme/(mp + me), it solves the true
problem in which the proton moves a bit too. Like in the classical analysis, the
quantum analysis shows that in addition the atom can move as a unit, with a
motion described in terms of its center of gravity.

It can also be concluded, from a slight generalization of the quantum analy-
sis, that a constant external gravity field, like that of the sun on the earth-moon
system, or of the earth on a hydrogen atom, causes the center of gravity to ac-
celerate correspondingly, but does not affect the motion around the center of
gravity at all. That reflects a basic tenet of general relativity.

A.6 Constant spherical potentials

This addendum describes the solutions of the Hamiltonian eigenvalue problem
in spherical coordinates if the potential is constant.

These solutions are important for many reasons. For example, you might
want to create a simplified model for the hydrogen atom that way. To do so, you
could, for example, assume that the potential energy has a constant negative
value up to say the Bohr radius and is zero beyond it. That is not really a very
good model for the hydrogen atom. However, it works much better for nucleons
in atomic nuclei, chapter 14.12.
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The solutions in this note are also important for describing experiments in
which particles are scattered from some target, {A.30}. And more fundamen-
tally, they give the energy states of definite angular momentum for particles in
empty space.

A.6.1 The eigenvalue problem

The Hamiltonian eigenvalue problem is

− ~
2

2m
∇2ψ + V ψ = Eψ

In this note it is assumed that the potential V is a constant in the radial region
of interest.

To clean the problem up a bit, take the potential energy term to the other
side, and also the coefficient of the Laplacian. That produces

−∇2ψ =
p2c
~2
ψ

where
pc ≡

√
2m(E − V )

The constant pc is what classical physics would take to be the linear momentum
of a particle with total energy E and potential energy V .

A.6.2 The eigenfunctions

Because the potential is spherically symmetric like for the hydrogen atom, the
eigenfunctions are of similar form:

ψElm(r, θ, φ) = REl(r)Y
m
l (θ, φ) (A.17)

Here the Y m
l are again the spherical harmonics. These eigenfunctions have

definite square angular momentum l(l+1)~2 where l is an nonnegative integer.
They also have definite angular momentum in the chosen z-direction equal to
m~, where m is an integer that satisfies |m| 6 l.

The radial functions REl in the eigenfunctions ψElm are different from those
of the hydrogen atom. Depending on whatever is easiest in a given application,
they can be written in two ways, {D.16}.

The first way is as

REl = csjl(pcr/~) + ccnl(pcr/~) pc ≡
√
2m(E − V ) (A.18)

Here cs and cc are arbitrary constants. The functions jl and nl are called the
“spherical Bessel functions” of the first and second kinds. The nl are also called
the “Neumann functions” and might instead be indicated by yl or ηl.
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Expressions for these Bessel functions can be found in advanced mathemat-
ical handbooks, [1]:

jl(x) = (−x)l
(
1

x

d

dx

)l
sin x

x
(A.19)

nl(x) = −(−x)l
(
1

x

d

dx

)l
cos x

x
(A.20)

The spherical Bessel functions are often convenient in a region of constant
potential that includes the origin, because the Bessel functions of the first kind
jl give the solutions that are finite at the origin. (To see that, note that the
Taylor series of sin x divided by x is a power series in x2, and that xdx = 1

2
dx2.)

In particular for small x:

jl(x) =
2ll!

(2l + 1)!
xl +O(xl+2) ≡ xl

(2l + 1)!!
+O(xl+2) (A.21)

Here !! is one of these unfortunate notations. The second ! means that all even
factors are dropped from the factorial.

The Bessel functions of the second kind are singular at the origin and nor-
mally do not appear if the origin is part of the considered region.

Also, the spherical Bessel functions are real for real x. However, in a region
where the potential V is larger than the energy E of the particles, the argument
of the Bessel functions in (A.18) will be imaginary.

The other way to write the radial functions is as

REl = cfh
(1)
l (pcr/~) + cbh

(2)
l (pcr/~) pc ≡

√
2m(E − V )

where h
(1)
l and h

(2)
l are called the “spherical Hankel functions.”

The spherical Hankel functions can again be found in advanced mathematical
handbooks, [1]:

h
(1)
l (x) = −i(−x)l

(
1

x

d

dx

)l
eix

x
= jl(x) + inl(x) (A.22)

h
(2)
l (x) = i(−x)l

(
1

x

d

dx

)l
e−ix

x
= jl(x)− inl(x) (A.23)

The given expressions in terms of the spherical Bessel functions are readily
inverted to give the Bessel functions in terms of the Hankel functions,

jl(x) =
h
(1)
l (x) + h

(2)
l (x)

2
nl(x) =

h
(1)
l (x)− h(2)l (x)

2i
(A.24)
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For large x the spherical Hankel functions can be approximated as

h
(1)
l (x) ∼ (−i)l+1 e

ix

x
h
(2)
l (x) ∼ il+1 e

−ix

x
(A.25)

This asymptotic behavior tends to make the Hankel functions more convenient
far from the origin. Exponentials are mathematically simpler and more fun-
damental than the sines and cosines in the asymptotic behavior of the Bessel
functions.

A.6.3 About free space solutions

The most important case for which the energy eigenfunctions of the previous
subsection apply is for particles in empty space. They describe energy states
with definite square and z angular momentum. However, sometimes particles in
empty space are better described by states of definite linear momentum. And in
some cases, like in scattering problems, you need both types of solution. Then
you also need to convert between them.

The energy states in empty space with definite square and z angular mo-
mentum are

ψElm = jl(pcr/~)Y
m
l (θ, φ) pc ≡

√
2mE (A.26)

These states have square angular momentum l(l+1)~2 and angular momentum
in the chosen z-direction m~. They are nonsingular at the origin.

A state that has definite linear momentum pc purely in the z-direction has
an energy eigenfunction

ψ~k = eipcz/~ pc ≡
√
2mE (A.27)

This eigenfunction is not normalized, and cannot be normalized. However,
neither can the eigenfunction ψElm above be. It is the curse of eigenfunctions
in infinite empty space. An introduction to the adjustments that must be made
to deal with this is given in chapter 7.9.

It is sometimes necessary to write a linear momentum eigenfunction of the
form (A.27) in terms of angular momentum ones of the form (A.26). Rayleigh
worked out the correct combination a very long time ago, {D.16}:

eipcz/~ =
∞∑

l=0

cw,ljl(pcr/~)Y
0
l (θ) cw,l = il

√
4π(2l + 1) (A.28)

Note that only eigenfunctions with m = 0 are needed.
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A.7 Accuracy of the variational method

This note has a closer look at the accuracy of the variational method.
Any approximate ground state wave function ψ may always be written as a

combination of all the energy eigenfunctions ψ1, ψ2, . . . :

ψ = c1ψ1 + δ2ψ2 + δ3ψ3 + . . .

where c1 and the δi for i = 2, 3, . . . are numerical coefficients. But if the
approximation is any good at all, the coefficient c1 of the correct ground state
ψ1 must be close to one, while the coefficients δi of the higher energy states
must be small.

The wave function pollution with higher energy states can be related to the
error in energy, call it ε, using a few simple manipulations. First the condition
that ψ is normalized, 〈ψ|ψ〉 = 1, works out to be

1 = 〈c1ψ1 + δ2ψ2 + . . . |c1ψ1 + δ2ψ2 + . . .〉 = c21 + δ22 + δ23 + . . .

since the eigenfunctions ψ1, ψ2, . . . are orthonormal. Similarly, the expectation
energy 〈E〉 = 〈ψ|Hψ〉 of the approximate solution works out to be

〈E〉 = 〈c1ψ1 + δ2ψ2 + . . . |E1c1ψ1 + E2δ2ψ2 + . . .〉 = c21E1 + δ22E2 + δ23E3 + . . .

Multiplying the normalization condition by E1 and subtracting it from the ex-
pression for the expectation energy above gives the error in energy as:

ε ≡ 〈E〉 − E1 = δ22(E2 − E1) + δ23(E3 − E1) + . . .

Note first that since all the terms in the right hand side are positive, any
approximate wave function has more expectation energy than the ground state
E1. It does not have to be a single energy eigenfunction of higher energy. But
that should not be a surprise.

Nor is it surprising that the expression above shows that the error in energy
ε will be small if the coefficients δi of the incorrect energy eigenfunctions are
small and decrease suitably in magnitude when i increases.

However, note that while the errors in wave function are directly proportional
to the coefficients δi, the error in energy is proportional to the squares of these
coefficients. That makes the error in energy unexpectedly small, because the
square of any small quantity is much smaller still. (This assumes that the term
“small” is defined in a meaningful nondimensional way.)

That small error in energy is great because the computed energy is important
for a number of things, like determining whether a stable ground state of the
supposed form exists in the first place, and if it does, how fast it interacts with
other energy eigenfunctions if there is uncertainty in energy, chapter 7.

While it may seem obvious that if the approximate wave function is close to
the correct one, then the approximate energy will be close to the correct one,
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the reverse is less trivial. If the approximate energy is close to the exact energy,
does that necessarily mean that entire wave function is close to the exact one?
Fortunately, the answer to that question is usually yes.

In particular, note from the expression for the error in energy above that for
any coefficient δi

δi ≤
√

ε

Ei − E1

even in the worst-case scenario that all the error is in the i-th term. From the
above, the amount δi of each polluting higher-energy eigenfunction function is
small if ε is small.

But do also note the effect of the denominator. If it too is small, it may
increase the possible error. The worst case occurs for the second lowest energy
state. If the second-lowest energy E2 is very close to the ground-state energy E1,
unusual good accuracy in energy may be required to ensure that the approximate
wave function is accurate. (However, if E2 equals the ground state energy, the
second state is a ground state too; the ground state is then no longer unique.
In that case the error from some valid ground state is described by the third
energy state, not the second.)

Consider also the magnitude of the error in the approximate wave function.
It is defined as

||δ2ψ2 + δ3ψ3 + . . . || =
√
δ22 + δ23 + . . .

This can be related to the error in energy by noting that from its given expression

ε 6 δ22(E2 − E1) + δ23(E2 − E1) + . . .

since Ei − E1 is at least as big as E2 − E1. Comparing the expressions above
shows that

||δ2ψ2 + δ3ψ3 + . . . || 6
√

ε

E2 − E1

So if the error in energy ε is small, the magnitude of the error in the wave
function is too.

The bottom line is that the lower you can get your expectation energy, the
closer you will get to the true ground state energy. In addition the small error
in energy will reflect in a small error in wave function too.

A.8 Positive ground state wave function

This addendum discusses why in at least the simplest cases a ground state wave
function can be assumed to be real, positive, and unique (i.e. nondegenerate).
It is assumed that the potential is a real function of position. That is true for
the hydrogen molecular ion. It is also true for a single hydrogen atom and most



884 APPENDIX A. ADDENDA

other simple systems, at least in the nonrelativistic approximations normally
used in this book.

It should first be noted that if potentials are allowed that are positive in-
finity in a finite region, nonunique ground states that cannot be taken positive
may in fact possible. Such a potential can provide an impenetrable boundary,
completely separating one region of space from another. In that case the ground
state wave functions at the two sides of the boundary become decoupled, allow-
ing for indeterminacy in the combined ground state. Such artificial cases are
not covered here. But you can readily find examples in lots of books on quan-
tum mechanics, especially in one dimension. Here it will be assumed that the
potentials stay away from positive infinity. For practical purposes, it may also
be noted that if the potential becomes positive infinity at just a few points, it
is usually not a problem unless the approach to singularity is very steep.

There is however a much more important restriction to the conclusions in
this note: ground states may not be positive if you go to many-particle systems.
That is discussed further in the final paragraphs of this addendum.

First consider why the ground state, and any other energy eigenstate, can be
assumed to be real without loss of generality. Suppose that you had a complex
eigenfunction ψ for the eigenvalue problem Hψ = Eψ. Write the eigenfunction
as

ψ = ψr + iψi

where the real part ψr and the imaginary part ψi are real functions. Plugging
this into the eigenvalue problem, you see that the real and imaginary parts
each separately must satisfy the eigenvalue problem. (For the complex number
Hψ − Eψ to be zero, both its real and imaginary parts have to be zero.) So
each of ψr and ψi is just as good an eigenfunction as ψ and each is real. Since
the original complex ψ is a linear combination of the two, you do not need it
separately. (If either ψr or ψi is zero, it is not an eigenfunction, but then it is
not needed to describe ψ either. And if it is nonzero, it can be normalized.)

Next consider why the ground state can be taken to be positive, assuming,
for now, that it is unique. What characterizes the ground state ψgs is that it
has the lowest possible expectation value of the energy. The expectation energy
can be written for arbitrary, but normalized, wave functions ψ as

〈E〉 = ~
2

2m

∫

all

(∇ψ)2 d3~r +

∫

all

V ψ2 d3~r

In the first term, the kinetic energy, integrations by part have been used to get
rid of the second order derivatives. Note that (∇ψ)2 stands for the sum of the
square partial derivatives of ψ. Now by definition ψgs has the lowest possible
value of the above expectation energy among all possible normalized functions
ψ. But only terms square in ψ appear in the expectation energy. So |ψgs| has the
same expectation energy. That means that |ψgs| is a ground state wave function
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too. Under the given assumption that the ground state is unique, |ψgs| can be
taken to be the ground state. That makes the ground state positive. (Note that
a constant of magnitude one does not make a difference in an eigenfunction. So
the original ψgs might well have been equal to −|ψgs|. But |ψgs| is equivalent to
that.)

Finally, it needs to be shown that the ground state is indeed unique as
assumed above. That is really messy, so it has been banned to derivation {D.22}.
It is based on the same idea that the absolute value of a ground state is a ground
state too.

Regrettably the arguments above stop working for more than two electrons.
To really understand the reason, you will first need to read chapter 5.6 on
multiple-particle systems. But in a nutshell, the wave function for systems
with multiple electrons must satisfy additional requirements, called the “anti-
symmetrization” requirements. These requirements normally turn |ψgs| into an
unacceptable wave function. Then obviously the above arguments fall apart.
Fortunately, for just two electrons, there is a loophole in the requirement called
“spin.” That allows the hydrogen molecule, with two electrons, still to be cov-
ered.

The same problem occurs for atomic nuclei that contain multiple protons
and/or neutrons. (For atomic nuclei, the potentials also tend to be far more
complicated than assumed here. But that is another matter.) In general, par-
ticles for which antisymmetrization requirements apply are called fermions.

There is however a different class of particles called ”bosons.” For those, the
wave function has to satisfy “symmetrization” requirements. Symmetrization
requirements are still OK if you replace ψ by |ψ|. So the ideas above are helpful
for understanding the ground state of large numbers of bosons. For example,
they are helpful in understanding the superfluidity of liquid helium near its
ground state, [18, pp. 321-323]. Complete helium atoms are bosons.

A.9 Wave function symmetries

Symmetries are very important in physics. For example, symmetries in wave
functions are often quite helpful to understand the physics qualitatively.

As an example, the hydrogen molecular ion is mirror symmetric around
its midplane. This midplane is the plane halfway in between the two nuclei,
orthogonal to the line connecting them. To roughly understand what the mirror
symmetry around this plane means, think of the midplane as an infinitely thin
mirror. Take this mirror to be two-sided, so that you can look in it from either
side. That allows you to see the mirror image of each side of the molecule.
Simply put, the mirror symmetry of the ion means that the mirror image looks
exactly the same as the original ion.
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(If you would place the entire molecule at one side of the mirror, its entire
mirror image would be at the other side of it. But except for this additional shift
in location, everything would remain the same as in the case assumed here.)

Under the same terms, human beings are roughly mirror symmetric around
the plane separating their left and right halves. But that symmetry is far from
perfect. For example, if you part your hair at one side, your mirror image parts
it at the other side. And your heart changes sides too.

To describe mirror symmetry more precisely, take the line through the nuclei
to be the z-axis. And take z to be zero at the mirror. Then all that the mirror
does mathematically is replace z by −z. For example, the mirror image of the
nucleus at positive z is located at the corresponding negative z value. And
vice-versa.

The effect of mirroring on any molecular wave function Ψ can be represented
by a “mirror operator” M. According to the above, all this operator does is
replace z by −z:

MΨ(x, y, z) = Ψ(x, y,−z)
By definition a wave function is mirror symmetric if the mirror operator has

no effect on it. Mathematically, if the mirror operator does not do anything,
thenMΨ must be the same as Ψ. So mirror symmetry requires

MΨ(x, y, z) ≡ Ψ(x, y,−z) = Ψ(x, y, z)

The final equality above shows that a mirror-symmetric wave function is the
same at positive values of z as at the corresponding negative values. Mathe-
maticians might simply say that the wave function is symmetric around the xy-
plane, (i.e. the mirror). The ground state ψgs of the molecular ion is mirror
symmetric in this sense. The big question to be addressed in this addendum is,
why?

The fundamental reason why the ion is mirror symmetric is a mathematical
one. The mirror operatorM commutes with the Hamiltonian H. Recall from
chapter 4.5.1 what this means:

MH = HM

In words, it does not make a difference in which order you apply the two oper-
ators.

That can be seen from the physics. The Hamiltonian consists of potential
energy V and kinetic energy T . Now it does not make a difference whether you
multiply a wave function value by the potential before or after you flip the value
over to the opposite z-position. The potential is the same at opposite z values,
because the nuclei at the two sides of the mirror are the same. As far as the
kinetic energy is concerned, if it involved a first-order z-derivative, there would
be a change of sign when you flip over the sign of z. But the kinetic energy has
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only a second order z-derivative. A second order derivative does not change. So
all together it makes no difference whether you first mirror and then apply the
Hamiltonian or vice-versa. The two operators commute.

Also according to chapter 4.5.1, that has a consequence. It implies that you
can take energy eigenfunctions to be mirror eigenfunctions too. And the ground
state is an energy eigenfunction. So it can be taken to be an eigenfunction of
M too:

Mψgs(x, y, z) = λψgs(x, y, z)

Here λ is a constant called the eigenvalue. But what would this eigenvalue be?
To answer that, apply M twice. That multiplies the wave function by the

square eigenvalue. But if you applyM twice, you always get the original wave
function back, because −(−z) = z. So the square eigenvalue λ2 must be 1,
in order that the wave function does not change when multiplied by it. That
means that the eigenvalue λ itself can be either 1 or −1. So for the ground state
wave function ψgs, either

Mψgs(x, y, z) ≡ ψgs(x, y,−z) = 1× ψgs(x, y, z)

or
Mψgs(x, y, z) ≡ ψgs(x, y,−z) = −1× ψgs(x, y, z)

If the first possibility applies, the wave function does not change under the mir-
roring. So by definition it is mirror symmetric. If the second possibility applies,
the wave function changes sign under the mirroring. Such a wave function is
called “mirror antisymmetric.” But the second possibility has wave function
values of opposite sign at opposite values of z. That is not possible, because the
previous addendum showed that the ground state wave function is everywhere
positive. So it must be possibility one. That means that the ground state must
indeed be mirror symmetric as claimed.

It may be noted that the state of second lowest energy will be antisymmetric.
You can see the same thing happening for the eigenfunctions of the particle in
a pipe. The ground state figure 3.8, (or 3.11 in three dimensions), is symmetric
around the center cross-section of the pipe. The first excited state, at the top
of figures 3.9, (or 3.12), is antisymmetric. (Note that the grey tones show the
square wave function. If the wave function is antisymmetric, the square wave
function is symmetric. But it will be zero at the symmetry plane.)

Next consider the rotational symmetry of the hydrogen molecular ion around
the axis through the nuclei. The ground state of the molecular ion does not
change if you rotate the ion around the z-axis through the nuclei. That makes
it rotationally symmetric. The big question is again, why?

In this case, let Rϕ be the operator that rotates a wave function Ψ over an
angle ϕ around the z-axis. This operator too commutes with the Hamiltonian.
After all, the only physically meaningful direction is the z-axis through the
nuclei. The angular orientation of the xy axes system normal to it is a completely
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arbitrary choice. So it should not make a difference at what angle around the z
axis you apply the Hamiltonian.

Therefore the ground state must be an eigenfunction of the rotation operator
just like it is one of the mirror operator:

Rϕψgs = λψgs

But now what is that eigenvalue λ? First note that the magnitude of all eigen-
values of Rϕ must be 1. Otherwise the magnitude of the wave function would
change correspondingly during the rotation. However, the magnitude of a wave
function does not change if you simply rotate it. And if the eigenvalue is a
complex number of magnitude 1, then it can always be written as eiα where α
is some real number. So the rotated ground state is some multiple eiα of the
original ground state. But the values of the rotated ground state are real and
positive just like that of the original ground state. That can only be true if the
multiplying factor eiα is real and positive too. And if you check the Euler for-
mula (2.5), you see that eiα is only real and positive if it is 1. Since multiplying
by 1 does not change the wave function, the ground state does not change when
rotated. That then makes it rotationally symmetric around the z-axis through
the nuclei as claimed.

You might of course wonder about the rotational changes of excited energy
states. For those a couple of additional observations apply. First, the number α
must be proportional to the rotation angle ϕ, since rotating Ψ twice is equivalent
to rotating it once over twice the angle. That means that, more precisely, the
eigenvalues are of the form eimϕ, where m is a real constant independent of ϕ.
Second, rotating the ion over a 2π full turn puts each point back to where it
came from. That should reproduce the original wave function. So an eigenvalue
eim2π for a full turn must be 1. According to the Euler formula, that requires m
to be an integer, one of . . . , −2, −1, 0, 1, 2, . . . . For the ground state, m will
have to be zero; that is the only way to get eimϕ equal to 1 for all angles ϕ. But
for excited states, m can be a nonzero integer. In that case, these states do not
have rotational symmetry.

Recalling the discussion of angular momentum in chapter 4.2.2, you can see
that m is really the magnetic quantum number of the state. Apparently, there
is a connection between rotations around the z-axis and the angular momentum
in the z-direction. That will be explored in more detail in chapter 7.3.

For the neutral hydrogen molecule discussed in chapter 5.2, there is still
another symmetry of relevance. The neutral molecule has two electrons, instead
of just one. This allows another operation: you can swap the two electrons.
That is called “particle exchange.” Mathematically, what the particle exchange
operator P does with the wave function is swap the position coordinates of
electron 1 with those of electron 2. Obviously, physically this does not do
anything at all; the two electrons are exactly the same. It does not make a
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difference which of the two is where. So particle exchange commutes again with
the Hamiltonian.

The mathematics of the particle exchange is similar to that of the mirroring
discussed above. In particular, if you exchange the particles twice, they are back
to where they were originally. From that, just like for the mirroring, it can be
seen that swapping the particle positions does nothing to the ground state. So
the ground state is symmetric under particle exchange.

It should be noted that the ground state of systems involving three or more
electrons is not symmetric under exchanging the positions of the electrons. Wave
functions for multiple electrons must satisfy special particle-exchange require-
ments, chapter 5.6. In fact they must be antisymmetric under an expanded
definition of the exchange operator. This is also true for systems involving
three or more protons or neutrons. However, for some particle types, like three
or more helium atoms, the symmetry under particle exchange continues to ap-
ply. This is very helpful for understanding the properties of superfluid helium,
[18, p. 321].

A.10 Spin inner product

In quantum mechanics, the angle between two angular momentum vectors is not
really defined. That is because at least two components of a nonzero angular
momentum vector are uncertain. However, the inner product of angular mo-
mentum vectors can be well defined. In some sense, that gives an angle between
the two vectors.

An important case is the inner product between the spins of two particles.
It is related to the square net combined spin of the particles as

Ŝ 2
net =

(
~̂S1 + ~̂S2

)
·
(
~̂S1 + ~̂S2

)

If you multiply out the right hand side and rearrange, you find the inner product
between the spins as

~̂S1 · ~̂S2 =
1
2

(
Ŝ 2
net − Ŝ 2

1 − Ŝ 2
2

)
(A.29)

Now an elementary particle has a definite square spin angular momentum

Ŝ 2 = s(s+ 1)~ 2

where s is the spin quantum number. If the square combined spin also has a
definite value, then so does the dot product between the spins as given above.

As an important example, consider two fermions with spin s1 = s2 = 1
2
.

These fermions may be in a singlet state with combined spin snet = 0. Or they
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may be in a triplet state with combined spin snet = 1. If that is plugged into
the formulae above, the inner product between the spins is found to be

singlet: ~̂S1 · ~̂S2 = −3
4
~
2 triplet: ~̂S1 · ~̂S2 =

1
4
~
2 (A.30)

Based on that, you could argue that in the singlet state the angle between
the spin vectors is 180◦. In the triplet state the angle is not zero, but about 70◦.

A.11 Thermoelectric effects

This note gives additional information on thermoelectric effects.

A.11.1 Peltier and Seebeck coefficient ballparks

The approximate expressions for the semiconductor Peltier coefficients come
from [29]. Straub et al (App. Phys. Let. 95, 052107, 2009) note that to better
approximation, 3

2
kBT should be (5

2
+r)kBT with r typically −1

2
. Also, a phonon

contribution should be added.
The estimate for the Peltier coefficient of a metal assumes that the elec-

trons form a free-electron gas. The conduction will be assumed to be in the x-
direction. To ballpark the Peltier coefficient requires the average charge flow
per electron −evx and the average energy flow per electron Epvx. Here vx is
the electron velocity in the x-direction, −e the electron charge, Ep the electron
energy, and an overline is used to indicate an average over all electrons. To
find ballparks for the two averages, assume the model of conduction of the free-
electron gas as given in chapter 6.20. The conduction occurred since the Fermi
sphere got displaced a bit towards the right in the wave number space figure
6.17. Call the small amount of displacement kd. Assume for simplicity that in a
coordinate system kxkykz with origin at the center of the displaced Fermi sphere,
the occupation of the single-particle states by electrons is still exactly given by
the equilibrium Fermi-Dirac distribution. However, due to the displacement kd
along the kx axis, the velocities and energies of the single-particle states are now
given by

vx =
~

m
(kx + kd) E

p
=

~
2

2m

[
(kx + kd)

2 + k2y + k2z
]
=

~
2

2m

(
k2 + 2kxkd + k2d

)

To simplify the notations, the above expressions will be abbreviated to

vx = Cv(kx + kd) E
p
= CE(k

2 + 2kxkd + k2d)

In this notation, the average charge and energy flows per electron become

−evx = −eCv(kx + kd) E
p
vx = CE(k2 + 2kxkd + k2d)Cv(kx + kd)
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Next note that the averages involving odd powers of kx are zero, because for
every state of positive kx in the Fermi sphere there is a corresponding state of
negative kx. Also the constants, including kd, can be taken out of the averages.
So the flows simplify to

−evx = −eCvkd E
p
vx = CE(2k2x + k2)Cvkd

where the term cubically small in kd was ignored. Now by symmetry the av-
erages of k2x, k

2
y, and k

2
z are equal, so each must be one third of the average of

k2. And CE times the average of k2 is the average energy per electron Ep
ave in

the absence of conduction. Also, by definition Cvkd is the drift velocity vd that
produces the current. Therefore:

−evx = −evd vxE
p
= 5

3
E

p
avevd

Note that if you would simply have ballparked the average of vxE
p as the average

of vx times the average of Ep you would have missed the factor 5/3. That would
produce a Peltier coefficient that would be gigantically wrong.

To get the heat flow, the energy must be taken relative to the Fermi level µ.
In other words, the energy flow vxµ must be subtracted from vxE

p. The Peltier
coefficient is the ratio of that heat flow to the charge flow:

P =
vx(E

p − µ)
−evx

=
5
3
Ep

ave − µ
−e

If you plug in the expressions for the average energy per electron and the chem-
ical potential found in derivation {D.62}, you get the Peltier ballpark listed in
the text.

To get Seebeck coefficient ballparks, simply divide the Peltier coefficients by
the absolute temperature. That works because of Kelvin’s second relationship
discussed below. To get the Seebeck coefficient ballpark for a metal directly
from the Seebeck effect, equate the increase in electrostatic potential energy
of an electron migrating from hot to cold to the decrease in average electron
kinetic energy. Using the average kinetic energy of derivation {D.62}:

−e dϕ = − d
π2

4

(kBT )
2

Ep
F

Divide by e dT to get the Seebeck coefficient.

A.11.2 Figure of merit

To compare thermoelectric materials, an important quantity is the figure of
merit of the material. The figure of merit is by convention written as M2 where

M = P

√
σ

κT
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The temperature T of the material should typically be taken as the average
temperature in the device being examined. The reason thatM is important has
to do with units. Number M is “nondimensional,” it has no units. In SI units,
the Peltier coefficient P is in volts, the electrical conductivity σ in ampere/
volt-meter, the temperature in Kelvin, and the thermal conductivity κ in watt/
Kelvin-meter with watt equal to volt ampere. That makes the combination
above nondimensional.

To see why that is relevant, suppose you have a material with a low Peltier
coefficient. You might consider compensating for that by, say, scaling up the
size of the material or the current through it. And maybe that does give you a
better device than you would get with a material with a higher Peltier coefficient.
Maybe not. How do you know?

dimensional analysis can help answer that question. It says that nondimen-
sional quantities depend only on nondimensional quantities. For example, for
a Peltier cooler you might define an efficiency as the heat removed from your
ice cubes per unit electrical energy used. That is a nondimensional number. It
will not depend on, say, the actual size of the semiconductor blocks, but it will
depend on such nondimensional parameters as their shape, and their size relative
to the overall device. Those are within your complete control during the design
of the cooler. But the efficiency will also depend on the nondimensional figure
of merit M above, and there you are limited to the available materials. Having
a material with a higher figure of merit would give you a higher thermoelectric
effect for the same losses due to electrical resistance and heat leaks.

To be sure, it is somewhat more complicated than that because two different
materials are involved. That makes the efficiency depend on at least two nondi-
mensional figures of merit, one for each material. And it might also depend
on other nondimensional numbers that can be formed from the properties of
the materials. For example, the efficiency of a simple thermoelectric generator
turns out to depend on a net figure of merit given by, [9],

Mnet =MA

√
κA/σA√

κA/σA +
√
κB/σB

−MB

√
κB/σB√

κA/σA +
√
κB/σB

It shows that the figures of meritMA andMB of the two materials get multiplied
by nondimensional fractions. These fractions are in the range from 0 to 1, and
they sum to one. To get the best efficiency, you would like MA to be as large
positive as possible, and MB as large negative as possible. That is as noted
in the text. But all else being the same, the efficiency also depends to some
extent on the nondimensional fractions multiplying MA and MB. It helps if the
material with the larger figure of merit |M | also has the larger ratio of κ/σ. If
sayMA exceeds −MB for the best materials A and B, then you could potentially
replace B by a cheaper material with a much lower figure of merit, as long as
that replacement material has a very low value of κ/σ relative to A. In general,
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the more nondimensional numbers there are that are important, the harder it
is to analyze the efficiency theoretically.

A.11.3 Physical Seebeck mechanism

The given qualitative description of the Seebeck mechanism is very crude. For
example, for semiconductors it ignores variations in the number of charge car-
riers. Even for a free-electron gas model for metals, there may be variations in
charge carrier density that offset velocity effects. Worse, for metals it ignores
the exclusion principle that restricts the motion of the electrons. And it ignores
that the hotter side does not just have electrons with higher energy relative to
the Fermi level than the colder side, it also has electrons with lower energy that
can be excited to move. If the lower energy electrons have a larger mean free
path, they can come from larger distances than the higher energy ones. And
for metal electrons in a lattice, the velocity might easily go down with energy
instead of up. That is readily appreciated from the spectra in chapter 6.22.2.

For a much more detailed description, see “Thermoelectric Effects in Metals:
Thermocouples” by S. O. Kasap, 2001. This paper is available on the web for
personal study. It includes actual data for metals compared to the simple theory.

A.11.4 Full thermoelectric equations

To understand the Peltier, Seebeck, and Thomson effects more precisely, the full
equations of heat and charge flow are needed. That is classical thermodynamics,
not quantum mechanics. However, standard undergraduate thermodynamics
classes do not cover it, and even the thick standard undergraduate text books
do not provide much more than a superficial mention that thermoelectric effects
exist. Therefore this subsection will describe the equations of thermoelectrics
in a nutshell.

The discussion will be one-dimensional. Think of a bar of material aligned
in the x-direction. If the full three-dimensional equations of charge and heat
flow are needed, for isotropic materials you can simply replace the x derivatives
by gradients.

Heat flow is primarily driven by variations in temperature, and electric cur-
rent by variations in the chemical potential of the electrons. The question is
first of all what is the precise relation between those variations and the heat
flow and current that they cause.

Now the microscopic scales that govern the motion of atoms and electrons
are normally extremely small. Therefore an atom or electron “sees” only a
very small portion of the macroscopic temperature and chemical potential dis-
tributions. The atoms and electrons do notice that the distributions are not
constant, otherwise they would not conduct heat or current at all. But they see
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so little of the distributions that to them they appear to vary linearly with po-
sition. As a result it is simple gradients, i.e. first derivatives, of the temperature
and potential distributions that drive heat flow and current in common solids.
Symbolically:

q = f1

(
dT

dx
,
dϕµ
dx

)
j = f2

(
dT

dx
,
dϕµ
dx

)

Here q is the “heat flux density;” “flux” is a fancy word for “flow” and the
qualifier “density” indicates that it is per unit cross-sectional area of the bar.
Similarly j is the current density, the current per unit cross-sectional area. If
you want, it is the charge flux density. Further T is the temperature, and ϕµ
is the chemical potential µ per unit electron charge −e. That includes the
electrostatic potential (simply put, the voltage) as well as an intrinsic chemical
potential of the electrons. The unknown functions f1 and f2 will be different
for different materials and different conditions.

The above equations are not valid if the temperature and potential distri-
butions change nontrivially on microscopic scales. For example, shock waves in
supersonic flows of gases are extremely thin; therefore you cannot use equations
of the type above for them. Another example is highly rarefied flows, in which
the molecules move long distances without collisions. Such extreme cases can
really only be analyzed numerically and they will be ignored here. It is also as-
sumed that the materials maintain their internal integrity under the conduction
processes.

Under normal conditions, a further approximation can be made. The func-
tions f1 and f2 in the expressions for the heat flux and current densities would
surely depend nonlinearly on their two arguments if these would appear finite
on a microscopic scale. But on a microscopic scale, temperature and poten-
tial hardly change. (Supersonic shock waves and similar are again excluded.)
Therefore, the gradients appear small in microscopic terms. And if that is true,
functions f1 and f2 can be linearized using Taylor series expansion. That gives:

q = A11
dT

dx
+ A12

dϕµ
dx

j = A21
dT

dx
+ A22

dϕµ
dx

The four coefficients A.. will normally need to be determined experimentally for
a given material at a given temperature. The properties of solids vary normally
little with pressure.

By convention, the four coefficients are rewritten in terms of four other, more
intuitive, ones:

q = −(κ+ PSσ)
dT

dx
− Pσ

dϕµ
dx

j = −SσdT
dx
− σdϕµ

dx
(A.31)

This defines the heat conductivity κ, the electrical conductivity σ, the Seebeck
coefficient S and the Peltier coefficient P of the material. (The signs of the
Peltier and Seebeck coefficients vary considerably between references.)
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If conditions are isothermal, the second equation is Ohm’s law for a unit
cube of material, with σ the usual conductivity, the inverse of the resistance
of the unit cube. The Seebeck effect corresponds to the case that there is no
current. In that case, the second equation produces

dϕµ
dx

= −SdT
dx

(A.32)

To see what this means, integrate this along a closed circuit all the way from
lead 1 of a voltmeter through a sample to the other lead 2. That gives

ϕµ,2 − ϕµ,1 = −
∫ 2

1

SdT (A.33)

Assuming that the two leads of the voltmeter are at the same temperature,
their intrinsic chemical potentials are the same. In that case, the difference in
potentials is equal to the difference in electrostatic potentials. In other words,
the integral gives the difference between the voltages inside the two leads. And
that is the voltage that will be displayed by the voltmeter.

It is often convenient to express the heat flux density q in terms of the current
density instead of the gradient of the potential ϕµ. Eliminating this gradient
from the equations (A.31) produces

q = −κdT
dx

+ Pj (A.34)

In case there is no current, this is the well-known Fourier’s law of heat conduc-
tion, with κ the usual thermal conductivity. Note that the heat flux density is
often simply called the heat flux, even though it is per unit area. In the presence
of current, the heat flux density is augmented by the Peltier effect, the second
term.

The total energy flowing through the bar is the sum of the thermal heat flux
and the energy carried along by the electrons:

jE = q + jϕµ

If the energy flow is constant, the same energy flows out of a piece dx of the bar
as flows into it. Otherwise the negative x-derivative of the energy flux density
gives the net energy accumulation ė per unit volume:

ė = −djE
dx

= −dq

dx
− jdϕµ

dx

where it was assumed that the electric current is constant as it must be for
a steady state. Of course, in a steady state any nonzero ė must be removed
through heat conduction through the sides of the bar of material being tested,
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or through some alternative means. Substituting in from (A.34) for q and from
the second of (A.31) for the gradient of the potential gives:

ė =
d

dx

(
κ
dT

dx

)
+
j2

σ
−K

dT

dx
j K ≡ dP

dT
− S

The final term in the energy accumulation is the Thomson effect or Kelvin heat.
The Kelvin (Thomson) coefficient K can be cleaned up using the second Kelvin
relationship given in a later subsection.

The equations (A.31) are often said to be representative of nonequilibrium
thermodynamics. However, they correspond to a vanishingly small perturbation
from thermodynamical equilibrium. The equations would more correctly be
called quasi-equilibrium thermodynamics. Nonequilibrium thermodynamics is
what you have inside a shock wave.

A.11.5 Charge locations in thermoelectrics

The statement that the charge density is neutral inside the material comes from
[[8]].

A simplified macroscopic derivation can be given based on the thermoelectric
equations (A.31). The derivation assumes that the temperature and chemical
potential are almost constant. That means that derivatives of thermodynamic
quantities and electric potential are small. That makes the heat flux and current
also small.

Next, in three dimensions replace the x derivatives in the thermoelectric
equations (A.31) by the gradient operator ∇. Now under steady-state condi-
tions, the divergence of the current density must be zero, or there would be an
unsteady local accumulation or depletion of net charge, chapter 13.2. Similarly,
the divergence of the heat flux density must be zero, or there would be an ac-
cumulation or depletion of thermal energy. (This ignores local heat generation
as an effect that is quadratically small for small currents and heat fluxes.)

Therefore, taking the divergence of the equations (A.31) and ignoring the
variations of the coefficients, which give again quadratically small contributions,
it follows that the Laplacians of both the temperature and the chemical potential
are zero.

Now the chemical potential includes both the intrinsic chemical potential and
the additional electrostatic potential. The intrinsic chemical potential depends
on temperature. Using again the assumption that quadratically small terms
can be ignored, the Laplacian of the intrinsic potential is proportional to the
Laplacian of the temperature and therefore zero.

Then the Laplacian of the electrostatic potential must be zero too, to make
the Laplacian of the total potential zero. And that then implies the absence
of net charge inside the material according to Maxwell’s first equation, chapter
13.2. Any net charge must accumulate at the surfaces.
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A.11.6 Kelvin relationships

This subsection gives an explanation of the definition of the thermal heat flux
in thermoelectrics. It also explains that the Kelvin (or Thomson) relationships
are a special case of the more general “Onsager reciprocal relations.” If you
do not know what thermodynamical entropy is, you should not be reading this
subsection. Not before reading chapter 11, at least.

For simplicity, the discussion will again assume one-dimensional conduction
of heat and current. The physical picture is therefore conduction along a bar
aligned in the x-direction. It will be assumed that the bar is in a steady state,
in other words, that the temperature and chemical potential distributions, heat
flux and current through the bar all do not change with time.

dx✲✛Reservoir 1

T1 = T

µ1 = µ

Reservoir 2

T2 = T +
dT

dx
dx

µ2 = µ+
dµ

dx
dx

Figure A.1: Analysis of conduction.

The primary question is what is going on in a single short segment dx of
such a bar. Here dx is assumed to be small on a macroscopic scale, but large
on a microscopic scale. To analyze the segment, imagine it taken out of the
bar and sandwiched between two big idealized “reservoirs” 1 and 2 of the same
material, as shown in figure A.1. The idealized reservoirs are assumed to remain
at uniform, thermodynamically reversible, conditions. Reservoir 1 is at the
considered time at the same temperature and chemical potential as the start of
the segment, and reservoir 2 at the same temperature and chemical potential
as the end of the segment. The reservoirs are assumed to be big enough that
their properties change slowly in time. Therefore it is assumed that their time
variations do not have an effect on what happens inside the bar segment at
the considered time. For simplicity, it will also be assumed that the material
consists of a single particle type. Some of these particles are allowed to move
through the bar segment from reservoir 1 to reservoir 2.

In other words, there is a flow, or flux, of particles through the bar segment.
The corresponding particle flux density jI is the particle flow per unit area.
For simplicity, it will be assumed that the bar has unit area. Then there is no
difference between the particle flow and the particle flux density. Note that the
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same flow of particles jI must enter the bar segment from reservoir 1 as must
exit from the segment into reservoir 2. If that was not the case, there would be
a net accumulation or depletion of particles inside the bar segment. That is not
possible, because the bar segment is assumed to be in a steady state. Therefore
the flow of particles through the bar segment decreases the number of particles
I1 in reservoir 1, but increases the number I2 in reservoir 2 correspondingly:

jI = −
dI1
dt

=
dI2
dt

Further, due to the energy carried along by the moving particles, as well as
due to thermal heat flow, there will be a net energy flow jE through the bar
segment. Like the particle flow, the energy flow comes out of reservoir 1 and
goes into reservoir 2:

jE = −dE1

dt
=

dE2

dt
Here E1 is the total energy inside reservoir 1, and E2 that inside reservoir 2. It
is assumed that the reservoirs are kept at constant volume and are thermally
insulated except at the junction with the bar, so that no energy is added due
to pressure work or heat conduction elsewhere. Similarly, the sides of the bar
segment are assumed thermally insulated.

One question is how to define the heat flux through the bar segment. In
the absence of particle motion, the second law of thermodynamics allows an
unambiguous answer. The heat flux q through the bar enters reservoir 2, and
the second law of thermodynamics then says:

q2 = T2
dS2

dt

Here S2 is the entropy of the reservoir 2. In the presence of particles moving
through the bar, the definition of thermal energy, and so the corresponding
heat flux, becomes more ambiguous. The particles also carry along nonthermal
energy. The question then becomes what should be counted as thermal energy,
and what as nonthermal. To resolve that, the heat flux into reservoir 2 will be
defined by the expression above. Note that the heat flux out of reservoir 1 might
be slightly different because of variations in energy carried by the particles. It
is the total energy flow jE, not the heat flow q, that must be exactly constant.

To understand the relationship between heat flux and energy flux more
clearly, some basic thermodynamics can be used. See chapter 11.12 for more
details, including generalization to more than one particle type. A combination
of the first and second laws of thermodynamics produces

T ds̄ = dē+ P dv̄ S = s̄I E = ēI V = v̄I

in which s̄, ē, and v̄ are the entropy, internal energy, and volume per particle,
and P is the pressure. That can be used to rewrite the derivative of entropy in
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the definition of the heat flux above:

T dS = Td(s̄I) = T (ds̄)I + T s̄(dI) = (dē+ P dv̄)I + T s̄(dI)

That can be rewritten as

T dS = dE + PdV − (ē+ P v̄ − T s̄)dI
as can be verified by writing E and V as ēI and v̄I and differentiating out. The
parenthetical expression in the above equation is in thermodynamics known as
the Gibbs free energy. Chapter 11.13 explains that it is the same as the chemical
potential µ in the distribution laws. Therefore:

T dS = dE + PdV − µdI
(Chapter 11.13 does not include an additional electrostatic energy due to

an ambient electric field. But an intrinsic chemical potential can be defined by
subtracting the electrostatic potential energy. The corresponding intrinsic en-
ergy also excludes the electrostatic potential energy. That makes the expression
for the chemical potential the same in terms of intrinsic quantities as in terms
of nonintrinsic ones. See also the discussion in chapter 6.14.)

Using the above expression for the change in entropy in the definition of the
heat flux gives, noting that the volume is constant,

q2 =
dE2

dt
− µ2

dI2
dt

= jE − µ2jI

It can be concluded from this that the nonthermal energy carried along per
particle is µ. The rest of the net energy flow is thermal energy.

The Kelvin relationships are related to the net entropy generated by the
segment of the bar. The second law implies that irreversible processes always
increase the net entropy in the universe. And by definition, the complete system
figure A.1 examined here is isolated. It does not exchange work nor heat with
its surroundings. Therefore, the entropy of this system must increase in time
due to irreversible processes. More specifically, the net system entropy must go
up due to the irreversible heat conduction and particle transport in the segment
of the bar. The reservoirs are taken to be thermodynamically reversible; they
do not create entropy out of nothing. But the heat conduction in the bar is
irreversible; it goes from hot to cold, not the other way around, in the absence
of other effects. Similarly, the particle transport goes from higher chemical
potential to lower.

While the conduction processes in the bar create net entropy, the entropy
of the bar still does not change. The bar is assumed to be in a steady state.
Instead the entropy created in the bar causes a net increase in the combined
entropy of the reservoirs. Specifically,

dSnet

dt
=

dS2

dt
+

dS1

dt
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By definition of the heat flux,

dSnet

dt
=
q2
T2
− q1
T1

Substituting in the expression for the heat flux in terms of the energy and
particle fluxes gives

dSnet

dt
=

(
1

T2
jE −

µ2

T2
jI

)
−
(

1

T1
jE −

µ1

T1
jI

)

Since the area of the bar is one, its volume is dx. Therefore, the entropy
generation per unit volume is:

1

dx

dSnet

dt
=

d1/T

dx
jE +

d−µ/T
dx

jI (A.35)

That used that any expression of the form (f2 − f1)/dx is by definition the
derivative of f .

The above expression for the entropy generation implies that a nonzero
derivative of 1/T must cause an energy flow of the same sign. Otherwise the
entropy of the system would decrease if the derivative in the second term is
zero. Similarly, a nonzero derivative of −µ/T must cause a particle flow of the
same sign. Of course, that does not exclude that the derivative of 1/T may also
cause a particle flow as a secondary effect, or a derivative of −µ/T an energy
flow. Using the same reasoning as in an earlier subsection gives:

jE = L11
d1/T

dx
+ L12

d−µ/T
dx

jI = L21
d1/T

dx
+ L22

d−µ/T
dx

(A.36)

where the L.. are again coefficients to be determined experimentally. But in
this case, the coefficients L11 and L22 must necessarily be positive. That can
provide a sanity check on the experimental results. It is an advantage gained
from taking the flows and derivatives directly from the equation of entropy
generation. In fact, somewhat stronger constraints apply. If the expressions
for jE and jI are plugged into the expression for the entropy generation, the
result must be positive regardless of what the values of the derivatives are. That
requires not just that L11 and L22 are positive, but also that the average of L12

and L21 is smaller in magnitude than the geometric average of L11 and L22.
The so-called Onsager reciprocal relations provide a further, and much more

specific constraint. They say that the coefficients of the secondary effects, L12

and L21, must be equal. In the terms of linear algebra, matrix L.. must be
symmetric and positive definite. In real life, it means that only three, not four
coefficients have to be determined experimentally. That is very useful because
the experimental determination of secondary effects is often difficult.
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The Onsager relations remain valid for much more general systems, involving
flows of other quantities. Their validity can be argued based on experimental ev-
idence, or also theoretically based on the symmetry of the microscopic dynamics
with respect to time reversal. If there is a magnetic field involved, a coefficient
Lij will only equal Lji after the magnetic field has been reversed: time reversal
causes the electrons in your electromagnet to go around the opposite way. A
similar observation holds if Coriolis forces are a factor in a rotating system.

The equations (A.36) for jE and jI above can readily be converted into
expressions for the heat flux density q = jE − µjI and the current density j =
−ejI . If you do so, then differentiate out the derivatives, and compare with the
thermoelectric equations (A.31) given earlier, you find that the Onsager relation
L12 = L21 translates into the second Kelvin relation

P = ST

That allows you to clean up the Kelvin coefficient to the first Kelvin relationship:

K ≡ dP

dT
− S = T

dS

dT
=

dS

d lnT

It should be noted that while the second Kelvin relationship is named after
Kelvin, he never gave a valid proof of the relationship. Neither did many other
authors that tried. It was Onsager who first succeeded in giving a more or less
convincing theoretical justification. Still, the most convincing support for the
reciprocal relations remains the overwhelming experimental data. See Miller
(Chem. Rev. 60, 15, 1960) for examples. Therefore, the reciprocal relationships
are commonly seen as an additional axiom to be added to thermodynamics to
allow quasi-equilibrium systems to be treated.

A.12 Heisenberg picture

This book follows the formulation of quantum mechanics as developed by Schrö-
dinger. However, there is another, earlier, formulation due to Heisenberg. This
subsection gives a brief description so that you are aware of it when you run
into it in literature.

In the Schrödinger picture, physical observables like position and momentum
are represented by time-independent operators. The time dependence is in the
wave function. This is somewhat counterintuitive because classically position
and momentum are time dependent quantities. The Heisenberg picture removes
the time dependence from the wave function and absorbs it into the operator.

To see how that works out, consider first the general form of the wave func-
tion. It can be written as

Ψ(. . . ; t) = e−iHt/~Ψ(. . . ; 0) (A.37)
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where the exponential of an operator is defined through its Taylor series:

e−iHt/~ = 1− i
t

~
H − t2

2!~2
H2 + . . . (A.38)

(To check the above expression for the wave function, take the initial wave
function to be any energy eigenfunction of energy E. You get the correct e−iEt/~

time dependence, chapter 7.1.2. Every H becomes an E. And if the expression
works for any eigenfunction, it works for all their combinations too. That means
that it works for any wave function, because the eigenfunctions are complete.
To be sure, the above form of the wave function applies only if the Hamiltonian
is independent of time. Even if it is not, the transformation from the initial
wave function Ψ(. . . ; 0) to a later one Ψ(. . . ; t) still remains a “unitary” one;
one that keeps the wave function normalized. But then you will need to use the
Schrödinger equation directly to figure out the time dependence.)

Now consider an arbitrary Schrödinger operator Â. The physical effects of
the operator can be characterized by inner products, as in

〈Ψ1(. . . ; t)|ÂΨ2(. . . ; t)〉 (A.39)

Such a dot product tells you what amount of a wave function Ψ1 is produced
by applying the operator on a wave function Ψ2. Knowing these inner products
for all wave functions is equivalent to knowing the operator.

If the time-dependent exponentials are now peeled off Ψ1 and Ψ2 and ab-
sorbed into the operator, you get the time-dependent Heisenberg operator

Ã ≡ eiHt/~Âe−iHt/~ (A.40)

Heisenberg operators will be indicated with a tilde instead of a hat. Note that
the argument of the first exponential changed sign because it was taken to the
other side of the inner product.

The operator Ã depends on time. To see how it evolves, differentiate the
product with respect to time:

dÃ

dt
=

i

~
HeiHt/~Âe−iHt/~ + eiHt/~

∂Â

∂t
e−iHt/~ − eiHt/~Âe−iHt/~ i

~
H

The first and third terms can be recognized as a multiple of the commutator of
H and Ã, while the middle term is the Heisenberg version of the time derivative
of Â, in case Â does happen to depend on time. So the evolution equation for
the Heisenberg operator becomes

dÃ

dt
=

i

~

[
H, Ã

]
+
∂̃Â

∂t

[
H, Ã

]
= eiHt/~

[
H, Â

]
e−iHt/~ (A.41)

(Note that there is no difference between the Hamiltonians Ĥ and H̃ because
H commutes with itself, hence with its exponentials.)
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For example, consider the Schrödinger x̂ position and p̂x linear momentum
operators of a particle. These do not depend on time. Using the commutators
as figured out in chapter 7.2.1, the corresponding Heisenberg operators evolve
as:

dx̃

dt
=

1

m
p̃x

dp̃x
dt

= − ∂̃V
∂x

Those have the exact same form as the equations for the classical position and
momentum of the particle.

In fact, the equivalent of the general equation (A.41) is also found in clas-
sical physics: it is derived in advanced mechanics, with the so-called “Poisson
bracket” taking the place of the commutator. As a simple example, consider
one-dimensional motion of a particle. Any variable a that depends on the po-
sition and linear momentum of the particle, and maybe also explicitly on time,
has a time derivative given by

da

dt
=
∂a

∂x

dx

dt
+

∂a

∂px

dpx
dt

+
∂a

∂t

according to the total differential of calculus. And from the classical Hamilto-
nian

H =
p2x
2m

+ V

it is seen that the time derivatives of position and momentum obey the classical
“Hamiltonian dynamics”

dx

dt
=
∂H

∂px

dpx
dt

= −∂H
∂x

Substituting this into the time derivative of a gives

da

dt
=
∂a

∂x

∂H

∂px
− ∂a

∂px

∂H

∂x
+
∂a

∂t

The first two terms in the right hand side are by definition minus the Poisson
bracket {H, a}P, so

da

dt
= −{H, a}P +

∂a

∂t
{H, a}P ≡

∂H

∂x

∂a

∂px
− ∂a

∂x

∂H

∂px

Note that the Poisson bracket, like the commutator, is antisymmetric under
exchange of H and a. Apparently, formally identifying the Poisson bracket with
the commutator divided by i~ brings you from classical mechanics to Heisen-
berg’s quantum mechanics.

More generally, the classical Hamiltonian can depend on multiple and non-
Cartesian coordinates, generically called “generalized coordinates.” In that case,
in the Poisson bracket you must sum over all generalized coordinates and their
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associated so-called “canonical” momenta. For a Cartesian position coordinate,
the canonical momentum is the corresponding linear momentum. For an angular
coordinate, it is the corresponding angular momentum. In general, using the so-
called Lagrangian formulation usually covered in an engineering education, and
otherwise found in addendum {A.1}, the canonical momentum is the derivative
of the Lagrangian with respect to the time derivative of the coordinate.

The bottom line is that the Heisenberg equations are usually not easy to solve
unless you return to the Schrödinger picture by peeling off the time dependence.
In relativistic applications however, time joins space as an additional coordinate,
and the Heisenberg picture becomes more helpful. It can also make it easier to
identify the correspondence between classical equations and the corresponding
quantum operators.

Key Points

0 In the Heisenberg picture, operators evolve in time just like their
physical variables do in classical physics.

A.13 Integral Schrödinger equation

The Hamiltonian eigenvalue problem, or time-independent Schrödinger equa-
tion, is the central equation of quantum mechanics. It reads

~
2

2m
∇2ψ(~r) + V (~r)ψ(~r) = Eψ(~r)

Here ψ is the wave function, E is the energy of the state described by the wave
function, V is the potential energy, m is the mass of the particle, and ~ is the
scaled Planck constant.

The equation also involves the Laplacian operator, defined as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Therefore the Hamiltonian eigenvalue problem involves partial derivatives, and
it is called a partial differential equation.

However, it is possible to manipulate the equation so that the wave function
ψ appears inside an integral rather than inside partial derivatives. The equation
that you get this way is called the “integral Schrödinger equation.” It takes the
form, {D.31}:

ψ(~r) = ψ0(~r)−
m

2π~2

∫

all ~r ′

eik|~r−~r
′|

|~r −~r ′|V (~r ′)ψ(~r ′) d3~r ′ k =

√
2mE

~
(A.42)
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Here ψ0 is any wave function of energy E in free space. In other words ψ0 is any
wave function for the particle in the absence of the potential V . The constant k
is a measure of the energy of the particle. It also corresponds to a wave number
far from the potential. While not strictly required, the integral Schrödinger
equation above tends to be most suited for particles in infinite space.

A.14 The Klein-Gordon equation

The Schrödinger equation for the quantum wave function is based on the non-
relativistic expression for the energy of a particle. This addendum looks at the
simplest relativistic equation for wave functions, called the Klein-Gordon equa-
tion. The discussion will largely be restricted to a spinless particle in empty
space, where there is no potential energy. However, the Klein-Gordon equation
is the first step to more complex relativistic equations.

Recall first how the Schrödinger equation arose. If there is no potential
energy, classical physics says that the energy E is just the kinetic energy p2/2m
of the particle. Here p is the linear momentum of the particle and m its mass.
Quantum mechanics replaces the energy E by the operator i~∂/∂t and the
momentum ~p by ~∇/i, where

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Then it applies the resulting operators on the wave function Ψ. That then
produces the Schrödinger equation

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ

Solutions with a definite value E for the energy take the form Ψ = ce−iEt/~ψ.
Substituting that into the Schrödinger equation and rearranging produces the
so-called Hamiltonian eigenvalue problem

− ~
2

2m
∇2ψ = Eψ

Here ψ is called the energy eigenfunction.
According to classical relativity however, the energy E of a particle in empty

space is not just kinetic energy, but also rest mass energy mc2, where c is the
speed of light. In particular, chapter 1.1.2 (1.2),

E =
√
(mc2)2 + p2c2

The momentum can be identified with the same operator as before. But square
roots of operators are very ugly. So the smart thing to do is to square both
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sides above. Making the same substitutions as for the Schrödinger equation
and cleaning up then gives the “Klein-Gordon equation”

− 1

c2
∂2Ψ

∂t2
+∇2Ψ =

(
mc2

~c

)2

Ψ (A.43)

Solutions ce−iEt/~ψ with definite energy E satisfy the “time-independent
Klein-Gordon equation” or square Hamiltonian eigenvalue problem

−~2c2∇2ψ + (mc2)2ψ = E2ψ

This may be rewritten in a form so that both the Schrödinger equation and the
Klein-Gordon equation are covered:

empty space: −∇2ψ = k2ψ





Schrödinger: k =

√
2mE

~

Klein-Gordon: k =

√
E2 − (mc2)2

~c
(A.44)

Here the constant k is called the “wave number.” Note that the nonrelativistic
energy does not include the rest mass energy. When that is taken into account,
the Schrödinger expression for k above is the nonrelativistic approximation for
the Klein-Gordon k as it should be.

Further note that relativistic or not, the magnitude of linear momentum p
is given by the “de Broglie relation” p = ~k. That is because relativistic or
not the momentum operator is ~∇/i, so p̂2 = −~2∇2. Similarly, relativistic or
not, the energy is associated the operator i~∂/∂t. That means that the time-
dependent factor in states of definite energy is e−iEt/~. That allows the energy
to be associated with an “angular frequency” ω by writing the exponential as
e−iωt. The relationship between energy and frequency is then E = ~ω. That
is known as the “Planck-Einstein relation” when applied to photons. In short,
relativistic or not,

p = ~k E = ~ω (A.45)

The wave number k is the quantum number of linear momentum, and the an-
gular frequency ω is the one of energy. See addendum {A.19} for more on how
these numbers arise physically from symmetries of nature.

It may be noted that Schrödinger wrote down the Klein-Gordon equation
first. But when he added the Coulomb potential, he was not able to get the
energy levels of the hydrogen atom. To fix that problem, he wrote down the
simpler nonrelativistic equation that bears his name. The problem in the rel-
ativistic case is that after you add the Coulomb potential to the energy, you
can no longer square away the square root. Eventually, Dirac figured out how
to get around that problem, chapter 12.12 and {D.81}. In brief, he assumed
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that the wave function for the electron is not a scalar, but a four-dimensional
vector, (two spin states for the electron, plus two spin states for the associated
antielectron, or positron.) Then he assumed that the square root takes a simple
form for that vector.

Since this addendum assumes a particle in empty space, the problem with
the Coulomb potential does not arise. But there are other issues. The good
news is that according to the Klein-Gordon equation, effects do not propagate
at speeds faster than the speed of light. That is known from the theory of partial
differential equations. In classical physics, effects cannot propagate faster than
the speed of light, so it is somewhat reassuring that the Klein-Gordon equation
respects that.

Also, all inertial observers agree about the Klein-Gordon equation, regardless
of the motion of the observer. That is because all inertial observers agree about
the rest mass m of a particle and the value of the speed of light c. So they
all agree about the right hand side in the Klein-Gordon equation (A.43). And
the left hand side in the Klein-Gordon equation is also the same for all inertial
observers. You can crunch that out using the Lorentz transform as given in
chapter 1.2.1 (1.6). (Those familiar with index notation as briefly described in
chapter 1.2.5 recognize the entire left hand side as being simply ∂µ∂µΨ. That
is unchanged going from one observer to the next, because the upper index
transforms under the Lorentz transform and the lower index under the inverse
Lorentz transform. The operator ∂µ∂µ is called the “D’Alembertian,” much like
∇2 is called the Laplacian.)

But the bad news is that the Klein-Gordon equation does not necessarily
preserve the integral of the square magnitude of the wave function. The Schrö-
dinger equation implies that, {D.32},

∫

all

|Ψ|2 d3~r = constant, the same for all time

The wave function is then normalized so that the constant is 1. According to
the Born statistical interpretation, chapter 3.1, the integral above represents
the probability of finding the particle if you look at all possible positions. That
must be 1 at whatever time you look; the particle must be somewhere. Because
the Schrödinger equation ensures that the integral above stays 1, it ensures that
the particle cannot just disappear, and that no second particle can show up out
of nowhere.

But the Klein-Gordon equation does not preserve the integral above. There-
fore the number of particles is not necessarily preserved. That is not as bad as it
looks, anyway, because in relativity the mass-energy equivalence allows particles
to be created or destroyed, chapter 1.1.2. But certainly, the interpretation of
the wave function is not a priori obvious. The integral that the Klein-Gordon
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equation does preserve is, {D.32},
∫

all

∣∣∣∣
1

c

∂Ψ

∂t

∣∣∣∣
2

+ |∇Ψ|2 +
∣∣∣∣
mc2

~c
Ψ

∣∣∣∣
2

d3~r = constant

It is maybe somewhat comforting that according to this expression, the integral
of |Ψ|2 must at least remain bounded. That does assume that the rest mass m
of the particle is not zero. Photons need not apply.

Another problem arises because even though the square energy E2 is nor-
mally positive, the energy E itself can still be both positive or negative. That is
a problem, because then there is no lower limit to the energy, there is no ground
state. The particle can then transition to states of lower and lower energy tend-
ing to minus infinity. That would release unbounded amounts of energy. (Since
the kinetic energy can be arbitrarily large, the positive value of the energy can
be arbitrarily large. That makes the negative value of the energy also arbitrarily
large in magnitude.)

You might say, just ignore the negative energy possibility. But Dirac found
that that does not work; you need both positive and negative energy states to
explain such things as the hydrogen energy levels. The way Dirac solved the
problem for electrons is to assume that all negative states are already filled with
electrons. Unfortunately, that does not work for bosons, since any number of
bosons can go into a state.

The modern view is to consider the negative energy solutions to represent
antiparticles. In that view, antiparticles have positive energy, but move back-
wards in time. For example, Dirac’s negative energy states are not electrons
with negative energy, but positrons with positive energy. Positrons are then
electrons that move backward in time. To illustrate the idea, consider two
hypothetical wave functions of the form

e−iEt/~ψ1 and eiEt/~ψ2

where E is the positive root for the energy. The first wave function is no problem;
it is of the form of a wave function that you would get for a nonrelativistic
particle of energy E. The second wave function is the problem. It is not
considered to be a particle of negative energy −E. Instead it is considered an
antiparticle of positive energy E that moves backward in time. It is the reversal
of the relevant direction of time that causes the sign change in the argument of
the exponential.

You see why so much quantum physics is done using nonrelativistic equa-
tions.

A.15 Quantum Field Theory in a Nanoshell

The “classical” quantum theory discussed in this book runs into major diffi-
culties with truly relativistic effects. In particular, relativity allows particles to
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be created or destroyed. For example, a very energetic photon near a heavy
nucleus might create an electron and a positron. Einstein’s E = mc2 implies
that that is possible because mass is equivalent to energy. The photon en-
ergy is converted into the electron and positron masses. Similarly, an electron
and positron can annihilate each other, releasing their energy as photons. The
quantum formalism in this book cannot deal with particles that appear out of
nothing or disappear. A modified formulation called “quantum field theory” is
needed.

And quantum field theory is not just for esoteric conditions like electron-
positron pair creation. The photons of light are routinely created and destroyed
under normal conditions. Still more basic to an engineer, so are their equivalents
in solids, the phonons of crystal vibrations. Then there is the band theory of
semiconductors: electrons are “created” within the conduction band, if they pick
up enough energy, or “annihilated” when they lose it. And the same happens
for the real-life equivalent of positrons, holes in the valence band.

Such phenomena are routinely described within the framework of quantum
field theory. Almost unavoidably you will run into it in literature, [18, 29].
Electron-phonon interactions are particularly important for engineering appli-
cations, leading to electrical resistance (along with crystal defects and impuri-
ties), and to the combination of electrons into Cooper pairs that act as bosons
and so give rise to superconductivity.

This addendum explains some of the basic ideas of quantum field theory. It
should allow you to recognize it when you see it. Addendum {A.23} uses the
ideas to explain the quantization of the electromagnetic field. That then allows
the quantum description of spontaneous emission of radiation by excited atoms
or nuclei in {A.24}. Here a photon is created.

Unfortunately a full discussion of quantum field theory is far outside the
scope of this book. Especially the fully relativistic theory is very involved. To
explain quantum field theory in a nutshell takes Zee 500 pages, [53]. Tong [[17]]
writes: “This is charming book, where emphasis is placed on physical under-
standing and the author isn’t afraid to hide the ugly truth when necessary.
It contains many gems.” But you first need to learn linear algebra, at the
minimum read all of chapter 1 on relativity, chapter 1.2.5 and {A.4} on index
notation, chapter 12.12 and {A.36} on the Dirac equation, addendum {A.14}
on the Klein-Gordon equation, {A.1} on Lagrangian mechanics, {A.12} on the
Heisenberg interpretation, and pick up enough group theory. Learning some-
thing about the path integral approach to quantum mechanics, like from [22],
cannot hurt either. In the absence of 1 000 pages and a willing author, the
following discussion will truly be quantum field theory in a nanoshell.

If you want to get a start on a more advanced treatment of quantum field
theory of elementary particles at a relatively low level of mathematics, Griffiths
[24] is recommended.

And if you are just interested in relativistic quantum mechanics from an
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intellectual point of view, there is good news. Feynman gave a set of lectures on
“quantum electrodynamics” for a general audience around 1983, and the text is
readily available at low cost. Without doubt, this is the best exposition of the
fundamentals of quantum mechanics that has ever been written, or ever will.
The subject is reduced to its bare abstract axioms, and no more can be said. If
the human race is still around a millennium or so from now, artificial intelligence
may take care of the needed details of quantum mechanics. But those who need
or want to understand what it means will still reach for Feynman. The 2006
edition, [19], has a foreword by Zee that gives a few hints how to relate the basic
concepts in the discussion to more conventional mathematics like the complex
numbers found in this book. It will not be much help applying quantum field
theory to engineering problems, however.

A.15.1 Occupation numbers

The first concept that must be understood in quantum field theory is occupation
numbers. They will be the new way to represent quantum wave functions.

Recall first the form of wave functions in “classical” quantum mechanics,
as normally covered in this book. Assume a system of independent, or maybe
weakly interacting particles. The energy eigenfunctions of such a system can be
written in terms of whatever are the single-particle energy eigenfunctions

ψp
1 (~r, Sz), ψ

p
2 (~r, Sz), ψ

p
3 (~r, Sz), . . .

For each single-particle eigenfunction, ~r indicates the position of the particle
and Sz its spin angular momentum in the chosen z-direction.

Now consider a system of, say, 36 particles. A completely arbitrary example
of an energy eigenfunction for such a system would be:

ψS(~r1, Sz1,~r2, Sz2,~r3, Sz3,~r4, Sz4,~r5, Sz5, . . . ,~r36, Sz36) =

ψp
24(~r1, Sz1)ψ

p
4 (~r2, Sz2)ψ

p
7 (~r3, Sz3)ψ

p
1 (~r4, Sz4)ψ

p
6 (~r5, Sz5) . . . ψ

p
54(~r36, Sz36)

(A.46)
This system eigenfunction has particle 1 in the single-particle state ψp

24, particle
2 in ψp

4 , etcetera. The system energy is the sum of the separate energies of the
36 single-particle states involved:

E
S
= E

p
ψ24

+ E
p
ψ4

+ E
p
ψ7

+ E
p
ψ1

+ E
p
ψ6

+ . . .+ E
p
ψ54

Instead of writing out the example eigenfunction mathematically as done
in (A.46) above, it can be graphically depicted as in figure A.2. In the figure
the single-particle states are shown as boxes, and the particles that are in those
particular single-particle states are shown inside the boxes. In the example,
particle 1 is inside the ψp

24 box, particle 2 is inside the ψp
4 one, etcetera. It is

just the reverse from the mathematical expression (A.46): the mathematical
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Ep
1

ψp
1

4❤21❤35❤ ψp
2

10❤12❤24❤28❤
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Figure A.2: Graphical depiction of an arbitrary system energy eigenfunction for
36 distinguishable particles.

expression shows for each particle in turn what the single-particle eigenstate
of that particle is. The figure shows for each single-particle eigenstate in turn
what particles are in that eigenstate.

However, if the 36 particles are identical bosons, (like photons or phonons),
the example mathematical eigenfunction (A.46) and corresponding depiction
figure A.2 is unacceptable. As chapter 5.7 explained, wave functions for bosons
must be unchanged if two particles are swapped. But if, for example, particles
2 and 5 in eigenfunction (A.46) above are exchanged, it puts 2 in state 6 and 5
in state 4:

ψS
2↔5(~r1, Sz1,~r2, Sz2,~r3, Sz3,~r4, Sz4,~r5, Sz5, . . . ,~r36, Sz36) =

ψp
24(~r1, Sz1)ψ

p
6 (~r2, Sz2)ψ

p
7 (~r3, Sz3)ψ

p
1 (~r4, Sz4)ψ

p
4 (~r5, Sz5) . . . ψ

p
54(~r36, Sz36)

That is simply a different energy eigenfunction. So neither (A.46) nor this
swapped form are acceptable by themselves. To fix up the problem, eigenfunc-
tions must be combined. To get a valid energy eigenfunction for bosons out
of (A.46), all the different eigenfunctions that can be formed by swapping the
36 particles must be summed together. The normalized sum gives the correct
eigenfunction for bosons. But note that there is a humongous number of differ-
ent eigenfunctions that can be obtained by swapping the particles. Over 1037 if
you care to count them. As a result, there is no way that the gigantic expression
for the resulting 36-boson energy eigenfunction could ever be written out here.

It is much easier in terms of the graphical depiction figure A.2: graphically
all these countless system eigenfunctions differ only with respect to the numbers
in the particles. And since in the final eigenfunction, all particles are present
in exactly the same way, then so are their numbers within the particles. Every
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Figure A.3: Graphical depiction of an arbitrary system energy eigenfunction for
36 identical bosons.

number appears equally in every particle. So the numbers do no longer add dis-
tinguishing information and can be left out. That makes the graphical depiction
of the example eigenfunction for a system of identical bosons as in figure A.3.
It illustrates why identical particles are commonly called “indistinguishable.”

For a system of identical fermions, (like electrons or quarks), the eigenfunc-
tions must change sign if two particles are swapped. As chapter 5.7 showed,
that is very restrictive. It means that you cannot create an eigenfunction for a
system of 36 fermions from the example eigenfunction (A.46) and the swapped
versions of it. Various single-particle eigenfunctions appear multiple times in
(A.46), like ψp

4 , which is occupied by particles 2, 31, and 33. That cannot hap-
pen for fermions. A system eigenfunction for 36 identical fermions requires 36
different single-particle eigenfunctions.

It is the same graphically. The example figure A.3 for bosons is impossible
for a system of identical fermions; there cannot be more than one fermion in a
single-particle state. A depiction of an arbitrary energy eigenfunction that is
acceptable for a system of 33 identical fermions is in figure A.4.

As explained in chapter 5.7, a neat way of writing down the system energy
eigenfunction of the pictured example is to form a Slater determinant from the
“occupied states”

ψp
1 , ψ

p
2 , ψ

p
3 , . . . , ψ

p
43, ψ

p
45, ψ

p
56.

It is good to meet old friends again, isn’t it?

Now consider what happens in relativistic quantum mechanics. For example,
suppose that an electron and positron annihilate each other. What are you going
to do, leave holes in the parameter list of your wave function, where the electron
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Figure A.4: Graphical depiction of an arbitrary system energy eigenfunction for
33 identical fermions.

and positron used to be? Like

Ψ(~r1, Sz1, [gone],~r3, Sz3, [gone],~r5, Sz5, . . . ,~r36, Sz36; t)

say? Or worse, what if a photon with very high energy hits an heavy nucleus and
creates an electron-positron pair in the collision from scratch? Are you going
to scribble in a set of additional parameters for the new particles into your
parameter list? Scribble in another row and column in the Slater determinant
for your electrons? That is voodoo mathematics. The classical way of writing
wave functions fails.

And if positrons are too weird for you, consider photons, the particles of elec-
tromagnetic radiation, like ordinary light. As chapters 6.8 and 7.8 showed, the
electrons in hot surfaces create and destroy photons readily when the thermal
equilibrium shifts. Moving at the speed of light, with zero rest mass, photons
are as relativistic as they come. Good luck scribbling in trillions of new states
for the photons into your wave function when your black box heats up. Then
there are solids; as chapter 11.14.6 shows, the phonons of crystal vibrational
waves are the equivalent of the photons of electromagnetic waves.

One of the key insights of quantum field theory is to do away with classical
mathematical forms of the wave function such as (A.46) and the Slater deter-
minants. Instead, the graphical depictions, such as the examples in figures A.3
and A.4, are captured in terms of mathematics. How do you do that? By listing
how many particles are in each type of single-particle state. In other words, you
do it by listing the single-state “occupation numbers.”

Consider the example bosonic eigenfunction of figure A.3. The occupation
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numbers for that state would be

|3, 4, 1, 3, 2, 2, 2, 1, 1, 0, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, . . .〉
indicating that there are 3 bosons in single-particle state ψp

1 , 4 in ψp
2 , 1 in

ψp
3 , etcetera. Knowing those numbers is completely equivalent to knowing the

classical system energy eigenfunction; it could be reconstructed from them.
Similarly, the occupation numbers for the example fermionic eigenfunction of
figure A.4 would be

|1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, . . .〉
Such sets of occupation numbers are called “Fock basis states.” Each describes
one system energy eigenfunction.

General wave functions can be described by taking linear combinations of
these basis states. The most general Fock wave function for a classical set of
exactly I particles is a linear combination of all the basis states whose occupation
numbers add up to I. But Fock states make it also possible to describe systems
like photons in a box with varying numbers of particles. Then the most general
wave function is a linear combination of all the Fock basis states, regardless of
the total number of particles. The set of all possible wave functions that can
be formed from linear combinations of the Fock basis states is called the “Fock
space.”

How about the case of distinguishable particles as in figure A.2? In that
case, the numbers inside the particles also make a difference, so where do they
go?? The answer of quantum field theory is to deny the existence of generic
particles that take numbers. There are no generic particles in quantum field
theory. There is a field of electrons, there is a field of protons, (or quarks,
actually), there is a field of photons, etcetera, and each of these fields is granted
its own set of occupation numbers. There is no way to describe a generic particle
using a number. For example, if there is an electron in a single-particle state,
in quantum field theory it means that the electron field has a particle in that
energy state. The particle has no number.

Some physicist feel that this is a strong point in favor of believing that
quantum field theory is the way nature really works. In the classical formulation
of quantum mechanics, the (anti) symmetrization requirements under particle
exchange are an additional ingredient, added to explain the data. In quantum
field theory, it comes naturally: particles that are distinguishable simply cannot
be described by the formalism. Still, our convenience in describing it is an
uncertain motivator for nature.

The successful analysis of the blackbody spectrum in chapter 6.8 already
testified to the usefulness of the Fock space. If you check the derivations in
chapter 11 leading to it, they were all conducted based on occupation numbers.
A classical wave function for the system of photons was never written down;
that simply cannot be done.
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ψp ψp❤ ❤ ①
Figure A.5: Example wave functions for a system with just one type of single
particle state. Left: identical bosons; right: identical fermions.

There is a lot more involved in quantum field theory than just the blackbody
spectrum, of course. To explain some of the basic ideas, simple examples can
be helpful. The simplest example that can be studied involves just one single-
particle state, say just a single-particle ground state. The graphical depiction
of an arbitrary example wave function is then as in figure A.5. There is just
one single-particle box. In nonrelativistic quantum mechanics, this would be
a completely trivial quantum system. In the case of I identical bosons, shown
to the left in the figure, all of them would have to go into the only state there
is. In the case of identical fermions, shown to the right, there can only be one
fermion, and it has to go into the only state there is.

But when particles can be created or destroyed, things get more interesting.
When there is no given number of particles, there can be any number of identical
bosons within that single particle state. That allows |0〉 (no particles,) |1〉 (1
particle), |2〉 (2 particles), etcetera. And the general wave function can be a
linear combination of those possibilities. It is the same for identical fermions,
except that there are now only the states |0〉 (no particles) and |1〉 (1 particle).
The wave function can still be a combination of these two possibilities.

A relativistic system with just one type of single-particle state does seem
very artificial. It raises the question how esoteric such an example is. But there
are in fact two very well established classical systems that behave just like this:

1. The one-dimensional harmonic oscillator of chapter 4.1 has energy
levels that happen to be exactly equally spaced. It can pick up an
energy above the ground state that is any whole multiple of ~ω,
where ω is its natural frequency. If you are willing to accept the
“particles” to be quanta of energy of size ~ω, then it provides a
model of a bosonic system with just one single-particle state. The
ground state, h0 in the notations of chapter 4.1, is the state |0〉. The
first excited state h1 is |1〉; it has one additional energy quantum
~ω. The second excited state h2 is |2〉, with two quanta more than
the ground state, etcetera.

Recall from chapter 4.1 that there is an additional ground state
energy of half a ~ω quantum. In a quantum field theory, this addi-
tional energy that exists even when there are no particles is called
the “vacuum energy.”

The general wave function of a harmonic oscillator is a linear com-
bination of the energy states. In terms of chapter 4.1, that expresses
an uncertainty in energy. In the present context, it expresses an



916 APPENDIX A. ADDENDA

uncertainty in the number of these energy particles!
2. A single electron has exactly two spin states. It can pick up exactly

one unit ~ of z-momentum above the spin-down state. If you accept
the “particles” to be single quanta of z-momentum of size ~, then
it provides an example of a fermionic system with just one single-
particle state. There can be either 0 or 1 quantum ~ of angular
momentum in that single-particle state. The general wave function
is a linear combination of the state with one angular momentum
“particle” and the state with no angular momentum “particle”.
This example is less intuitive, since normally when you talk about

a particle, you talk about an amount of energy, like in Einstein’s
mass-energy relation. If it bothers you, think of the electron as being
confined inside a magnetic field; then the spin-up state is associated
with a corresponding increase in energy.

While the above two examples of “relativistic” systems with only one single-
particle state are obviously made up, they do provide a very valuable sanity
check on any relativistic analysis.

Not only that, the two examples are also very useful to understand the
difference between a zero wave function and the so-called “vacuum state”

|~0 〉 ≡ |0, 0, 0, . . .〉 (A.47)

in which all occupation numbers are zero. The vacuum state is a normalized,
nonzero, wave function just like the other possible sets of occupation numbers.
It describes that there are no particles with certainty. You can see it from the
two examples above. For the harmonic oscillator, the state |0〉 is the ground
state h0 of the oscillator. For the electron-spin example, it is the spin-down
state of the electron. These are completely normal eigenstates that the system
can be in. They are not zero wave functions, which would be unable to describe
a system.

Fock basis kets are taken to be orthonormal; an inner product between kets
is zero unless all occupation numbers are equal. If they are all equal, the inner
product is 1. In short:

〈. . . , i3, i2, i1|i1, i2, i3, . . .〉 =
{

1 if i1 = i1 and i2 = i2 and i3 = i3 . . .

0 otherwise

(A.48)
If the two kets have the same total number of particles, this orthonormality

is required because the corresponding classical wave functions are orthonormal.
Inner products between classical eigenfunctions that have even a single particle
in a different state are zero. That is easily verified if the wave functions are
simple products of single-particle ones. But then it also holds for sums of such
eigenfunctions, as you have for bosons and fermions.
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If the two kets have different total numbers of particles, the inner product
between the classical wave functions does not exist. But basis kets are still
orthonormal. To see that, take the two simple examples given above. For the
harmonic oscillator example, different occupation numbers for the “particles”
correspond to different energy eigenfunctions of the actual harmonic oscillator.
These are orthonormal. It is similar for the spin example. The state of 0
“particles” is the spin-down state of the electron. The state of 1 “particle”
is the spin-up state. These spin states are orthonormal states of the actual
electron.

A.15.2 Creation and annihilation operators

The key to relativistic quantum mechanics is that particles can be created and
annihilated. So it may not be surprising that it is very helpful to define operators
that “create” and “annihilate” particles .

To keep the notations relatively simple, it will initially be assumed that there
is just one type of single-particle state. Graphically that means that there is
just one single-particle state box, like in figure A.5. However, there can be an
arbitrary number of particles in that box.

The desired actions of the creation and annihilation operators are sketched
in figure A.6. An annihilation operator â turns a state |i〉 with i particles into
a state |i−1〉 with i− 1 particles. A creation operator â† turns a state |i〉 with
i particles into a state |i+1〉 with i+ 1 particles.

ψp

ψp

ψp

ψp

ψp

ψp

0 0

0

...
...

❄

❄

❄

❄

❄

❄
✻
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✻

✻

✻

âb

âb

âb

âb

â†b

â†b
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âf â†f

â†f

❤

❤ ❤

❤❤❤

①

Figure A.6: Creation and annihilation operators for a system with just one type
of single particle state. Left: identical bosons; right: identical fermions.
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The operators are therefore defined by the relations

â|i〉 = αi|i−1〉 but â|0〉 = 0 â†|i〉 = α†i |i+1〉 but â†|1〉 = 0 for fermions
(A.49)

Here the αi and α
†
i are numerical constants still to be chosen.

Note that the above relations only specify what the operators â and â† do to
basis kets. But that is enough information to define them. To figure out what
these operators do to linear combinations of basis kets, just apply them to each
term in the combination separately.

Mathematically you can always define whatever operators you want. But you
must hope that they will turn out to be operators that are physically helpful.
To help achieve that, you want to chose the numerical constants αi and α†i
appropriately. Consider what happens if the operators are applied in sequence:

â†â|i〉 = â†αi|i−1〉 = α†i−1αi|i〉

Reading from right to left, the order in which the operators act on the state,
first â destroys a particle, then â† restores it again. It gives the same state
back, except for the numerical factor α†i−1αi. That makes every state |i〉 an
eigenvector of the operator â†â with eigenvalue α†i−1αi.

If the constants α†i−1 and αi are chosen to make the eigenvalue a real number,
then the operator â†â will be Hermitian. More specifically, if they are chosen to
make the eigenvalue equal to i, then â†â will be the “particle number operator”
whose eigenvalues are the number of particles in the single-particle state. The
most logical choice for the constants to achieve that is clearly

αi =
√
i α†i−1 =

√
i =⇒ α†i =

√
i+ 1

The full definition of the annihilation and creation operators can now be
written in a nice symmetric way as

â|i〉 =
√
i |i−1〉 â†|i−1〉 =

√
i |i〉 except â†|1〉 = 0 for fermions (A.50)

In words, the annihilation operator â kills off one particle and adds a factor
√
i.

The operator â† puts the particle back in and adds another factor
√
i.

These operators are particularly convenient since they are Hermitian conju-
gates. That means that if you take them to the other side in an inner product,
they turn into each other. In particular, for inner products between basis kets,

〈
|i〉
∣∣∣â|i〉

〉
=
〈
â†|i〉

∣∣∣|i〉
〉 〈

|i〉
∣∣∣â†|i〉

〉
=
〈
â|i〉
∣∣∣|i〉
〉

Note that if such relations apply for basis kets, they also apply for all linear
combinations of basis kets.
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To verify that the above relations apply, recall from the previous subsection
that kets are orthonormal. In the equalities above, the inner products are only
nonzero if i = i−1: after lowering the particle number with â, or raising it with
â†, the particle numbers must be the same at both sides of the inner product.
And when i = i − 1, according to the definitions (A.50) of â and â† all inner
products above equal

√
i, so the equalities still apply.

It remains true for fermions that â and â† are Hermitian conjugates, even
though â†|1〉 = 0 instead of

√
2 |2〉. The reason is that the latter would only

make a difference if there was a |2〉 state in the other side of the inner product,
and such a state does not exist.

The inner products are usually written in the more esthetic form

〈i|â|i〉 = 〈i|
(
â|i〉
)
=
(
〈i|â
)
|i〉 〈i|â†|i〉 = 〈i|

(
â†|i〉

)
=
(
〈i|â†

)
|i〉

Here it is to be understood that, say, 〈i|â stands for â†|i〉 pushed into the left
hand side of an inner product, chapter 2.7.1.

You may well wonder why â†â is the particle count operator; why not ââ†?
The reason is that ââ† would not work for the state |0〉 unless you took â†|0〉 to
be zero or â|1〉 to be zero, and then they could no longer create or annihilate
|1〉.

Still, it is interesting to see what the effect of ââ† is. It turns out that this
depends on the type of particle. For bosons, using (A.50),

âbâ
†
b|i〉 = âb

√
i+ 1 |i+1〉 =

√
i+ 1

√
i+ 1 |i〉 = (i+ 1)|i〉

So the operator âbâ
†
b has eigenvalues one greater than the number of particles.

That means that if you subtract âbâ
†
b and â†bâb, you get the unit operator that

leaves all states unchanged. And the difference between âbâ
†
b and â†bâb is by

definition the commutator of âb and â†b, indicated by square brackets:

[âb, â
†
b] ≡ âbâ

†
b − â†bâb = 1 (A.51)

Isn’t that cute! Of course, [âb, âb] and [â†b, â
†
b] are zero since everything com-

mutes with itself. It turns out that you can learn a lot from these commutators,
as seen in later subsections.

The same commutator does not apply to fermions, because if you apply âf â
†
f

to |1〉, you get zero instead of 2|1〉. But for fermions, the only state for which
âf â
†
f produces something nonzero is |0〉 and then it leaves the state unchanged.

Similarly, the only state for which â†f âf produces something nonzero is |1〉 and
then it leaves that state unchanged. That means that if you add âf â

†
f and â

†
f âf

together, instead of subtract them, it reproduces the same state state whether
it is |0〉 or |1〉 (or any combination of them). The sum of âf â

†
f and â

†
f âf is called

the “anticommutator” of âf and â
†
f ; it is indicated by curly brackets:

{âf , â†f} ≡ âf â
†
f + â†f âf = 1 (A.52)
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Isn’t that neat? Note also that {âf , âf} and {âf , âf} are zero since applying
either operator twice ends up in a nonexisting state.

How about the Hamiltonian for the energy of the system of particles? Well,
for noninteracting particles the energy of i particles is i times the single particle
energy Ep. And since the operator that gives the number of particles is â†â, that
is Epâ†â. The total Hamiltonian for noninteracting particles becomes therefore:

H = E
p
â†â+ Eve (A.53)

Here Eve stands for any additional “vacuum energy” that exists even if there are
no particles. That is the ground state energy of the system. The above Hamil-
tonian allows the Schrödinger equation to be written in terms of occupation
numbers and creation and annihilation operators.

A.15.3 The caHermitians

It is important to note that the creation and annihilation operators â† and â are
not Hermitian. They cannot be taken unchanged to the other side of an inner
product. And their eigenvalues are not real. Therefore they cannot correspond
to physically observable quantities. But since they are Hermitian conjugates,
it is easy to form operators from them that are Hermitian. For example, their
products â†â and ââ† are Hermitian. The Hamiltonian for noninteracting par-
ticles (A.53) given in the previous subsection illustrates that.

Hermitian operators can also be formed from linear combinations of the
creation and annihilation operators. Two combinations that are often physically
relevant are

P̂ ≡ 1
2
(â+ â†) Q̂ ≡ 1

2
i(â− â†)

In lack of a better name that the author knows of, this book will call P̂ and Q̂
the caHermitians.

Conversely, the annihilation and creation operators can be written in terms
of the caHermitians as

â = P̂ − iQ̂ â† = P̂ + iQ̂ (A.54)

This can be verified by substituting in the definitions of P̂ and Q̂.
The Hamiltonian (A.53) for noninteracting particles can be written in terms

of P̂ and Q̂ as

H = E
p
(
P̂ 2 + Q̂2 − i[P̂ , Q̂]

)
+ Eve

Here Ep is again the single-particle energy and Eve the vacuum energy. The
square brackets indicate again the commutator of the enclosed operators.

What this Hamiltonian means depends on whether the particles being de-
scribed are bosons or fermions. They have different commutators [P̂ , Q̂].
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Consider first the case that the particles are bosons. The previous subsection
showed that the commutator [âb, â

†
b] is 1. From that the commutator of Pb and

Qb is readily found using the rules of chapter 4.5.4. It is:

[P̂b, Q̂b] = −1
2
i (A.55)

So the commutator is an imaginary constant. That is very much like Heisen-
berg’s canonical commutator between position and linear momentum in classi-
cal quantum mechanics. It implies a similar uncertainty principle, chapter 4.5.2
(4.46). In particular, Pb and Qb cannot have definite values at the same time.
Their values have uncertainties σPb

and σQb
that are at least so big that

σPb
σQb >

1
4

The Hamiltonian for bosons becomes, using the commutator above,

Hb = E
p
(
P̂ 2
b + Q̂2

b

)
+ Eve − 1

2
E

p
(A.56)

Often, the Hamiltonian is simply the first term in the right hand side. In that
case, the vacuum energy is half a particle.

For fermions, the following useful relations follow from the anticommutators
for the creation and annihilation operators given in the previous subsection:

P̂ 2
f = 1

4
Q̂2

f =
1
4

(A.57)

The Hamiltonian then becomes

H = E
p
(

1
2
− i[P̂f , Q̂f ]

)
+ Eve (A.58)

A.15.4 Recasting a Hamiltonian as a quantum field one

The arguments of the previous subsection can be reversed. Given a suitable
Hamiltonian, it can be recast in terms of annihilation and creation operators.
This is often useful. It provides a way to quantize systems such as a harmonic
oscillator or electromagnetic radiation.

Assume that some system has a Hamiltonian with the following properties:

H = E
p
(
P̂ 2 + Q̂2

)
+ Eref

[
P̂ , Q̂

]
= −1

2
i (A.59)

Here P̂ and Q̂ must be Hermitian operators and Ep and Eref must be constants
with units of energy.

It may be noted that typically Eref is zero. It may also be noted that it
suffices that the commutator is an imaginary constant. A different magnitude
of the constant can be accommodated by rescaling P̂ and Q̂, and absorbing the
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scaling factor in Ep. A sign change can be accommodated by swapping P̂ and
Q̂.

From the given apparently limited amount of information, all of the following
conclusions follow:

1. The observable quantities P and Q corresponding to the Hermitian
operators are always uncertain. As explained in chapter 4.4, if you
measure an uncertain quantity, say P , for a lot of identical systems,
you do get some average value. That average value is called the
expectation value 〈P 〉. However, the individual measured values
will deviate from that expectation value. The average deviation is
called the standard deviation or uncertainty σP . For the system
above, the uncertainties in P and Q must satisfy the relation

σPσQ >
1
4

Neither uncertainty can be zero, because that would make the other
uncertainty infinite.

2. The expectation values of the observables P and Q satisfy the equa-
tions

d 〈P 〉
dt

= −ω 〈Q〉 d 〈Q〉
dt

= ω 〈P 〉 where ω ≡ Ep

~

That means that the expectation values vary harmonically with
time,

〈P 〉 = A cos(ωt+ α) 〈Q〉 = A sin(ωt+ α)

Here the “amplitude” A and the “phase angle” α are arbitrary con-
stants.

3. In energy eigenstates, the expectation values 〈P 〉 and 〈Q〉 are always
zero.

4. The ground state energy of the system is

E0 =
1
2
E

p
+ Eref

For now it will be assumed that the ground state is unique. It will
be indicated as |0〉. It is often called the vacuum state.

5. The higher energy states will be indicated by |1〉, |2〉, . . . in order
of increasing energy E1, E2, . . . . The states are unique and their
energy is

wave function: |i〉 energy: Ei = (i+ 1
2
)Ep + Eref

So a state |i〉 has i additional “quanta” of energy Ep more than the
vacuum state. In particular that means that the energy levels are
equally spaced. There is no maximum energy.
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6. In energy eigenstates,
〈
E

p
P 2
〉
=
〈
E

p
Q2
〉
= 1

2
(i+ 1

2
)Ep

So the expectation values of these two terms in the Hamiltonian are
equal. Each contributes half to the energy of the quanta.

7. In the ground state, the two expectation energies above are the abso-
lute minimum allowed by the uncertainty relation. Each expectation
energy is then 1

4
Ep.

8. Annihilation and creation operators can be defined as

â ≡ P̂ − iQ̂ â† ≡ P̂ + iQ̂

These have the following effects on the energy states:

â|i〉 =
√
i|i−1〉 â†|i−1〉 =

√
i|i〉

(This does assume that the normalization factors in the energy eigen-
states are chosen consistently. Otherwise there might be additional
factors of magnitude 1.) The commutator [â, â†] is 1.

9. The Hamiltonian can be rewritten as

H = E
p
â†â+ 1

2
Ep + Eref

Here the operator â†â gives the number of energy quanta of the state
it acts on.

10. If the ground state is not unique, each independent ground state
gives rise to its own set of energy eigenfunctions, with the above
properties. Consider the example that the system describes an elec-
tron, and that the energy does not depend on the spin. In that case,
there will be a spin-up and a spin-down version of the ground state,
|0〉↑ and |0〉↓. These will give rise to two families of energy states
|i〉↑ respectively |i〉↓. Each family will have the properties described
above.

The derivation of the above properties is really quite simple and elegant. It
can be found in {D.33}.

Note that various properties above are exactly the same as found in the
analysis of bosons starting with the annihilation and creation operators. The
difference in this subsection is that the starting point was a Hamiltonian in
terms of two square Hermitian operators; and those merely needed to have a
purely imaginary commutator.

A.15.5 The harmonic oscillator as a boson system

This subsection will illustrate the power of the introduced quantum field ideas
by example. The objective is to use these ideas to rederive the one-dimensional
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harmonic oscillator from scratch. The derivation will be much cleaner than the
elaborate algebraic derivation of chapter 4.1, and in particular {D.12}.

The Hamiltonian of a harmonic oscillator in classical quantum mechanics is,
chapter 4.1,

H =
1

2m
p̂2x +

m

2
ω2x2

Here the first term is the kinetic energy and the second the potential energy.
According to the previous subsection, a system like this can be solved im-

mediately if the commutator of p̂x and x is an imaginary constant. It is, that is
the famous “canonical commutator” of Heisenberg:

[x, p̂x] = i~

To use the results of the previous subsection, first the Hamiltonian must be
rewritten in the form

H = E
p
(
P̂ 2 + Q̂2

)

where P̂ and Q̂ satisfy the commutation relationship for bosonic caHermitians:
[
P̂ , Q̂

]
= −1

2
i

That requires that you define

E
p
= ~ω P̂ =

√
1

2~mω
p̂x Q̂ =

√
mω

2~
x

According to the previous subsection, the energy eigenvalues are

Ei = (i+ 1
2
)~ω

So the spectrum has already been found.
And various other interesting properties of the solution may also be found

in the previous subsection. Like the fact that there is half a quantum of energy
left in the ground state. True, the zero level of energy is not important for the
dynamics. But this half quantum does have a physical meaning. Assume that
you have a lot of identical harmonic oscillators in the ground state, and that
you do a measurement of the kinetic energy for each. You will not get zero
kinetic energy. In fact, the average kinetic energy measured will be a quarter
quantum, half of the total energy. The other quarter quantum is what you get
on average if you do potential energy measurements.

Another observation of the previous subsection is that the expectation posi-
tion of the particle will vary harmonically with time. It is a harmonic oscillator,
after all.

The energy eigenfunctions will be indicated by hi, rather than |i〉. What has
not yet been found are specific expressions for these eigenfunctions. However,
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as figure A.6 shows, if you apply the annihilation operator â on the ground state
h0, you get zero:

âh0 = 0

And also according to the previous subsection

â = P̂ − iQ̂

Putting in the expressions for P̂ and Q̂ above, with p̂x = ~∂/i∂x, and rearranging
gives

1

h0

∂h0
∂x

= −mω
~
x

This can be simplified by defining a scaled x coordinate:

1

h0

∂h0
∂ξ

= −ξ ξ ≡ x

ℓ
ℓ ≡

√
~

mω

Integrating both sides with respect to ξ and cleaning up by taking an expo-
nential gives the ground state as

h0 = Ce−ξ
2/2

The integration constant C can be found from normalizing the wave function.
The needed integral can be found under “!” in the notations section. That gives
the final ground state as

h0 =
1

(πℓ2)1/4
e−ξ

2/2

To get the other eigenfunctions hi for i = 1, 2, . . . , apply the creation
operator â† repeatedly:

hi =
1√
i
â†hi−1

According to the previous subsection, the creation operator is

â† = P̂ + iQ̂ =

√
1

2~mω

~

i

∂

∂x
+ i

√
mω

2~
x =

i√
2

(
ξ − ∂

∂ξ

)

So the entire process involves little more than a single differentiation for each
energy eigenfunction found. In particular, unlike in {D.12}, no table books are
needed. Note that factors i do not make a difference in eigenfunctions. So the
i in the final expression for â† may be left out to get real eigenfunctions. That
gives table 4.1.

That was easy, wasn’t it?
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A.15.6 Canonical (second) quantization

“Canonical quantization” is a procedure to turn a classical system into the
proper quantum one. If it is applied to a field, like the electromagnetic field, it
is often called “second quantization.”

Recall the quantum analysis of the harmonic oscillator in the previous sub-
section. The key to the correct solution was the canonical commutator between
position and momentum. Apparently, if you get the commutators right in quan-
tum mechanics, you get the quantum mechanics right. That is the idea behind
canonical quantization.

The basic idea can easily be illustrated for the harmonic oscillator. The
standard harmonic oscillator in classical physics is a simple spring-mass system.
The classical governing equations are:

dx

dt
= vx m

dvx
dt

= −kx

Here x is the position of the oscillating mass m and k is the spring constant.
The first of these equations is merely the definition of velocity. The second is
Newton’s second law.

As you can readily check by substitution, the most general solution is

x = A sin(ωt+ α) vx = Aω cos(ωt+ α) ω ≡
√
k

m

Here the “amplitude” A and the “phase angle” α are arbitrary constants. The
“frequency” ω is given in terms of the known spring constant and mass.

This system is now to be quantized using canonical quantization. The pro-
cess is somewhat round-about. First a “canonical momentum,” or “conjugate
momentum,” or “generalized momentum,” px is defined by taking the derivative
of the kinetic energy, 1

2
mv2x, (or more generally, of the Lagrangian {A.1}), with

respect to the time derivative of x. Since the time derivative of x is vx, the
momentum is mvx. That is the usual linear momentum.

Next a classical Hamiltonian is defined. It is the total energy of the system
expressed in terms of position and momentum:

Hcl =
p2x
2m

+
m

2
ω2x2

Here the first term is the kinetic energy, with vx rewritten in terms of the mo-
mentum. The second term is the potential energy in the spring. The spring
constant in it was rewritten as mω2 because m and ω are physically more im-
portant variables, and the symbol k is already greatly overworked in quantum
mechanics as it is. See {A.1} for more on classical Hamiltonians.

To quantize the system, the momentum and position in the Hamiltonian
must be turned into operators. Actual values of momentum and position are
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then the eigenvalues of these operators. Basically, you just put a hat on the
momentum and position in the Hamiltonian:

H =
p̂ 2
x

2m
+
m

2
ω2x̂ 2

Note that the hat on x is usually omitted. However, it is still an operator in
the sense that it is supposed to multiply wave functions now. Now all you need
is the right commutator between p̂x and x̂.

In general, you identify commutators in quantum mechanics with so-called
“Poisson brackets” in classical mechanics. Assume that A and B are any two
quantities that depend on x and px. Then their Poisson bracket is defined as,
{A.12},

{A,B}P ≡
∂A

∂x

∂B

∂px
− ∂B

∂x

∂A

∂px

From that it is immediately seen that

{x, px}P = 1 {x, x}P = 0 {px, px}P = 0

Correspondingly, in quantum mechanics you take

[x, p̂x] = i~ [x, x] = 0 [p̂x, p̂x] = 0

In this way the nonzero Poisson brackets bring in Planck’s constant that defines
quantum mechanics. (In case of fermions, anticommutators take the place of
commutators.)

Because of reasons discussed for the Heisenberg picture of quantum mechan-
ics, {A.12}, the procedure ensures that the quantum mechanics is consistent
with the classical mechanics. And indeed, the results of the previous subsection
confirmed that. You can check that the expectation position and momentum
had the correct classical harmonic dependence on time.

Fundamentally, quantization of a classical system is just an educated guess.
Classical mechanics is a special case of quantum mechanics, but quantum me-
chanics is not a special case of classical mechanics. For the material covered
in this book, there are simpler ways to make an educated guess than canoni-
cal quantization. Being less mathematical, they are more understandable and
intuitive. That might make them maybe more convincing too.

A.15.7 Spin as a fermion system

There is, of course, not much analysis that can be done with a fermion system
with only one single-particle state. There are only two independent system
states; no fermion or one fermion.

However, there is at least one physical example of such a simple system.
As noted in subsection A.15.1, a particle with spin 1/2 like an electron can be
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considered to be a model for it. The vacuum state |0〉 is the spin-down state of
the electron. The state |1〉 is the spin-up state. This state has one unit ~ more
angular momentum in the z-direction. If the electron is in a magnetic field, that
additional momentum corresponds to a quantum of energy.

One reasonable question that can now be asked is whether the annihilation
and creation operators, and the caHermitians, have some physical meaning for
this system. They do.

Recall that for fermions, the Hamiltonian was given in terms of the caHer-
mitians P̂f and Q̂f as

H = E
p
(

1
2
− i[P̂f , Q̂f ]

)
+ Eve

The expression between parentheses is the particle count operator, equal to
zero for the spin-down state and 1 for the spin up state. So the second term
within parentheses in the Hamiltonian must be the spin in the z-direction,
nondimensionalized by ~. (Recall that the spin in the z-direction has the values
±1

2
~.) So apparently

[P̂f , Q̂f ] = i
Ŝz
~

Reasonably speaking then, the caHermitians themselves should be the nondi-
mensional components of spin in the x and y directions,

P̂f =
Ŝx
~

Q̂f =
Ŝy
~

What other variables are there in this problem? And so it is. The commutator
above, with the caHermitians equal to the nondimensional spin components, is
known as the “fundamental commutation relation.” Quantum field analysis is
one way to understand that this relation applies.

Recall another property of the caHermitians for fermions:

P̂ 2
f = 1

4
Q̂2

f =
1
4

Apparently then, the square spin components are just constants with no uncer-
tainty. Of course, that is no surprise since the only spin values in any direction
are ±1

2
~.

Finally consider the annihilation and creation operators, multiplied by ~:

~â = Ŝx − iŜy ~â† = Ŝx + iŜy

Apparently these operators can remove, respectively add a unit ~ of angular
momentum in the z-direction. That is often important in relativistic applica-
tions where a fermion emits or absorbs angular momentum in the z-direction.
This changes the spin of the fermion and that can be expressed by the operators
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above. So you will usually find x and y spin operators in the analysis of such
processes.

Obviously, you can learn a lot by taking a quantum field type approach.
To be sure, the current analysis applies only to particles with spin 1/2. But
advanced analysis of angular momentum in general is very similar to quantum
field analysis, chapter 12. It resembles some mixture of the boson and fermion
cases.

A.15.8 More single particle states

The previous subsections discussed quantum field theory when there is just one
type of single-particle state for the particles. This subsection considers the case
that there is more than one. An index n will be used to number the states.

Graphically, the case of multiple single-particle states was illustrated in fig-
ures A.3 and A.4. There is now more than one box that particles can be in.
Each box corresponds to one type of single-particle state ψp

n.
Each such single-particle state has an occupation number in that gives the

number of particles in that state. A complete set of such occupation numbers
form a Fock space basis ket

|i1, i2, i3, i4, . . .〉

An annihilation operator ân and a creation operator â†n must be defined for
every occupation number. The mathematical definition of these operators for
bosons is

âb,n|i1, i2, . . . , in−1, in, in+1, . . .〉 =
√
in|i1, i2, . . . , in−1, in−1, in+1, . . .〉

â†b,n|i1, i2, . . . , in−1, in−1, in+1, . . .〉 =
√
in|i1, i2, . . . , in−1, in, in+1, . . .〉

(A.60)
The commutator relations are

[âb,n, âb,n] = 0
[
â†b,n, â

†
b,n

]
= 0

[
âb,n, â

†
b,n

]
= δnn (A.61)

Here δnn is the Kronecker delta, equal to one if n = n, and zero in all other
cases. These commutator relations apply for n 6= n because then the operators
do unrelated things to different single-particle states; in that case it does not
make a difference in what order you apply them. That makes the commutator
zero. For n = n, the commutator relations are unchanged from the case of just
one single-particle state.

For fermions it is a bit more complex. The graphical representation of the
example fermionic energy eigenfunction figure A.4 cheats a bit, because it sug-
gests that there is only one classical wave function for a given set of occupation
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numbers. Actually, there are two variations, based on how the particles are or-
dered. The two are the same except that they have the opposite sign. Suppose
that you create a particle in a state n; classically you would want to call that
particle 1, and then create a particle in a state n, classically you would want
to call it particle 2. Do the particle creation in the opposite order, and it is
particle 1 that ends up in state n and particle 2 that ends up in state n. That
means that the classical wave function will have changed sign. However, the
Fock space ket will not unless you do something.

What you can do is define the annihilation and creation operators for fermi-
ons as follows:

âf,n|i1, i2, . . . , in−1, 0, in+1, . . .〉 = 0

âf,n|i1, i2, . . . , in−1, 1, in+1, . . .〉 = (−1)i1+i2+...+in−1 |i1, i2, . . . , in−1, 0, in+1, . . .〉

â†f,n|i1, i2, . . . , in−1, 0, in+1, . . .〉 = (−1)i1+i2+...+in−1 |i1, i2, . . . , in−1, 1, in+1, . . .〉

â†f,n|i1, i2, . . . , in−1, 1, in+1, . . .〉 = 0

(A.62)
The only difference from the annihilation and creation operators for just one
type of single-particle state is the potential sign changes due to the (−1).... It
adds a minus sign whenever you swap the order of annihilating/creating two
particles in different states. For the annihilation and creation operators of the
same state, it may change both their signs, but that does nothing much: it leaves
the important products such as â†nân and the anticommutators unchanged.

Of course, you can define the annihilation and creation operators with what-
ever sign you want, but putting in the sign pattern above may produce easier
mathematics. In fact, there is an immediate benefit already for the anticommu-
tator relations; they take the same form as for bosons, except with anticommu-
tators instead of commutators:

{âf,n, âf,n} = 0
{
â†f,n, â

†
f,n

}
= 0

{
âf,n, â

†
f,n

}
= δnn (A.63)

These relationships apply for n 6= n exactly because of the sign change caused
by swapping the order of the operators. For n = n, they are unchanged from
the case of just one single-particle state.

The Hamiltonian for a system of noninteracting particles is like the one for
just one single-particle state, except that you must now sum over all single-
particle states:

H =
∑

n

E
p
nâ
†
nân + Eve,n (A.64)
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A.15.9 Field operators

As noted at the start of this section, quantum field theory is particularly suited
for relativistic applications because the number of particles can vary. However,
in relativistic applications, it is often necessary to work in terms of position
coordinates instead of single-particle energy eigenfunctions. To be sure, practi-
cal quantum field computations are usually worked out in terms of relativistic
energy-momentum states. But to understand them requires consideration of
position and time. Relativistic applications must make sure that coordinate sys-
tems moving at different speeds are physically equivalent and related through
the Lorentz transformation. There is also the “causality problem,” that an
event at one location and time may not affect an event at another location and
time that is not reachable with the speed of light. These conditions are posed
in terms of position and time.

To handle such problems, the annihilation and creation operators can be
converted into so-called “field operators” â(~r) and â†(~r) that annihilate respec-
tively create particles at a given position ~r in space. At least, roughly speaking
that is what they do.

Now in classical quantum mechanics, a particle at a given position ~r corre-
sponds to a wave function that is nonzero at only that single point. And if the
wave function is concentrated at the single point ~r, it must then be infinitely
large at that point. Relaxing the normalization condition a bit, the appropriate
infinitely concentrated mathematical function is called the “delta function,” Ψ
= δ3(~r−~r), chapter 7.9. Here ~r is the position of the particle and ~r the position
at which the delta function is evaluated. If ~r is not equal to ~r, the delta function
is zero; but at ~r = ~r it is infinite. A delta function by itself integrates to 1; its
square magnitude would integrate to infinity. So it is definitely not normalized.

Like any function, a delta function can be written in terms of the single-
particle energy eigenfunctions ψn as

δ3(~r −~r) =
∑

all n

cnψn(~r)

Here the coefficients cn can be found by taking inner products of both sides
with an arbitrary eigenfunction ψn. That gives, noting that orthonormality of
the eigenfunctions only leaves cn in the right-hand side,

cn =

∫
ψ∗n(~r)δ

3(~r −~r) d3~r

The integral is over all space. The index n can be renotated as n since the above
expression applies for all possible values of n. Also, an inner product with a
delta function can easily be evaluated. The inner product above simply picks
out the value of ψ∗n at ~r. So

cn = ψ∗n(~r)
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After all, ~r is the only position where the delta function is nonzero. So finally

δ3(~r −~r) =
∑

all n

ψ∗n(~r)ψn(~r)

Since ψ∗n(~r) is the amount of eigenfunction ψn that must be created to create
the delta function at ~r, the annihilation and creation field operators should
presumably be

â(~r) =
∑

n

ψn(~r)ân â†(~r) =
∑

n

ψ∗n(~r)â
†
n (A.65)

The annihilation operator is again the Hermitian conjugate of the creation op-
erator.

In the case of noninteracting particles in free space, the energy eigenfunctions
are the momentum eigenfunctions ei~p·~r/~. The combination ~k = ~p/~ is commonly
referred to as the “wave number vector.” Note that in infinite free space, the
sums become integrals called Fourier transforms; see chapter 7.9 and 7.10.1 for
more details.

To check the appropriateness of the creation field operator as defined above,
consider its consistency with classical quantum mechanics. A classical wave
function Ψ can always be written as a combination of the energy eigenfunctions:

Ψ(~r) =
∑

n

cnψn(~r) where cn =

∫
ψ∗n(~r)Ψ(~r) d3~r

That is the same as for the delta function case above. However, any normal
function also always satisfies

Ψ(~r) =

∫
Ψ(~r)δ(~r −~r) d3~r

That is because the delta function picks out the value of Ψ(~r) at ~r = ~r as also
already noted above. You can look at the expression above as follows: Ψ(~r) is
a combination of position states δ(~r−~r)d3~r with coefficients Ψ(~r). So here the
classical wave function is written as a combination of position states instead of
energy states.

Now this needs to be converted to quantum field form. The classical wave
function then becomes a combination |Ψ〉 of Fock space kets. But by definition,
the creation field operator â†(~r) applied on the vacuum state |0〉 should produce
the Fock space equivalent of a delta function at ~r. So the above classical wave
function should convert to a Fock space wave function as

|Ψ〉 =
∫

Ψ(~r)â†(~r)|0〉 d3~r
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To check that, substitute in the definition of the creation field operator:

|Ψ〉 =
∑

n

∫
ψ∗n(~r)Ψ(~r) d3~r â†n|0〉

But â†n|0〉 is the Fock space equivalent of the classical energy eigenfunction ψn.
The reason is that â†n puts exactly one particle in the state ψn. And the integral
is the same coefficient cn of this energy eigenstate as in the classical case. So
the creation field operator as defined does produce the correct combination of
energy states.

As a check on the appropriateness of the annihilation field operator, consider
the Hamiltonian. The Hamiltonian of noninteracting particles satisfies

H|Ψ〉 =
∑

n

â†nE
p
nân|Ψ〉

Here Ep
n is the single-particle energy and |Ψ〉 stands for a state described by

Fock space kets. The ground state energy was taken zero for simplicity. Note
the critical role of the trailing ân. States with no particles should not produce
energy. The trailing ân ensures that they do not; it produces 0 when state n
has no particles.

In terms of annihilation and creation field operators, you would like the
Hamiltonian to be defined similarly:

H|Ψ〉 =
∫
â†(~r)Hpâ(~r)|Ψ〉 d3~r

Note that the sum has become an integral, as ~r is a continuous variable. Also,
the single-particle energy Ep has become the single-particle Hamiltonian; that is
necessary because position states are not energy eigenstates with definite energy.
The trailing â(~r) ensures that positions with no particles do not contribute to
the Hamiltonian.

Now, if the definitions of the field operators are right, this Hamiltonian
should still produce the same answer as before. Substituting in the definitions
of the field operators gives

H|Ψ〉 =
∫ ∑

n

ψ∗n(~r)â
†
nH

p
∑

n

ψn(~r)ân|Ψ〉 d3~r

The single-particle Hamiltonian Hp applied on ψn gives a factor Ep
n. And or-

thonormality of the eigenfunctions implies that the integral is zero unless n =
n. And in that case, the square energy eigenfunction magnitude integrates to
1. That then implies that the Hamiltonian is indeed the same as before.

The above argument roughly follows [43, pp. 22-29], but note that this source
puts a tilde on â†n and ân as defined here. See also [35, pp. 19-24] for a somewhat
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different approach, with a somewhat different definition of the annihilation and
creation field operators.

One final question that is much more messy is in what sense these operators
really create or annihilate a particle localized at ~r. An answer can be given using
arguments like those used for the electromagnetic magnetic field in {A.23.4}. In
particular, you want to leave some uncertainty in the number of particles created
at position ~r. Then the expectation values for the observable field do become
strongly localized near position ~r. The details will be skipped. But qualitatively,
the fact that in quantum field theory there is uncertainty in the number of
particles does of course add to the uncertainty in the measured quantities.

A big advantage of the way the annihilation and creation operators were
defined now shows up: the annihilation and creation field operators satisfy
essentially the same (anti)commutation relations. In particular
[
âb(~r)âb(~r)

]
= 0

[
â†b(~r)â

†
b(~r)

]
= 0

[
âb(~r)â

†
b(~r)

]
= δ3(~r −~r) (A.66)

{
âf(~r)âf(~r)

}
= 0

{
â†f (~r)â

†
f (~r)

}
= 0

{
âf(~r)â

†
f (~r)

}
= δ3(~r −~r) (A.67)

In other references you might see an additional constant multiplying the three-
dimensional delta function, depending on how the position and momentum
eigenfunctions were normalized.

To check these commutators, plug in the definitions of the field operators.
Then the zero commutators above follow immediately from the ones for an and
â†n, (A.61) and (A.63). For the nonzero commutator, multiply by a completely
arbitrary function f(~r) and integrate over ~r. That gives f(~r), which is the same
result as obtained from integrating against δ3(~r−~r). That can only be true for
every function f if the commutator is the delta function. (In fact, producing
f(~r) for any f(~r) is exactly the way how a delta function would be defined by
a conscientious mathematician.)

Field operators help solve a vexing problem for relativistic quantum me-
chanics: how to put space and time on equal footing, [43, p. 7ff]. Relativity
unavoidably mixes up position and time. But classical quantum mechanics, as
covered in this book, needs to keep them rigidly apart.

Right at the beginning, this book told you that observable quantities are
the eigenvalues of Hermitian operators. That was not completely true, there
is an exception. Spatial coordinates are indeed the eigenvalues of Hermitian
position operators, chapter 7.9. But time is not an eigenvalue of an operator.
When this book wrote a wave function as, say, Ψ(~r, Sz; t) the time t was just a
label. It indicated that at any given time, you have some wave function. Then
you can apply purely spatial operators like x, p̂x, H, etcetera to find out things
about the measurable position, momentum, energy, etcetera at that time. At
a different time you have a different wave function, for which you can do the
same things. Time itself is left out in the cold.
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Correspondingly, the classical Schrödinger equation i~∂Ψ/∂t = HΨ treats
space and time quite different. The spatial derivatives, in H, are second order,
but the time derivative is first order. The first-order time derivative describes
the change from one spatial wave function to the next one, a time ∂t later. Of
course, you cannot think of the spatial derivatives in the same way. Even if
there was only one spatial coordinate instead of three, the second order spatial
derivatives would not represent a change of wave function from one position to
the next.

The different treatment of time and space causes problems in generalizing
the Schrödinger equation to the relativistic case.

For spinless particles, the simplest generalization of the Schrödinger equation
is the Klein-Gordon equation, {A.14}. However, this equation brings in states
with negative energies, including negative rest mass energies. That is a problem.
For example, what prevents a particle from transitioning to states of more and
more negative energy, releasing infinite amounts of energy in the process? There
is no clean way to deal with such problems within the bare context of the Klein-
Gordon equation.

There is also the matter of what to make of the Klein-Gordon wave function.
It appears as if a wave function for a single particle is being written down, like
it would be for the Schrödinger equation. But for the Schrödinger equation
the integrated square magnitude of the wave function is 1 and stays 1. That
is taken to mean that the probability of finding the particle is 1 if you look
everywhere. But the Klein-Gordon equation does not preserve the integrated
square magnitude of the wave function in time. That is not surprising, since
in relativity particles can be created out of energy or annihilated. But if that
is so, in what sense could the Klein-Gordon equation possibly describe a wave
function for a single, (i.e. exactly 1), particle?

(Of course, this is not a problem for single-particle energy eigenstates. En-
ergy eigenstates are stationary, chapter 7.1.4. It is also not a problem if there
are only particle states, or only antiparticle states, {D.32}. The real problems
start when you try to add perturbations to the equation.)

For fermions with spin 1/2, the appropriate generalization of the Schrödinger
equation is the Dirac equation, chapter 12.12. However, there are still those
negative-energy solutions. Dirac postulated that all, infinitely many, negative
energy states in the universe are already filled with electrons. That is obviously
a rather ugly assumption. Worse, it would not work for bosons. Any number
of bosons can go into a single state, they cannot fill them.

Quantum field theory can put space and time on a more equal footing,
especially in the Heisenberg formulation, {A.12}. This formulation pushes time
from the wave function onto the operator. To see how this works, consider some
arbitrary inner product involving a Schrödinger operator Â:

〈Φ|ÂΨ〉
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(Why look at inner products? Simply put, if you get all inner products right,
you get the quantum mechanics right. Anything in quantum mechanics can be
found by taking the right inner product.) Now recall that if a wave function Ψ
has definite energy E, it varies in time as e−iEt/~Ψ0 where Ψ0 is independent of
time, chapter 7.1.2. If Ψ does not have definite energy, you can replace E in
the exponential by the Hamiltonian H. (Exponentials of operators are defined
by their Taylor series.) So the inner product becomes

〈Φ0|eiHt/~Âe−iHt/~Ψ0〉

(Recall that i changes sign when taken to the other side of an inner product.)

The Heisenberg Ã operator absorbs the exponentials:

Ã ≡ eiHt/~Âe−iHt/~

Now note that if Â is a field operator, the position coordinates in it are
not Hamiltonian operators. They are labels just like time. They label what
position the particle is annihilated or created at. So space and time are now
treated much more equally.

Here is where the term “field” in “quantum field theory” comes from. In
classical physics, a field is a numerical function of position. For example, a
pressure field in a moving fluid has a value, the pressure, at each position. An
electric field has three values, the components of the electric field, at each posi-
tion. However, in quantum field theory, a “field” does not consist of values, but
of operators. Each position has one or more operator associated with it. Each
particle type is associated with a “field.” This field will involve both creation
and annihilation operators of that particle, or the associated antiparticle, at
each position.

Within the quantum field framework, equations like the Klein-Gordon and
Dirac ones can be given a clear meaning. The eigenfunctions of these equations
give states that particles can be in. Since energy eigenfunctions are stationary,
conservation of probability is not an issue.

It may be mentioned that there is an alternate way to put space and time on
an equal footing, [43, p. 10]. Instead of turning spatial coordinates into labels,
time can be turned into an operator. However, clearly wave functions do evolve
with time, even if different observers may disagree about the details. So what
to make of the time parameter in the Schrödinger equation? Relativity offers
an answer. The time in the Schrödinger equation can be associated with the
“proper” time of the considered particle. That is the time measured by an ob-
server moving along with the particle, chapter 1.2.2. The time measured by an
observer in an inertial coordinate system is then promoted to an operator. All
this can be done. In fact, it is the starting point of the so-called “string theory.”
In string theory, a second parameter is added to proper time. You might think
of the second parameter as the arc length along a string that wiggles around in
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time. However, approaches along these lines are extremely complicated. Quan-
tum field theory remains the workhorse of relativistic quantum mechanics.

A.15.10 Nonrelativistic quantum field theory

This example exercise from Srednicki [43, p. 11] uses quantum field theory to
describe nonrelativistic quantum mechanics. It illustrates some of the mathe-
matics that you will encounter in quantum field theories.

The objective is to convert the classical nonrelativistic Schrödinger equation
for I particles,

i~
∂Ψ

∂t
= HclΨ (A.68)

into quantum field form. The classical wave function has the positions of the
numbered particles and time as arguments:

classical quantum mechanics: Ψ = Ψ(~r1,~r2,~r3, . . . ,~rI ; t) (A.69)

where ~r1 is the position of particle 1, ~r2 is the position of particle 2, etcetera.
(You could include particle spin within the vectors ~r if you want. But particle
spin is in fact relativistic, chapter 12.12.) The classical Hamiltonian is

Hcl =
I∑

i=1

(
~
2

2m
∇2
i + Vext(~ri)

)
+ 1

2

I∑

i=1

I∑

i=1
i 6=i

V (~ri −~ri) (A.70)

The ∇2
i term represents the kinetic energy of particle number i. The potential

Vext represents forces on the particles by external sources, while the potential V
represents forces between particles.

In quantum field theory, the wave function for exactly I particles takes the
form

|Ψ〉 =
∫

all ~r1

. . .

∫

all ~rI

Ψ(~r1,~r2, . . . ,~rI ; t) â
†(~r1)â

†(~r2) . . . â
†(~rI) |~0〉 d3~r1 . . . d

3~rI

(A.71)
Here the ket |Ψ〉 in the left hand side is the wave function expressed as a Fock

space ket. The ket
∣∣∣~0
〉
to the far right is the vacuum state where there are no

particles. However, the preceding creation operators then put in the particles
at positions ~r1, ~r2, . . . . That produces a ket state with the particles at these
positions.

The quantum amplitude of that ket state is the preceding Ψ, a function,
not a ket. This is the classical nonrelativistic wave function, the one found in
the nonrelativistic Schrödinger equation. After all, the classical wave function
is supposed to give the quantum amplitude for the particles to be at given
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positions. In particular, its square magnitude gives the probability for them to
be at given positions.

So far, all this gives just the ket for one particular set of particle positions.
But then it is integrated over all possible particle positions.

The Fock space Schrödinger equation for |Ψ〉 takes the form

i~
d|Ψ〉
dt

= H|Ψ〉 (A.72)

That looks just like the classical case. However, the Fock space Hamiltonian H
is defined by

H|Ψ〉 =

∫

all ~r

â†(~r)

[
− ~

2

2m
∇2
~r + Vext(~r)

]
â(~r)|Ψ〉 d3~r

+1
2

∫

all ~r

∫

all ~r

â†(~r)â†(~r)V (~r −~r)â(~r)â(~r)|Ψ〉 d3~rd3~r (A.73)

In order for this to make some sense, note that the Fock space ket |Ψ〉 is an
object that allows you to annihilate or create a particle at any arbitrary location
~r. That is because it is a linear combination of basis kets that allow the same
thing.

The goal is now to show that the Schrödinger equation (A.72) for the Fock
space ket |Ψ〉 produces the classical Schrödinger equation (A.68) for classical
wave function Ψ(. . .). This needs to be shown whether it is a system of identical
bosons or a system of identical fermions.

Before trying to tackle this problem, it is probably a good idea to review
representations of functions using delta functions. As the simplest example, a
wave function Ψ(x) of just one spatial coordinate can be written as

Ψ(x) =

∫

all x

Ψ(x)︸ ︷︷ ︸
coefficients

δ(x− x)dx︸ ︷︷ ︸
basis states

The way to think about the above integral expression for Ψ(x) is just like you
would think about a vector in three dimensions being written as ~v = v1ı̂+ v2̂+
v3k̂ or a vector in 30 dimensions as ~v =

∑30
i=1 viı̂i. The Ψ(x) are the coefficients,

corresponding to the vi-components of the vectors. The δ(x−x)dx are the basis
states, just like the unit vectors ı̂i. If you want a graphical illustration, each
δ(x−x)dx would correspond to one spike of unit height at a position x in figure
2.3, and you need to sum (integrate) over them all, with their coefficients, to
get the total vector.

Now assume that H1 is the one-dimensional classical Hamiltonian. Then
H1Ψ(x) is just another function of x, so it can be written similarly:

H1Ψ(x) =

∫

all x

H1Ψ(x)δ(x− x) dx
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=

∫

all x

[
− ~

2

2m

∂2Ψ(x)

∂x2
+ Vext(x)Ψ(x)

]
δ(x− x) dx

Note that the Hamiltonian acts on the coefficients, not on the basis states.
You may be surprised by this, because if you straightforwardly apply the

Hamiltonian H1, in terms of x, on the integral expression for Ψ(x), you get:

H1Ψ(x) =

∫

all x

Ψ(x)

[
− ~

2

2m

∂2δ(x− x)
∂x2

+ Vext(x)δ(x− x)
]
dx

Here the Hamiltonian acts on the basis states, not the coefficients.
However, the two expressions are indeed the same. Whether there is an x

or x in the potential does not make a difference, because the multiplying delta
function is only nonzero when x = x. And you can use a couple of integrations
by parts to get the derivatives off the delta function and on Ψ(x). Note here
that differentiation of the delta function with respect to x or x is the same save
for a sign change.

The bottom line is that you do not want to use the expression in which the
Hamiltonian is applied to the basis states, because derivatives of delta functions
are highly singular objects that you should not touch with a ten foot pole.
(And if you have mathematical integrity, you would not really want to use delta
functions either. At least not the way that they do it in physics. But in that
case, you better forget about quantum field theory.)

It may here be noted that if you do have to differentiate an integral for a
function Ψ(x) in terms of delta functions, there is a much better way to do it. If
you first make a change of integration variable to u = x− x, the differentiation
is no longer on the nasty delta functions.

Still, there is an important observation here: you might either know what
an operator does to the coefficients, leaving the basis states untouched, or what
it does to the basis states, leaving the coefficients untouched. Either one will
tell you the final effect of the operator, but the mathematics is different.

Now that the general terms of engagement have been discussed, it is time
to start solving Srednicki’s problem. The Fock space wave function ket can be
thought of the same way as the example:

|Ψ〉 =
∫

all ~r1

. . .

∫

all ~rI

Ψ(~r1,~r2, . . . ,~rI ; t)︸ ︷︷ ︸
coefficients

â†(~r1)â
†(~r2) . . . â

†(~rI)|~0〉d3~r1 . . . d
3~rI︸ ︷︷ ︸

Fock space basis state kets

The basis states are Fock space kets in which a particle called 1 is in a delta
function at a position ~r1, a particle called 2 in a delta function at position ~r2,
etcetera. The classical wave function Ψ(. . .) gives the quantum amplitude of
each such ket. The integration gives |Ψ〉 as a combined ket.

Note that Fock states do not know about particle numbers. A Fock basis
state is the same regardless what the classical wave function calls the particles.
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It means that the same Fock basis state ket reappears in the integration above
at all swapped positions of the particles. (For fermions read: the same except
possibly a sign change, since swapping the order of application of any two â†

creation operators flips the sign, compare subsection A.15.2.) This will become
important at the end of the derivation.

The left hand side of the Fock space Schrödinger equation (A.72) is evaluated
by pushing the time derivative inside the above integral for |Ψ〉:

i~
d|Ψ〉
dt

=

∫

all ~r1

. . .

∫

all ~rI

i~
∂Ψ(~r1,~r2, . . . ,~rI ; t)

∂t
â†(~r1) . . . â

†(~rI)|~0〉 d3~r1 . . . d
3~rI

so the time derivative drops down on the classical wave function in the normal
way.

Applying the Fock-space Hamiltonian (A.73) on the wave function is quite
a different story, however. It is best to start with just a single particle:

H|Ψ〉 =
∫

all ~r

∫

all ~r1

â†(~r)

[
− ~

2

2m
∇2
~r + Vext(~r)

]
â(~r)Ψ(~r1; t)â

†(~r1)|~0〉 d3~r1d
3~r

The field operator â(~r) may be pushed past the classical wave function Ψ(. . .);
â(~r) is defined by what it does to the Fock basis states while leaving their
coefficients, here Ψ(. . .), unchanged. That gives:

H|Ψ〉 =
∫

all ~r

∫

all ~r1

â†(~r)

[
− ~

2

2m
∇2
~r + Vext(~r)

]
Ψ(~r1; t)â(~r)â

†(~r1)|~0〉 d3~r1d
3~r

It is now that the (anti)commutator relations become useful. The fact that
for bosons [â(~r)â†(~r1)] or for fermions {â(~r)â†(~r1)} equals δ3(~r−~r1) means that
you can swap the order of these operators as long as you add a delta function
term:

âb(~r)â
†
b(~r1) = â†b(~r1)âb(~r) + δ3(~r −~r1)

âf(~r)â
†
f (~r1) = −â†f (~r1)âf(~r) + δ3(~r −~r1)

But when you swap the order of these operators, you get a factor â(~r)|~0〉.
That is zero, because applying an annihilation operator on the vacuum state
produces zero, figure A.6. So the delta function term is all that remains:

H|Ψ〉 =
∫

all ~r

∫

all ~r1

â†(~r)

[
− ~

2

2m
∇2
~r + Vext(~r)

]
Ψ(~r1; t)δ

3(~r −~r1)|~0〉 d3~r1d
3~r

Integration over ~r1 now picks out the value Ψ(~r, t) from function Ψ(~r1, t), as
delta functions do, so

H|Ψ〉 =
∫

all ~r

â†(~r)

[
− ~

2

2m
∇2
~r + Vext(~r)

]
Ψ(~r; t)|~0〉 d3~r
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Note that the term in square brackets is the classical Hamiltonian Hcl for a
single particle. The creation operator â†(~r) can be pushed over the coefficient
HclΨ(~r; t) of the vacuum state ket for the same reason that â(~r) could be pushed
over Ψ(~r1; t); these operators do not affect the coefficients of the Fock states,
just the states themselves.

Then, renotating ~r to ~r1, the grand total Fock state Schrödinger equation
for a system of one particle becomes

∫

all ~r1

i~
∂Ψ(~r1; t)

∂t
â†(~r1)|~0〉 d3~r1 =

∫

all ~r1

[
− ~

2

2m
∇2
~r1

+ Vext(~r1)

]
Ψ(~r1; t)â

†(~r1)|~0〉 d3~r1

It is now seen that if the classical wave function Ψ(~r1; t) satisfies the classical
Schrödinger equation, the Fock-space Schrödinger equation above is also sat-
isfied. And so is the converse: if the Fock-space equation above is satisfied,
the classical wave function must satisfy the classical Schrödinger equation. The
reason is that Fock states can only be equal if the coefficients of all the basis
states are equal, just like vectors can only be equal if all their components are
equal. Here that means that the coefficient of â†(~r1)|~0〉 must be the same at
both sides, for every single value of ~r1.

If there is more than one particle, however, the equivalent latter conclusion
is not justified. Remember that the same Fock space kets reappear in the
integration at swapped positions of the particles. It now makes a difference.
The following example from basic vectors illustrates the problem: yes, aı̂ = a′ı̂
implies that a = a′, but no, (a + b)̂ı = (a′ + b′)̂ı does not imply that a = a′

and b = b′; it merely implies that a + b = a′ + b′. However, if additionally
it is postulated that the classical wave function has the symmetry properties
appropriate for bosons or fermions, then the Fock-space Schrödinger equation
does imply the classical one. In terms of the example from vectors, (a + a)̂ı =
(a′ + a′)̂ı does imply that a = a′.

In any case, the problem has been solved for a system with one particle.
Doing it for I particles will be left as an exercise for your mathematical skills.

A.16 The adiabatic theorem

An adiabatic system is a system whose Hamiltonian changes slowly in time.
Despite the time dependence of the Hamiltonian, the wave function can still be
written in terms of the energy eigenfunctions ψ~n of the Hamiltonian, because
the eigenfunctions are complete. But since the Hamiltonian changes with time,
so do the energy eigenfunctions. And that affects how the coefficients of the
eigenfunctions evolve in time.
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In particular, in the adiabatic approximation, the wave function of a system
can be written as, {D.34}:

Ψ =
∑

~n

c~n(0)e
iθ~neiγ~nψ~n θ~n = −1

~

∫
E~n dt γ~n = i

∫
〈ψ~n|ψ′~n〉 dt (A.74)

where the c~n(0) are constants. The angle θ~n is called the “dynamic phase” while
the angle γ~n is called the “geometric phase.” Both phases are real. The prime
on ψ~n indicates the time derivative of the eigenfunction.

Note that if the Hamiltonian does not depend on time, the above expression
simplifies to the usual solution of the Schrödinger equation as given in chapter
7.1.2. In particular, in that case the geometric phase is zero and the dynamic
phase is the usual −E~nt/~.

Even if the Hamiltonian depends on time, the geometric phase is still zero
as long as the Hamiltonian is real. The reason is that real Hamiltonians have
real eigenfunctions; then γ~n can only be real, as it must be, if it is zero.

If the geometric phase is nonzero, you may be able to play games with it.
Suppose first that Hamiltonian changes with time because some single param-
eter λ that it depends on changes with time. Then the geometric phase can be
written as

γ~n = i

∫
〈ψ~n|

∂ψ~n
∂λ
〉 dλ ≡

∫
f(λ) dλ

It follows that if you bring the system back to the state it started out at, the
total geometric phase is zero, because the limits of integration will be equal.

But now suppose that not one, but a set of parameters ~λ = (λ1, λ2, . . .)
changes during the evolution. Then the geometric phase is

γ~n = i

∫
〈ψ~n|∇~λψ~n〉 · d~λ ≡

∫
f1(λ1, λ2, . . .) dλ1 + f2(λ1, λ2, . . .) dλ2 + . . .

and that is not necessarily zero when the system returns to the same state it
started out at. In particular, for two or three parameters, you can immediately
see from the Stokes’ theorem that the integral along a closed path will not
normally be zero unless ∇~λ × ~f = 0. The geometric phase that an adiabatic
system picks up during such a closed path is called “Berry’s phase.”

You might assume that it is irrelevant since the phase of the wave function
is not observable anyway. But if a beam of particles is sent along two different
paths, the phase difference between the paths will produce interference effects
when the beams merge again.

Systems that do not return to the same state when they are taken around a
closed loop are not just restricted to quantum mechanics. A classical example
is the Foucault pendulum, whose plane of oscillation picks up a daily angular
deviation when the motion of the earth carries it around a circle. Such systems
are called “nonholonomic” or “anholonomic.”
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A.17 The virial theorem

The virial theorem relates the expectation kinetic energy of a quantum sys-
tem to the potential. That is of theoretical interest, as well as important for
computational methods like “density functional theory.”

Consider a quantum system in a state of definite energy E. In other words,
consider a quantum system in a stationary state. It does not have to be the
ground state. The quantum system will be assumed to be in infinite space.

To keep it simple, for now assume that there is a single particle with position
vector ~r in a potential V (~r). That covers our previous examples of the harmonic
oscillator and the hydrogen atom.

Then the virial theorem relates the expectation kinetic energy 〈T 〉 to the
potential V as follows:

2 〈T 〉 = 〈~r · ∇V 〉 (A.75)

(Recall that nabla, ∇, is just the multi-dimensional derivative ∂/∂~r.) The above
formula can be very useful.

For example, consider the harmonic oscillator. There

V =
1

2
cxx

2 +
1

2
cyy

2 +
1

2
czz

2

so in Cartesian coordinates

~r · ∇V = x
∂V

∂x
+ y

∂V

∂y
+ z

∂V

∂z
= 2V

Then according to the virial theorem 2 〈T 〉 = 〈2V 〉. So the expectation kinetic
energy and the expectation potential energy are the same. Compute whichever
is easiest, or just take half of the total energy E if you know it.

Also consider the hydrogen atom. There

V = − e2

4πǫ0r

so in polar coordinates

~r · ∇V = r
∂V

∂r
= −V

Then according to the virial theorem the expectation potential energy is minus
twice the expectation kinetic energy. And their sum, the total energy E, is then
minus the expectation kinetic energy. In short, 〈T 〉 = −E and 〈V 〉 = 2E with
E negative.

The virial theorem does not apply to the particle in a pipe, as that particle
is in a bounded space. (You can assume infinite space if you take the potential
infinite outside the pipe, but obviously by itself that does not help much. You
could assume infinite space with a potential

V = (x/ℓx)
p + (y/ℓy)

p + (z/ℓz)
p p even
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if you then take the limit p → ∞ to get infinite potential outside the pipe
and zero inside. That gives the correct but trivial result that all the energy is
kinetic.)

But the virial theorem does apply to any number of particles, not just to
one. Just sum over all the particles:

2 〈∑iTi〉 = 〈
∑

i~ri · ∇iV 〉

where i is the particle number.
For example, consider the hydrogen molecule, where there are four particles,

two protons and two electrons. Here

V =
∑

i 6=j

qiqj
4πǫ0|~ri −~rj|

where qi is e if particle i is a proton and −e if it is an electron. Like for the
simple hydrogen atom,

〈∑i~ri · ∇iV 〉 = −〈V 〉
so the total expectation potential energy of the system is still twice the total
energy E and the total kinetic energy is still minus E. And this continues
to hold for much bigger systems of nuclei and electrons, which is why it is of
interest for computational methods.

In some computations you might need to assume that the electrons are in a
state of definite energy, like in the ground state, but the nuclei are not. In such
computations the nuclei are at an assumed position and you will only compute
the state of the electrons. So the summation in

〈∑i~ri · ∇iV 〉

now extends only over the electrons. But this summation does includes poten-
tials of the electrons due to the attraction by the nuclei, and those terms are no
longer equal to minus the corresponding potentials. You may need to evaluate
these terms explicitly. But that is not too bad, as these potentials are now
known functions of the individual electron positions only. The difficult term,
due to the electron-electron interaction, is still given by minus the corresponding
potential.

Finally, you might wonder where the virial theorem comes from. Well, one
way to prove the virial theorem, as found in quantum textbooks and on Wiki-
pedia, is to work out the commutator in

d〈~r · ~p〉
dt

=
i

~
〈[H,~r · ~p]〉

using the formulae in chapter 4.5.4, to give

d〈~r · ~p〉
dt

= 2 〈T 〉 − 〈~r · ∇V 〉,
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and then note that the left hand side above is zero for stationary states, (in other
words, for states with a precise total energy). This follows the classical way of
deriving the classical virial theorem, but requires a messy purely mathematical
derivation. The theorem then pops up out of the complex mathematics without
any plausible physical reason why there would be such a theorem in the first
place.

The original derivation by Fock in 1930 is much more physically appealing
and more instructive. The idea is to slightly stretch the given quantum system:
replace every position coordinate coordinate ~r by a slightly larger one ~rs =
(1+ε)~r. Here ε is assumed to be a vanishingly small number. We are interested
in what the expectation potential and kinetic energy are in this slightly stretched
system.

First however, recall that the square magnitude of the wave function gives
the probability of that state, and that all probabilities must integrate together
to 1, certainty. Phrased differently, the expectation value of one must be one;
〈1〉 = 1, what else? But clearly, if you integrate the same square wave function
magnitude over a slightly larger domain, you will get a value slightly greater than
one. This problem is easily fixed, however, by multiplying the wave function in
the stretched system by a suitable constant slightly less than one. Then 〈1〉s = 1
too. (The precise value of the constant depends on the number of particles and
is not important.)

Next, the expectation kinetic energy consists of terms like −~2/2mi times〈
∂2/∂x2s,i

〉
because of the form of the kinetic energy operator. Because of the

stretching of the coordinate in the bottom of the derivative, each of these terms
changes by a factor 1/(1 + ε)2, so

〈T 〉s = 〈T 〉
1

(1 + ε)2
≈ 〈T 〉 − 2ε 〈T 〉+ . . .

For the potential energy we can use a linear Taylor series to figure out how
it changes:

V (~r1 + ε~r1,~r2 + ε~r2, . . .) ≈ V +∇1V · ε~r1 +∇2V · ε~r2 + . . .

where in the right hand side V and its derivatives are evaluated at (~r1,~r2, . . .).
From that

〈V 〉s = 〈V 〉+ ε 〈∑i~ri · ∇iV 〉+ . . .

From the above expressions, it is seen that compared to the unstretched
system, in the stretched system the sum of expectation kinetic and potential
energies is different by an amount

ε (−2 〈T 〉+ 〈∑i~ri · ∇iV 〉) + . . .

But, as described in {A.7}, if you mess up an energy wave function by an
amount of order ε, the expectation energy should only be messed up by an
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amount proportional to ε2, not ε. (In brief, the amounts of the other energy
eigenfunctions found in the messed up wave function are proportional to ε.
However, the probabilities of their energies are proportional to the squares of
the amounts.) So the factor between parentheses in the expression above must
be zero, and that is the virial theorem.

A.18 The energy-time uncertainty relationship

As mentioned in chapter 4.5.3, Heisenberg’s formulae

∆px∆x >
1

2
~

relating the typical uncertainties in momentum and position is often very con-
venient for qualitative descriptions of quantum mechanics, especially if you mis-
read > as ≈.

So, taking a cue from relativity, people would like to write a similar expres-
sion for the uncertainty in the time coordinate,

∆E∆t >
1

2
~

The energy uncertainty can reasonably be defined as the standard deviation σE
in energy. However, if you want to formally justify the energy-time relationship,
it is not at all obvious what to make of that uncertainty in time ∆t.

To arrive at one definition, assume that the variable of real interest in a
given problem has a time-invariant operator A. The generalized uncertainty
relationship of chapter 4.5.2 between the uncertainties in energy and A is then:

σEσA >
1

2
|〈[H,A]〉|.

But according to chapter 7.2 |〈[H,A]〉| is just ~|d〈A〉/dt|.
So the Mandelshtam-Tamm version of the energy-time uncertainty relation-

ship just defines the uncertainty in time to be

∆t = σA

/∣∣∣∣
d 〈A〉
dt

∣∣∣∣ .

That corresponds to the typical time in which the expectation value of A changes
by one standard deviation. In other words, it is the time that it takes for
A to change to a value sufficiently different that it will clearly show up in
measurements.
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A.19 Conservation Laws and Symmetries

This note has a closer look at the relation between conservation laws and sym-
metries. As an example it derives the law of conservation of angular momentum
directly from the rotational symmetry of physics. It then briefly explains how
the arguments carry over to other conservation laws like linear momentum and
parity. A simple example of a local gauge symmetry is also given. The final
subsection has a few remarks about the symmetry of physics with respect to
time shifts.

A.19.1 An example symmetry transformation

The mathematician Weyl gave a simple definition of a symmetry. A symmetry
exists if you do something and it does not make a difference. A circular cylinder
is an axially symmetric object because if you rotate it around its axis over
some arbitrary angle, it still looks exactly the same. However, this note is not
concerned with symmetries of objects, but of physics. That are symmetries
where you do something, like place a system of particles at a different position
or angle, and the physics stays the same. The system of particles itself does not
necessarily need to be symmetric here.

As an example, this subsection and the next ones will explore one particular
symmetry and its conservation law. The symmetry is that the physics is the
same if a system of particles is placed under a different angle in otherwise
empty space. There are no preferred directions in empty space. The angle
that you place a system under does not make a difference. The corresponding
conservation law will turn out to be conservation of angular momentum.

First a couple of clarifications. Empty space should really be understood
to mean that there are no external effects on the system. A hydrogen atom
in a vacuum container on earth is effectively in empty space. Or at least it
is as far as its electronic structure is concerned. The energies associated with
the gravity of earth and with collisions with the walls of the vacuum container
are negligible. Atomic nuclei are normally effectively in empty space because
the energies to excite them are so large compared to electronic energies. As a
macroscopic example, to study the internal motion of the solar system the rest
of the galaxy can presumably safely be ignored. Then the solar system too can
be considered to be in empty space.

Further, placing a system under a different angle may be somewhat awkward.
Don’t burn your fingers on that hot sun when placing the solar system under a
different angle. And there always seems to be a vague suspicion that you will
change something nontrivially by placing the system under a different angle.

There is a different, better, way. Note that you will always need a coordi-
nate system to describe the evolution of the system of particles mathematically.
Instead of putting the system of particles under an different angle, you can put
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that coordinate system under a different angle. It has the same effect. In empty
space there is no reference direction to say which one got rotated, the particle
system or the coordinate system. And rotating the coordinate system leaves
the system truly untouched. That is why the view that the coordinate system
gets rotated is called the “passive view.” The view that the system itself gets
rotated is called the “active view.”

γ

x′

x

y′

y

z, z′

r
θ

φ′ = φ+ γ

φ P

Figure A.7: Effect of a rotation of the coordinate system on the spherical coor-
dinates of a particle at an arbitrary location P.

Figure A.7 shows graphically what happens to the position coordinates of a
particle if the coordinate system gets rotated. The original coordinate system is
indicated by primes. The z′-axis has been chosen along the axis of the desired
rotation. Rotation of this coordinate system over an angle γ produces a new
coordinate system indicated without primes. In terms of spherical coordinates,
the radial position r of the particle does not change. And neither does the
“polar” angle θ. But the “azimuthal” angle φ does change. As the figure shows,
the relation between the azimuthal angles is

φ′ = φ+ γ

That is the basic mathematical description of the symmetry transformation.
However, it must still be applied to the description of the physics. And in

quantum mechanics, the physics is described by a wave function Ψ that depends
on the position coordinates of the particles;

Ψ(r1, θ1, φ1, r2, θ2, φ2, . . . ; t)

where 1, 2, . . . , is the numbering of the particles. Particle spin will be ignored
for now.
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Physically absolutely nothing changes if the coordinate system is rotated. So
the values Ψ of the wave function in the rotated coordinate system are exactly
the same as the values Ψ′ in the original coordinate system. But the particle
coordinates corresponding to these values do change:

Ψ(r1, θ1, φ1, r2, θ2, φ2, . . . ; t) = Ψ′(r′1, θ
′
1, φ
′
1, r
′
2, θ
′
2, φ
′
2, . . . ; t)

Therefore, considered as functions, Ψ′ and Ψ are different. However, only the
azimuthal angles change. In particular, putting in the relation between the
azimuthal angles above gives:

Ψ(r1, θ1, φ1, r2, θ2, φ2, . . . ; t) = Ψ′(r1, θ1, φ1 + γ, r2, θ2, φ2 + γ, . . . ; t)

Mathematically, changes in functions are most conveniently written in terms
of an appropriate operator, chapter 2.4. The operator here is called the “gener-
ator of rotations around the z-axis.” It will be indicated as Rz,γ . What it does
is add γ to the azimuthal angles of the function. By definition:

Rz,γΨ
′(r1, θ1, φ1, r2, θ2, φ2, . . . ; t) ≡ Ψ′(r1, θ1, φ1 + γ, r2, θ2, φ2 + γ, . . . ; t)

In terms of this operator, the relationship between the wave functions in the
rotated and original coordinate systems can be written concisely as

Ψ = Rz,γΨ
′

Using Rz,γ, there is no longer a need for using primes on one set of coordinates.
Take any wave function in terms of the original coordinates, written without
primes. Application of Rz,γ will turn it into the corresponding wave function in
the rotated coordinates, also written without primes.

So far, this is all mathematics. The above expression applies whether or not
there is symmetry with respect to rotations. It even applies whether or not Ψ
is a wave function.

A.19.2 Physical description of a symmetry

The next question is what it means in terms of physics that empty space has no
preferred directions. According to quantum mechanics, the Schrödinger equa-
tion describes the physics. It says that the time derivative of the wave function
can be found as

∂Ψ

∂t
=

1

i~
HΨ

where H is the Hamiltonian. If space has no preferred directions, then the
Hamiltonian must be the same regardless of angular orientation of the coordi-
nate system used.
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In particular, consider the two coordinate systems of the previous subsection.
The second system differed from the first by a rotation over an arbitrary angle
γ around the z-axis. If one system had a different Hamiltonian than the other,
then systems of particles would be observed to evolve in a different way in that
coordinate system. That would provide a fundamental distinction between the
two coordinate system orientations right there.

A couple of very basic examples can make this more concrete. Consider
the electronic structure of the hydrogen atom as analyzed in chapter 4.3. The
electron was not in empty space in that analysis. It was around a proton, which
was assumed to be at rest at the origin. However, the electric field of the proton
has no preferred direction either. (Proton spin was ignored). Therefore the
current analysis does apply to the electron of the hydrogen atom. In terms
of Cartesian coordinates, the Hamiltonian in the original x′, y′, z′ coordinate
system is

H ′ = − ~
2

2me

[
∂

∂x′2
+

∂

∂y′2
+

∂

∂z′2

]
− e2

4πǫ0

1√
x′2 + y′2 + z′2

The first term is the kinetic energy operator. It is proportional to the Laplacian
operator, inside the square brackets. Standard vector calculus says that this
operator is independent of the angular orientation of the coordinate system.
So to get the corresponding operator in the rotated x, y, z coordinate system,
simply leave away the primes. The second term is the potential energy in the
field of the proton. It is inversely proportional to the distance of the electron
from the origin. The expression for the distance from the origin is the same
in the rotated coordinate system. Once again, just leave away the primes.
The bottom line is that you cannot see a difference between the two coordinate
systems by looking at their Hamiltonians. The expressions for the Hamiltonians
are identical.

As a second example, consider the analysis of the complete hydrogen atom as
described in addendum {A.5}. The complete atom was assumed to be in empty
space; there were no external effects on the atom included. The analysis still
ignored all relativistic effects, including the electron and proton spins. However,
it did include the motion of the proton. That meant that the kinetic energy of
the proton had to be added to the Hamiltonian. But that too is a Laplacian,
now in terms of the proton coordinates x′p, y

′
p, z
′
p. Its expression too is the same

regardless of angular orientation of the coordinate system. And in the potential
energy term, the distance from the origin now becomes the distance between
electron and proton. But the formula for the distance between two points is the
same regardless of angular orientation of the coordinate system. So once again,
the expression for the Hamiltonian does not depend on the angular orientation
of the coordinate system.

The equality of the Hamiltonians in the original and rotated coordinate sys-
tems has a consequence. It leads to a mathematical requirement for the operator
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Rz,γ of the previous subsection that describes the effect of a coordinate system
rotation on wave functions. This operator must commute with the Hamiltonian:

HRz,γ = Rz,γH

That follows from examining the wave function of a system as seen in both the
original and the rotated coordinate system. There are two ways to find the time
derivative of the wave function in the rotated coordinate system. One way is
to rotate the original wave function using Rz,γ to get the one in the rotated
coordinate system. Then you can apply the Hamiltonian on that. The other
way is to apply the Hamiltonian on the wave function in the original coordinate
system to find the time derivative in the original coordinate system. Then
you can use Rz,γ to convert that time derivative to the rotated system. The
Hamiltonian and Rz,γ get applied in the opposite order, but the result must still
be the same.

This observation can be inverted to define a symmetry of physics in general:

A symmetry of physics is described by a unitary operator that com-
mutes with the Hamiltonian.

If an operator commutes with the Hamiltonian, then the same Hamiltonian
applies in the changed coordinate system. So there is no physical difference in
how systems evolve between the two coordinate systems.

The qualification “unitary” means that the operator should not change the
magnitude of the wave function. The wave function should remain normalized.
It does for the transformations of interest in this note, like rotations of the
coordinate system, shifts of the coordinate system, time shifts, and spatial co-
ordinate inversions. All of these transformations are unitary. Like Hermitian
operators, unitary operators have a complete set of orthonormal eigenfunctions.
However, the eigenvalues are normally not real numbers.

For those who wonder, time reversal is somewhat of a special case. To under-
stand the difficulty, consider first the operation “take the complex conjugate of
the wave function.” This operator preserves the magnitude of the wave function.
And it commutes with the Hamiltonian, assuming a basic real Hamiltonian. But
taking complex conjugate is not a linear operator. For a linear operator (iΨ)′

= i(Ψ)′. But (iΨ)∗ = −iΨ∗. If constants come out of an operator as complex
conjugates, the operator is called “antilinear.” So taking complex conjugate is
antilinear. Another issue: a linear unitary operator preserves the inner products
between any two wave functions Ψ1 and Ψ2. (That can be verified by expanding
the square magnitudes of Ψ1+Ψ2 and Ψ1+iΨ2). However, taking complex con-
jugate changes inner products into their complex conjugates. Operators that
do that are called “antiunitary.” So taking complex conjugate is both antilinear
and antiunitary. (Of course, in normal language it is neither. The appropriate
terms would have been conjugate-linear and conjugate-unitary. But if you got
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this far in this book, you know how much chance appropriate terms have of
being used in physics.)

Now the effect of time-reversal on wave functions turns out to be antilinear
and antiunitary too, [49, p. 76]. One simple way to think about it is that a
straightforward time reversal would change e−iEt/~ into eiEt/~. Then an addi-
tional complex conjugate will take things back to positive energies. For the same
reason you do not want to add a complex conjugate to spatial transformations
or time shifts.

A.19.3 Derivation of the conservation law

The definition of a symmetry as an operator that commutes with the Hamil-
tonian may seem abstract. But it has a less abstract consequence. It implies
that the eigenfunctions of the symmetry operation can be taken to be also
eigenfunctions of the Hamiltonian, {D.18}. And, as chapter 7.1.4 discussed,
the eigenfunctions of the Hamiltonian are stationary. They change in time by
a mere scalar factor eiEt/~ of magnitude 1 that does not change their physical
properties.

The fact that the eigenfunctions do not change is responsible for the con-
servation law. Consider what a conservation law really means. It means that
there is some number that does not change in time. For example, conservation
of angular momentum in the z-direction means that the net angular momentum
of the system in the z-direction, a number, does not change.

And if the system of particles is described by an eigenfunction of the symme-
try operator, then there is indeed a number that does not change: the eigenvalue
of that eigenfunction. The scalar factor eiEt/~ changes the eigenfunction, but
not the eigenvalue that would be produced by applying the symmetry operator
at different times. The eigenvalue can therefore be looked upon as a specific
value of some conserved quantity. In those terms, if the state of the system is
given by a different eigenfunction, with a different eigenvalue, it has a different
value for the conserved quantity.

The eigenvalues of a symmetry of physics describe the possible values
of a conserved quantity.

Of course, the system of particles might not be described by a single eigen-
function of the symmetry operator. It might be a mixture of eigenfunctions,
with different eigenvalues. But that merely means that there is quantum me-
chanical uncertainty in the conserved quantity. That is just like there may be
uncertainty in energy. Even if there is uncertainty, still the mixture of eigenval-
ues does not change with time. Each eigenfunction is still stationary. Therefore
the probability of getting a given value for the conserved quantity does not
change with time. In particular, neither the expectation value of the conserved
quantity, nor the amount of uncertainty in it changes with time.
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The eigenvalues of a symmetry operator may require some cleaning up. They
may not directly give the conserved quantity in the desired form. Consider for
example the eigenvalues of the rotation operator Rz,γ discussed in the previous
subsections. You would surely expect a conserved quantity of a system to be a
real quantity. But the eigenvalues of Rz,γ are in general complex numbers.

The one thing that can be said about the eigenvalues is that they are always
of magnitude 1. Otherwise an eigenfunction would change in magnitude during
the rotation. But a function does not change in magnitude if it is merely viewed
under a different angle. And if the eigenvalues are of magnitude 1, then the Euler
formula (2.5) implies that they can always be written in the form

eiα

where α is some real number. If the eigenvalue does not change with time, then
neither does α, which is basically just its logarithm.

But although α is real and conserved, still it is not the desired conserved
quantity. Consider the possibility that you perform another rotation of the axis
system. Each rotation multiplies the eigenfunction by a factor eiα for a total of
e2iα. In short, if you double the angle of rotation γ, you also double the value
of α. But it does not make sense to say that both α and 2α are conserved. If
α is conserved, then so is 2α; that is not a second conservation law. Since α is
proportional to γ, it can be written in the form

α = mγ

where the constant of proportionality m is independent of the amount of coor-
dinate system rotation.

The constant m is the desired conserved quantity. For historical reasons it
is called the “magnetic quantum number.” Unfortunately, long before quantum
mechanics, classical physics had already figured out that something was pre-
served. It called that quantity the “angular momentum” Lz. It turns out that
what classical physics defines as angular momentum is simply a multiple of the
magnetic quantum number:

Lz = m~

So conservation of angular momentum is the same thing as conservation of
magnetic quantum number.

But the magnetic quantum number is more fundamental. Its possible values
are pure integers, unlike those of angular momentum. To see why, note that in
terms of m, the eigenvalues of Rz,γ are of the form

eimγ

Now if you rotate the coordinate system over an angle γ = 2π, it gets back to
the exact same position as it was in before the rotation. The wave function
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should not change in that case, which means that the eigenvalue must be equal
to one. And that requires that the value of m is an integer. If m was a fractional
number, eim2π would not be 1.

It may be interesting to see how all this works out for the two examples
mentioned in the previous subsection. The first example was the electron in a
hydrogen atom where the proton is assumed to be at rest at the origin. Chapter
4.3 found the electron energy eigenfunctions in the form

ψnlm(~r) = Rnl(r)Y
m
l (θ, φ) = Rnl(r)Θ

m
l (θ)e

imφ

It is the final exponential that changes by the expected factor eimγ when Rz,γ

replaces φ by φ+ γ.
The second example was the complete hydrogen atom in empty space. In

addendum {A.5}, the energy eigenfunctions were found in the form

ψnlm,red(~r −~rp)ψcg(~rcg)

The first term is like before, except that it is computed with a “reduced mass”
that is slightly different from the true electron mass. The argument is now the
difference in position between the electron and the proton. It still produces a
factor eimγ when Rz,γ is applied. The second factor reflects the motion of the
center of gravity of the complete atom. If the center of gravity has definite
angular momentum around whatever point is used as origin, it will produce an
additional factor eimcgγ. (See addendum {A.6} on how the energy eigenfunctions
ψcg can be written as spherical Bessel functions of the first kind times spherical
harmonics that have definite angular momentum. But also see chapter 7.9 about
the nasty normalization issues with wave functions in infinite empty space.)

As a final step, it is desirable to formulate a nicer operator for angular
momentum. The rotation operators Rz,γ are far from perfect. One problem is
that there are infinitely many of them, one for every angle γ. And they are all
related, a rotation over an angle 2γ being the same as two rotations over an
angle γ.

If you define a rotation operator over a very small angle, call itRz,ε, then you
can approximate any other operatorRz,γ by just applyingRz,ε sufficiently many
times. To make this approximation exact, you need to make ε infinitesimally
small. But when ε becomes zero, Rz,ε would become just 1. You have lost the
nicer operator that you want by going to the extreme. The trick to avoid this is
to subtract the limiting operator 1, and in addition, to avoid that the resulting
operator then becomes zero, you must also divide by ε. The nicer operator is
therefore

lim
ε→0

Rz,ε − 1

ε
Now consider what this operator really means for a single particle with no

spin:

lim
ε→0

Rz,ε − 1

ε
Ψ(r, θ, φ) = lim

ε→0

Ψ(r, θ, φ+ ε)−Ψ(r, θ, φ)

ε
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By definition, the final term is the partial derivative of Ψ with respect to φ. So
the new operator is just the operator ∂/∂φ!

You can go one better still, because the eigenvalues of the operator just
defined are

lim
ε→0

eimε − 1

ε
= im

If you add a factor ~/i to the operator, the eigenvalues of the operator are going
to be m~, the quantity defined in classical physics as the angular momentum.
So you are led to define the angular momentum operator of a single particle as:

L̂z ≡
~

i

∂

∂φ

This agrees perfectly with what chapter 4.2.2 got from guessing that the relation-
ship between angular and linear momentum is the same in quantum mechanics
as in classical mechanics.

The angular momentum operator of a general system can be defined using
the same scale factor:

L̂z ≡
~

i
lim
ε→0

Rz,ε − 1

ε
(A.76)

The system has definite angular momentum m~ if

L̂zΨ = m~Ψ

Consider now what happens if the angular operator L̂z as defined above is
applied to the wave function of a system of multiple particles, still without spin.
It produces

L̂zΨ =
~

i
lim
ε→0

Ψ(r1, θ1, φ1 + ε, r2, θ2, φ2 + ε, . . .)−Ψ(r1, θ1, φ1, r2, θ2, φ2, . . .)

ε

The limit in the right hand side is a total derivative. According to calculus, it
can be rewritten in terms of partial derivatives to give

L̂zΨ =
~

i

[
∂

∂φ1

+
∂

∂φ2

+ . . .

]
Ψ

The scaled derivatives in the new right hand side are the orbital angular mo-
menta of the individual particles as defined above, so

L̂zΨ =
[
L̂z,1 + L̂z,2 + . . .

]
Ψ

It follows that the angular momenta of the individual particles just add, like
they do in classical physics.
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Of course, even if the complete system has definite angular momentum,
the individual particles may not. A particle numbered i has definite angular
momentum mi~ if

L̂z,iΨ ≡
~

i

∂

∂φi
Ψ = mi~Ψ

If every particle has definite momentum like that, then these momenta directly
add up to the total system momentum. At the other extreme, if both the sys-
tem and the particles have uncertain angular momentum, then the expectation
values of the momenta of the particles still add up to that of the system.

Now that the angular momentum operator has been defined, the generator
of rotations Rz,γ can be identified in terms of it. It turns out to be

Rz,γ = exp

(
i

~
L̂zγ

)
(A.77)

To check that it does indeed take the form above, expand the exponential in a
Taylor series. Then apply it on an eigenfunction with angular momentum Lz =
m~. The effect is seen to be to multiply the eigenfunction by the Taylor series
of eimγ as it should. So Rz,γ as given above gets all eigenfunctions right. It
must therefore be correct since the eigenfunctions are complete.

Now consider the generator of rotations in terms of the individual particles.
Since L̂z is the sum of the angular momenta of the individual particles,

Rz,γ = exp

(
i

~
L̂z,1γ

)
exp

(
i

~
L̂z,2γ

)
. . .

So, while the contributions of the individual particles to total angular momen-
tum add together, their contributions to the generator of rotations multiply
together. In particular, if a particle i has definite angular momentum mi~, then
it contributes a factor eimiγ to Rz,γ .

How about spin? The normal angular momentum discussed so far suggests
its true meaning. If a particle i has definite spin angular momentum in the z-
direction ms,i~, then presumably the wave function changes by an additional
factor eims,iγ when you rotate the axis system over an angle γ.

But there is something curious here. If the axis system is rotated over an
angle 2π, it is back in its original position. So you would expect that the wave
function is also again the same as before the rotation. And if there is just orbital
angular momentum, then that is indeed the case, because eim2π = 1 as long as
m is an integer, (2.5). But for fermions the spin angular momentum ms in a
given direction is half-integer, and eiπ = −1. Therefore the wave function of
a fermion changes sign when the coordinate system is rotated over 2π and is
back in its original position. That is true even if there is uncertainty in the spin
angular momentum. For example, the wave function of a fermion with spin 1/2
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can be written as, chapter 5.5.1,

Ψ+↑+Ψ−↓

where the first term has 1
2
~ angular momentum in the z-direction and the second

term −1
2
~. Each term changes sign under a turn of the coordinate system by 2π.

So the complete wave function changes sign. More generally, for a system with
an odd number of fermions the wave function changes sign when the coordinate
system is rotated over 2π. For a system with an even number of fermions, the
wave function returns to the original value.

Now the sign of the wave function does not make a difference for the observed
physics. But it is still somewhat unsettling to see that on the level of the wave
function, nature is only the same when the coordinate system is rotated over
4π instead of 2π. (However, it may be only a mathematical artifact. The anti-
symmetrization requirement implies that the true system includes all electrons
in the universe. Presumably, the number of fermions in the universe is infinite.
That makes the question whether the number is odd or even unanswerable. If
the number of fermions does turn out to be finite, this book will reconsider the
question when people finish counting.)

(Some books now raise the question why the orbital angular momentum
functions could not do the same thing. Why could the quantum number of
orbital angular momentum not be half-integer too? But of course, it is easy to
see why not. If the spatial wave function would be multiple valued, then the
momentum operators would produce infinite momentum. You would have to
postulate arbitrarily that the derivatives of the wave function at a point only
involve wave function values of a single branch. Half-integer spin does not have
the same problem; for a given orientation of the coordinate system, the opposite
wave function is not accessible by merely changing position.)

A.19.4 Other symmetries

The previous subsections derived conservation of angular momentum from the
symmetry of physics with respect to rotations. Similar arguments may be used
to derive other conservation laws. This subsection briefly outlines how.

Conservation of linear momentum can be derived from the symmetry of
physics with respect to translations. The derivation is completely analogous to
the angular momentum case. The translation operator Tz,d shifts the coordinate
system over a distance d in the z-direction. Its eigenvalues are of the form

eikzd

where kz is a real number, independent of the amount of translation d, that is
called the wave number. Following the same arguments as for angular momen-
tum, kz is a preserved quantity. In classical physics not kz, but pz = ~kz is
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defined as the conserved quantity. To get the operator for this quantity, form
the operator

p̂z =
~

i
lim
ε→0

Tz,ε − 1

ε
(A.78)

For a single particle, this becomes the usual linear momentum operator ~∂/i∂z.
For multiple particles, the linear momenta add up.

It may again be interesting to see how that works out for the two example
systems introduced earlier. The first example was the electron in a hydrogen
atom. In that example it is assumed that the proton is fixed at the origin. The
energy eigenfunctions for the electron then were of the form

ψnlm(~r)

with ~r the position of the electron. Shifting the coordinate system for this
solution means replacing ~r by ~r + dk̂. That shifts the position of the electron
without changing the position of the proton. The physics is not the same after
such a shift. Correspondingly, the eigenfunctions do not change by a factor of
the form eikzd under the shift. Just looking at the ground state,

ψ100(~r) =
1√
πa30

e−|~r|/a0

is enough to see that. An electron around a stationary proton does not have
definite linear momentum. In other words, the linear momentum of the electron
is not conserved.

However, the physics of the complete hydrogen atom as described in ad-
dendum {A.5} is independent of coordinate shifts. A suitable choice of energy
eigenfunctions in this context is

ψnlm,red(~r −~rp)ei~k·~rcg

where ~k is a constant wave number vector. The first factor does not change
under coordinate shifts because the vector ~r −~rp from proton to electron does
not. The exponential changes by the expected factor eikzd because the position
~rcg of the center of gravity of the atom changes by an amount d in the z-
direction.

The derivation of linear momentum can be extended to conduction electrons
in crystalline solids. In that case, the physics of the conduction electrons is
unchanged if the coordinate system is translated over a crystal period d. (This
assumes that the z-axis is chosen along one of the primitive vectors of the crystal
structure.) The eigenvalues are still of the form eikzd. However, unlike for linear
momentum, the translation d must be the crystal period, or an integer multiple
of it. Therefore, the operator p̂z is not useful; the symmetry does not continue
to apply in the limit d→ 0.
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The conserved quantity in this case is just the eikzd eigenvalue of Tz,d. It
is not possible from that eigenvalue to uniquely determine a value of kz and
the corresponding crystal momentum ~kz. Values of kz that differ by a whole
multiple of 2π/d produce the same eigenvalue. But Bloch waves have the same
indeterminacy in their value of kz anyway. In fact, Bloch waves are eigenfunc-
tions of Tz,d as well as energy eigenfunctions.

One consequence of the indeterminacy in kz is an increased number of pos-
sible electromagnetic transitions. Typical electromagnetic radiation has a wave
length that is large compared to the atomic spacing. Essentially the electro-
magnetic field is the same from one atom to the next. That means that it has
negligible crystal momentum, using the smallest of the possible values of kx
as measure. Therefore the radiation cannot change the conserved eigenvalue
eikzd. But it can still produce electron transitions between two Bloch waves
that have been assigned different kz values in some “extended zone scheme,”
chapter 6.22.4. As long as the two kz values differ by a whole multiple of 2π/d,
the actual eigenvalue eikzd does not change. In that case there is no violation
of the conservation law in the transition. The ambiguity in kz values may be
eliminated by switching to a “reduced zone scheme” description, chapter 6.22.4.

The time shift operator Uτ shifts the time coordinate over an interval τ .
In empty space, its eigenfunctions are exactly the energy eigenfunctions. Its
eigenvalues are of the form

e−iωτ

where classical physics defines ~ω as the energy E. The energy operator can be
defined correspondingly, and is simply the Hamiltonian:

H = i~ lim
ε→0

Uε − 1

ε
= i~

∂

∂t
(A.79)

In other words, we have reasoned in a circle and rederived the Schrödinger
equation from time shift symmetry. But you could generalize the reasoning to
the motion of particles in an external field that varies periodically in time.

Usually, nature is not just symmetric under rotating or translating it, but
also under mirroring it. A transformation that creates a mirror image of a given
system is called a parity transformation. The mathematically cleanest way to
do it is to invert the direction of each of the three Cartesian axes. That is called
spatial inversion. Physically it is equivalent to mirroring the system using some
mirror passing through the origin, and then rotating the system 180◦ around
the axis normal to the mirror.

(In a strictly two-dimensional system, spatial inversion does not work, since
the rotation would take the system into the third dimension. In that case,
mirroring can be achieved by replacing just x by −x in some suitably chosen
xy-coordinate system. Subsequently replacing y by −y would amount to a
second mirroring that would restore a nonmirror image. In those terms, in
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three dimensions it is replacing z by −z that produces the final mirror image in
spatial inversion.)

The analysis of the conservation law corresponding to spatial inversion pro-
ceeds much like the one for angular momentum. One difference is that applying
the spatial inversion operator a second time turns −~r back into the original ~r.
Then the wave function is again the same. In other words, applying spatial
inversion twice multiplies wave functions by 1. It follows that the square of
every eigenvalue is 1. And if the square of an eigenvalues is 1, then the eigen-
value itself must be either 1 or −1. In the same notation as used for angular
momentum, the eigenvalues of the spatial inversion operator can therefore be
written as

eim
′π = (−1)m′

(A.80)

where m′ must be integer. However, it is pointless to give an actual value for m′;
the only thing that makes a difference for the eigenvalue is whether m′ is even
or odd. Therefore, parity is simply called “odd” or “minus one” or “negative”
if the eigenvalue is −1, and “even” or “one” or “positive” if the eigenvalue is 1.

In a system, the ±1 parity eigenvalues of the individual particles multiply
together. That is just like how the eigenvalues of the generator of rotation Rz,γ

multiply together for angular momentum. Any particle with even parity has no
effect on the system parity; it multiples the total eigenvalue by 1. On the other
hand, each particle with odd parity flips over the total parity from odd to even
or vice-versa; it multiplies the total eigenvalue by −1. Particles can also have
intrinsic parity. However, there is no half-integer parity like there is half-integer
spin.

A.19.5 A gauge symmetry and conservation of charge

Modern quantum theories are build upon so-called “gauge symmetries.” This
subsection gives a simple introduction to some of the ideas.

Consider classical electrostatics. The force on charged particles is the prod-
uct of the charge of the particle times the so-called electric field ~E . Basic physics
says that the electric field is minus the derivative of a potential ϕ. The potential
ϕ is commonly known as the “voltage” in electrical applications. Now it too
has a symmetry: adding some arbitrary constant, call it C, to ϕ does not make
a difference. Only differences in voltage can be observed physically. That is a
very simple example of a gauge symmetry, a symmetry in an unobservable field,
here the potential ϕ.

Note that this symmetry does not involve the gauges used to measure volt-
ages in any way. Instead it is a reference point symmetry; it does not make a
difference what voltage you want to declare to be zero. It is conventional to take
the earth as the reference voltage, but that is a completely arbitrary choice. So
the term “gauge symmetry” is misleading, like many other terms in physics. A
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symmetry in a unobservable quantity should of course simply have been called
an unobservable symmetry.

There is a relationship between this gauge symmetry in ϕ and charge conser-
vation. Suppose that, say, a few photons create an electron and an antineutrino.
That can satisfy conservation of angular momentum and of lepton number, but
it would violate charge conservation. Photons have no charge, and neither have
neutrinos. So the negative charge −e of the electron would appear out of noth-
ing. But so what? Photons can create electron-positron pairs, so why not
electron-antineutrino pairs?

The problem is that in electrostatics an electron has an electrostatic energy
−eϕ. Therefore the photons would need to provide not just the rest mass
and kinetic energy for the electron and antineutrino, but also an additional
electrostatic energy −eϕ. That additional energy could be determined from
comparing the energy of the photons against that of the electron-antineutrino
pair. And that would mean that the value of ϕ at the point of pair creation has
been determined. Not just a difference in ϕ values between different points. And
that would mean that the value of the constant C would be fixed. So nature
would not really have the gauge symmetry that a constant in the potential is
arbitrary.

Conversely, if the gauge symmetry of the potential is fundamental to nature,
creation of lone charges must be impossible. Each negatively charged electron
that is created must be accompanied by a positively charged particle so that
the net charge that is created is zero. In electron-positron pair creation, the
positive charge +e of the positron makes the net charge that is created zero.
Similarly, in beta decay, an uncharged neutron creates an electron-antineutrino
pair with charge −e, but also a proton with charge +e.

You might of course wonder whether an electrostatic energy contribution
−eϕ is really needed to create an electron. It is because of energy conservation.
Otherwise there would be a problem if an electron-antineutrino pair was created
at a location P and disintegrated again at a different location Q. The electron
would pick up a kinetic energy−e(ϕP−ϕQ) while traveling from P to Q. Without
electrostatic contributions to the electron creation and annihilation energies,
that kinetic energy would make the photons produced by the pair annihilation
more energetic than those destroyed in the pair creation. So the complete
process would create additional photon energy out of nothing.

The gauge symmetry takes on a much more profound meaning in quantum
mechanics. One reason is that the Hamiltonian is based on the potential, not on
the electric field itself. To appreciate the full impact, consider electrodynamics
instead of just electrostatics. In electrodynamics, a charged particle does not
just experience an electric field ~E but also a magnetic field ~B. There is a cor-
responding additional so-called “vector potential” ~A in addition to the scalar
potential ϕ. The relation between these potentials and the electric and magnetic
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fields is given by, chapter 13.1:

~E = −∇ϕ− ∂ ~A

∂t
~B = ∇× ~A

Here ∇, nabla, is the differential operator of vector calculus (calculus III in the
U.S. system):

∇ ≡ ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

The gauge property now becomes more general. The constant C that can be
added to ϕ in electrostatics no longer needs to be constant. Instead, it can be
taken to be the time-derivative of any arbitrary function χ(x, y, z, t). However,

the gradient of this function must also be subtracted from ~A. In particular, the
potentials

ϕ′ = ϕ+
∂χ

∂t
~A′ = ~A−∇χ

produce the exact same electric and magnetic fields as ϕ and ~A. So they are
physically equivalent. They produce the same observable motion.

However, the wave function computed using the potentials ϕ′ and ~A′ is differ-
ent from the one computed using ϕ and ~A. The reason is that the Hamiltonian
uses the potentials rather than the electric and magnetic fields. Ignoring spin,
the Hamiltonian of an electron in an electromagnetic field is, chapter 13.1:

H =
1

2me

(
~

i
∇+ e~A

)2

− eϕ

It can be seen by crunching it out that if Ψ satisfies the Schrödinger equation
in which the Hamiltonian is formed with ϕ and ~A, then

Ψ′ = eieχ/~Ψ (A.81)

satisfies the one in which H is formed with ϕ′ and ~A′.
To understand what a stunning result that is, recall the physical interpreta-

tion of the wave function. According to Born, the square magnitude of the wave
function |Ψ|2 determines the probability per unit volume of finding the electron
at a given location. But the wave function is a complex number; it can always
be written in the form

Ψ = eiα|Ψ|
where α is a real quantity corresponding to a phase angle. This angle is not
directly observable; it drops out of the magnitude of the wave function. And
the gauge property above shows that not only is α not observable, it can be
anything. For, the function χ can change α by a completely arbitrary amount
eχ/~ and it remains a solution of the Schrödinger equation. The only variables

that change are the equally unobservable potentials ϕ and ~A.
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As noted earlier, a symmetry means that you can do something and it does
not make a difference. Since α can be chosen completely arbitrary, varying with
both location and time, this is a very strong symmetry. Zee writes, (Quan-
tum Field Theory in a Nutshell, 2003, p. 135): ”The modern philosophy is to
look at [the equations of quantum electrodynamics] as a result of [the gauge
symmetry above]. If we want to construct a gauge-invariant relativistic field
theory involving a spin 1/2 and a spin 1 field, then we are forced to quantum
electrodynamics.”

Geometrically, a complex number like the wave function can be shown in
a two-dimensional complex plane in which the real and imaginary parts of the
number form the axes. Multiplying the number by a factor eieχ/~ corresponds
to rotating it over an angle eχ/~ around the origin in that plane. In those
terms, the wave function can be rotated over an arbitrary, varying, angle in the
complex plane and it still satisfies the Schrödinger equation.

For a relatively accessible derivation how the gauge invariance produces
quantum electrodynamics, see [24, pp. 358ff]. To make some sense out of it,
chapter 1.2.5 gives a brief inroduction to relativistic index notation, chapter
12.12 to the Dirac equation and its matrices, addendum {A.1} to Lagrangians,
and {A.21} to photon wave functions. The F µν are derivatives of this wave
function, [24, p. 239].

A.19.6 Reservations about time shift symmetry

It is not quite obvious that the evolution of a physical system in empty space is
the same regardless of the time that it is started. It is certainly not as obvious
as the assumption that changes in spatial position do not make a difference.
Cosmology does not show any evidence for a fundamental difference between
different locations in space. For each spatial location, others just like it seem
to exist elsewhere. But different cosmological times do show a major physical
distinction. They differ in how much later they are than the time of the creation
of the universe as we know it. The universe is expanding. Spatial distances
between galaxies are increasing. It is believed with quite a lot of confidence
that the universe started out extremely concentrated and hot at a “Big Bang”
about 15 billion years ago.

Consider the cosmic background radiation. It has cooled down greatly since
the universe became transparent to it. The expansion stretched the wave length
of the photons of the radiation. That made them less energetic. You can look
upon that as a violation of energy conservation due to the expansion of the
universe.

Alternatively, you could explain the discrepancy away by assuming that the
missing energy goes into potential energy of expansion of the universe. However,
whether this “potential energy” is anything better than a different name for
“energy that got lost” is another question. Potential energy is normally energy
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that is lost but can be fully recovered. The potential energy of expansion of the
universe cannot be recovered. At least not on a global scale. You cannot stop
the expansion of the universe.

And a lack of exact energy conservation may not be such a bad thing for
physical theories. Failure of energy conservation in the early universe could
provide a possible way of explaining how the universe got all that energy in the
first place.

In any case, for practical purposes nontrivial effects of time shifts seem to be
negligible in the current universe. When astronomy looks at far-away clusters
of galaxies, it sees them as they were billions of years ago. That is because the
light that they emit takes billions of years to reach us. And while these galaxies
look different from the current ones nearby, there is no evident difference in
their basic laws of physics. Also, gravity is an extremely small effect in most
other physics. And normal time variations are negligible compared to the age
of the universe. Despite the Big Bang, conservation of energy remains one of
the pillars on which physics is build.

A.20 Angular momentum of vector particles

This addendum is concerned with vector particles, particles whose wave func-
tions are vectors. To be sure, the wave function of an electron can also be
written as a vector, chapters 3.1 and 5.5.1:

electron: ~Ψ(~r; t) ≡
(

Ψ+(~r; t)
Ψ−(~r; t)

)

But that is not a normal vector. It is a two-dimensional vector in three-dimen-
sional space, and is known as a spinor. This addendum is concerned with wave
functions that are normal three-dimensional vectors. That is of importance for
understanding, for example, the spin angular momentum of photons. A photon
is a vector particle, though a special one. It will be shown in this addendum
that the spin of a vector particle is 1. The parity of such a particle will also be
discussed.

To really appreciate this addendum, you may want to read the previous
addendum {A.19} first. In any case, according to that addendum angular mo-
mentum is related to what happens to the wave function under rotation of the
coordinate system. In particular, the angular momentum in the z-direction is
related to what happens if the coordinate system is rotated around the z-axis.

Consider first the simplest possible vector wave function:

~Ψ = ~A′f(r) ~A′ =




A′x
A′y
A′z
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Here ~A′ is a constant vector. Also r is the distance from the origin around which
the angular momentum is defined. Finally, f(r) is any arbitrary function of r.
The big question is now what happens to this wave function if the coordinate
system is rotated over some angle γ around the z-axis.

❣
z′ = z x′

x

y′y

~A

A′y

Ay

A′x

Ax

γ

γ

ı̂ ′

ı̂

̂ ′̂

Figure A.8: Effect of rotation of the coordinate system on a vector. The vector is
physically the same, but it has a different mathematical representation, different
components, in the two coordinate systems.

The factor f(r) does not change under rotations because the distance from

the origin does not. But the vector ~A′ does change. Figure A.8 shows what
happens. The vector in the rotated coordinate system x, y, z has components

Ax = cos(γ)A′x+sin(γ)A′y Ay = − sin(γ)A′x+cos(γ)A′y Az = A′z (A.82)

For example, the first relation expresses that A′xı̂
′ has a component cos(γ)A′x in

the direction of ı̂, while A′y ̂
′ has a component sin(γ)A′y in that direction. The

second expression follows similarly. The z-component does not change under
the rotation.

Now consider three very special vectors:

~Y 1
1 =




1/
√
2

i/
√
2

0


 ~Y 0

1 =




0
0
−1


 ~Y −11 =



−1/
√
2

i/
√
2

0


 (A.83)

If you plug ~A′ = ~Y 1
1 into the relations (A.82) given above and use the Euler

identity (2.5), you get ~A = eiγ ~Y 1
1 . So the vector ~Y 1

1 changes by a mere scalar
factor, the exponential eiγ, under the rotation of the coordinate system. Ac-
cording to the relationship between rotations and angular momentum, {A.19},
that makes ~Y 1

1 a state of definite angular momentum in the z-direction. Also,
the magnetic quantum number ms of the momentum in the z-direction is by
definition the coefficient of iγ in the exponential factor eiγ = e1iγ . Here that
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is 1, so ms = 1. This value is shown as the superscript of the state ~Y 1
1 . The

actual angular momentum in the z-direction is ms~, so it is ~ for this state.
This angular momentum should be called spin, in analogy to the case for the
electron. It is due to the fact that the wave function is a vector.

The vector ~Y 0
1 has only a z-component, so it does not change under the

rotation. Phrased differently, it changes by a unit factor e0iγ . That makes its
magnetic quantum number ms zero, as the superscript in ~Y 0

1 says. Then the
angular momentum in the z-direction of this state is zero too. Finally, the
vector ~Y −11 changes by a factor e−1iγ under rotation, so it has ms = −1, as its
superscript says, and the angular momentum in the z-direction is −~.

To get at square angular momentum, first the operator Ŝz of spin angular
momentum around the z-axis is needed. The relation between angular mo-
mentum and rotations shows that this operator takes the general form, {A.19}
(A.76),

Ŝz =
~

i
lim
γ→0

Rz,γ − 1

γ

Here Rz,γ is the operator that describes the effect of the rotation of the coordi-

nate system on the wave function. Applied on the vector ~A′ in the unrotated
coordinate system, that means

Ŝz ~A
′ =

~

i
lim
γ→0

~A− ~A′

γ

Plugging in the components of ~A as given earlier, (A.82), and taking the limits
using l’Hôpital, that produces

Ŝz




A′x
A′y
A′z


 =

~

i




A′y
−A′x

0




So the operator Ŝz drops the z-component and swaps the other two components,
changing the sign of the first, and then adds a factor ~/i. If the same operations
are performed another time, the net result is:

Ŝ2
z




A′x
A′y
A′z


 = ~

2




A′x
A′y
0




So the square operator just drops the z-component and adds a factor ~2.
Of course, the operators Ŝ2

x and Ŝ2
y are defined similarly. There is nothing

special about the z-axis. The operator of square spin angular momentum is
defined as

Ŝ2 ≡ Ŝ2
x + Ŝ2

y + Ŝ2
z
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Since each of the operators in the right hand side drops a different component
and adds a factor ~2 to the other two, the total for any vector ~A′ is,

Ŝ2 ~A′ = 2~2 ~A′

So the square spin operator always produces a simple multiple of the original
vector. That makes any vector an eigenvector of square spin angular momen-
tum. Also, the azimuthal quantum number s, the spin, can by definition be
found from equating the coefficient 2~2 of ~A′ in the right hand side above to
s(s+ 1)~2. The only nonnegative value s that can satisfy this condition is s =
1.

That then means that the spin s of vector particles is equal to 1. So a vector
particle is a boson of spin 1. The subscript on the special vectors ~Y ms

1 indicates
their spin s = 1.

You can write the most general vector wave function in the form

~Ψ(~r; t) = Ψ1(~r; t)~Y
1
1 +Ψ0(~r; t)~Y

1
1 +Ψ−1(~r; t)~Y

−1
1

Then you can put the coefficients in a vector much like the wave function of the
electron, but now three-dimensional:

vector boson: ~Ψ(~r; t) ≡




Ψ1(~r; t)
Ψ0(~r; t)
Ψ−1(~r; t)




Like the electron, the vector particle can of course also have orbital angular
momentum. That is due to the coefficients Ψms

in the wave function above. So
far it has been assumed that these coefficients only depended on the distance r
from the origin. However, consider the following more general component of a
vector wave function:

~Y ms

1 f(r)Y ml

l (θ, φ) (A.84)

Here θ and φ are the position angles in spherical coordinates, and Y ml

l is a so-
called spherical harmonic of orbital angular momentum, chapter 4.2.3. For the
above wave function to be properly normalized,

∫ ∞

r=0

r2f(r) dr = 1

(To check this, take a dot, or rather inner, product of the wave function with
itself. Then integrate over all space using spherical coordinates and the or-
thonormality of the spherical harmonics.)

The wave function (A.84) above has orbital angular momentum in the z-
direction equal to ml~ in addition to the spin angular momentum ms~. So the
total angular momentum in the z-direction is (ms +ml)~. To check that, note
that under rotations of the coordinate system, the vector changes by a factor
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emsiγ while the spherical harmonic changes by an additional factor emliγ. That
makes the total change a factor e(ms+ml)iγ .

In general, then, the magnetic quantum number mj of the net angular mo-
mentum is simply the sum of the spin and orbital ones,

mj = ms +ml (A.85)

However, the situation for the azimuthal quantum number j of the net an-
gular momentum is not so simple. In general the wave function (A.84) above
will have uncertainty in the value of j. Combinations of wave functions of the
form (A.84) are usually needed to get states of definite j.

That is a complicated issue best left to chapter 12. But a couple of special
cases are worth mentioning already. First, ifms = 1 andml = l, or alternatively,
if ms = −1 and ml = −l, then j is simply the sum of the spin and orbital
azimuthal quantum numbers 1 + l.

The other special case is that there is zero net angular momentum. Zero net
angular momentum means that the wave function is exactly the same regardless
how the coordinate system is rotated. And that only happens for a vector wave
function if it is purely radial:

ı̂rf(r)
1√
4π

Here ı̂r is the unit vector sticking radially outward away from the origin. The
final constant is the spherical harmonic Y 0

0 . It is needed the satisfy the normal-
ization requirement unless you change the one on f .

The above state has zero net angular momentum. The question of interest
is what can be said about its spin and orbital angular momentum. To answer
that, it must be rewritten in terms of Cartesian components. Now the unit
vector ı̂r has Cartesian components

ı̂r =
x

r
ı̂+

y

r
̂+

z

r
k̂

The spatial factors in this expression can be written in terms of the spherical
harmonics Y ml

1 , chapter 4.2.3. That gives the state of zero net angular momen-
tum as

ı̂rf(r)Y
0
0 =

(√
1/3~Y

1
1 Y
−1
1 −

√
1/3~Y

0
1 Y

0
1 +

√
1/3~Y

−1
1 Y 1

1

)
f(r)

To check this, just plug in the expressions for the ~Y ms

1 of (A.83), and for the
Y ml

1 of table 4.3.
The bottom line is that by combining states of unit spin s = 1, and unit

orbital angular momentum l = 1, you can create a state of zero net angular
momentum, j = 0. Note also that in each of the three terms in the right hand
side above, ms and ml add up to zero. A state of zero angular momentum j =
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0 must have mj = 0 without uncertainty. Further note that the values of both
the spin and orbital angular momentum in the z-direction are uncertain. Each
of the two has measurable values ~, 0, or −~ with equal probability 1

3
.

The above relation may be written more neatly in terms of “ket notation.”
In ket notation, an angular momentum state with azimuthal quantum number
j and magnetic quantum number mj is indicated as |j mj〉. Using this notation,
and dropping the common factor f(r), the above relation can be written as

|0 0〉j =
√

1/3|1 1〉s|1 1〉l −
√

1/3|1 0〉s|1 0〉l +
√

1/3|1 1〉s|1 1〉l

Here the subscripts j, s, and l indicate net, spin, and orbital angular momentum,
respectively.

There is a quicker way to get this result than going through the above
algebraic mess. You can simply read off the coefficients in the appropriate
column of the bottom-right tabulation in figure 12.6. (In this figure take a to
stand for spin, b for orbital, and ab for net angular momentum.) Figure 12.6
also has the coefficients for many other net spin states that you might need. A
derivation of the figure must wait until chapter 12.

The parity of vector wave functions is also important. Parity is what happens
to a wave function if you invert the positive direction of all three Cartesian axes.
What happens to a vector wave function under such an inversion can vary. A
normal, or “polar,” vector changes sign when you invert the axes. For example,
a position vector ~r in classical physics is a polar vector. Each position coordinate
x, y, and z changes sign, and therefore so does the entire vector. Similarly, a
velocity vector ~v is a polar vector; it is just the time derivative of position.
A particle with a vector wave function that behaves like a normal vector has
negative intrinsic parity. The sign of the wave function flips over under axes
inversion. Particles of this type turn out to include the photon.

But now consider an example like a classical angular momentum vector, ~r ×
m~v. Since both the position and the velocity change sign under spatial inversion,
a classical angular momentum vector stays the same. A vector that does not
change under axes inversion is called a “pseudovector” or “axial” vector. A
particle whose wave function behaves like a pseudovector has positive intrinsic
parity.

Note however that the orbital angular momentum of the particle also has
an effect on the net parity. In particular, if the quantum number of orbital
angular momentum l is odd, then the net parity is the opposite of the intrinsic
one. If the quantum number l is even, then the net parity is the intrinsic one.
The reason is that spherical harmonics change sign under spatial inversion if l
is odd, but not when l is even, {D.14}.

Particles of all types often have definite parity. Such a particle may still
have uncertainty in l. But if parity is definite, the measurable values of l will
need to be all even or all odd.
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A.21 Photon type 2 wave function

In quantum mechanics, photons are the particles of the electromagnetic field.
To actually use photons, something like a wave function for them is needed. But
that is not quite trivial for a purely relativistic particle with zero rest mass like
the photon. That is the primary topic of this addendum. It will be assumed
throughout that the photon is in empty space.

A.21.1 The wave function

To see the problem with a photon wave function, a review of the wave function
of the nonrelativistic electron is useful, chapters 3.1 and 5.5.1. The electron
wave function can be written as a vector with two components:

electron: ~Ψ(~r; t) ≡
(

Ψ+(~r; t)
Ψ−(~r; t)

)

This wave function takes on two different meanings
1. It gives the probability per unit volume of finding the electron at a

given position with a given spin. For example, |Ψ+(~r; t)|2 d3~r gives
the probability of finding the electron with spin-up in an vicinity
of infinitesimal volume d3~r around position ~r. That is the Born
statistical interpretation.

2. It is the unobservable function that nature seems to use to do its
quantum “computations” of how physics behaves.

Now a wave function of type 1 is not really meaningful for a photon. What
would it mean, find a photon? Since the photon has no rest mass, you cannot
bring them to a halt: there would be nothing left. And anything you do to try
to localize the electromagnetic field is likely to just produce new photons. (To
be sure, with some effort something can be done towards a meaningful wave
function of type 1, e.g. [Sype, J.E. 1995 Phys. Rev. A 52, 1875]. It would have
two components like the electron, since the photon has two independent spin
states. But wave functions of that type are not widely accepted, nor useful for
the purposes here.)

So what? A wave function of type 1 is not that great anyway. For one, it
only defines the magnitudes of the components of the wave function. If you only
define the magnitude of a complex function, you define only half of it. True,
even as a type 2 wave function the classical electron wave function is not quite
unique. You can still multiply either component by a factor eiα, with α a real
constant, without changing any of the physics. But that is not by far as bad as
completely ignoring everything else besides the magnitude.

Furthermore, relativistic quantum mechanics has discovered that what we
call an electron is something cloaked in a cloud of virtual particles. It is any-
body’s guess what is inside that cloak, but it will not be anything resembling
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what we would call an electron. So what does it really mean, finding an electron
within an infinitesimal volume around a point? What happens to that cloak?
And to really locate an electron in an infinitesimal volume requires infinite en-
ergy. If you try to locate the electron in a region that is small enough, you are
likely to just create additional electron-positron pairs much like for photons.

For most practical purposes, classical physics understands the particle be-
havior of electrons very well, but not their wave behavior. Conversely, it under-
stands the wave behavior of photons very well, but not their particle behavior.
But when you go to high enough energies, that distinction becomes much less
obvious.

The photon most definitely has a wave function of type 2 above. In quantum
electrodynamics, it may simply be called the photon wave function, [24, p. 240].
However, since the term already seems to be used for type 1 wave functions,
this book will use the term “photon type 2 wave function.” It may not tell you
where to find that elusive photon, but you will definitely need it to figure out
how that photon interacts with, say, an electron.

What the type 2 wave function of the photon is can be guessed readily
from classical electromagnetics. After all, the photon is supposed to be the
particle of the electromagnetic field. So, consider first electrostatics. In classical
electrostatics the forces on charged particles are described by an electric force
per unit charge ~E . That is called the electric field.

But quantum mechanics uses potentials, not forces. For example, the solu-
tion of the hydrogen atom of chapter 4.3 used a potential energy of the electron
V . In electrostatics, this potential energy is written as V = −eϕ where −e is the
charge of the electron and ϕ is called the electrostatic potential. This potential
is not directly observable nor unique; you can add any constant to it without
changing the observed physics.

Clearly, an unobservable function ϕ for the electromagnetic field sounds
much like a wave function for the particle of that field, the photon. But actually,
the electrostatic potential ϕ is only part of it. In classical electromagnetics, there
is not just an electric field ~E , there is also a magnetic field ~B. It is known that
this magnetic field can be represented by a so-called “vector potential” ~A.

The following relationships give the electric and magnetic fields in terms of
these potentials:

~E = −∇ϕ− ∂ ~A

∂t
~B = ∇× ~A (A.86)

Here the operator

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

is called nabla or del. As an example, for the z components of the fields:

Ez = −
∂ϕ

∂z
− ∂Az

∂t
Bz =

∂Ay
∂x
− ∂Ax

∂y
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When both potentials are allowed for, the nonuniqueness becomes much
larger. In particular, for any arbitrary function χ of position and time, you can
find two different potentials ϕ′ and ~A′ that produce the exact same electric and
magnetic fields as ϕ and ~A. These potentials are given by

ϕ′ = ϕ− ∂χ

∂t
~A′ = ~A+∇χ (A.87)

This indeterminacy in potentials is the famous “gauge property” of the electro-
magnetic field.

Finally, it turns out that classical relativistic mechanics likes to combine the
four scalar potentials in a four-dimensional vector, or four-vector, chapter 1.3.2:

→֒

A =

(
ϕ/c
~A

)
=




ϕ/c
Ax
Ay
Az




That is the one. Quantum mechanics takes a four-vector potential of this
form to be the type 2 wave function of the photon

→֒

Aγ. It keeps the gauge
property (A.87) for this wave function. However, note the following important
caveat:

The photon wave function
→֒

Aγ should not be confused with the clas-

sical four-potential
→֒

A.

Wave functions are in general complex. The classical four-potential, and es-
pecially its physically observable derivatives, the electric and magnetic fields,
must be real. Indeed, according to quantum mechanics, observable quantities
correspond to eigenvalues of Hermitian operators, not to wave functions. What
the operators of the observable electric and magnetic fields are will be discussed
in addendum {A.23}.

A.21.2 Simplifying the wave function

To use the photon wave function in practical applications, it is essential to
simplify it. That can be done by choosing a clever gauge function χ in the
gauge property (A.87).

One very helpful simplification is to choose χ so that

1

c

∂ϕγ/c

∂t
+∇ · ~Aγ = 0 (A.88)

where c is the speed of light. This is called the “Lorenz condition.” A cor-
responding gauge function is a “Lorenz gauge.” The reason why the Lorenz
condition is a good one is because all observers in inertial motion will agree
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it is true. (You can crunch that out using the Lorentz transform as given in

chapter 1.2.1 (1.6). The four-vector
→֒

Aγ transforms the same way as the four-
vector

→֒
r. However, you will need to use the inverse transform for one of the

two four-vectors. Alternatively, those familiar with index notation as briefly
described in chapter 1.2.5 recognize the Lorenz condition as being simply ∂µA

µ
γ

= 0. That is unchanged going from one observer to the next, because the upper
index transforms under the Lorentz transform and the lower index under the
inverse Lorentz transform.)

To achieve the Lorenz condition, assume an initial wave function (ϕ′γ, ~A
′
γ)

that does not satisfy it. Then plug the gauge property (A.87) into the Lorenz
condition above. That shows that the needed gauge function χ must satisfy

− 1

c2
∂2χ

∂t2
+∇2χ =

1

c

∂ϕ′γ/c

∂t
+∇ · ~A′γ

This equation for χ is called an inhomogeneous Klein-Gordon equation. (More
generically, it is called an inhomogeneous wave equation.)

There is another reason why you want to satisfy the Lorenz condition. The
photon is a purely relativistic particle with zero rest mass. Then following the
usual ideas of quantum mechanics, in empty space its wave function should
satisfy the homogeneous Klein-Gordon equation, {A.14} (A.43):

− 1

c2
∂2

→֒

Aγ
∂t2

+∇2
→֒

Aγ = 0 (A.89)

Unfortunately, that is not automatic. In general, gauge transforms mess up this
equation. However, as long as gauge transforms respect the Lorenz condition,
they also respect the Klein-Gordon equation. So reasonably speaking, “normal”
photon wave functions, the ones that do satisfy the Klein-Gordon equation,
should be exactly the ones that also satisfy the Lorenz condition.

Maxwell’s classical electromagnetics provides additional support for that
idea. There the Klein-Gordon equation for the potentials also requires that
the Lorenz condition is satisfied, {A.37}.

Since the inhomogeneous Klein-Gordon equation for the gauge function χ is
second order in time, it still leaves two initial conditions to be chosen. These
can be chosen such as to make the initial values for ϕγ and its time-derivative
zero. That then makes ϕγ completely zero, because it satisfies the homogeneous
Klein-Gordon equation.

And so the fully simplified photon wave function becomes:

Coulomb-Lorenz gauge:
→֒

Aγ =

(
0
~Aγ

)
∇ · ~Aγ = 0 (A.90)

The final condition applies because of the Lorenz condition (A.88). Using an

expensive word, the final condition says that ~Aγ must be “solenoidal.” A gauge

function that makes ~Aγ solenoidal is called a “Coulomb gauge.”
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It should be noted that the Coulomb gauge is not Lorentz invariant. A
moving observer will not agree that the potential ϕγ is zero and that ~Aγ is
solenoidal. In real life that means that if you want to study a process in say a
center-of-mass system, first switch to that system and then assume the Coulomb
gauge. Not the other way around. The Coulomb-Lorenz gauge is too helpful
not to use, although that is possible, [24, p. 241].

A.21.3 Photon spin

Now that the photon wave function has been simplified the photon spin can
be determined. Recall that for the electron, the two components of the wave
function correspond to its two possible values of the spin angular momentum Ŝz
in the chosen z-direction. In particular, Ψ+ corresponds to Ŝz =

1
2
~, and Ψ− to

Ŝz = −1
2
~. Since the wave function of the photon is a four-dimensional vector,

at first it might therefore look like the photon should have spin 3/2. That would

make Ŝz one of 3
2
~, 1

2
~, −1

2
~, or −3

2
~. But that is not true.

The simplified wave function (A.90) has only three nontrivial components.
And the gauge property requires that this simplified wave function still describes
all the physics. Since the only nontrivial part left is the three-dimensional vector
~Aγ, the spin of the photon must be 1. The possible values of the spin in the z-

direction Ŝz are ~, 0, and −~. The photon is a vector boson like discussed in
addendum {A.20}.

However, that is not quite the end of the story. There is still that additional
condition ∇ · ~Aγ = 0 to satisfy. In principle this constraint allows another
component of the wave function to be eliminated. However, all three remaining
components are spatial ones. So it does not make much sense to eliminate
one and not the other. More importantly, it is known from relativity that ~A
behaves like a normal three-dimensional vector under rotations of the coordinate
system, not like a two-dimensional spinor like the electron wave function. That
is implicit in the fact that the complete four-vector transforms according to the
Lorentz transform, chapter 1.3.2. The spin is really 1.

Still, the additional constraint does limit the angular momentum of the
photon. In particular, a photon does not have independent spin and orbital
angular momentum. The two are intrinsically linked. What that means for the
net angular momentum of photons is worked out in subsection A.21.7.

For now it may already be noted that the photon has no state of zero net
angular momentum. A state of zero angular momentum needs to look the same
from all directions. That is a consequence of the relationship between angular
momentum and symmetry, chapter 7.3. Now the only vector wave functions
that look the same from all directions are of the form ı̂rf(r). Here r is the
distance from the origin around which the angular momentum is measured and
ı̂r the unit vector pointing away from the origin. Such a wave function cannot
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satisfy the condition ∇ · ı̂rf(r) = 0. That follows from applying the divergence
theorem for a sphere around the origin.

A.21.4 Energy eigenstates

Following the rules of quantum mechanics, {A.14}, photon states of definite
energy E take the form

~Aγ = c0 ~A
e
γe
−iEt/~

Here c0 is an arbitrary constant. More importantly ~Ae
γ is the energy eigenfunc-

tion, which is independent of time.
Substitution in the Klein-Gordon equation and cleaning up shows that this

eigenfunction needs to satisfy the eigenvalue problem, {A.14},

−∇2 ~Ae
γ = k2 ~Ae

γ k ≡ E

~c
=
p

~
E = ~ω p = ~k (A.91)

Here p is the magnitude of the linear momentum of the photon. The so-called
Planck-Einstein relation gives the energy E in terms of the photon frequency
ω, while the de Broglie relation gives the momentum p in terms of the photon
wave number k.

A.21.5 Normalization of the wave function

A classical wave function for a particle is normalized by demanding that the
square integral of the wave function is 1. That does not work for a relativistic
particle like the photon, since the Klein-Gordon equation does not preserve the
square integral of the wave function, {A.14}.

However, the Klein-Gordon equation does preserve the following integral,
{D.36.1},

∫

all



∣∣∣∣∣
∂ ~Aγ
∂t

∣∣∣∣∣

2

+ c2
∣∣∣∇~Aγ

∣∣∣
2


 d3~r = the same for all time

Reasonably speaking, you would expect this integral to be related to the energy
in the electromagnetic field. After all, what other scalar physical quantity is
there to be preserved?

Consider for a second the case that ~Aγ was a classical potential ~A instead of
a photon wave function. Then the above integral can be rewritten in terms of
the electric and magnetic fields ~E and ~B as, {D.36.1},

∫

all

(∣∣∣~E
∣∣∣
2

+ c2
∣∣∣~B
∣∣∣
2
)

d3~r = the same for all time



976 APPENDIX A. ADDENDA

Now classical physics does not have photons of energy ~ω. All it has are electric
and magnetic fields. Then surely the integral above must be a measure for
the energy in the electromagnetic field? What is more logical than that the
energy in the electromagnetic field per unit volume would be given by the square
magnitudes of the electric and magnetic fields? No fields, no energy.

Of course, there needs to be an additional constant; the integral above does
not have units of energy. If you check, you find that the “permittivity of space”
ǫ0 = 8.85 10−12 C2/J m has the right units to be the constant. Actually, it
turns out that the correct constant is 1

2
ǫ0. But that is not a fundamental issue;

classical physics could just as well have defined ǫ0 as half of what it did.
Now the photon wave function is not physically observable and does not

have to conform to the rules of classical physics. But if you have to choose
a normalization constant anway? Why not choose it so that what classical
physics would take to be the energy is in fact the correct energy ~ω? It is likely
to simplify your life a lot.

So, the photon wave function normalization that will be used in this book
is:

1
2
ǫ0

∫

all

(∣∣∣~Enγ
∣∣∣
2

+ c2
∣∣∣~Bn

γ

∣∣∣
2
)

d3~r = ~ω (A.92)

Here ~Enγ and ~Bn
γ are what classical physics would take to be the electric and

magnetic fields for the normalized photon energy eigenfunction ~An
γ . Specifically,

~Enγ = ikc~An
γ

~Bn
γ = ∇× ~An

γ

(To be sure, classical physics would take ~E to be minus the time derivative

of the potential ~A. But for an energy eigenstate, the time derivative gives
a simple factor −iω = −ikc.) The functions ~Enγ and ~Bn

γ will be referred to
as “unobservable fields” to avoid confusion with the observable electric and
magnetic fields.

Assume that you start with an unnormalized energy eigenfunction ~Ae
γ. Then

the normalized functions are usually most conveniently written as

~An
γ =

εk
ikc

~Ae
γ

~Enγ = εk ~A
e
γ c~Bn

γ =
εk
ik
∇× ~Ae

γ (A.93)

Here the constant εk is to be found by substitution into the normalization con-
dition (A.92).

A.21.6 States of definite linear momentum

The simplest quantum states for photons are states of definite linear momentum
~p. And to make it even simpler, it will be assumed that the z-axis is chosen in
the direction of the linear momentum.
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In that case, the photon wave function takes the form

~Ae
γ = ~A0eikz ~p = k̂ ~k

Here ~A0 is a constant vector. That this wave function has definite linear mo-
mentum ~p may be verified by applying the linear momentum operator ~̂p = ~∇/i
on it. And substitution into the eigenvalue problem (A.91) verifies that it is an
energy eigenfunction.

The vector ~A0 is not completely arbitrary; its z-component must be zero.
That is in order that ∇ · ~Ae

γ is zero as the Coulomb-Lorenz gauge requires. So
the wave function can be written as

~Ae
γ = A0

x ı̂e
ikz + A0

y ̂e
ikz

The bottom line is that there are only two independent states, even though the
wave function is a three-dimensional vector. The wave function cannot have a
component in the direction of motion. It may be noted that the first term in
the right hand side above is called a wave that is “linearly polarized” in the x-
direction. Similarly, the second term is a wave that is linearly polarized in the
y-direction. There is no longitudinal polarization of photons possible.

There is another useful way to write the wave function:

~Ae
γ = c1(̂ı+ î)eikz + c2(−ı̂+ î)eikz

where c1 and c2 are constants. The first term in this expression is called “right-
circularly polarized.” It has angular momentum ~ in the z-direction. (To see
why is a matter of rotating the coordinate system around the z-axis, {A.20}.
The exponential does not change in such a rotation.) Similarly, the second
state has angular momentum −~ in the z-direction and is called left-circularly
polarized. There is no state with angular momentum zero in the z-direction.
In fact, it is exactly the missing z-component of ~A0 that would provide such a
state, {A.20}.

There are still only two independent states. But another way of thinking
about that is that the spin angular momentum in the direction of motion can-
not be zero. The relative spin in the direction of motion, ms/s is called the
“helicity.” It turns out that for a particle with zero rest mass like the photon,
the helicity can only be 1 (right handed) or -1 (left handed), [24, p. 65].

Note further that the angular momenta in the x and y directions are un-
certain. It so happens that the angular momentum in the direction of motion
commutes with all three components of linear momentum, chapter 4.5.4. So it
can have definite values. But the x and y angular momenta do not commute.

For later use, it is necessary to normalize the wave function using the pro-
cedure described in the previous subsection. To do so, it must be assumed that
the photon is in a periodic box of volume V , like in chapter 6.17. In infinite
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space the wave function cannot be normalized, as it does not become zero at
infinity. For the right-circularly polarized wave function as given above,

~An
γ =

εk
ikc

ı̂+ î√
2
eikz ~Enγ = εk

ı̂+ î√
2
eikz c~Bn

γ = εk
−îı+ ̂√

2
eikz εk =

√
~ω

ǫ0V
(A.94)

In order to compare to the classical electromagnetic wave in chapter 7.7.1,
another example is needed. This photon wave function has its linear momen-
tum in the y-direction, and it is linearly polarized in the z-direction. Then an
unnormalized energy eigenfunction is

~Ae
γ = k̂eiky

The normalized eigenfunction and unobservable fields are in that case

~An
γ =

εk
ikc

k̂eiky ~Enγ = εkk̂e
iky c~Bn

γ = εk ı̂e
iky εk =

√
~ω

ǫ0V
(A.95)

Note that ~Enγ, ~Bn
γ, and the linear momentum are all orthogonal. That will reflect

in the observable fields associated with the photon state. For the circularly
polarized state, the electric and magnetic fields are not orthogonal. However,
the observable fields will be.

For a general direction of the wave motion and its linear polarization, the
above expession becomes

~An
γ =

εk
ikc

ı̂Ee
i~k·~r ~Enγ = εk ı̂Ee

i~k·~r c~Bn
γ = εk ı̂Be

i~k·~r εk =

√
~ω

ǫ0V
(A.96)

Here ~k and the unit vectors ı̂E and ı̂B = ~k × ı̂E/k are all orthogonal
For convenience, the density of states as needed for Fermi’s golden rule will

be listed here. It was given earlier in chapter 6.3 (6.7) and 6.19:

dN

dE
=

ω2

~π2c3
V

A.21.7 States of definite angular momentum

It is often convenient to describe photons in terms of states of definite net
angular momentum. That makes it much easier to apply angular momentum
conservation in the emission of radiation by atoms or atomic nuclei. Unfortu-
nately, angular momentum states are a bit of a mess compared to the linear
momentum states of the previous subsection. Fortunately, engineers are brave.

Before diving in, it is a good idea to look first at a spinless particle. Assume
that this hypothetical particle is in an energy eigenstate. Also assume that this
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state has square orbital angular momentum l(l + 1)~2 where l is called the az-
imuthal quantum number. And that the state has orbital angular momentum
in the z-direction ml~ where ml is called the magnetic quantum number. Then
according to quantum mechanics, chapter 4.2.3, l must be a nonnegative integer
and ml must be an integer no larger in magnitude than l. Also, in spherical
coordinates (r, θ, φ), figure 4.7, the angular dependence of the energy eigenfunc-
tion must be given by the so-called spherical harmonic Y ml

l (θ, φ). If in addition
the particle is in empty space, the energy eigenfunction takes the general form,
{A.6},

ψ = jl(kr)Y
ml

l (θ, φ) with −∇2ψ = k2ψ

Here k is a constant related to the energy of the particle and whether it is
relativistic or not, {A.14} (A.44). Further jl is the so-called “spherical Bessel
function of the first kind of order l,” {A.6}. The parity of the eigenfunction is
positive if l is even and negative if l is odd, {D.14}. The eigenfunction is of
order rl near the origin. That is only nonzero at the origin r = 0 if l = 0. That
is important if there is, say, a vanishingly small atom is located at the origin.
All states except l = 0 are virtually zero at such an atom. So the atom only
has a decent chance to interact with the particle if the particle is in a state l =
0. End discussion of the hypothetical spinless particle.

Now the photon is a particle with spin 1. Its wave function is essentially a
vector ~Aγ. The angular momentum states and parity for such particles were dis-
cussed in {A.20}. But the photon is a special case because it must be solenoidal,

it must satisfy ∇ · ~Aγ = 0. Normally, for three-dimensional vectors you expect
three types of angular momentum states, like in {A.20}. But for the photon
there are only two types.

The two types of photon energy eigenfunctions with definite net angular
momentum are, {D.36.2} and with drums please,

~AE
γ = ∇×~r ×∇jℓ(kr)Y mℓ

ℓ (θ, φ) ~AM
γ = ~r ×∇jℓ(kr)Y mℓ

ℓ (θ, φ) (A.97)

Here ℓ is the azimuthal quantum number of the net photon angular momentum,
orbital plus spin. And mℓ is the corresponding net magnetic quantum number.

The azimuthal quantum number ℓ is at least 1; the expressions above produce
zero for ℓ = 0. (Y 0

0 is just a constant and the gradient of a radial function is in
the direction of ~r.) The photon energy is related to the wave number k as ~kc
with c the speed of light, (A.91). That is really the Planck-Einstein relation,
because kc is the photon frequency ω.

The parity of the electric multipole wave functions is negative if ℓ is odd
and positive if ℓ is even, {D.36.2.7}. The parity of the magnetic multipole wave
functions is exactly the other way around. From that it can be seen, {D.36.2.8},
that magnetic multipole wave functions have orbital angular momentum l = ℓ.
The electric ones have uncertainty in orbital angular momentum, with nonzero
probabilities for both l = ℓ− 1 and l = ℓ+ 1.
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Atomic or nuclear transitions in which a photon in a state ~AE
γ is emitted or

absorbed are called “electric multipole” transitions. They are indicated as Eℓ
transitions.

In particular, for net angular momentum ℓ = 1, they are called E1 or electric
dipole transitions. That is the normal kind. However, as discussed in chapter
7.4, such transitions may not be able to satisfy conservation of angular momen-
tum and parity. Since the photon in the state has ℓ = 1, transitions in which
the atomic angular momentum changes by more than one unit cannot be ac-
comodated. Neither can transitions in which the atomic or nuclear momentum
parity does not change, because the E1 photon has odd parity.

Such transitions may be accomodated by transitions in which photons in
different states are emitted or absorbed, using the photon angular momenta
and parities as noted above. Electric multipole transitions with ℓ = 2 are called
E2 or electric quadrupole transitions. Those with ℓ = 3 are E3 or electric
octupole ones, with ℓ = 4 E4 or electric hexadecapole ones, with ℓ = 5 E5 or
electric triakontadipole ones, for ℓ = 6 E6 or electric hexacontatetrapole ones
and so on until your knowledge of latin and greek powers of 2 runs out.

Similarly, transitions in which photons in a state ~AM
γ are emitted or absorbed

are called “magnetic multipole transitions.” The same latin applies.

Like the states of definite linear momentum in the previous subsection, the
states of definite angular momentum cannot be normalized in infinite space. To
deal with that, it will be assumed that the photon is confined inside a sphere
of a very large radius rmax. As a “boundary condition” on the sphere, it will be
assumed that the Bessel function is zero. In terms of the wave functions, that
works out to mean that the magnetic ones are zero on the sphere, but only the
radial component of the electric ones is.

The normalized wave function and unobservable fields for electric multipole
photons are then, subsection A.21.5 and {D.36},

~AEn
γ =

εEk
ikc

~AE
γ

~EEnγ = εEk ~A
E
γ c ~BEn

γ =
εEk k

i
~AM
γ εEk ∼

√
2~ω

ℓ(ℓ+ 1)ǫ0rmax

(A.98)
(The expression for the magnetic field arises because for a solenoidal vector ∇
× ∇× = −∇2, and that produces a factor k2 according to the energy eigenvalue
problem.)

The normalized wave function and unobservable fields for magnetic multipole
photons are

~AMn
γ =

εEk
ic
~AM
γ

~EMn
γ = kεEk

~AM
γ c ~BMn

γ =
εEk
i
~AE
γ εEk ∼

√
2~ω

ℓ(ℓ+ 1)ǫ0rmax

(A.99)
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Assume now that there is an atom or atomic nucleus at the origin that in-
teracts with the photon. An atom or nucleus is typically very small compared
to the wave length of the photon that it interacts with. Phrased more appropri-
ately, if R is the typical size of the atom or nucleus, then kR is typically small.
The atom or nucleus is just a tiny speck at the origin.

Now the wave functions ~AE
γ are larger at small radii than the ~AM

γ . In particu-

lar, the ~AE
γ are of order rℓ−1 while the ~AM

γ are of order rℓ, one power of r smaller.
These powers of r reflect the lowest measurable orbital angular momentum of
the states.

A glance at the unobservable fields of electric multipole photons above then
shows that for these photons, the field is primarily electric at the atom or
nucleus. And even the electric field will be small unless ℓ = 1, in other words,
unless it is an electric dipole photon.

For the magnetic multipole photons, it is the magnetic field that dominates
at the atom or nucleus. And even that will be small unless ℓ = 1, which means
a magnetic dipole photon. Note that the magnetic field acts as if it had one
unit or orbital angular momentum less than the photon; the magnetic field is
essentially the wave function of an electric multipole photon.

For later reference, the density of states as needed for Fermi’s golden rule
will be listed here, {D.36.2.6}:

dN

dE
≈ 1

~πc
rmax (A.100)

This approximation applies for large cut-off radius rmax, which should always
be valid.

A.22 Forces by particle exchange

As noted in chapter 7.5.2, the fundamental forces of nature arise from the ex-
change of particles. This addendum will illustrate the general idea. It will
first derive the hypothetical “Koulomb” force due to the exchange of equally
hypothetical particles called “fotons.”

The Koulomb potential provides a fairly simple model of a quantum field.
It also provides a simple context to introduce some key concepts in quantum
field theories, such as Green’s functions, variational calculus, Lagrangians, the
limitation of the speed of light, description in terms of momentum modes, Fock
space kets, annihilation and creation operators, antiparticles, special relativity,
the imperfections of physicists, and Lorentz invariance. The Koulomb potential
can also readily be modified to explain nuclear forces. However, that will have
to wait until a later addendum, {A.42}.

In the current addendum, the Koulomb potential provides the starting point
for a discussion of the electromagnetic field. The classical Maxwell equations for
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the electromagnetic field will be derived in a slightly unconventional way. Who
needs to know classical electromagnetics when all it takes is quantum mechanics,
relativity, and a few plausible guesses to derive electromagnetics from scratch?

To quantize the electromagnetic field is not that straightforward; it has
unexpected features that do not occur for the Koulomb field. This book follows
the derivation as formulated by Fermi in 1932. This derivation is the basis for
more advanced modern quantum field approaches. These advanced theories will
not be covered, however.

Essentially, the Fermi derivation splits off the Coulomb potential from the
electromagnetic field. What is left is then readily described by a simple quantum
field theory much like for the Koulomb potential. This is sufficient to handle
important applications such as the emission or absorption of radiation by atoms
and atomic nuclei. That, however, will again be done in subsequent addenda.

A word to the wise. While this addendum is on the calculus level like virtu-
ally everything else in this book, there is just quite a lot of mathematics. Some
mathematical maturity may be needed not to get lost. Note that this addendum
is not needed to understand the discussion of the emission and absorption of
radiation in the subsequent addenda.

A.22.1 Classical selectostatics

The Koulomb force holds the sarged spotons and selectons together in satoms.
The force is due to the exchange of massless particles called fotons between the
sarged particles. (It will be assumed that the spoton is an elementary particle,
though really it consists of three skarks.)

This subsection will derive the selectostatic Koulomb force by representing
the fotons by a classical field, not a quantum field. The next subsection will ex-
plain classical selectodynamics, and how it obeys the speed of light. Subsection
A.22.3 will eventually fully quantize the selectic field. It will show how quantum
effects modify some of the physics expected from the classical analysis.

Physicists have some trouble measuring the precise properties of the selectic
field. However, a few basic quantum ideas and some reasonable guesses readily
substitute for the lack of empirical data. And guessing is good. If you can guess
a self-consistent Koulomb field, you have a lot of insight into its nature.

Consider first the wave function for the exchanged foton in isolation. A foton
is a boson without spin. That means that its wave function is a simple function,
not some vector. But since the foton is massless, the Schrödinger equation does
not apply to it. The appropriate equation follows from the relativistic expression
for the energy of a massless particle as given by Einstein, chapter 1.1.2 (1.2):

E2 = ~p 2c2
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Here E is the foton energy, ~p its linear momentum, and c the speed of light.
The squares are used because momentum is really a vector, not a number like
energy.

Quantum mechanics replaces the momentum vector by the operator

~̂p =
~

i
∇ ∇ ≡ ı̂

∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Note the vector operator ∇, called “nabla” or “del.” This operator is treated
much like an ordinary vector in various computations. Its properties are covered
in Calculus III in the U.S. system. (Brief summaries of properties of relevance
here can be found in the notations section.)

The Hamiltonian eigenvalue problem for a foton wave function ϕf then takes
the form

~̂p
2
c2ϕf = E2ϕf

A solution ϕf to this equation is an energy eigenstate. The corresponding value
of E is the energy of the state. (To be picky, the above is an eigenvalue problem
for the square Hamiltonian. But eigenfunctions of an operator are also eigen-
functions of the square operator. The reverse is not always true, but that is not
a concern here.)

Using the momentum operator as given above and some rearranging, the
eigenvalue problem becomes

−∇2ϕf =
E2

~2c2
ϕf ∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(A.101)

This is called the “time-independent Klein-Gordon equation” for a massless
particle.

For foton wave functions that are not necessarily energy eigenstates, quan-
tum mechanics replaces the energy E by the operator i~∂/∂t. That gives the
time-dependent Klein-Gordon equation as:

−∇2ϕf = −
1

c2
∂2ϕf

∂t2
(A.102)

Now consider solutions of this equation of the form

ϕf(~r; t) = e−iωtϕfs(~r)

Here ω is a positive constant called the angular frequency. Substitution in the
time-dependent Klein-Gordon equation shows that this solution also satisfies
the time-independent Klein-Gordon equation, with energy

E = ~ω

That is the famous “Planck-Einstein” relation. It is implicit in the association
of E with i~∂/∂t.



984 APPENDIX A. ADDENDA

Note however that there will also be a solution of the form

ϕf(~r; t) = eiωtϕfs(~r)

This solution too has energy ~ω. The difference in sign in the exponential is
taken to mean that the particle moves backwards in time. Note that changing
the sign in the exponential is equivalent to changing the sign of the time t. At
least it is if you require that ω = E/~ cannot be negative. If a particle moves
backwards in time, it is called an “antiparticle.” So the wave function above
describes an “antifoton.”

There is really no physical difference between a foton and an antifoton. That
is not necessarily true for other types of particles. Quantities such as electric
charge, lepton number, baryon number, strangeness, etcetera take opposite val-
ues for a particle and its antiparticle.

There is a very important difference between the Klein-Gordon equation and
the Schrödinger equation. The Schrödinger equation describes nonrelativistic
physics where particles can neither be destroyed nor created. Mass must be
conserved. But the Klein-Gordon equation applies to relativistic physics. In
relativistic physics particles can be created out of pure energy or destroyed
following Einstein’s famous relationship E = mc2, chapter 1.

There is a mathematical consequence to this. It concerns the integral
∫
|ϕf |2d3~r

(In this addendum, integrals like this are over all space unless explicitly stated
otherwise. It is also assumed that the fields vanish quickly enough at large
distances that such integrals are finite. Alternatively, for particles confined in a
large box it is assumed that the box is periodic, chapter 6.17.) Now for solutions
of the Schrödinger equation, the integral

∫
|ϕf |2d3~r keeps the same value, 1, for

all time. Physically, the integral represent the probability of finding the particle.
The probability of finding the particle if you look in all space must be 1.

But fotons are routinely destroyed or created by sarged particles. So the
probability of finding a foton is not a preserved quantity. (It is not even clear
what finding a foton would mean in the first place.) The Klein-Gordon equa-
tion reflects that. It does not preserve the integral

∫
|ϕf |2d3~r. (There is one

exception: if the wave function is purely described by particle states or purely
described by antiparticle states, the integral is still preserved.)

But the Klein-Gordon equation does preserve an other integral, {D.32}.
That is ∫ ∣∣∣∣

1

c

∂ϕf

∂t

∣∣∣∣
2

+ |∇ϕf |2 d3~r

Now if the number of fotons is not a preserved quantity, what can this
preserved integral stand for? Not momentum or angular momentum, which
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are vectors. The integral must obviously stand for the energy. Energy is still
preserved in relativity, even if the number of particles of a given type is not.

Of course, the energy of a foton wave function ϕf is also given by the Planck-
Einstein relation. But wave functions are not observable. Still, fotons do affect
spotons and selectons. That is observable. So there must be an observable foton
field. This observable field will be called the foton potential. It will be indicated
by simply ϕ, without a subscript f. Quantum uncertainty in the values of the
field will be ignored in this subsection. So the field will be modeled as a classical
(i.e. nonquantum) field.

And if there is an observable field, there must be an observable energy asso-
ciated with that field. Now what could the expression for the energy in the field
be? Obviously it will have to take the form of the integral above. What other
options are there that are plausible? Of course, there will be some additional
empirical constant. If the integral is constant, then any multiple of it will be
constant too. And the above integral will not have units of energy as it is. The
needed empirical constant is indicated by ǫ1 and is called, um no, the permis-
sivity of space. It is a measure of how efficient the foton field is in generating
energy. To be precise, for arcane historical reasons the constant in the energy is
actually defined as half the permissivity. The bottom line is that the expression
for the energy in the observable foton field is:

Eϕ =
ǫ1
2

∫ ∣∣∣∣
1

c

∂ϕ

∂t

∣∣∣∣
2

+ |∇ϕ|2 d3~r (A.103)

That is really all that is needed to figure out the properties of classical
selectostatics in this subsection. It will also be enough to figure out classical
selectodynamics in the next subsection.

The first system that will be considered here is that of a foton field and a
single spoton. It will be assumed that the spoton is pretty much located at the
origin. Of course, in quantum mechanics a particle must have some uncertainty
in position, or its kinetic energy would be infinite. But it will be assumed that
the spoton wave function is only nonzero within a small distance ε of the origin.
Beyond that distance, the spoton wave function is zero.

However, since this is a classical derivation and not a quantum one, the term
“spoton wave function” must not be used. So imagine instead that the spoton
sarge sp is smeared out over a small region of radius ε around the origin.

For a smeared out sarge, there will be a “sarge density” σp, defined as the
local sarge per unit volume. This sarge density can be expressed mathematically
as

σp(~r) = spδ
3
ε(~r)

Here δ3ε(~r) is some function that describes the detailed shape of the smeared-out
sarge distribution. The integral of this function must be 1, because the sarge
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density σp must integrate to the total spoton sarge sp. So:

∫
δ3ε(~r) d

3~r = 1

To ensure that the sarge density is zero for distances from the origin r greater
than the given small value ε, δ3ε(~r) must be zero at these distances. So:

δ3ε(~r) = 0 if r ≡ |~r| > ε

In the limit that ε becomes zero, δ3ε(~r) becomes the so-called three-dimen-
sional “Dirac delta function” δ3(~r). This function is totally concentrated at a
single point, the origin. But its integral over that single point is still 1. That
is only possible if the function value at the point is infinite. Now infinity is
not a proper number, and so the Dirac delta function is not a proper function.
However, mathematicians have in fact succeeded in generalizing the idea of
functions to allow delta functions. That need not concern the discussion here
because “Physicists are sloppy about mathematical rigor,” as Zee [53, p. 22]
very rightly states. Delta functions are named after the physicist Dirac. They
are everywhere in quantum field theory. That is not really surprising as Dirac
was one of the major founders of the theory. See section 7.9 for more on delta
functions.

Here the big question is how the spoton manages to create a foton field
around itself. That is not trivial. If there was a nonzero probability of finding
an energetic foton well away from the spoton, surely it would violate energy
conservation. However, it turns out that the time-independent Klein-Gordon
equation (A.101) actually has a very simple solution where the foton energy E
appears to be zero away from the origin. In spherical coordinates, it is

ϕf =
C

r
if r 6= 0

Here C is some constant which is still arbitrary about this stage. To check the
above solution, plug it into the energy eigenvalue problem (A.101) with E zero.

This then seems to be a plausible form for the observable potential ϕ away
from the spoton at the origin. However, while the energy of a C/r potential
appears to be zero, it is not really. Such a potential is infinite at the origin,
and you cannot just ignore that. The correct foton field energy is given by the
earlier integral (A.103). For a steady potential, it can be written as

Eϕ =
ǫ1
2

∫
(∇ϕ)2 d3~r = −ǫ1

2

∫
ϕ
(
∇2ϕ

)
d3~r (A.104)

The final integral comes from an integration by parts. (See {A.2} and {D.32}
for examples how to do such integrations by parts.) Note that it looks like the
energy could be zero according to this final integral: ∇2ϕ is zero if ϕ = C/r.
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That is true outside the small vicinity around the origin. But if you look at the
equivalent first integral, it is obvious that the energy is not zero: its integrand is
everywhere positive. So the energy must be positive. It follows that in the final
integral, the region around the origin, while small, still produces an energy that
is not small. The integrand must be not just nonzero, but large in this region.

All that then raises the question why there is a foton field in the first place.
The interest in this subsection is in the selectostatic field. That is supposed to
be the stable ground state of lowest energy. According to the above, the state
of lowest energy would be when there is no foton field; ϕ = 0.

And so it is. The only reasonable way to explain that there is a nontrivial
foton field in the ground state of the spoton-foton system is if the foton field
energy is compensated for by something else. There must be an energy of
interaction between the foton field and the spoton.

Consider the mathematical form that this energy could take in a given vol-
ume element d3~r. Surely the simplest possibility is that it is proportional to the
potential ϕ at the location times the sarge σpd

3~r. Therefore the total energy of
spoton-foton interaction is presumably

Eϕp = −
∫
ϕ(~r)σp(~r) d

3~r = −
∫
ϕ(~r)spδ

3
ε(~r) d

3~r (A.105)

Note that this expression really defines the sarge sp. Sarge gives the strength
of the coupling between spoton and foton field. Its units and sign follow from
writing the energy as the expression above.

The question is now, what is the ground state foton field? In other words,
for what potential ϕ is the complete system energy minimal? To answer that
requires “variational calculus.” Fortunately, variational calculus is just calculus.
And you need to understand how it works if you want to make any sense at all
out of books on quantum field theory.

Suppose that you wanted an equation for the minimum of some function f
depending on a single variable x. The equation would be that df/dx = 0 at
the position of the minimum xmin. In terms of differentials, that would mean
that the function does not change going from position xmin to a slightly different
position xmin + dx:

df =
df

dx
dx = 0 at x = xmin

It is the same for the change in net energy Eϕ+Eϕp. Assume that ϕmin is the
desired potential at minimum net energy. Then at ϕmin the net energy should
not change when you change ϕ by an infinitesimal amount dϕ. Or rather, by an
infinitesimal amount δϕ: the symbol δ is used in variational calculus instead of
d. That is to avoid confusion with any symbol d that may already be around.

So the requirement for the ground state potential is

δ(Eϕ + Eϕp) = 0 when ϕ = ϕmin → ϕ = ϕmin + δϕ
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Using the expressions (A.104) and (A.105) for the energies, that means that

δ

[
ǫ1
2

∫
(∇ϕ)2 d3~r −

∫
spδ

3
εϕ d3~r

]
= 0 when ϕ = ϕmin → ϕ = ϕmin + δϕ

The usual rules of calculus can be used, (see {A.2} for more details). The only
difference from basic calculus is that the change δϕ may depend on the point
that you look at. In other words, it is some arbitrary but small function of the
position ~r. For example,

δ(∇ϕ)2 = 2(∇ϕ)δ(∇ϕ) δ(∇ϕ) = ∇(ϕmin + δϕ)−∇(ϕmin) = ∇δϕ

Also, ϕ by itself is validly approximated as ϕmin, but δϕ is a completely separate
quantity that can be anything. Working it out gives

ǫ1
2

∫
2(∇ϕmin) · (∇δϕ) d3~r −

∫
spδ

3
εδϕ d3~r = 0

Performing an integration by parts moves the ∇ from δϕ to ∇ϕmin and adds a
minus sign. Then the two integrals combine as

−
∫ (

ǫ1∇2ϕmin + spδ
3
ε

)
δϕ d3~r = 0

If this is supposed to be zero for whatever you take the small change δϕ in field
to be, then the parenthetical expression in the integral will have to be zero. If
the parenthetical expression is nonzero somewhere, you can easily make up a
nonzero change δϕ in that region so that the integral is nonzero.

The parenthetical expression can now be rearranged to give the final result:

−∇2ϕ =
sp
ǫ1
δ3ε (A.106)

Here the subscript “min” was left away again as the ground state is the only
state of interest here anyway.

The above equation is the famous “Poisson equation” for the selectostatic
potential ϕ. The same equation appears in electrostatics, chapter 13.3.4. So
far, this is all quite encouraging. Note also that the left hand side is the steady
Klein-Gordon equation. The right hand side is mathematically a “forcing” term;
it forces a nonzero solution for ϕ.

Beyond the small vicinity of radius ε around the origin, the spoton sarge
density in the right hand side is zero. That means that away from the spoton,
you get the time-independent Klein-Gordon equation (A.101) with E = 0. That
was a good guess, earlier. Assuming spherical symmetry, away from the spoton
the solution to the Poisson equation is then indeed

ϕ =
C

r
if r > ε
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But now that the complete Poisson equation (A.106) is known, the constant C
can be figured out, {D.2}. The precise field turns out to be

ϕ =
sp

4πǫ1r
if r > ε

For unit value of sp/ǫ1 the above solution is called the “fundamental solu-
tion” or “Green’s function” of the Poisson equation. It is the solution due to a
delta function.

If the spoton is not at the origin, but at some position ~rp, you simply replace
r by the distance from that point:

ϕp =
sp

4πǫ1|~r −~rp|
(A.107)

The superscript p indicates that this potential is created by a spoton at a
position ~rp. This solution of the Poisson equation will become very important
in the Fermi derivation.

Now the net energy is of interest. It can be simplified by substituting the
Poisson equation (A.106) in the expression (A.104) for the foton field energy
and adding the interaction energy (A.105). That gives

Eϕ + Eϕp = 1
2

∫
ϕ(~r)spδ

3
ε(~r) d

3~r −
∫
ϕ(~r)spδ

3
ε(~r) d

3~r

which simplifies to

Eϕ + Eϕp = −1
2

∫
ϕ(~r)spδ

3
ε(~r) d

3~r (A.108)

Note that the spoton-foton interaction energy is twice the foton field energy,
and negative instead of positive. That means that the total energy has been
lowered by an amount equal to the foton field energy, despite the fact that the
field energy itself is positive.

The fact that there is a foton field in the ground state has now been ex-
plained. The interaction with the spoton lowers the energy more than the field
itself raises it.

Note further from the solution for ϕ above that ϕ is large in the vicinity of
the spoton. As a result, the energy in the foton field becomes infinite when the
spoton sarge contracts to a point. (That is best seen from the original integral
for the foton field energy in (A.104).) This blow up is very similar to the fact
that the energy in a classical electromagnetic field is infinite for a point charge.
For the Koulomb field, the interaction energy blows up too, as it is twice the
foton field energy. All these blow ups are a good reason to use a sarge density
rather than a point sarge. Then all energies are normal finite numbers.

The final step to derive the classical Koulomb force is to add a selecton. The
selecton is also sarged, so it too generates a field. To avoid confusion, from now
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on the field generated by the spoton will always be indicated by ϕp, and the one
generated by the selecton by ϕe. The variational analysis can now be repeated
including the selecton, {D.37.1}. That shows that there are three effects that
produce the Koulomb force between the spoton and selecton:

1. the selecton sarge interacts with the potential ϕp generated by the
spoton;

2. the spoton sarge interacts with the potential ϕe generated by the
selecton;

3. the energy in the combined foton field ϕp + ϕe is different from the
sum of the energies of the separate fields ϕp and ϕe.

All three effects turn out to produce the same energy, but the first two
energies are negative and the third positive. So the net energy change is the
same as if there was just item 1, the interaction of the selecton sarge density
σe with the potential ϕp produced by the spoton. That is of course given by a
similar expression as before:

Vep = −
∫
ϕp(~r)σe(~r) d

3~r

The expression for ϕp(~r) was given above in (A.107) for any arbitrary position
of the spoton ~rp. And it will be assumed that the selecton sarge density σe is
spread out a bit just like the spoton one, but around a different location ~re.
Then the interaction energy becomes

Vep = −
∫

sp
4πǫ1|~r −~rp|

seδ
3
ε(~r −~re) d3~r

Since ε is assumed small, the selecton sarge density is only nonzero very
close to the nominal position ~re. Therefore you can approximate ~r as ~re in the
fraction and take it out of the integral as a constant. Then the delta function
integrates to 1, and you get

Vep = − spse
4πǫ1|~re −~rp|

(A.109)

That then is the final energy of the Koulomb interaction between the two
sarged particles. Because the spoton and the selecton both interact with the
foton field, in effect it produces a spoton-selecton interaction energy.

Of course, in classical physics you would probably want to know the actual
force on say the selecton. To get it, move the origin of the coordinate system to
the spoton and rotate it so that the selecton is on the positive x-axis. Now give
the selecton a small displacement ∂xe in the x-direction. Slowly of course; this
is supposed to be selectostatics. Because of energy conservation, the work done
by the force Fxe during this displacement must cause a corresponding small
decrease in energy. So:

Fxe∂xe = −∂Vep
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But on the positive x-axis, |~re −~rp| is just the x-position of the selecton xe, so

Fxe = −
∂Vep
∂xe

= − spse
4πǫ1x2e

It is seen that if the sarges have equal sign, the force is in the negative x-
direction, towards the spoton. So sarges of the same sign attract.

More generally, the force on the selecton points towards the spoton if the
sarges are of the same sign. It points straight away from the spoton if the sarges
are of opposite sign.

The Koulomb energy Vep looks almost exactly the same as the Coulomb
energy in electrostatics. Recall that the Coulomb energy was used in chapter
4.3 to describe the attraction between the proton and electron in a hydrogen
atom. The difference is that the Coulomb energy has no minus sign. That
means that while like sarges attract, like charges repel each other. For example,
two spotons attract, but two protons repel.

Now a spoton must necessarily create a foton field that is attractive to
spotons. Otherwise there should be no field at all in the ground state. And if
spotons create fields that attract spotons, then spotons attract. So the Koulomb
force is clearly right.

It is the Coulomb force that does not seem to make any sense. Much more
will be said about that in later subsections.

A.22.2 Classical selectodynamics

According to the previous section the Koulomb energy between a spoton and a
selecton is given by

Vep = − spse
4πǫ1|~re −~rp|

However, this result can only be correct in a stationary state like a ground state,
or maybe some other energy state.

To see the problem, imagine that the spoton is suddenly given a kick. Ac-
cording to the Koulomb potential given above, the selecton notices that in-
stantly. There is no time in the Koulomb potential, so there is no time delay.
But Einstein showed that no observable effect can move faster than the speed
of light. So there should be a time delay.

Obviously then, to discuss unsteady evolution will require the full governing
equations for selectodynamics. The big question is how to find these equations.

The quantum mechanics in this book is normally based on some Hamiltonian
H. But there is a more basic quantity for a system than the Hamiltonian. That
quantity is called the “Lagrangian” L. If you can guess the correct Lagrangian
of a system, its equations of motion follow. That is very important for quantum
field theories. In fact, a lot of what advanced quantum field theories really do
is guess Lagrangians.
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To get at the Lagrangian for selectodynamics, consider first the motion of
the spoton for a given foton field ϕ. The Hamiltonian of the spoton by itself is
just the energy of the spoton. As discussed in the previous subsection, a spoton
has a potential energy of interaction with the given foton field

Eϕp = −
∫
ϕ(~r; t)σp(~r; t) d

3~r (A.110)

Here σp was the sarge density of the spoton. The foton potential and sarge
density can now of course also depend on time.

However, to discuss the dynamics of the spoton, it is easier to consider
it a point particle located at a single moving point ~rp. Therefore it will be
assumed that the sarge density is completely concentrated at that one point.
That means that the only value of the foton field of interest is the value at ~rp.
And the sarge distribution integrates to the net spoton sarge sp. So the above
energy of interaction becomes approximately

Eϕp ≈ −ϕpsp ϕp ≡ ϕ(~rp; t) (A.111)

In terms of the components of position, this can be written out fully as

Eϕp ≈ −ϕ(rp1, rp2, rp3; t)sp

Note that in this addendum the position components are indicated as rp1, rp2,

and rp3 instead of the more familiar rpx, rpy, and rpz or xp, yp, and zp. That is

in order that a generic position component can be indicated by rpi where i can
be 1, 2, or 3.

In addition to the interaction energy above there is the kinetic energy of the
spoton,

Ep,kin = 1
2
mp~v

2
p

Here mp is the mass of the spoton and ~vp its velocity,

~vp ≡
d~rp
dt

The kinetic energy can be written out in terms of the velocity components as

Ep,kin = 1
2
mp

[
(vp1)

2 + (vp2)
2 + (vp3)

2
]

with vpi =
drpi
dt

for i = 1, 2, 3

Now the Hamiltonian of the spoton is the sum of the kinetic and potential
energies. But the Lagrangian is the difference between the kinetic and potential
energies:

Lp(~vp,~rp) =
1
2
mp~v

2
p + ϕ(~rp; t)sp
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This Lagrangian can now be used to find the equation of motion of the
spoton. This comes about in a somewhat weird way. Suppose that there is
some range of times, from a time t1 to a time t2, during which you want to
know the motion of the spoton. (Maybe the spoton is at rest at time t1 and
becomes again at rest at time t2.) Suppose further that you now compute the
so-called “action” integral

S ≡
∫ t2

t1

Lp(~vp,~rp) dt

If you use the correct velocity and position of the spoton, you will get some
number. But now suppose that you use a slightly different (wrong) spoton
path. Suppose it is different by a small amount δ~rp, which of course depends on
time. You would think that the value of the action integral would change by a
corresponding small amount. But that is not true. Assuming that the path used
in the original integral was indeed the right one, and that the change in path is
infinitesimally small, the action integral does not change. Mathematically

δS = 0 at the correct path

Yes, this is again variational calculus. The action may not be minimal at the
correct spoton path, but it is definitely stationary at it.

Probably this sounds like a stupid mathematical trick. But in the so-called
path integral approach to quantum field theory, the action is central to the
formulation.

For classical physics the action by itself is pretty useless. However, with
some manipulations, you can get the evolution equations for your system out of
it, {A.1}. They are found as

d

dt

(
∂L
∂vpi

)
=

(
∂L
∂rpi

)
(A.112)

Here i = 1, 2, or 3 gives the equation in the x, y, or z direction, respectively.
Note that for the governing equations it does not matter at all what you

take the times t1 and t2 in the action to be. They are pretty vaguely defined
anyway. You might want to let them go to minus and plus infinity to get rid of
them.

The next step is to write out the governing equation (A.112) in terms of
physical quantities. To do that correctly, the trick is that the Lagrangian must
be treated as a function of velocity and position, as independent variables. In
reality velocity and position are not independent; velocity is the derivative of
position. But when differentiating the Lagrangian you are supposed to forget
about that. Consider how this works out for the x-component, i = 1,

∂L
∂vp1

= mpvp1
∂L
∂rp1

=
∂ϕ(rp1, rp2, rp3; t)

∂rp1
sp



994 APPENDIX A. ADDENDA

That are simple differentiations taking the given Lagrangian at face value.
However, when you do the remaining time derivative in (A.112) you have

to do it properly, treating the velocity as the function of time that it is. That
gives the final equation of motion as

mp

dvp1
dt

=
∂ϕ(rp1, rp2, rp3; t)

∂rp1
sp (A.113)

Note that the left hand side is mass times acceleration in the x-direction.
So the right hand side must be the selectic force on the spoton. This force is
called the “Sorentz force.” It is seen that the Sorentz force is proportional to
the derivative of the foton potential, evaluated at the position of the spoton.
If you compare the Sorentz force with the force in electrostatics, you see that
the force in electrostatics has an additional minus sign. That reflects again that
equal sarges attract, while equal charges repel.

So far, it was assumed that the foton field was given. But in reality the
foton field is not given, it depends on the motion of the spoton. To describe
the field, its energies must be added to the Lagrangian too. The total energy
in the foton field was given in the previous subsection as (A.103). Using some
shorthand notation, this becomes

Eϕ =
ǫ1
2

∫
1

c2
ϕ2
t +

3∑

i=1

ϕ2
i d

3~r

The shorthand is to indicate derivatives by subscripts, as in

ϕt ≡
∂ϕ

∂t
ϕi ≡

∂ϕ

∂ri

with i = 1, 2, or 3 for the x, y, and z derivatives respectively. For example, ϕ1

would be the partial x-derivative of ϕ.
Actually, even more concise shorthand will be used. If an index like i occurs

twice in a term, summation over that index is to be understood. The summa-
tion symbol will then not be shown. That is called the Einstein summation
convention. So the energy in the foton field will be indicated briefly as

Eϕ =
ǫ1
2

∫
1

c2
ϕ2
t + ϕ2

i d
3~r

(Note that ϕ2
i = ϕiϕi, so i occurs twice in the second term of the integrand.)

All this is done as a service to you, the reader. You are no doubt getting tired
of having to look at all these mathematical symbols.

Now the first term in the energy above is a time derivative, just like ~vp was
the time derivative of the spoton position. So this term has presumably the
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same sign in the Lagrangian, while the sign of the other term flips over. That
makes the total selectodynamic Lagrangian equal to

Lϕp =
ǫ1
2

∫
1

c2
ϕ2
t − ϕ2

i d
3~r + 1

2
mp~v

2
p + ϕpsp

The last two terms are as before for a given field.
However, for the final term it is now desirable to go back to the representation

of the spoton in terms of a sarge density σp, as in (A.110). The final term as
written would lead to a nasty delta function in the analysis of the field. In
the sarge density form the term can be brought inside the integral to give the
complete Lagrangian as

Lϕp =

∫
ǫ1
2

(
1

c2
ϕ2
t − ϕ2

i

)
+ ϕσp d

3~r + 1
2
mp~v

2
p (A.114)

Note that there is no longer a subscript p on ϕ; it is the integration against the
sarge density that picks out the value of ϕ at the spoton.

An integrand of a spatial integral in a Lagrangian is called a “Lagrangian
density” and indicated by the symbol £. In this case:

£ =
ǫ1
2

(
1

c2
ϕ2
t − ϕ2

i

)
+ ϕσp (A.115)

When differentiating this Lagrangian density, ϕ and its derivatives ϕt and ϕi,
(with i = 1, 2, and 3), are to be considered 5 separate independent variables.

The action principle can readily be extended to allow for Lagrangian densi-
ties, {D.37}. The equations of motion for the field are then found to be

∂

∂t

(
∂£

∂ϕt

)
+

∂

∂ri

(
∂£

∂ϕi

)
=
∂£

∂ϕ

Working this out much like for the equation of motion of the spoton gives,
taking ε1 to the other side,

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂r2i
=
σp
ǫ1

(A.116)

This is the so-called “Saxwell wave equation” of selectodynamics. If there is
also a selecton, say, its sarge density can simply be added to the spoton one in
the right hand side.

To check the Saxwell equation, first consider the case that the system is
steady, i.e. independent of time. In that case the Saxwell wave equation becomes
the Poisson equation of the previous subsection as it should. (The second term
is summed over the three Cartesian directions i. That gives∇2ϕ.) So the spoton
produces the same steady Koulomb field (A.107) as before. So far, so good.
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How about the force on a selecton in this field? Of course, the force on a
selecton is a Sorentz force of the same form as (A.113),

Fxe =
∂ϕ(re1, re2, re3; t)

∂re1
se (A.117)

In the steady case, the relevant potential at the selecton is the electrostatic one
(A.107) produced by the spoton as given in the previous subsection (Strictly
speaking you should also include the field produced by the selecton itself. But
this “self-interaction” produces no net force. That is fortunate because if the
selecton was really a point sarge, the self-interaction is mathematically singular.)
Now minus the potential (A.107) times the selecton sarge se gave the energy
Vep of the spoton-selecton interaction in the previous subsection. And minus
the derivative of that gave the force on the selecton. A look at the force above
then shows it is the same.

So in the steady case the Saxwell equation combined with the Sorentz force
does reproduce selectostatics correctly. That means that the given Lagrangian
(A.114) contains all of selectostatics in a single concise mathematical expression.
At the minimum. Neat, isn’t it?

Consider next the case that the time dependence cannot be ignored. Then
the time derivative in the Saxwell equation (A.116) cannot be ignored. In that
case the left hand side in the equation is the complete unsteady Klein-Gordon
equation. Since there is a nonzero right-hand side, mathematically the Saxwell
equation is an inhomogeneous Klein-Gordon equation. Now it is known from the
theory of partial differential equations that the Klein-Gordon equation respects
the speed of light. As an example, imagine that at time t = 0 you briefly
shake the spoton at the origin and then put it back where it was. The right
hand side of the Saxwell equation is then again back to what it was. But near
the origin, the foton field ϕ will now contain additional disturbances. These
disturbances evolve according to the homogeneous Saxwell equation, i.e. the
equation with zero right hand side. And it is easy to check by substitution that
the homogeneous equation has solutions of the form

ϕ = f(x− ct)

That are waves traveling in the x-direction with the speed of light c. The wave
shape is the arbitrary function f and is preserved in time. And note that the
x-direction is arbitrary. So waves like this can travel in any direction. The
perturbations near the origin caused by shaking the spoton will consist of such
waves. Since they travel with the speed of light, they need some time to reach
the selecton. The selecton will not notice anything until this happens. However,
when the perturbations in the foton field do reach the selecton, they will change
the foton field ϕ at the selecton. That then will change the force (A.117) on the
selecton.
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It follows that selectodynamics, as described by the Lagrangian (A.114), also
respects the speed of light limitation.

A.22.3 Quantum selectostatics

The previous subsections derived the Koulomb force between sarged particles.
This force was due to foton exchange. While the derivations used some ideas
from quantum mechanics, they were classical. The effect of the fotons took the
form of a potential ϕ that the sarged particles interacted with. This potential
was a classical field; it had a definite numerical value at each point. To be picky,
there really was an undetermined constant in the potential ϕ. But its gradient
∇ϕ produced the fully determined Sorentz force per unit sarge (A.117). This
force can be “observed” by a sarged spoton or selecton.

However, that very fact violates the fundamental postulates of quantum
mechanics as formulated at the beginning of this book, chapter 3.4. Observ-
able values should be the eigenvalues of Hermitian operators that act on wave
functions. While the foton potential was loosely associated with a foton wave
function, wave functions should not be observable.

Now if classically every position has its own observable local potential ϕ,
then in a proper quantum description every position must be associated with
its own Hermitian operator ϕ̂. In the terminology of addendum {A.15.9}, the
foton field ϕ̂ must be a “quantum field;” an infinite amount of operators, one
for each position.

The objective in this subsection is to deduce the form of this quantum field.
And the type of wave function that it operates on. The results will then be
used to verify the Koulomb force between stationary sarges as found the first
subsection. It is imperative to figure out whether like sarges still attract in a
proper quantum description.

Doing this directly would not be easy. It helps a lot if the field is written in
terms of linear momentum eigenstates.

In fact, typical quantum field theories depend very heavily on this trick.
However, often such theories use relativistic combined energy-momentum states
in four-dimensional space-time. This subsection will use simpler purely spatial
momentum states. The basic idea is the same. And it is essential for under-
standing the later Fermi derivation of the Coulomb potential.

Linear momentum states are complex exponentials of the form ei
~k·~r. Here ~k

is a constant vector called the wave number vector. The momentum of such a
state is given in terms of the wave number vector by the de Broglie relation as

~p = ~~k. (It may be noted that the ei
~k·~r states need an additional constant to

properly normalize them, chapter 6.18. But for conciseness, in this addendum
that normalization constant will be absorbed in the constants multiplying the
exponentials.)
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If a field ϕ is written in terms of linear momentum states, its value at any
point ~r is given by:

ϕ(~r) =
∑

all ~k

c~k e
i~k·~r

Note that if you know the coefficients c~k of the momentum states, it is equivalent
to knowing the field ϕ. Then the field at any point can in principle be found by
doing the sum.

The expression above assumes that the entire system is confined to a very
large periodic box, as in chapter 6.17. In infinite space the sum becomes an
integral, section 7.9. That would be much more messy. (But that is the way
you will usually find it in a typical quantum field analysis.) The precise values
of the wave number vectors to sum over for a given periodic box were given in
chapter 6.18 (6.28); they are all points in figure 6.17.

The first subsection found the selectostatic potential ϕp that was produced
by a spoton, (A.107). This potential was a classical field; it had a definite
numerical value for each position. The first step will be to see how this potential
looks in terms of momentum states. While the final objective is to rederive the
classical potential using proper quantum mechanics, the correct answer will need
to be recognized when written in terms of momentum states. Not to mention
that the answer will reappear in the discussion of the Coulomb potential. For
simplicity it will be assumed that the spoton is at the origin.

According to the first subsection, the classical potential was the solution to
a Poisson equation; a steady Klein-Gordon equation with forcing by the spoton:

−∇2ϕp
cl =

sp
ǫ1
ψ∗pψp

As a reminder that ϕp is a classical potential, not a quantum one, a subscript
“cl” has been added. Also note that since this is a now a quantum description,
the spoton sarge density σp has been identified as the spoton sarge sp times the
square magnitude of the spoton wave function |ψp|2 = ψ∗pψp.

Now the classical potential is to be written in the form

ϕp
cl(~r) =

∑

all ~k

c~k e
i~k·~r

To figure out the coefficients c~k, plug it in the Poisson equation above. That
gives ∑

all ~k

k2c~k e
i~k·~r =

sp
ǫ1
ψ∗pψp

Note that in the left hand side each ∇ produced a factor i~k for −k2 total.
Now multiply this equation at both sides by some sample complex-conjugate

momentum eigenfunction e−i
~k·~r and integrate over the entire volume V of the
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periodic box. In the left hand side, you only get something nonzero for the term
in the sum where ~k = ~k because eigenfunctions are orthogonal. For that term,
the exponentials multiply to 1. So the result is

k2c~kV =
sp
ǫ1

∫
e−i

~k·~rψ∗pψp d
3~r

Now in the right hand side, assume again that the spoton is almost exactly at
the origin. In other words, assume that its wave function is zero except very
close to the origin. In that case, the exponential in the integral is approximately
1 when the spoton wave function is not zero. Also, the square wave function
integrates to 1. So the result is, after clean up,

c~k =
sp

ǫ1Vk2

This expression applies for any wave number vector ~k, so you can leave the
underline away. It fully determines ϕp

cl in terms of the momentum states:

ϕp
cl(~r) =

∑

all ~k

sp
ǫ1Vk2

ei
~k·~r (A.118)

This solution is definitely one to remember. Note in particular that the
coefficients of the momentum states are a constant divided by k2. Recall also
that for a unit value of sp/ǫ1, this solution is the fundamental solution, or
Green’s function, of the Poisson equation with point wise forcing at the origin.

If the requirement that the spoton wave function is completely at the origin
is relaxed, the integral involving the spoton wave function stays:

ϕp
cl(~r) =

∑

all ~k

sp
ǫ1Vk2

〈ψp|e−i~k·~rpψp〉ei~k·~r (A.119)

where

〈ψp|e−i~k·~rpψp〉 ≡
∫
ψ∗p(~rp)e

−i~k·~rpψp(~rp) d
3~rp

Note that the integration variable over the spoton wave function has been re-
named ~rp to avoid confusion with the position ~r at which the potential is eval-
uated. The above result is really better to work with in this subsection, since it
does not suffer from some convergence issues that the Green’s function solution
has. And it is exact for a spoton wave function that is somewhat spread out.

Now the objective is to reproduce this classical result using a proper quantum
field theory. And to find the force when a selecton is added to the system.

To do so, consider initially a system of fotons and a single spoton. The
spoton will be treated as a nonrelativistic particle. Then its wave function ψp

describes exactly one spoton. The spoton wave function will be treated as given.
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Imagine something keeping the spoton in a ground state squeezed around the
origin. Maxwell’s demon would work. He has not been doing much anyway
after he failed his thermo test.

Next the fotons. Their description will be done based upon linear momentum

states. Such a state corresponds to a single-foton wave function of the form ei
~k·~r.

To keep it simple, for now only a single momentum state will be considered.
In other words, only a single wave number vector ~k will be considered. But
there might be multiple fotons in the state, or even uncertainty in the number
of fotons.

Of course, at the end of the day the results must still be summed over all
values of ~k.

Some notations are needed now. A situation in which there are no fotons in
the considered state will be indicated by the “Fock space ket” |0〉. If there is one
foton in the state, it is indicated by |1〉, two by |2〉, etcetera. In the mathematics
of quantum field theory, kets are taken to be orthonormal, {A.15}:

〈i1||i2〉 =
{

1 if i1 = i2
0 otherwise

(A.120)

In words, the inner product of kets is 0 unless the numbers of fotons are equal.
Then it is 1.

The ground state wave function for the combined spoton-fotons system is
then assumed to be of the form

ψϕp = C0ψp|0〉+ C1ψp|1〉+ C2ψp|2〉+ . . . |C0|2 + |C1|2 + |C2|2 + . . . = 1
(A.121)

That is a linear combination of system states with 0, 1, 2, . . . fotons. So it
is assumed that there may be uncertainty about the number of fotons in the
considered foton state. The normalization condition for the constants expresses
that the total probability of finding the system in some state or the other is 1.

(It may be noted that in typical quantum field theories, a charged relativistic

particle would also be described in terms of kets and some quantum field ψ̂.
However, unlike for a photon, for a charged particle ψ̂ would normally be a
complex quantum field. Then ψ̂∗ψ̂ or something along these lines provides a
real probability for a photon to “observe” the particle. That resembles the Born
interpretation of the nonrelativistic wave function somewhat, especially for a
spinless particle. Compare [[17, pp. 49, 136, 144]]. The field ψ̂ will describe both
the particle and its oppositely charged antiparticle. The spoton wave function
ψp as used here represents some nonrelativistic limit in which the antiparticle has
been approximated away from the field, [[17, pp. 41-45]]. Such a nonrelativistic
limit simply does not exist for a real scalar field like the Koulomb one.)

Now, of course, the Hamiltonian is needed. The Hamiltonian determines the
energy. It consists of three parts:

H = Hp +Hϕ +Hϕp
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The first part is the Hamiltonian for the spoton in isolation. It consists of the
kinetic energy of the spoton, as well as the potential provided by the fingers of
the demon. By definition

Hpψp = Epψp (A.122)

where Ep is the energy of the spoton in isolation.
The second part is the Hamiltonian of the free foton field. Each foton in

the considered state should have an energy ~ω with ω = kc. That is the energy

that you get if you substitute the momentum eigenfunction ei
~k·~r into the Klein-

Gordon eigenvalue problem (A.101) for a massless particle. And if one foton
has an energy ~ω, then i of them should have energy i~ω, so

Hϕ|i〉 = i~ω|i〉 (A.123)

Note that specifying what the Hamiltonian does to each separate ket tells you all
you need to know about it. (Often there is an additional ground state energy
shown in the above expression, but that does not make a difference here. It
reflects the choice of the zero of energy.)

Finally, the third part of the total Hamiltonian is the interaction between
the spoton and the foton field. This is the tricky one. First recall the classical
expression for the interaction energy. According to the previous subsection,
(A.111), it was −spϕp. Here ϕp was the classical foton potential, evaluated at
the position of the spoton.

In quantum field theory, the observable field ϕ gets replaced by a quantum
field ϕ̂. The interaction Hamiltonian then becomes

Hϕp = −spϕ̂p (A.124)

This Hamiltonian needs to operate on the wave function (A.121) involving the
spoton wave function and Fock space kets for the fotons. The big question is
now: what is that quantum field ϕ̂?

To answer that, first note that sarged particles can create and destroy fotons.
The above interaction Hamiltonian must express that somehow. After all, it is
the Hamiltonian that determines the time evolution of systems in quantum
mechanics.

Now in quantum field theories, creation and destruction of particles are
accounted for through creation and annihilation operators, {A.15}. A creation

operator â~k creates a single particle in a momentum state ei
~k·~r. An annihilation

operator â~k annihilates a single particle from such a state. More precisely, the
operators are defined as

â~k|i〉 =
√
i|i−1〉 â†~k|i−1〉 =

√
i|i〉 (A.125)

Here |i〉 is the Fock-space ket that indicates that there are i fotons in the con-
sidered momentum state. Except for the numerical factor

√
i, the annihilation
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operator takes a foton out of the state. The creation operator puts it back in,
adding another numerical factor

√
i.

Note incidentally that the foton field Hamiltonian given earlier can now be
rewritten as

Hϕ = ~ωâ†~kâ~k (A.126)

That is because

~ωâ†~kâ~k|i〉 = ~ωâ†~k

√
i|i−1〉 = ~ω

√
i
2|i〉 = i~ω|i〉 = Hϕ|i〉

In general this Hamiltonian will still need to be summed over all values of ~k.
But surely, the creation and annihilation of particles should also depend on

where the spoton is. Fotons in the considered state have a spatially varying
wave function. That should be reflected in the quantum field ϕ̂ somehow. To
find the correct expression, it is easiest to first perform a suitable normalization
of the foton state. Now the full wave function corresponding to the single-foton
momentum eigenstate in empty space is

ϕf = Ce−iωtei
~k·~r

Here C is some normalization constant to be chosen. The above wave function
can be verified by putting it into the Klein-Gordon equation (A.102). The
energy of the foton is given in terms of its wave function above as ~ω. But
the energy in the foton field is also related to the observable field ϕ; classical
selectostatics gives that relation as (A.103). If you plug the foton wave function
above into that classical expression, you do not normally get the correct energy
~ω. There is no need for it; the foton wave function is not observable. However,
it makes things simpler if you choose C so that the classical energy does equal
~ω. That gives a energy-normalized wave function

ϕ~k =
εk
k
ei
~k·~r εk ≡

√
~ω

ǫ1V
(A.127)

In those terms, the needed quantum field turns out to be

ϕ̂ =
1√
2
(ϕ~k â~k + ϕ∗~k â

†
~k
) =

εk√
2k

(ei
~k·~râ~k + e−i

~k·~râ†~k) εk ≡
√

~ω

ǫ1V
(A.128)

The first term in the right hand side is the normalized single-foton wave function
at wave number ~k times the corresponding annihilation operator. The second
term is the complex-conjugate foton wave function times the creation opera-
tor. There is also the usual factor 1/

√
2 that appears when you take a linear

combination of two states.
You might of course wonder about that second term. Mathematically it

is needed to make the operator Hermitian. Recall that operators in quantum
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mechanics need to be Hermitian to ensure that observable quantities have real,
rather than complex values, chapter 2.6. To check whether an operator is Her-
mitian, you need to check that it is unchanged when you take it to the other
side of an inner product. Now the wave function is a numerical quantity that
changes into its complex conjugate when taken to the other side. And â changes
into â† and vice-versa when taken to the other side, {A.15.2}. So each term in
ϕ̂ changes into the other one, leaving the sum unchanged. So the operator as
shown is indeed Hermitian.

But what to make physically of the two terms? One way of thinking about
it is that the observed field is real because it does not just involve an interaction

with an ei(
~k·~r−ωt) foton, but also with an e−i(

~k·~r−ωt) antifoton.
In general, the quantum field above would still need to be summed over all

wave numbers ~k. (Or integrated over ~k in infinite space). It may be noted that

for given ~r the sum of the creation operator terms over all ~k can be understood
as a field operator that creates a particle at position ~r, [35, p. 24]. That is a
slightly different definition of the creation field operator than given in {A.15.9},
[43, pp. 22]. But for nonrelativistic particles (which have nonzero rest mass) it
would not make a difference.

With the quantum field ϕ now identified, the Hamiltonian of the spoton-
fotons interaction becomes finally

Hϕp = −spϕ̂p = − spεk√
2k

(ei
~k·~rp â~k + e−i

~k·~rp â†~k) εk ≡
√

~ω

ǫ1V
(A.129)

Note that the spoton has uncertainty in position. The spoton position in
the Hamiltonian above is just a possible spoton position. In usage it will still
get multiplied by the square spoton wave function magnitude that gives the
probability for that position. Still, at face value the interaction of the spoton
with the field takes place at the location of the spoton. Interactions in quantum
field theories are “local.” At least on macroscopic scales that is needed to satisfy
the limitation of the speed of light.

Having a Hamiltonian allows quantum selectodynamics to be explored. That
will be done to some detail for the case of the electromagnetic field in subsequent
addenda. However, here the only question that will be addressed is whether clas-
sical selectostatics as described in the first subsection was correct. In particular,
do equal sarges still attract in the quantum description?

Selectostatics of the spoton-fotons system should correspond to the ground
state of the system. The ground state has the lowest possible energy. You can
therefore find the ground state by finding the state of lowest possible system
energy. That is the same trick as was used to find the ground states of the
hydrogen molecular ion and the hydrogen molecule in chapters 4.6 and 5.2. The
“expectation value” of the system energy is defined by the inner product

〈E〉 = 〈ψϕp|(Hp +Hϕ +Hϕp)ψϕp〉
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Here the Hamiltonians have already been described above.
Now to find the ground state, the lowest possible value of the expectation

energy above is needed. To get that, the inner products between the kets in
the factors ψϕp must be multiplied out. First apply the Hamiltonians (A.122),
(A.123), and (A.129) on the wave function ψϕp, (A.121), using (A.125). Then
apply the orthogonality relations (A.120) of kets. Do not forget the complex
conjugate on the left side of an inner product. That produces

〈E〉 = Ep

+ |C1|2~ω + |C2|22~ω + . . .

− spεk√
2k
〈ψp|ei~k·~rpψp〉

(
C∗0C1 +

√
2C∗1C2 + . . .

)

− spεk√
2k
〈ψp|e−i~k·~rpψp〉

(
C∗1C0 +

√
2C∗2C1 + . . .

)

Here the dots stand for terms involving the coefficients C3, C4, . . . of states with
three or more fotons.

Note that the first term in the right hand side above is the energy Ep of the
spoton by itself. That term is a given constant. The question is what foton
states produce the lowest energy for the remaining terms. The answer is easy if
the spoton sarge sp is zero. Then the terms in the last two lines are zero. So the
second line shows that C1, C2, . . . must all be zero. Then there are no fotons;
only the state with zero fotons is then left in the system wave function (A.121).

If the spoton sarge is nonzero however, the interaction terms in the last two
lines can lower the energy for suitable nonzero values of the constants C1, C2,
. . . . To simplify matters, it will be assumed that the spoton sarge is nonzero but
small. Then so will be the constants. In that case only the C1 terms need to be
considered; the other terms in the last two lines involve the product of two small
constants, and those cannot compete. Further the normalization condition in
(A.121) shows that |C0| will be approximately 1 since even C1 is small. Then
C0 may be assumed to be 1, because any eigenfunction is indeterminate by a
factor of magnitude 1 anyway.

Further, since any complex number may always be written as its magnitude
times some exponential of magnitude 1, the second last line of the energy above
can be written as

− spεk√
2k
〈ψp|ei~k·~rpψp〉 C1 = −

spεk√
2k

∣∣∣〈ψp|ei~k·~rpψp〉
∣∣∣eiα |C1|eiβ

Replacing i everywhere by −i gives the corresponding expression for the last
line. The complete expression for the energy then becomes

E = Ep + |C1|2~ω

− spεk√
2k

∣∣∣〈ψp|ei~k·~rpψp〉
∣∣∣|C1|ei(α+β) −

spεk√
2k

∣∣∣〈ψp|ei~k·~rpψp〉
∣∣∣|C1|e−i(α+β)
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In the last term, note that the sign of i inside an absolute value does not make
a difference. Using the Euler formula (2.5) on the trailing exponentials gives

E = Ep + |C1|2~ω − 2
spεk√
2k

∣∣∣〈ψp|ei~k·~rpψp〉
∣∣∣|C1| cos(α + β)

But in the ground state, the energy should be minimal. Clearly, that requires
that the cosine is at its maximum value 1. So it requires taking C1 so that β =
−α.

That still leaves the magnitude |C1| to be found. Note that the final terms
in expression above are now of the generic form

a|C1|2 − 2b|C1|

where a and b are positive constants. That is a quadratic function of |C1|. By
differentiation, it is seen that the minimum occurs at |C1| = b/a and has a value
−b2/a. Putting in what a and b are then gives

C1 =
spεk√
2k~ω

〈ψp|e−i~k·~rpψp〉 E = Ep −
s2p

2ǫ1Vk2
|〈ψp|ei~k·~rpψp〉|2

The second part of the energy is the energy lowering achieved by having a small
probability |C1|2 of a single foton in the considered momentum state.

This energy-lowering still needs to be summed over all states ~k to get the
total:

E−Ep = −
∑

~k

s2p
2ǫ1Vk2

|〈ψp|ei~k·~rpψp〉|2 = −
∑

~k

s2p
2ǫ1Vk2

〈ψp|e−i~k·~rpψp〉〈ψp|ei~k·~rψp〉

Note that the final two inner products represent separate integrations. Therefore
to avoid confusion, the subscript p was dropped from one integration variable.
In the sum, the classical field (A.119) can now be recognized:

E − Ep = −sp
2
〈ψp|ϕp

cl(~r)ψp〉 = −1
2

∫
ϕp
cl(~r)spψ

∗
p(~r)ψp(~r) d

3~r

Ignoring the differences in notation, the energy lowering is exactly the same as
(A.108) found in the classical analysis. The classical analysis, while not really
justified, did give the right answer.

However now an actual picture of the quantum ground state has been ob-
tained. It is a quantum superposition of system states. The most likely state is
the one where there are no fotons at all. But there are also small probabilities
for system states where there is a single foton in a single linear momentum foton
state. This picture does assume that the spoton sarge is small. If that was not
true, things would get much more difficult.



1006 APPENDIX A. ADDENDA

Another question is whether the observable values of the foton potential are
the same as those obtained in the classical analysis. This is actually a trick
question because even the classical foton potential is not observable. There is
still an undetermined constant in it. What is observable are the derivatives of
the potential: they give the observable selectic force per unit sarge on sarged
particles.

Now, in terms of momentum modes, the derivatives of the classical potential
can be found by differentiating (A.119). That gives

ϕip,cl =
∑

all ~k

sp
ǫ1Vk2

〈ψp|e−i~k·~rpψp〉ikiei~k·~r

Recall again the convention introduced in the previous subsection that a sub-
script i on ϕ indicates the derivative ∂/∂ri, where r1, r2, and r3 correspond to
x, y, and z respectively. So the above expression gives the selectic force per unit
sarge in the x, y, or z direction, depending on whether i is 1, 2, or 3.

The question is now whether the quantum analysis predicts the same observ-
able forces. Unfortunately, the answer here is no. The observable forces have
quantum uncertainty that the classical analysis missed. However, the Ehrenfest
theorem of chapter 7.2.1 suggests that the expectation forces should still match
the classical ones above.

The quantum expectation force per unit sarge in the i-direction is given by

〈ϕi〉 = 〈Ψϕp|ϕ̂iΨϕp〉 Ψϕp = e−iEt/~ψϕp

Here E is the ground state energy. Note that in this case the full, time-dependent
wave function Ψϕp is used. That is done because in principle an observed field
could vary in time as well as in space. Substituting in the ri-derivative of the
quantum field (A.128) gives

〈ϕi〉 =
εk√
2k
〈ψϕp|(ikiei~k·~râ~k − ikie

−i~k·~râ†~k)ψϕp〉

Note that here ~r is not a possible position of the spoton, but a given position at
which the selectic force per unit sarge is to be found. Also note that the time
dependent exponentials have dropped out against each other; the expectation
forces are steady like for the classical field.

The above expression can be multiplied out as before. Using the obtained
expression for C1, and the fact that 〈ψp|ψp〉 = 1 because wave functions are
normalized, that gives.

〈ϕi〉 =
sp

2ǫ1Vk2
〈ψp|e−i~k·~rpψp〉ikiei~k·~r −

sp
2ǫ1Vk2

〈ψp|ei~k·~rpψp〉ikie−i~k·~r

Summed over all ~k, the two terms in the right hand side produce the same result,
because opposite values of ~k appear equally in the summation. In other words,



A.22. FORCES BY PARTICLE EXCHANGE 1007

for every ~k term in the first sum, there is a −~k term in the second sum that
produces the same value. And that then means that the expectation selectic
forces are the same as the classical ones. The classical analysis got that right,
too.

To see that there really is quantum uncertainty in the forces, it suffices to
look at the expectation square forces. If there was no uncertainty in the forces,
the expectation square forces would be just the square of the expectation forces.
To see that that is not true, it is sufficient to simply take the spoton sarge zero.
Then the expectation field is zero too. But the expectation square field is given
by

〈
ϕ2
i

〉
=

ε2k
2k2
〈ψϕp|(ikiei~k·~râ~k − ikie

−i~k·~râ†~k)
2ψϕp〉 ψϕp = ψp|0〉

Multiplying this out gives

〈
ϕ2
i

〉
=
ε2kk

2
i

2k2
=

~ωk2i
2ǫ1Vk2

Since Planck’s constant is not zero, this is not zero either. So even without
the spoton, a selectic force measurement will give a random, but nonzero value.
The average of a large number of such force measurements will be zero, but not
the individual measurements.

The above expression can be compared with the corresponding |ϕ~k,i|2 of a
single foton, as given by (A.127). That comparison indicates that even in the
ground state in empty space, there is still half a foton of random field energy
left. Recall now the Hamiltonian (A.126) for the foton field. Usually, this
Hamiltonian would be defined as

Hϕ =
∑

~k

~ω(â†~kâ~k +
1
2
)

The additional 1
2
expresses the half foton of energy left in the ground state. The

ground state energy does not change the dynamics. However, it is physically
reflected in random nonzero values if the selectic field is measured in vacuum.

The bad news is that if you sum these ground state energies over all values
of ~k, you get infinite energy. The exact same thing happens for the photons of
the electromagnetic field. Quantum field theories are plagued by infinite results;
this “vacuum energy” is just a simple example. What it really means physically
is as yet not known either. More on this can be found in {A.23.4}.

The final issue to be addressed is the attraction between a spoton and a selec-
ton. That can be answered by simply adding the selecton to the spoton-fotons
analysis above, {D.37.2}. The answer is that the spoton-selecton interaction
energy is the same as found in the classical analysis.

So equal sarges still attract.
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A.22.4 Poincaré and Einstein try to save the universe

The Koulomb universe is a grim place. In selectodynamics, particles with the
same sarge attract. So all selectons clump together into one gigantic ball. As-
suming that spotons have the opposite sarge, they clump together into another
big ball at the other end of the universe. But actually there is no justification
to assume that spotons would have a different sarge from selectons. That then
means that all matter clumps together into a single gigantic satom. A satom
like that will form one gigantic, obscene, black hole. It is hardly conductive to
the development of life as we know it.

Unfortunately, the Koulomb force is based on highly plausible, apparently
pretty unavoidable assumptions. The resulting force simply makes sense. None
of these things can be said about the Coulomb force.

But maybe, just maybe, the Koulomb juggernaut can be tripped up by some
legal technicality. Things like that have happened before.

Now in a time not really that very long ago, there lived a revolutionary of
mathematics called Poincaré. Poincaré dreamt of countless shining stars that
would sweep through a gigantic, otherwise dark universe. And around these
stars there would be planets populated by living beings called “observers.” But
if the stars all moved in random directions, with random speeds, then which
star would be the one at rest? Which star would be the king around which the
other stars danced? Poincaré thought long and hard about that problem. “No!”
he thundered eventually; “It shall not be. I hereby proclaim that all stars are
created equal. Any observer at any star can say at any given time that its star
is at rest and that the other stars are moving. On penalty of dead, nothing in
physics may indicate that observer to be wrong.”

Now nearby lived a young physicist called Einstein who was very lazy. For
example, he almost never bothered to write the proper summation symbols in
his formulae. Of course, that made it difficult for him to find a well paying job
in some laboratory where they smash spotons into each other. Einstein ended
up working in some patent office for little pay. But, fortunate for our story,
working in a patent office did give Einstein a fine insight in legal technicalities.

First Einstein noted that the Proclamation of Poincaré meant that observers
at different stars had to disagree seriously about the locations and times of
events. However, it would not be complete chaos. The locations and times of
events as perceived by different observers would still be related. The relation
would be a transformation that the famous physicist Lorentz had written down
earlier, chapter 1.2.1 (1.6).

And the Proclamation of Poincaré also implied that different observers had
to agree about the same laws of physics. So the laws of physics should remain the
same when you change them from one observer to the next using the Lorentz
transformation. Nowadays we would say that the laws of physics should be
“Lorentz invariant.” But at the time, Einstein did not want to use the name of
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Lorentz in vain.
Recall now the classical “action principle” of subsection A.22.2. The so-

called action integral had to be unchanged under small deviations from the
correct physics. The Proclamation of Poincaré demands that all observers must
agree that the action is unchanged. If the action is unchanged for an observer
at one star, but not for one at another star, then not all stars are created equal.

To see what that means requires a few fundamental facts about special
relativity, the theory of systems in relative motion.

The Lorentz transformation badly mixes up spatial positions and times of
events as seen by different observers. To deal with that efficiently, it is con-
venient to combine the three spatial coordinates and time into a single four-
dimensional vector, a four-vector, chapter 1.2.4. Time becomes the “zeroth
coordinate” that joins the three spatial coordinates. In various notations, the
four-vector looks like

→֒
r ≡




ct

~r


 ≡




ct
x
y
z


 ≡




r0
r1
r2
r3


 ≡




r0

{ri}


 ≡




x0

x1

x2

x3


 ≡ {x

µ} → xµ

First of all, note that the zeroth coordinate receives an additional factor c,
the speed of light. That is to ensure that it has units of length just like the
other components. It has already been noted before that the spatial coordinates
x, y, and z are indicated by r1, r2, and r3 in this addendum. That allows a
generic component to be indicated by ri for i = 1, 2, or 3. Note also that curly
brackets are a standard mathematical way of indicating a set or collection. So
{ri} stands for the set of all three ri values; in other words, it stands for the
complete position vector ~r. That is the primary notation that will be used in
this addendum.

However, in virtually any quantum field book, you will find four-vectors
indicated by xµ. Here µ is an index that can have the values 0, 1, 2, or 3. (Except
that some books make time the fourth component instead of the zeroth.) An xµ

by itself probably really means {xµ}, in other words, the complete four-vector.
Physicists have trouble typing curly brackets, so they leave them away. When
more than one index is needed, another Greek symbol will be used, like xν .
However, xi would stand for just the spatial components, so for the position
vector {ri}. The give-away is here that a roman superscript is used. Roman
superscript j would mean the same thing as i; the spatial components only.

There are similar notations for the derivatives of a function f :

→֒

∇f ≡




∂f/c∂t

∇f


 ≡




∂f/c∂t
∂f/∂x
∂f/∂y
∂f/∂z


 ≡




ft/c

{fi}


 ≡




∂0f
∂1f
∂2f
∂3f


 ≡ {∂µf} → ∂µf
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Note again that time derivatives in this addendum are indicated by a subscript
t and spatial derivatives by a subscript i for i = 1, 2, or 3.

Quantum field books use ∂µf for derivatives. They still have problems with
typing curly brackets, so ∂µf by itself probably means the set of all four deriva-
tives. Similarly ∂if would probably mean the spatial gradient ∇f .

The final key fact to remember about special relativity is:

In dot products between four-vectors, the product of the zeroth com-
ponents gets a minus sign.

Dot products between four-vectors are very important because all observers
agree about the values of these dot products. They are Lorentz invariant. (In
nonrelativistic mechanics, all observers agree about the usual dot products be-
tween spatial vectors. That is no longer true at relativistic speeds.)

One warning. In almost all modern quantum field books, the products of
the spatial components get the minus sign instead of the time components. The
purpose is to make the relativistic dot product incompatible with the nonrel-
ativistic one. After all, “backward compatibility” is so, well, backward. (One
source that does use the compatible dot product is [49]. This is a truly excellent
book written by a Nobel Prize winning pioneer in quantum field theory. It may
well be the best book on the subject available. Unfortunately it is also very
mathematical and the entire thing spans three volumes. Then again, you could
certainly live without supersymmetry.)

One other convention might be mentioned. Some books put a factor i =√
−1 in the zeroth components of four-vectors. That takes care of the minus

sign in dot products automatically. But modern quantum field books do not
this.

Armed with this knowledge about special relativity, the Koulomb force can
now be checked. Action is defined as

S ≡
∫ t2

t1

L dt

Here the time range from t1 to t2 should be chosen to include the times of
interest. Further L is the so-called Lagrangian.

If all observers agree about the value of the action in selectodynamics, then
selectodynamics is Lorentz invariant. Now the Lagrangian of classical selecto-
dynamics was of the form, subsection A.22.2,

Lϕp =

∫
£ϕ d

3~r + 1
2
mp~v

2
p + ϕpsp

Here the Lagrangian density of the foton field ϕ was

£ϕ = −ǫ1
2

(
− 1

c2
ϕ2
t + ϕ2

i

)
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To this very day, a summation symbol may not be used to reveal to nonphysicists
that the last term needs to be summed over all three values of i. That is in
honor of the lazy young physicist, who tried to save the universe.

Note that the parenthetical term in the Lagrangian density is simply the
square of the four-vector of derivatives of ϕ. Indeed, the relativistic dot prod-
uct puts the minus sign in front of the product of the time derivatives. Since
all observers agree about dot products, they all agree about the values of the
Lagrangian density. It is Lorentz invariant.

To be sure, it is the action and not the Lagrangian density that must be
Lorentz invariant. But note that in the action, the Lagrangian density gets
integrated over both space and time. Such integrals are the same for any two
observers. You can easily check that from the Lorentz transformation chapter
1.2.1 (1.6) by computing the Jacobian of the dxdt integration between observers.

(OK, the limits of integration are not really the same for different observers.
One simple way to get around that is to assume that the field vanishes at large
negative and positive times. Then you can integrate over all space-time. A
more sophisticated argument can be given based on the derivation of the action
principle {A.1.5}. From that derivation it can be seen that it suffices to consider
small deviations from the correct physics that are localized in both space and
time. It implies that the limits of integration in the action integral are physically
irrelevant.)

(Note that this subsection does no longer mention periodic boxes. In rela-
tivity periodicity is not independent of the observer, so the current arguments
really need to be done in infinite space.)

The bottom line is that the first, integral, term in the Lagrangian pro-
duces a Lorentz-invariant action. The second term in the Lagrangian is the
nonrelativistic kinetic energy of the spoton. Obviously the action produced by
this term will not be Lorentz invariant. But you can easily fix that up by sub-
stituting the corresponding relativistic term as given in chapter 1.3.2. So the
lack of Lorentz invariance of this term will simply be ignored in this addendum.
If you want, you can consider the spoton mass to be the moving mass in the
resulting equations of motion.

The final term in the Lagrangian is the problem. It represents the spoton-
fotons interaction. The term by itself would be Lorentz invariant, but it gets
integrated with respect to time. Now in relativity time intervals dt are not the
same for different observers. So the action for this term is not Lorentz invariant.
Selectodynamics cannot be correct. The Koulomb juggernaut has been stopped
by a small legal technicality.

(To be sure, any good lawyer would have pointed out that there is no problem
if the spoton sarge density, instead of the spoton sarge sp, is the same for
different observers. But the Koulomb force was so sure about its invincibility
that it never bothered to seek competent legal counsel.)

The question is now of course how to fix this up. That will hopefully produce
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a more appealing universe. One in which particles like protons and electrons
have charges q rather than sarges s. Where these charges allow them to interact
with the photons of the electromagnetic field. And where these photons assure
that particles with like charges repel, rather than attract.

Consider the form of the problem term in the Koulomb action:

∫ t2

t1

ϕpsp dt

It seems logical to try to write this in relativistic terms, like

∫ t2

t1

(ϕp

c

)(
sp dct

)
=

∫ t2

t1

(ϕp

c

)(
sp drp0

)

Here drp0 is the zeroth component of the change in spoton four-vector d
→֒
rp.

The product of the two parenthetical factors is definitely not Lorentz invariant.
But suppose that you turn each of the factors into a complete four-vector? Dot
products are Lorentz invariant. And the four-vector corresponding to drp0 is
clearly d

→֒
rp.

But the photon potential must also become a four-vector, instead of a scalar.
That is what it takes to achieve Lorentz invariance. So electrodynamics defines
a four-vector of potentials of the form

→֒

A ≡




ϕ/c

~A


 ≡




ϕ/c
Ax
Ay
Az


 ≡




A0

A1

A2

A3


 ≡




A0

A1

A2

A3


 ≡ {A

µ} → Aµ

Here ~A is the so-called “vector potential” while ϕ is now the electrostatic po-
tential.

The interaction term in the action now becomes, replacing the spoton sarge
sp by minus the proton charge qp,

∫ t2

t1

→֒

Ap · qp d→֒
rp =

∫ t2

t1

→֒

Ap · qp
d

→֒
rp
dt

dt

In writing out the dot product, note that the spatial components of d
→֒
rp/dt are

simply the proton velocity components vpj. That gives the interaction term in

the action as ∫ t2

t1

(
−ϕpqp + Ajpqpvpj

)
dt

Once again nonphysicists may not be told that the second term in parentheses
must be summed over all three values of j since j appears twice.
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The integrand above is the interaction term in the electromagnetic La-
grangian,

Lint = −ϕpqp + Ajpqpvpj

For now at least.
The Lagrangian density of the photon field is also needed. Since the photon

field is a four-vector rather than a scalar, the self-evident electromagnetic density
is

£seem = −ǫ0
2

(
−Aj2t + c2Aj

2

i
+

1

c2
ϕ2
t − ϕ2

i

)

Here the constant ǫ0 is called the “permittivity of space.” Note that the second
term in parentheses must be summed over both i and j. The curious sign pattern
for the parenthetical terms arises because it involves two dot products: one from
the square four-gradient (derivatives), and one from the square four-potential.
Simply put, having electrostatic potentials is worth a minus sign, and having
time derivatives is too.

It might be noted that in principle the proper Lagrangian density could
be minus the above expression. But a minus sign in a Lagrangian does not
change the motion. The convention is to choose the sign so that the corre-
sponding Hamiltonian describes energies that can be increased by arbitrarily
large amounts, not lowered by arbitrarily large amounts. Particles can have
unlimited amounts of positive kinetic energy, not negative kinetic energy.

Still, it does seem worrisome that the proper sign of the Lagrangian density
is not self-evident. But that issue will have to wait until the next subsection.

Collecting things together, the self-evident Lagrangian for electromagnetic
field plus proton is

Lseem+p =

∫
£seem d3~r + 1

2
mpvp

2

j
− ϕpqp + Ajpqpvpj

Here £seem was given above.
The first thing to check now is the equation of motion for the proton. Fol-

lowing subsection A.22.2, it can be found from

d

dt

(
∂L
∂vpi

)
=

(
∂L
∂rpi

)

Substituting in the Lagrangian above gives

d

dt

(
mpvpi + Aipqp

)
= −ϕipqp + Aj ipqpvpj

This can be cleaned up, {D.6}. In short, first an “electric” field ~E and a

“magnetic” field ~B are defined as, in vector notation,

~E = −∇ϕ− ∂ ~A

∂t
~B = ∇× ~A (A.130)
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The individual components are

Ei = −ϕi − Ait Bi = Aıı − Aıı (A.131)

Here i = 1, 2, or 3 corresponds to the x, y, or z components respectively. Also ı
follows i in the periodic sequence . . . 123123 . . . and ı precedes i. In these terms,
the simplified equation of motion of the proton becomes, in vector notation,

dmp~vp
dt

= qp

(
~Ep + ~vp × ~Bp

)
(A.132)

The left hand side is mass times acceleration. Relativistically speaking, the
mass should really be the moving mass here, but OK. The right hand side is
known as the “Lorentz force.”

Note that there are 4 potentials with 4 derivatives each, for a total of 16
derivatives. But matter does not observe all 16 individually. Only the 3 compo-
nents of the electric field and the 3 of the magnetic field are actually observed.
That suggests that there may be changes to the fields that can be made that
are not observable. Such changes are called “gage (or gauge) changes.” The
name arises from the fact that a gage is a measuring device. You and I would
then of course say that these changes should be called nongage changes. They
are not measurable. But “gage” is really shorthand for “Take that, you stupid
gage.”

Consider the most general form of such gage changes. Given potentials ϕ
and ~A, equivalent potentials can be created as

ϕ′ = ϕ− χt ~A′ = ~A+∇χ

Here χ can be any function of space and time that you want.
The potentials ϕ′ and ~A′ give the exact same electric and magnetic fields as

ϕ and ~A. (These claims are easily checked using a bit of vector calculus. Use
Stokes to show that they are the most general changes possible.)

The fact that you can make unmeasurable changes to the potentials like that
is called the “gage” (or gauge) property of the electromagnetic field. Nonphysi-
cists probably think it is something you read off from a voltage gage. Hilarious,
isn’t it?

Observable or not, the evolution equations of the four potentials are also
needed. To find them it is convenient to spread the proton charge out a bit.
That is the same trick as was used in subsection A.22.2. For the spread-out
charge, a “charge density” ρp can be defined as the charge per unit volume. It
is also convenient to define a “current density” ~p as the charge density times
its velocity. Then the proton-photons interaction terms in the Lagrangian are:

∫ (
− ϕρp + Ajpj

)
d3~r ≈ −ϕpqp + Ajpqpvpj (A.133)
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Here the right hand side is an approximation if the proton charge is almost
concentrated at a single point, or exact for a point charge.

The interaction terms can now be included in the Lagrangian density to give
the total Lagrangian

Lseem+p =

∫ (
£seem +£int

)
d3~r + 1

2
mpvp

2

j
(A.134)

£seem = −ǫ0
2

(
−Aj2t + c2Aj

2

i
+

1

c2
ϕ2
t − ϕ2

i

)
£int = −ϕρp + Ajpj

If there are more charged particles than just a proton, their charge and current
densities will combine into a net ρ and ~.

The field equations now follow similarly as in subsection A.22.2. For the
electrostatic potential:

∂

∂t

(
∂£

∂ϕt

)
+

∂

∂ri

(
∂£

∂ϕi

)
=
∂£

∂ϕ

where £ is the combined Lagrangian density. Worked out and converted to
vector notation, that gives

1

c2
∂2ϕ

∂t2
−∇2ϕ =

ρ

ǫ0
(A.135)

This is the same equation as for the Koulomb potential earlier.
Similarly, for the components of the vector potential

∂

∂t

(
∂£

∂Ajt

)
+

∂

∂ri

(
∂£

∂Aj i

)
=
∂£

∂ϕ

That gives
∂2 ~A

∂t2
− c2∇2 ~A =

~

ǫ0
(A.136)

The above equations are again Klein-Gordon equations, so they respect the
speed of light. And since the action is now Lorentz invariant, all observers agree
with the evolution. That seems very encouraging.

Consider now the steady case, with no charge motion. The current density
~ is then zero. That leads to zero vector potentials. Then there is no magnetic
field either, (A.130).

The steady equation (A.135) for the electrostatic field ϕ is exactly the same
as the one for the Koulomb potential. But note that the electric force per unit
charge is now minus the gradient of the electrostatic potential, (A.130) and
(A.132). And that means that like charges repel, not attract. All protons in the
universe no longer clump together into one big ball. And neither do electrons.
That sounds great.

But wait a second. How come that apparently protons suddenly manage to
create fields that are repulsive to protons? What happened to energy minimiza-
tion? It seems that all is not yet well in the universe.
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A.22.5 Lorenz saves the universe

The previous subsection derived the self-evident equations of electromagnetics.
But there were some worrisome aspects. A look at the Hamiltonian can clarify
the problem.

Given the Lagrangian (A.134) of the previous subsection, the Hamiltonian
can be found as, {A.1.5}:

Hseem+p =

∫ (
∂£

∂Ajt
Ajt +

∂£

∂ϕt
ϕt

)
d3~r +

∂L
∂vpj

vpj − L

That gives

Hseem+p =
ǫ0
2

∫ (
Aj

2

t
+ c2Aj

2

i
− 1

c2
ϕ2
t − ϕ2

i

)
d3~r + 1

2
mpvp

2

j
+

∫
ϕρp d

3~r

(A.137)
(This would normally still need to be rewritten in terms of canonical momenta,
but that is not important here.)

Note that the electrostatic potential ϕ produces negative electromagnetic
energy. That means that the electromagnetic energy can have arbitrarily large
negative values for large enough ϕ.

That then answers the question of the previous subsection: “How come a
proton produces an electrostatic field that repels it? What happened to energy
minimization?” There is no such thing as energy minimization here. If there
is no lowest energy, then there is no ground state. Instead the universe should
evolve towards larger and larger electrostatic fields. That would release infinite
amounts of energy. It should blow life as we know it to smithereens. (The
so-called second law of thermodynamics says, simply put, that thermal energy
is easier to put into particles than to take out again. See chapter 11.)

In fact, the Koulomb force would also produce repulsion between equal
sarges, if its field energy was negative instead of positive. Just change the
sign of the constant ǫ1 in classical selectodynamics. Then its universe should
blow up too. Unlike what you will read elsewhere, the difference between the
Koulomb force, (or its more widely known sibling, the Yukawa force of {A.42}),
and the Coulomb force is not simply that the photon wave function is a four-
vector. It is whether negative field energy appears in the most straightforward
formulation.

As the previous subsection noted, you might assume that the electrodynamic
Lagrangian, and hence the Hamiltonian, would have the opposite sign. But that
does not help. In that case the vector potentials Aj would produce the negative
energies. Reversing the sign of the Hamiltonian is like reversing the direction
of time. In either direction, the universe gets blown to smithereens.

To be sure, it is not completely sure that the universe will be blown to
smithereens. A negative field energy only says that it is in theory possible to
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extract limitless amounts of energy out of the field. But you would still need
some actual mechanism to do so. There might not be one. Nature might be
carefully constrained so that there is no dynamic mechanism to extract the
energy.

In that case, there might then be some mathematical expression for the
constraint. As another way to look at that, suppose that you would indeed have
a highly unstable system. And suppose that there is still something recognizable
left at the end of the first day. Then surely you would expect that whatever is
left is special in some way. That it obeys some special mathematical condition.

So presumably, the electromagnetic field that we observe obeys some special
condition, some constraint. What could this constraint be? Since this is very
basic physics, you would guess it to be relatively simple. Certainly it must be
Lorentz invariant. The simplest condition that meets this requirement is that

the dot product of the four-gradient
→֒

∇with the four-potential
→֒

A is zero. Written
out that produces the so-called “Lorenz condition:”

1

c

∂ϕ/c

∂t
+∇ · ~A = 0 (A.138)

This condition implies that only a very special subset of possible solutions of the
Klein-Gordon equations given in the previous subsection is actually observed in
nature.

Please note that the Lorenz condition is named after the Danish physicist
Ludvig Lorenz, not the Dutch physicist Hendrik Lorentz. Almost all my sources
mislabel it the Lorentz condition. The savior of the universe deserves more
respect. Always remember: the Lorenz condition is Lorentz invariant.

(You might wonder why the first term in the Lorenz condition does not
have the minus sign of dot products. One way of thinking about it is that
the four-gradient in its “natural” condition already has a minus sign on the
time derivative. Physicists call it a “covariant” four-vector rather than a “con-
travariant” one. A better way to see it is to grind it out; you can use the
Lorentz transform (1.6) of chapter 1.2.1 to show directly that the above form
is the same for different observers. But those familiar with index notation will
recognize immediately that the Lorenz condition is Lorentz invariant from the
fact that it equals ∂µA

µ = 0, and that has µ as both subscript and superscript.
See chapter 1.2.5 for more.)

To be sure, the Lorenz condition can only be true if the interaction with
matter does not produce violations. To check that, the evolution equation for
the Lorenz condition quantity can be obtained from the Klein-Gordon equations
of the previous subsection. In particular, in vector notation take ∂/∂t (A.135)
plus ∇ (A.136) to get

[
∂2

∂t2
− c2∇2

](
1

c2
∂ϕ

∂t
+∇ · ~A

)
=

1

ǫ0

(
∂ρ

∂t
+∇ · ~

)
(A.139)
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The parenthetical expression in the left hand side should be zero according to
the Lorenz condition. But that is only possible if the left hand side is zero too,
so

∂ρ

∂t
= −∇ · ~

This important result is known as “Maxwell’s continuity equation.” It ex-
presses conservation of charge. (To see that, take any arbitrary volume. Inte-
grate both sides of the continuity equation over that volume. The left hand side
then becomes the time derivative of the charge inside the volume. The right
hand side becomes, using the [divergence] [Gauss] [Ostrogradsky] theorem, the
net inflow of charge. And if the charge inside can only change due to inflow or
outflow, then no charge can be created out of nothing or destroyed.) So charge
conservation can be seen as a consequence of the need to maintain the Lorenz
condition.

Note that the Lorenz condition (A.138) looks mathematically just like the
continuity equation. It produces conservation of the integrated electrostatic
potential. In subsection A.22.7 it will be verified that it is indeed enough to
produce a stable electromagnetic field. One with meaningfully defined energies
that do not run off to minus infinity.

Note that charge conservation by itself is not quite enough to ensure that
the Lorenz condition is satisfied. However, if in addition the Lorenz quantity
and its time derivative are zero at just a single time, it is OK. Then (A.139)
ensures that the Lorenz condition remains true for all time.

A.22.6 Gupta-Bleuler condition

The ideas of the previous subsection provide one way to quantize the electro-
magnetic field, [[17, 6]].

As already seen in subsection A.22.3 (A.128), in quantum field theory the
potentials become quantum fields, i.e. operator fields. For electromagnetics the
quantum field four-vector is a bit more messy

̂֒→
A =

(
ϕ̂/c

~̂A

)
=
∑

~k

εk√
2k

3∑

ν=0

→֒
e ν~k

(
ei
~k·~râ~kν + e−i

~k·~râ†~kν

)

Since a four-vector has four components, a general four-vector can be written
as a linear combination of four chosen basis four-vectors

→֒
e 0
~k
,

→֒
e 1
~k
,

→֒
e 2
~k
, and

→֒
e 3
~k
.

(That is much like a general vector in three dimensions can be written as a
linear combination of ı̂, ̂, and k̂.) The four basis vectors physically represent
different possible “polarizations” of the electromagnetic field. That is why they
are typically aligned with the momentum of the wave rather than with some
Cartesian axis system and its time axis. Note that each polarization vector has
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its own annihilation operator â~kν and creation operator â†~kν . These annihilate

respectively create photons with that wave number vector ~k and polarization.

(Electromagnetic waves in empty space are special; for them only two inde-
pendent polarizations are possible. Or to be precise, even in empty space the
Klein-Gordon equations with Lorenz condition allow a third polarization. But
these waves produce no electric and magnetic fields and contain no net electro-
magnetic energy. So they are physically irrelevant. You can call them “gage
equivalent to the vacuum.” That sounds better than irrelevant.)

The Lorenz condition of the previous subsection is again needed to get rid of
negative energy states. The question is now exactly how to phrase the Lorenz
condition in quantum terms.

(There is an epidemic among my, highly authorative, sources that come up
with negative norm states without Lorenz condition. Now the present author
himself is far from an expert on quantum field theories. But he knows one
thing: norms cannot be negative. If you come up with negative norms, it tells
you nothing about the physics. It tells you that you are doing the mahematics
wrong. I believe the correct argument goes something like this: “Suppose that
we can do our usual stupid canonical quantization tricks for this system. Blah
Blah. That gives negative norm states. Norms cannot be negative. Ergo: we
cannot do our usual stupid canonical quantization tricks for this system.” If
you properly define the creation and annihilation operators to put photons in
negative energy states, there is no mathematical problem. The commutator
relation for the negative energy states picks up a minus sign and the norms
are positive as they should. Now the mathematics is sound and you can start
worrying about problems in the physics. Like that there are negative energy
states. And maybe lack of Lorentz invariance, although the original system is
Lorentz invariant, and I do not see what would not be Lorentz invariant about
putting particles in the negative energy states.)

The simplest idea would be to require that the quantum field above satisfies
the Lorenz condition. But the quantum field determines the dynamics. Like in
the classical case, you do not want to change the dynamics. Instead you want
to throw certain solutions away. That means that you want to throw certain
wave functions |Ψ〉 away.

The strict condition would be to require (in the Heisenberg picture {A.12})
(1
c

∂ϕ̃/c

∂t
+∇ · ~̃A

)
|Ψ〉 = 0

for all physically observable states |Ψ〉. Here the parenthetical expression is
the operator of the Lorenz quantity that must be zero. The above requirement
makes |Ψ〉 an eigenvector of the Lorenz quantity with eigenvalue zero. Then
according to the rules of quantum mechanics, chapter 3.4, the only measurable
value of the Lorenz quantity is zero.
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But the above strict condition is too restrictive. Not even the vacuum state
with no photons would be physically observable. That is because the creation

operators in ϕ̂ and ~̂A will create nonzero photon states when applied on the vac-
uum state. That suggests that only the annihilation terms should be included.
That then gives the “Gupta-Bleuler condition:”

(1
c

∂ϕ̃+/c

∂t
+∇ · ~̃A

+)
|Ψ〉 = 0

for physically observable states |Ψ〉. Here the superscript + on the quantum
fields means that only the â~kν annihilation operator terms are included.

You might of course wonder why the annihilation terms are indicated by a
plus sign, instead of the creation terms. After all, it are the creation operators
that create more photons. But the plus sign actually stands for the fact that
the annihilation terms are associated with an e−iωt time dependence instead of
eiωt. Yes true, e−iωt has a minus sign, not a plus sign. But e−iωt has the normal
sign, and “normal” is represented by a plus sign. Is not addition more normal
than subtraction? Please do not pull at your hair like that, there are less drastic
ways to save on professional hair care.

Simply dropping the creation terms may seem completely arbitrary. But it
actually has some physical logic to it. Consider the inner product

〈Ψ′|
(1
c

∂ϕ̃/c

∂t
+∇ · ~̃A

)
|Ψ〉 = 0

This is the amount of state |Ψ′〉 produced by applying the Lorenz quantity on
the physically observable state |Ψ〉. The strict condition is equivalent to saying
that this inner product must always be zero; no amount of any state may be
produced. For the Gupta-Bleuler condition, the above inner product remains
zero if |Ψ′〉 is a physically observable state. (The reason is that the creation
terms can be taken to the other side of the inner product as annihilation terms.
Then they produce zero if |Ψ′〉 is physically observable.) So the Gupta-Bleuler
condition implies that no amount of any physically observable state may be
produced by the Lorenz quantity.

There are other ways to do quantization of the electromagnetic field. The
quantization following Fermi, as discussed in subsection A.22.8, can be converted
into a modern quantum field theory. But that turns out to be a very messy
process indeed, [[17, 6]]. The derivation is essentially to mess around at length
until you more or less prove that you can use the Lorenz condition result instead.
You might as well start there.

It does turns out that the so-called “path-integral” formulation of quantum
mechanics does a very nice job here, [53, pp. 30ff]. It avoids many of the
contortions of canonical quantization like the ones above.

In fact, a popular quantum field textbook, [35, p. 79], refuses to do canonical
quantization of the electromagnetic field at all, calling it an awkward subject.
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This book is typically used during the second year of graduate study in physics,
so it is not that its readers are unsophisticated.

A.22.7 The conventional Lagrangian

Returning to the classical electromagnetic field, it still needs to be examined
whether the Lorenz condition has made the universe safe for life as we know it.

The answer depends on the Lagrangian, because the Lagrangian determines
the evolution of a system. So far, the Lagrangian has been written in terms of the
four potentials ϕ and Aj (with j = 1, 2, and 3) of the electromagnetic field. But
recall that matter does not observe the four potentials directly. It only notices
the electric field ~E and the magnetic field ~B. So it may help to reformulate the
Lagrangian in terms of the electric and magnetic fields. Concentrating on the
observed fields is likely to show up more clearly what is actually observed.

With a bit of mathematical manipulation, {D.37.3}, the self-evident electro-
magnetic Lagrangian density can be written as:

£seem =
ǫ0
2

(
E2 − c2B2 − c2

{ 1

c2
∂ϕ

∂t
+∇ · ~A

}2 )
+ ...

Here the dots stand for terms that do not affect the motion. (Since in the action,
Lagrangian densities get integrated over space and time, terms that are pure
spatial or time derivatives integrate away. The quantities relevant to the action
principle vanish at the limits of integration.)

The term inside the curly brackets is zero according to the Lorenz condition
(A.138). Therefore, it too does not affect the motion. (To be precise, the term
does not affect the motion because it is squared. By itself it would affect the
motion. In the formal way in which the Lagrangian is differentiated, one power
is lost.)

The conventional Lagrangian density is found by disregarding the terms that
do not change the motion:

£conem =
ǫ0
2

(
E2 − c2B2

)

So the conventional Lagrangian density of the electromagnetic field is completely
in terms of the observable fields.

As an aside, it might be noted that physicists find the above expression too
intuitive. So you will find it in quantum field books in relativistic index notation
as:

£conem = −ǫ0
4
FµνF

µν

Here the “field strength tensor” is defined by

Fµν = c (∂µAν − ∂νAµ) µ = 0, 1, 2, 3 ν = 0, 1, 2, 3
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Note that the indices on each A are subscripts instead of superscripts as they
should be. That means that you must add a minus sign whenever the index on
an A is 0. If you do that correctly, you will find that from the 16 Fµν values,
some are zero, while the rest are components of the electric or magnetic fields.
To go from Fµν to F µν , you must raise both indices, so add a minus sign for
each index that is zero. If you do all that the same Lagrangian density as before
results.

Because the conventional Lagrangian density is different from the self-evident
one, the field equations (A.135) and (A.136) for the potentials pick up a few
additional terms. To find them, repeat the analysis of subsection A.22.4 but
use the conventional density above in (A.134). Note that you will need to
write the electric and magnetic fields in terms of the potentials using (A.131).
(Using the field strength tensor is actually somewhat simpler in converting to
the potentials. If you can get all the blasted sign changes right, that is.)

Then the conventional field equations become:

1

c2
∂2ϕ

∂t2
−∇2ϕ− 1

c2
∂2ϕ

∂t2
− ∂∇ · ~A

∂t
=

ρ

ǫ0
(A.140)

∂2 ~A

∂t2
− c2∇2 ~A+∇∂ϕ

∂t
+ c2∇(∇ · ~A) = ~

ǫ0
(A.141)

Here ρ is again the charge density and ~ the current density of the charges that
are around,

The additional terms in each equation above are the two before the equals
signs. Note that these additional terms are zero on account of the Lorenz
condition. So they do not change the solution.

The conventional field equations above are obviously more messy than the
original ones. Even if you cancel the second order time derivatives in (A.140).
However, they do have one advantage. If you use these conventional equations,
you do not have to worry about satisfying the Lorenz condition. Any solution
to the equations will give you the right electric and magnetic fields and so the
right motion of the charged particles.

To be sure, the potentials will be different if you do not satisfy the Lorenz
condition. But the potentials have no meaning of their own. At least not in
classical electromagnetics.

To verify that the Lorenz condition is no longer needed, first recall the
indeterminacy in the potentials. As subsection A.22.4 discussed, more than one
set of potentials can produce the same electric and magnetic fields. In particular,
given potentials ϕ and ~A, you can create equivalent potentials as

ϕ′ = ϕ− χt ~A′ = ~A+∇χ
Here χ can be any function of space and time that you want. The potentials
ϕ′ and ~A′ give the exact same electric and magnetic fields as ϕ and ~A. Such a
transformation of potentials is called a “gage transform.”
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Now suppose that you have a solution ϕ and ~A of the conventional field
equations, but it does not satisfy the Lorenz condition. In that case, simply
apply a gage transform as above to get new fields ϕ′ and ~A′ that do satisfy
the Lorenz condition. To do so, write out the Lorenz condition for the new
potentials,

1

c2
∂ϕ′

∂t
+∇ · ~A′ = 1

c2
∂ϕ

∂t
− 1

c2
∂2χ

∂t2
+∇ · ~A+∇2χ

You can always choose the function χ to make this quantity zero. (Note that
that gives an inhomogeneous Klein-Gordon equation for χ.)

Now it turns out that the new potentials ϕ′ and ~A′ still satisfy the conven-
tional equations. That can be seen by straight substitution of the expressions
for the new potentials in the conventional equations. So the new potentials
are perfectly OK: they satisfy both the Lorenz condition and the conventional
equations. But the original potentials ϕ and ~A produced the exact same electric
and magnetic fields. So the original potentials were OK too.

The evolution equation (A.140) for the electrostatic field is worth a second
look. Because of the definition of the electric field (A.130), it can be written as

∇ · ~E =
ρ

ǫ0
(A.142)

That is called “Maxwell’s first equation,” chapter 13.2. It ties the charge density
to the electric field quite rigidly.

Maxwell’s first equation is a consequence of the Lorenz condition. It would
not be required for the original Klein-Gordon equations without Lorenz condi-
tion. In particular, it is the Lorenz condition that allows the additional two
terms in the evolution equation (A.140) for the electrostatic potential. These
then eliminate the second order time derivative from the equation. That then
turns the equation from a normal evolution equation into a restrictive spatial
condition on the electric field.

It may be noted that the other evolution equation (A.141) is Maxwell’s
fourth equation. Just rewrite it in terms of the electric and magnetic fields.
The other two Maxwell equations follow trivially from the definitions (A.130)
of the electric and magnetic fields in terms of the potentials.

Since there is no Lorenz condition for the conventional equations, it becomes
interesting to find the corresponding Hamiltonian. That should allow the sta-
bility of electromagnetics to be examined more easily.

The Hamiltonian for electromagnetic field plus a proton may be found the
same way as (A.137) in subsection A.22.5, {A.1.5}. Just use the conventional
Lagrangian density instead. That gives

Hconem+p =

∫ (ǫ0
2
(E2 + c2B2 + 2Eiϕi) + ϕρp

)
d3~r + 1

2
mpvp

2

j
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But the proton charge density ρp may eliminated using Maxwell’s first equation
above. An additional integration by parts of that term then causes it to drop
away against the previous term. That gives the conventional energy as

Econem+p =
ǫ0
2

∫
(E2 + c2B2) d3~r + 1

2
mp~v

2
p (A.143)

The first term is the energy in the observable fields and the final term is the
kinetic energy of the proton.

The simplified energy above is no longer really a Hamiltonian; you cannot
write Hamilton’s equations based on it as in {A.1.5}. But it does still give the
energy that is conserved.

The energy above is always positive. So it can no longer be lowered by
arbitrary amounts. The system will not blow up. And that then means that the
original Klein-Gordon equations (A.135) and (A.136) for the fields are stable too
as long as the Lorenz condition is satisfied. They produce the same evolution.
And they satisfy the speed of light restriction and are Lorentz invariant. Lorenz
did it!

Note also the remarkable result that the interaction energy between proton
charge and field has disappeared. The proton can no longer minimize any energy
of interaction between itself and the field it creates. Maxwell’s first equation
is too restrictive. All the proton can try to do is minimize the energy in the
electric and magnetic fields.

A.22.8 Quantization following Fermi

Quantizing the electromagnetic field is not easy. The previous subsection showed
a couple of problems. The gage property implies that the electromagnetic poten-
tials ϕ and ~A are indeterminate. Also, taking the Lorenz condition into account,
the second order time derivative is lost in the Klein-Gordon equation for the
electrostatic potential ϕ. The equation turns into Maxwell’s first equation,

∇ · ~E =
ρ

ǫ0

That is not an evolution equation but a spatial constraint for the electric field
~E in terms of the charge density ρ.

Various ways to deal with that have been developed. The quantization
procedure discussed in this subsection is a simplified version of the one found
in Bethe’s book, [6, pp. 255-271]. It is due to Fermi, based on earlier work by
Dirac and Heisenberg & Pauli. This derivation was a great achievement at the
time, and fundamental to more advanced quantum field approaches, [6, p. 266].
Note that all five mentioned physicists received a Nobel Prize in physics at one
time or the other.
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The starting point in this discussion will be the original potentials ϕ and
~A of subsection A.22.4. The ones that satisfied the Klein-Gordon equations
(A.135) and (A.136) as well as the Lorenz condition (A.138).

It was Fermi who recognized that you can make things a lot simpler for

yourself if you write the potentials as sums of exponentials of the form ei
~k·~r:

ϕ =
∑

all ~k

c~ke
i~k·~r ~A =

∑

all ~k

~d~ke
i~k·~r

That is the same trick as was used in quantizing the Koulomb potential in
subsection A.22.3. However, in classical mechanics you do not call these expo-
nentials momentum eigenstates. You call them “Fourier modes.” The principle
is the same. The constant vector ~k that characterizes each exponential is still
called the wave number vector. Since the potentials considered here vary with
time, the coefficients c~k and ~d~k are functions of time.

Note that the coefficients ~d~k are vectors. These will have three independent
components. So the vector potential can be written more explicitly as

~A =
∑

all ~k

d1,~k~e1,~k e
i~k·~r + d2,~k~e2,~k e

i~k·~r + d3,~k~e3,~k e
i~k·~r

where ~e1,~k, ~e2,~k, and ~e3,~k are unit vectors. Fermi proposed that the smart thing
to do is to take the first of these unit vectors in the same direction as the wave
number vector ~k. The corresponding electromagnetic waves are called “longitu-
dinal.” The other two unit vectors should be orthogonal to the first component
and to each other. That still leaves a bit choice in direction. Fortunately, in
practice it does not really make a difference exactly how you take them. The
corresponding electromagnetic waves are called “transverse.”

In short, the fields can be written as

ϕ =
∑

all ~k

c~k e
i~k·~r ~A‖ =

∑

all ~k

d1,~k~e1,~k e
i~k·~r ~A⊥ =

∑

all ~k

d2,~k~e2,~k e
i~k·~r+d3,~k~e3,~k e

i~k·~r

(A.144)
where

~e1,~k =
~k

k
~e2,~k · ~k = ~e3,~k · ~k = ~e2,~k · ~e3,~k = 0

From those expressions, and the directions of the unit vectors, it can be
checked by straight substitution that the “curl” of the longitudinal potential is
zero:

curl ~A‖ ≡ ∇× ~A‖ = 0 (irrotational)

A vector field with zero curl is called “irrotational.” (The term can be under-
stood from fluid mechanics; there the curl of the fluid velocity field gives the
local average angular velocity of the fluid.)
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The same way, it turns out that that the “divergence” of the transverse
potential is zero

div ~A⊥ ≡ ∇ · ~A⊥ = 0 (solenoidal)

A field with zero divergence is called “solenoidal.” (This term can be understood
from magnetostatics; a magnetic field, like the one produced by a solenoid, an
electromagnet, has zero divergence.)

To be fair, Fermi did not really discover that it can be smart to take vector
fields apart into irrotational and solenoidal parts. That is an old trick known
as the “Helmholtz decomposition.”

Since the transverse potential has no divergence, the longitudinal potential
is solely responsible for the Lorenz condition (A.138). The transverse potential
can do whatever it wants.

The real problem is therefore with the longitudinal potential ~A‖ and the
electrostatic potential ϕ. Bethe [6] deals with these in terms of the Fourier
modes. However, that requires some fairly sophisticated analysis. It is actually
easier to return to the potentials themselves now.

Reconsider the expressions (A.130) for the electric and magnetic fields in
terms of the potentials. They show that the electrostatic potential produces
no magnetic field. And neither does the longitudinal potential because it is
irrotational.

They do produce a combined electric field ~Eϕ‖. But this electric field is
irrotational, because the longitudinal potential is, and the gradient ∇ of any
scalar function is. That helps, because then the Stokes theorem of calculus
implies that the electric field ~Eϕ‖ is minus the gradient of some scalar potential:

~Eϕ‖ = −∇ϕC

Note that normally ϕC is not the same as the electrostatic potential ϕ, since
there is also the longitudinal potential. To keep them apart, ϕC will be called
the “Coulomb potential.”

As far as the divergence of the electric field ~Eϕ‖ is concerned, it is the same
as the divergence of the complete electric field. The reason is that the transverse
field has no divergence. And the divergence of the complete electric field is given
by Maxwell’s first equation. Together these observations give

~Eϕ‖ = −∇ϕC
~Bϕ‖ = 0 ∇ · ~Eϕ‖ = −∇2ϕC =

ρ

ǫ0

Note that the final equation is a Poisson equation for the Coulomb potential.
Now suppose that you replaced the electrostatic field ϕ with the Coulomb

potential ϕC and had no longitudinal field ~A‖ at all. It would give the same
electric and magnetic fields. And they are the only ones that are observable.
They give the forces on the particles. The potentials are just mathematical tools
in classical electromagnetics.
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So why not? To be sure, the combination of the Coulomb potential ϕC and
remaining vector potential ~A⊥ will no longer satisfy the Lorenz condition. But
who cares?

Instead of the Lorenz condition, the combination of Coulomb potential plus
transverse potential satisfies the so-called “Coulomb condition:”

∇ · ~A = 0 (A.145)

The reason is that now ~A = ~A⊥ and the transverse vector potential has no
divergence. Physicists like to say that the original potentials used the “Lorenz
gage,” while the new ones use the “Coulomb gage.”

Because the potentials ϕC and ~A⊥ do no longer satisfy the Lorenz condition,
the Klein-Gordon equations (A.135) and (A.136) do no longer apply. But the
conventional equations (A.140) and (A.141) do still apply; they do not need the
Lorenz condition.

Now consider the Coulomb potential somewhat closer. As noted above it
satisfies the Poisson equation

−∇2ϕC =
ρ

ǫ0

The solution to this equation was already found in the first subsection, (A.107).
If the charge distribution ρ consists of a total of I point charges, it is

ϕC(~r; t) =
I∑

i=1

qi
4πǫ0|~r −~ri|

(A.146)

Here qi is the charge of point charge number i, and ~ri its position.
If the charge distribution ρ is smoothly distributed, simply take it apart in

small “point charges” ρ(~r; t)d3~r. That gives

ϕC(~r; t) =

∫

all ~r

ρ(~r; t)

4πǫ0|~r −~r|
d3~r (A.147)

The key point to note here is that the Coulomb potential has no life of
its own. It is rigidly tied to the positions of the charges. That then provides
the most detailed answer to the question: “What happened to energy minimiza-
tion?” Charged particles have no option of minimizing any energy of interaction
with the field. Maxwell’s first equation, the Poisson equation above, forces them
to create a Coulomb field that is repulsive to them. Whether they like it or not.

Note further that all the mechanics associated with the Coulomb field is
quasi-steady. The Poisson equation does not depend on how fast the charged
particles evolve. The Coulomb electric field is minus the spatial gradient of the
potential, so that does not depend on the speed of evolution either. And the
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Coulomb force on the charged particles is merely the electric field times the
charge.

It is still not obvious how to quantize the Coulomb potential, even though
there is no longer a longitudinal field. But who cares about the Coulomb po-
tential in the first place? The important thing is how the charged particles are
affected by it. And the forces on the particles caused by the Coulomb potential
can be computed using the electrostatic potential energy, {D.37.4},

VC = 1
2

I∑

i=1

I∑

i=1
i 6=i

qiqi
4πǫ0|~ri −~ri|

(A.148)

For example, this is the Coulomb potential energy that was used to find the
energy levels of the hydrogen atom in chapter 4.3. It can still be used in un-
steady motion because everything associated with the Coulomb potential is
quasi-steady. Sure, it is due to the interaction of the particles with the elec-
tromagnetic field. But where in the above mathematical expression does it say
electromagnetic field? All it contains are the coordinates of the charged parti-
cles. So what difference does it make where the potential energy comes from?
Just add the energy above to the Hamiltonian and then pretend that there are
no electrostatic and longitudinal fields.

Incidentally, note the required omission of the terms with i = i in the po-
tential energy above. Otherwise you would get infinite energy. In fact, a point
charge in classical electromagnetics does have infinite Coulomb energy. Just take
any of the point charges and mentally chop it up into two equal parts sitting at
the same position. The interaction energy between the halves is infinite.

The issue does not exist if the charge is smoothly distributed. In that case
the Coulomb potential energy is, {D.37.4},

VC = 1
2

∫

all ~r

∫

all ~r

ρ(~r; t)ρ(~r; t)

4πǫ0|~r −~r|
d3~rd3~r (A.149)

While the integrand is infinite at ~r = ~r, the integral remains finite.
So the big idea is to throw away the electrostatic and longitudinal potentials

and replace them with the Coulomb energy VC, origin unknown. Now it is
mainly a matter of working out the details.

First, consider the Fermi Lagrangian. It is found by throwing out the elec-
trostatic and longitudinal potentials from the earlier Lagrangian (A.134) and
subtracting VC. That gives, using the point charge approximation (A.133) and
in vector notation,

LF =
ǫ0
2

∫ [ ∣∣∣~A⊥t
∣∣∣
2

−
3∑

j=1

c2
∣∣∣~A⊥j

∣∣∣
2 ]

d3~r+
I∑

i=1

[
qi~vi · ~A⊥i+

1
2
mi~v

2
i

]
−VC (A.150)
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Note that it is now assumed that there are I particles instead of just the single
proton in (A.134). Because i is already used to index the particles, j is used to
index the three directions of spatial differentiation. The Coulomb energy VC was
already given in (A.148). The velocity of particle i is ~vi, while qi is its charge
and mi its mass. The subscript i on the transverse potential in the interaction
term indicates that it is evaluated at the location of particle i.

You may wonder how you can achieve that only the transverse potential ~A⊥
is left. That would indeed be difficult to do if you work in terms of spatial
coordinates. The simplest way to handle it is to work in terms of the transverse
waves (A.144). They are transverse by construction.

The unknowns are now no longer the values of the potential at the infinitely
many possible positions. Instead the unknowns are now the coefficients d2,~k and
d3,~k of the transverse waves. Do take into account that since the field is real,

d2,−~k = d∗
2,~k

d3,−~k = d∗
3,~k

So the number of independent variables is half of what it seems. The most
straightforward way of handling this is to take the unknowns as the real and
imaginary parts of the d2,~k and d3,~k for half of the ~k values. For example, you

could restrict the ~k values to those for which the first nonzero component is
positive. The corresponding unknowns must then describe both the ~k and −~k
waves.

(The ~k = 0 terms are awkward. One way to deal with it is to take an
adjacent periodic box and reverse the sign of all the charges and fields in it.
Then take the two boxes together to be a new bigger periodic box. The net
effect of this is to shift the mesh of ~k-values figure 6.17 by half an interval. That
means that the ~k = 0 terms are gone. And other problems that may arise if
you sum over all boxes, like to find the total Coulomb potential, are gone too.
Since the change in ~k values becomes zero in the limit of infinite box size, all
this really amounts to is simply ignoring the ~k = 0 terms.)

The Hamiltonian can be obtained just like the earlier one (A.137), {A.1.5}.
(Or make that {A.1.4}, since the unknowns, d2,~k and d3,~k, are now indexed by

the discrete values of the wave number ~k.) But this time it really needs to be
done right, because this Hamiltonian is supposed to be actually used. It is best
done in terms of the components of the potential and velocity vectors. Using j
to index the components, the Lagrangian becomes

LF =
ǫ0
2

∫ 3∑

j=1

[ ∣∣A⊥jt
∣∣2−

3∑

j=1

c2
∣∣∣A⊥jj

∣∣∣
2 ]

d3~r+
I∑

i=1

3∑

j=1

[
qivijA⊥j i+

1
2
mivi

2

j

]
−VC

Now Hamiltonians should not be in terms of particle velocities, despite
what (A.137) said. Hamiltonians should be in terms of “canonical momenta,”
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{A.1.4}. The canonical momentum corresponding to the velocity component
vij of a particle i is defined as

pci j ≡
∂L
∂vij

Differentiating the Lagrangian above gives

pci j = mivij + qiAj i

It is this canonical momentum that in quantum mechanics gets replaced by
the operator ~∂/i∂rj. That is important since, as the above expression shows,
canonical momentum is not just linear momentum in the presence of an elec-
tromagnetic field.

The time derivatives of the real and imaginary parts of the coefficients d2,~k
and d3,~k should be replaced by similarly defined canonical momenta. However,
that turns out to be a mere rescaling of these time derivatives.

The Hamiltonian then becomes, following {A.1.4} and in vector notation,

HF =
ǫ0
2

∫ [ ∣∣∣~A⊥t
∣∣∣
2

+
3∑

j=1

c2
∣∣∣~A⊥j

∣∣∣
2 ]

d3~r

+
I∑

i=1

(~p c
i − qi ~A⊥i)2

2mi

+ 1
2

I∑

i=1

I∑

i=1
i 6=i

qiqi
4πǫ0|~ri −~ri|

(A.151)

Note in particular that the center term is the kinetic energy of the particles,
but in terms of their canonical momenta.

In terms of the waves (A.144), the integral falls apart in separate contribu-
tions from each d2,~k and d3,~k mode. That is a consequence of the orthogonality
of the exponentials, compare the Parseval identity in {A.26}. (Since the ex-
ponentials are complex, the absolute values in the integral are now required.)
As a result, the equations for different coefficients are only indirectly coupled
by the interaction with the charged particles. In particular, it turns out that
each coefficient satisfies its own harmonic oscillator equation with forcing by the
charged particles, {A.1.4},

ǫ0V(d̈j,~k + k2c2dj,~k) =
∑

i

qi~vi · ~ej,~ke−i
~k·~ri for j = 2 and 3

If the speed of the particle gets comparable to the speed of light, you may
want to use the relativistic energy (1.2);

(~p c
i − qi ~A⊥i)2

2mi

=⇒
√
(mic2)2 + (~p c

i − qi ~A⊥i)2c2



A.22. FORCES BY PARTICLE EXCHANGE 1031

Sometimes, it is convenient to assume that the system under consideration
also experiences an external electromagnetic field. For example, you might
consider an atom or atomic nucleus in the magnetic field produced by an elec-
tromagnet. You probably do not want to include every electron in the wires
of the electromagnet in your model. That would be something else. Instead
you can simply add the vector potential ~Aexti

that they produce to ~A⊥i in the
Hamiltonian. If there is also an external electrostatic potential, add a separate
term qiϕexti to the Hamiltonian for each particle i. The external fields will be
solutions of the homogeneous evolution equations (A.140) and (A.141), (i.e. the
equations without charge and current densities). However, the external fields
will not vanish at infinity; that is why they can be nonzero without charge and
current densities.

Note that the entire external vector potential is needed, not just the trans-
verse part. The longitudinal part is not included in VC. Bethe [6, p. 266] also
notes that the external field should satisfy the Lorenz condition. No further
details are given. However, at least in various simple cases, a gage transform
that kills off the Lorenz condition may be applied. See for example the gage
property for a pure external field {A.19.5}. In the classical case a gage trans-
form of the external fields does not make a difference either, because it does not
change either the Lagrangian equations for the transverse field nor those for the
particles. Using the Lorenz condition cannot hurt, anyway.

Particle spin, if any, is not included in the above Hamiltonian. At nonrel-
ativistic speeds, its energy can be described as a dot produce with the local
magnetic field, chapter 13.4.

So far all this was classical electrodynamics. But the interaction between the
charges and the transverse waves can readily be quantized using essentially the
same procedure as used for the Koulomb potential in subsection A.22.3. The
details are worked out in addendum {A.23} for the fields. It allows a relativistic
description of the emission of electromagnetic radiation by atoms and nuclei,
{A.24} and {A.25}.

While the transverse field must be quantized, the Coulomb potential can
be taken unchanged into quantum mechanics. That was done, for example, for
the nonrelativistic hydrogen atom in chapter 4.3 and for the relativistic one in
addendum {D.81}.

Finally, any external fields are assumed to be given; they are not quantized
either.

Note that the Fermi quantization is not fully relativistic. In a fully rela-
tivistic theory, the particles too should be described by quantum fields. The
Fermi quantization does not do that. So even the relativistic hydrogen atom is
not quite exact, even though it is orders of magnitude more accurate than the
already very accurate nonrelativistic one. The energy levels are still wrong by
the so-called “Lamb shift,” {A.39} But this is an extremely tiny effect. Little
in life is perfect, isn’t it?
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A.22.9 The Coulomb potential and the speed of light

The Coulomb potential

ϕC(~r; t) =
I∑

i=1

qi
4πǫ0|~r −~ri|

does not respect the speed of light c. Move a charge, and the Coulomb potential
immediately changes everywhere in space. However, special relativity says that
an event may not affect events elsewhere unless these events are reachable by the
speed of light. Something else must prevent the use of the Coulomb potential
to transmit observable effects at a speed greater than that of light.

To understand what is going on, assume that at time zero some charges
at the origin are given a well-deserved kick. As mentioned earlier, the Klein-
Gordon equations respect the speed of light. Therefore the original potentials ϕ
and ~A, the ones that satisfied the Klein-Gordon equations and Lorenz condition,
are unaffected by the kick beyond a distance ct from the origin. The original
potentials do respect the speed of light.

The Coulomb potential above, however, includes the longitudinal part ~A‖
of the vector potential ~A. As the Coulomb potential reflects, ~A‖ does change

immediately all the way up to infinity. But the transverse part ~A⊥ also changes
immediately all the way up to infinity. Beyond the limit dictated by the speed
of light, the two parts of the potential exactly cancel each other. As a result,
beyond the speed of light limit, the net vector potential ~A does not change.

The bottom line is

The mathematics of the Helmholtz decomposition of ~A into ~A‖ and
~A⊥ hides, but of course does not change, the limitation imposed by
the speed of light.

The limitation is still there, it is just much more difficult to see. The change in
current density ~ caused by kicking the charges near the origin is restricted to
the immediate vicinity of the origin. But both the longitudinal part ~‖ and the
transverse part ~⊥ extend all the way to infinity. And then so do the longitudinal
and transverse potentials. It is only when you add the two that you see that
the sum is zero beyond the speed of light limit.

A.23 Quantization of radiation

Long ago, the electromagnetic field was described in terms of classical physics
by Maxwell, chapter 13. His equations have stood up well to special relativity.
However, they need correction for quantum mechanics. According to the Planck-
Einstein relation, the electromagnetic field comes in discrete particles of energy
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~ω called photons. A classical electromagnetic field cannot explain that. This
addendum will derive the quantum field in empty space. While the description
tries to be reasonably self-contained, to really appreciate the details you may
have to read some other addenda too. It may also be noted that the discussion
here is quite different from what you will find in other sources, {N.12}.

First, representing the electromagnetic field using the photons of quantum
mechanics is called “second quantization.” No, there is no earlier quantization
of the electromagnetic field involved. The word “second” is there for historical
reasons. Historically, physicists have found it hysterical to confuse students.

In the quantum description, the electromagnetic field is an observable prop-
erty of photons. And the key assumption of quantum mechanics is that observ-
able properties of particles are the eigenvalues of Hermitian operators, chapter
3. Furthermore, these operators act on wave functions that are associated with
the particles.

Therefore, second quantization is basically straightforward. Find the nature
of the wave function of photons. Then identify the Hermitian operators that
give the observable electromagnetic field.

However, to achieve this in a reasonable manner requires a bit of preparation.
To understand photon wave functions, an understanding of a few key concepts of
classical electromagnetics is essential. And the Hermitian operators that act on
these wave functions are quite different from the typical operators normally used
in this book. In particular, they involve operators that create and annihilate
photons. Creation and annihilation of particles is a purely relativistic effect,
described by so-called quantum field theory.

Also, after the field has been quantized, then of course you want to see what
the effects of the quantization really are, in terms of observable quantities.

A.23.1 Properties of classical electromagnetic fields

Classical electromagnetics is discussed in considerable detail in chapter 13.2 and
13.3. Here only a few selected results are needed.

The classical electromagnetic field is a combination of a so-called electric
field ~E and a magnetic field ~B. These are measures for the forces that the field
exerts on any charged particles inside the field. The classical expression for the
force on a charged particle is the so-called Lorentz force law

q
(
~E + ~v × ~B

)

where q is the charge of the particle and ~v its velocity. However, this is not really
important here since quantum mechanics uses neither forces nor velocities.

What is important is that electromagnetic fields carry energy. That is how
the sun heats up the surface of the earth. The electromagnetic energy in a
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volume V is given by, chapter 13.2 (13.11):

EV = 1
2
ǫ0

∫

V

(
~E2 + c2~B2

)
d3~r (A.152)

where ǫ0 = 8.85 10−12 C2/J m is called the permittivity of space and c = 3 108

m/s the speed of light. As you might guess, the energy per unit volume is
proportional to the square fields. After all, no fields, no energy; also the energy
should always be positive. The presence of the permittivity of space is needed
to get proper units of energy. The additional factor 1

2
is not so trivial; it is

typically derived from examining the energy stored inside condensers and coils.
That sort of detail is outside the scope of this book.

Quantum mechanics is in terms of potentials instead of forces. As already
noted in chapter 1.3.2, in classical electromagnetics there is both a scalar po-
tential ϕ as well as a vector potential ~A. In classical electromagnetics these
potentials by themselves are not really important. What is important is that
their derivatives give the fields. Specifically:

~E = −∇ϕ− ∂ ~A

∂t
~B = ∇× ~A (A.153)

Here the operator

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

is called nabla or del. As an example, for the z components of the fields:

Ez = −
∂ϕ

∂z
− ∂Az

∂t
Bz =

∂Ay
∂x
− ∂Ax

∂y

Quantum mechanics is all about the potentials. But the potentials are not
unique. In particular, for any arbitrary function χ of position and time, you
can find two different potentials ϕ′ and ~A′ that produce the exact same electric
and magnetic fields as ϕ and ~A. These potentials are given by

ϕ′ = ϕ− ∂χ

∂t
~A′ = ~A+∇χ (A.154)

(To check that the fields for these potentials are indeed the same, note that ∇ ×
∇χ is zero for any function χ.) This indeterminacy in potentials is the famous
“gauge property” of the electromagnetic field. The arbitrary function χ is the
“gauge function.”

Classical relativistic mechanics likes to combine the four scalar potentials in
a four-dimensional vector, or four-vector, chapter 1.3.2:

→֒

A =

(
ϕ/c
~A

)
=




ϕ/c
Ax
Ay
Az
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A.23.2 Photon wave functions

The wave function of photons was discussed in addendum {A.21}. A summary
of the key results will be given here.

Superficially, the photon wave function
→֒

Aγ takes the same form as an electro-
magnetic potential four-vector like in the previous subsection. However, where
classical potentials are real, the photon wave function is in general complex.
And unlike physical potentials, the derivatives of the photon wave function are
not physically observable.

Furthermore, to use the photon wave function in an reasonably efficient man-
ner, it is essential to simplify it. The gauge property of the previous subsection
implies that the wave function is not unique. So among all the possible alterna-
tives, it is smart to select the simplest. And in empty space, as discussed here,
the simplest photon wave function is of the form:

→֒

Aγ =

(
0
~Aγ

)
∇ · ~Aγ = 0

The gauge function corresponding to this wave function is called the Coulomb-
Lorenz gauge. Seen from a moving coordinate system, this form of the wave
function gets messed up, so do not do that.

The real interest is in quantum states of definite energy. Now for a nonrel-
ativistic particle, wave functions with definite energy must be eigenfunctions of
the so-called Hamiltonian eigenvalue problem. That eigenvalue problem is also
known as the time-independent Schrödinger equation. However, a relativistic
particle of zero rest mass like the photon must satisfy a different eigenvalue
problem, {A.21}:

−∇2 ~Ae
γ = k2 ~Ae

γ k ≡ E

~c
=
p

~
E = ~ω p = ~k (A.155)

Here ~Ae
γ is the energy eigenfunction. Further p is the magnitude of the linear

momentum of the photon. The second-last equation is the so-called Planck-
Einstein relation that gives the photon energy E in terms of its frequency ω,
while the last equation is the de Broglie relation that gives the photon momen-
tum p in terms of its wave number k. The relation between frequency and wave
number is ω = kc with c the speed of light.

The simplest energy eigenfunctions are those that have definite linear mo-
mentum. A typical example of such an energy eigenfunction is

~Ae
γ = k̂eiky (A.156)

This wave function has definite linear momentum ̂~k, as you can see from
applying the components of the linear momentum operator ~∇/i on it. And it
is an energy eigenfunction, as you can verify by substitution in (A.155). Further,
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since the wave function vector is in the z-direction, it is called linearly polarized
in the z-direction.

Now the photon wave function
→֒

Aγ is not a classical electromagnetic potential.

The “electric and magnetic fields” ~Eγ and ~Bγ that you would find by using
the classical expressions (A.153) are not physically observable quantities. So
they do not have to obey the classical expression (A.152) for the energy in an
electromagnetic field.

However, you make life a lot simpler for yourself if you normalize the photon
wave functions so that they do satisfy it. That produces a normalized wave
function and corresponding unobservable fields of the form, {A.21}:

~An
γ =

εk
ikc

~Ae
γ

~Enγ = εk ~A
e
γ c~Bn

γ =
εk
ik
∇× ~Ae

γ (A.157)

where the constant εk is found by substitution into the normalization condition:

1
2
ǫ0

∫

all

(∣∣∣~Enγ
∣∣∣
2

+ c2
∣∣∣~Bn

γ

∣∣∣
2
)

d3~r = ~ω (A.158)

Consider how this works out for the example eigenfunction of definite linear
momentum mentioned above. That eigenfunction cannot be normalized in infi-
nite space since it does not go to zero at large distances. To normalize it, you
have to assume that the electromagnetic field is confined to a big periodic box
of volume V . In that case the normalized eigenfunction and unobservable fields
become:

~An
γ =

εk
ikc

k̂eiky ~Enγ = εkk̂e
iky c~Bn

γ = εk ı̂e
iky εk =

√
~ω

ǫ0V
(A.159)

Another interesting example is given in {A.21.6}. It is a photon state with
definite angular momentum ~ in the direction of motion. Such a photon state
is called right-circularly polarized. In this example the linear momentum is
taken to be in the z-direction, rather than the y-direction. The normalized
wave function and unobservable fields are:

~An
γ =

εk
ikc

ı̂+ î√
2
eikz ~Enγ = εk

ı̂+ î√
2
eikz c~Bn

γ = εk
−îı+ ̂√

2
eikz εk =

√
~ω

ǫ0V
(A.160)

It will be interesting to see what the observable fields for this photon state look
like.

A.23.3 The electromagnetic operators

The previous subsection has identified the form of the wave function of a photon
in an energy eigenstate. The next step is to identify the Hamiltonian operators
of the observable electric and magnetic fields.
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But first there is a problem. If you have exactly one photon, the wave
functions as discussed in the previous subsection would do just fine. If you had
exactly two photons, you could readily write a wave function for them too. But
a state with an exact number i of photons is an energy eigenstate. It has energy
i~ω, taking the zero of energy as the state of no photons. Energy eigenstates
are stationary, chapter 7.1.4. They never change. All the interesting mechanics
in nature is due to uncertainty in energy. As far as photons are concerned,
that requires uncertainty in the number of photons. And there is no way to
write a wave function for an uncertain number of particles in classical quantum
mechanics. The mathematical machinery is simply not up to it.

The mathematics of quantum field theory is needed, as discussed in adden-
dum {A.15}. The key concepts will be briefly summarized here. The mathe-
matics starts with Fock space kets. Consider a single energy eigenfunction for
photons, like one of the examples given in the previous subsection. The Fock
space ket

|i〉
indicates the wave function if there are exactly i photons in the considered
energy eigenfunction. The number i is called the occupation number of the
state. (If more than one photon state is of interest, an occupation number is
added to the ket for each state. However, the discussion here will stay restricted
to a single state.)

The Fock space ket formalism allows wave functions to be written for any
number of particles in the state. And by taking linear combinations of kets
with different occupation numbers, uncertainty in the number of photons can
be described. So uncertainty in energy can be described.

Kets are taken to be orthonormal. The inner product 〈i1|i2〉 of two kets with
different occupation numbers i1 and i2 is zero. The inner product of a ket with
itself is taken to be one. That is exactly the same as for energy eigenfunctions
in classical quantum mechanics,

Next, it turns out that operators that act on photon wave functions are
intrinsically linked to operators that annihilate and create photons. Mathemat-
ically, at least. These operators are defined by the relations

â|i〉 =
√
i|i−1〉 â†|i−1〉 =

√
i|i〉 (A.161)

for any number of photons i. In words, the annihilation operator â takes a state
of i photons and turns it into a state with one less photon. The creation operator
â† puts the photon back in. The scalar factors

√
i are a matter of convenience.

If you did not put them in here, you would have to do it elsewhere.
At first it may seem just weird that there are physical operators like that.

But a bit more thought may make it more plausible. First of all, nature pretty
much forces the Fock space kets on us. Classical quantum mechanics would like
to number particles such as photons just like classical physics likes to do: photon
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1, photon 2, . . . But nature makes a farce out of that with the symmetrization
requirement. It allows absolutely no difference in the way one photon occupies a
state compared to another one. Indeed, nature goes to such a length of prevent-
ing us to, God forbid, make a distinction between one photon and another that
she puts every single photon in the universe partly in every single microscopic
photon state on earth. Now Fock space kets are the only way to express how
many photons are in a given state without saying which photons. And if the
symbols of nature are then apparently Fock space kets, the operators of nature
are pretty unavoidably annihilation and creation operators. There is not much
else you can do with Fock space kets than change the number of particles.

The annihilation and creation operators are not Hermitian. They cannot be
taken unchanged to the other side of an inner product of kets. However, they
are Hermitian conjugates: they change into each other when taken to the other
side of an inner product:

〈
|i2〉
∣∣∣â|i1〉

〉
=
〈
â†|i2〉

∣∣∣|i1〉
〉
≡ 〈i2|â|i1〉

〈
|i1〉
∣∣∣â†|i2〉

〉
=
〈
â|i1〉

∣∣∣|i2〉
〉
≡ 〈i1|â†|i2〉

To see this, note that the inner products are only nonzero if i2 = i1− 1 because
of the orthogonality of kets with different numbers of photons. And if i2 =
i1 − 1, then (A.161) shows that all four inner products above equal

√
i1.

That is important because it shows that Hermitian operators can be formed
from combinations of the two operators. For example, â + â† is a Hermitian
operator. Each of the two operators changes into the other when taken to the
other side of an inner product. So the sum stays unchanged. More generally, if
c is any real or complex number, âc+ â†c∗ is Hermitian.

And that then is the basic recipe for finding the operators of the observable
electric and magnetic fields. Take â times the unobservable field of the nor-
malized photon state, (A.157) with (A.158) and (A.155). Add the Hermitian
conjugate of that. And put in the usual 1/

√
2 factor of quantum mechanics for

averaging states. In total

~̂E =
1√
2

(
â~Enγ + â†~En∗γ

)
~̂B =

1√
2

(
â~Bn

γ + â†~Bn∗
γ

)
(A.162)

You might wonder why there are two terms in the operators, one with a
complex conjugate wave function. Mathematically that is definitely needed to
get Hermitian operators. That in turn is needed to get real observed fields.
But what does it mean physically? One way of thinking about it is that the
observed field is real because it does not just involve an interaction with an

ei(
~k·~r−ωt) photon, but also with an e−i(

~k·~r−ωt) antiphoton.
Of course, just because the above operators are Hermitian does not prove

that they are the right ones for the observable electric and magnetic fields.
Unfortunately, there is no straightforward way to deduce quantum mechanics
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operators from mere knowledge of the classical approximation. Vice-versa is
not a problem: given the operators, it is fairly straightforward to deduce the
corresponding classical equations for a macroscopic system. It is much like at
the start of this book, where it was postulated that the momentum of a particle
corresponds to the operator ~∂/i∂x. That was a leap of faith. However, it
was eventually seen that it did produce the correct classical momentum for
macroscopic systems, chapter 7.2.1 and 7.10, as well as correct quantum results
like the energy levels of the hydrogen atom, chapter 4.3. A similar leap of faith
will be needed to quantize the electromagnetic field.

A.23.4 Properties of the observable electromagnetic field

The previous subsection postulated the operators (A.162) for the observable
electric and magnetic fields. This subsection will examine the consequences of
these operators, in order to gain confidence in them. And to learn something
about the effects of quantization of the electromagnetic field.

Consider first a simple wave function where there are exactly i photons in
the considered photon state. In terms of Fock space kets, the wave function is
then:

Ψ = cie
−iiωt|i〉

where ci is a constant with magnitude 1. This follows the Schrödinger rule that
the time dependence in a wave function of definite energy E is given by e−iEt/~,
with in this case E = i~ω.

The expectation value of the electric field at a given position and time is
then by definition

〈~E〉 =
〈
Ψ
∣∣∣~̂EΨ

〉
=

1√
2
〈i|eiiωtc∗i

∣∣∣
(
â~Enγ + â†~En∗γ

)
cie
−iiωt|i〉

That is zero because â and â† turn the right hand ket into |i−1〉 respectively
|i+1〉. These are orthogonal to the left hand 〈i|. The same way, the expectation
magnetic field will be zero too.

Oops.

Zero electric and magnetic fields were not exactly expected if there is a
nonzero number of photons present.

No panic please. This is an energy eigenstate. Often these do not resemble
classical physics at all. Think of a hydrogen atom in its ground state. The
expectation value of the linear momentum of the electron is zero in that state.
That is just like the electric and magnetic fields are zero here. But the expecta-
tion value of the square momentum of the hydrogen electron is not zero. In fact,
that gives the nonzero expectation value of the kinetic energy of the electron,
13.6 eV. So maybe the square fields need to be examined here.
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Come to think of it, the first thing to check should obviously have been the
energy. It better be i~ω for i photons. Following the Newtonian analogy for the
classical energy integral (A.152), the Hamiltonian should be

H = 1
2
ǫ0

∫

all

(
~̂E2 + c2 ~̂B2

)
d3~r

This can be greatly simplified by plugging in the given expressions for the op-
erators and identifying the integrals, {D.40}:

H = 1
2
~ω(â†â+ ââ†) (A.163)

Now apply this Hamiltonian on a state with i photons. First, using the
definitions (A.161) of the annihilation and creation operators

â†â|i〉 = â†(
√
i|i−1〉) = i|i〉 ââ†|i〉 = â(

√
i+ 1|i+1〉) = (i+ 1)|i〉

This shows that the operators â and â† do not commute; their order makes a
difference. In particular, according to the above their commutator equals

[â, â†] ≡ ââ† − â†â = 1 (A.164)

Anyway, using the above relations the expression for the Hamiltonian applied
on a Fock space ket becomes

H|i〉 = ~ω(i+ 1
2
)|i〉

The factor in front of the final ket is the energy eigenvalue. It is more or less like
expected, which was i~ω for i photons. But there is another one-half photon
worth of energy.

That, however, may be correct. It closely resembles what happened for the
harmonic oscillator, chapter 4.1. Apparently the energy in the electromagnetic
field is never zero, just like a harmonic oscillator is never at rest. The energy
increases by ~ω for each additional photon as it should.

Actually, the half photon “vacuum energy” is somewhat of a problem. If you
start summing these half photons over all infinitely many frequencies, you end
up, of course, with infinity. Now the ground state energy does not affect the
dynamics. But if you do “measurements” of the electric or magnetic fields in
vacuum, you will get nonzero values. So apparently there is real energy there.
Presumably that should affect gravity. Maybe the effect would not be infinite,
if you cut off the sum at frequencies at which quantum mechanics might fail,
but it should certainly be extremely dramatic. So why is it not observed? The
answer is unknown. See chapter 8.7 for one suggestion.

The vacuum energy also has consequences if you place two conducting plates
extremely closely together. The conducting plates restrict the vacuum field
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between the plates. (Or at least the relatively low energy part of it. Beyond say
the X-ray range photons will not notice the plates.) Because of the restriction
of the plates, you would expect the vacuum energy to be less than expected.
Because of energy conservation, that must mean that there is an attractive force
between the plates. That is the so-called “Casimir force.” This weird force has
actually been measured experimentally. Once again it is seen that the half
photon of vacuum energy in each state is not just a mathematical artifact.

Because of the infinite energy, some authors describe the vacuum as a “seeth-
ing cauldron” of electromagnetic waves. These authors may not be aware that
the vacuum state, being a ground state, is stationary. Or they may not have
access to a dictionary of the English language.

The next test of the field operators is to reconsider the expectation electric
field when there is uncertainty in energy. Also remember to add another half
photon of energy now. Then the general wave function takes the form:

Ψ =
∑

i

cie
−i(i+ 1

2
)ωt|i〉

The expectation value of the electric field follows as

〈~E〉 =
∑

i

∑

j

1√
2
〈i|ei(i+ 1

2
)ωtc∗i

∣∣∣
(
â~Enγ + â~En∗γ

)
cje
−i(j+ 1

2
)ωt|j〉

Using the definitions of the annihilation and creation operators and the or-
thonormality of the kets, this can be worked out further to

〈~E〉 = Ce−iωt~Enγ + C∗eiωt~En∗γ C ≡ 1√
2

∑

i

c∗i−1ci
√
i (A.165)

Well, the field is no longer zero. Note that the first term in the electric field
is more or less what you would expect from the unobservable field of a single
photon. But the observable field adds the complex conjugate. That makes the
observable field real.

The properties of the observable fields can now be determined. For example,
consider the photon wave function (A.159) given earlier. This wave function had
its linear momentum in the y-direction. It was “linearly polarized” in the z-
direction. According to the above expression, the observable electric field is:

〈~E〉 = k̂εk
(
Cei(ky−ωt) + C∗e−i(ky−ωt)

)

The first term is roughly what you would want to write down for the unobserv-
able electric field of a single photon. The second term, however, is the complex
conjugate of that. It makes the observable field real. Writing C in the form
|C|eiα and using the Euler formula 2.5 to clean up gives:

〈~E〉 = k̂2εk|C| cos(ky − ωt+ α)
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That is a real electromagnetic wave. It is still polarized in the z-direction, and
it travels in the y-direction.

The corresponding magnetic field goes exactly the same way. The only
difference in (A.159) is that k̂ gets replaced by ı̂. Therefore

〈c~B〉 = ı̂2εk|C| cos(ky − ωt+ α)

Note that like for the photon wave function, the observable fields are normal to
the direction of wave propagation, and to each other.

As another example, consider the “circularly polarized” photon wave func-
tion (A.160). This wave function had its linear momentum in the z-direction,
and it had definite angular momentum ~ around the z-axis. Here the observable
fields are found to be

〈~E〉 =
√
2εk|C| [̂ı cos(kz − ωt+ α)− ̂ sin(kz − ωt+ α)]

〈c~B〉 =
√
2εk|C| [̂ı sin(kz − ωt+ α) + ̂ cos(kz − ωt+ α)]

Like for linearly polarized light, the electric and magnetic fields are normal to
the direction of wave propagation and to each other. But here the electric and
magnetic field vectors rotate around in a circle when seen at a fixed position z.
Seen at a fixed time, the end points of the electric vectors that start from the
z-axis form a helix. And so do the magnetic ones.

The final question is under what conditions you would get a classical elec-
tromagnetic field with relatively little quantum uncertainty. To answer that,
first note that the square quantum uncertainty is given by

σ~E
2 = 〈~E2〉 − 〈~E〉2

(This is the square of chapter 4.4.3 (4.44) multiplied out and identified.)
To evaluate this uncertainty requires the expectation value of the square

electric field. That can be found much like the expectation value (A.165) of the
electric field itself. The answer is

〈~E2〉 = 2D0|~Enγ|2 +D1e
−2iωt(~Enγ)2 +D∗1e

2iωt(~En∗γ )2

where

D0 ≡
1

2

∑

i

|ci|2(i+ 1
2
) D1 ≡

1

2

∑

i

c∗i−1ci+1

√
i
√
i+ 1

Note that when this is substituted into the integral (A.152) for the energy,
the D0 term gives half the expectation value of the energy. In particular, the
coefficient D0 itself is half the expectation value of the i+ 1

2
number of photons

of energy. The other half comes from the corresponding term in the magnetic
field. The D1 terms above integrate away against the corresponding terms in
the magnetic field, {D.40}.
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To determine the uncertainty in the electric field, it is convenient to write
the expectation square electric field above in real form. To do so, the coefficient
D1 is written in the form |D1|e2iβ. Also, the square unobservable electric field

(~Enγ)2 is written in the form |~Enγ|2e2iγ . Here γ will normally depend on position;
for example γ = ky for the given example of linearly polarized light.

Then the expectation square electric field becomes, using the Euler formula
(2.5) and some trig,

〈~E2〉 = 2(D0 − |D1|)|~Enγ|2 + 4|D1||~Enγ|2 cos2(γ − ωt+ β)

with D0 and D1 = |D1|e2iβ as given above. Similarly the square of the expecta-
tion electric field, as given earlier in (A.165), can be written as

〈~E〉2 = 4|C|2|~Enγ|2 cos2(γ − ωt+ α) C = |C|eiα =
1√
2

∑

i

c∗i−1ci
√
i

For a field without quantum uncertainty, 〈~E2〉 and 〈~E〉2 as given above must
be equal. Note that first of all this requires that |D1| = D0, because otherwise

〈~E2〉 does not become zero periodically like 〈~E〉2 does. Also β will have to be
α, up to a whole multiple of π, otherwise the zeros are not at the same times.
Finally, |C| will have to be equal to D0 too, or the amplitudes will not be the
same.

However, regardless of uncertainty, the coefficients must always satisfy

|D1| 6 D0 |C|2 6 1
2
(D0 + |D1|)

The first inequality applies because otherwise 〈~E2〉 would become negative when-

ever the cosine is zero. The second applies because 〈~E〉2 cannot be larger than

〈~E2〉; the square uncertainty cannot be negative. For quantum certainty then,
the above relations must become equalities. However, a careful analysis shows
that they cannot become equalities, {D.40}.

So there is always some quantum uncertainty left. Maximum uncertainty
occurs when the number of photons has a definite value. Then D1 = C = 0.

If there is always at least some uncertainty, the real question is under what
conditions it is relatively small. Analysis shows that the uncertainty in the fields
is small under the following conditions, {D.40}:
• The expectation value of the number of photons 〈i〉 is large enough.
• Nonnegligible coefficients ci are limited to a relatively small range
around i = 〈i〉. However, that range must still contain a relatively
large number of coefficients.

• The coefficients for successive values of i are different by a factor
that is approximately equal to eiα.
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In that case classical electric and magnetic field result with little quantum un-
certainty. Note that the above conditions apply for photons restricted to a single
quantum state. In a real electromagnetic field, many quantum states would be
occupied and things would be much messier still.

It may also be noted that the above conditions bear a striking resemblance
to the conditions that produce a particle with a fairly coherent position and
momentum in classical quantum mechanics, chapter 7.10.

A.24 Quantum spontaneous emission

Chapter 7.8 explained the general interaction between atoms and electromag-
netic fields. However, spontaneous emission of radiation was found using a dirty
trick due to Einstein. He peeked at the solution for blackbody radiation. This
addendum will give a proper quantum description. Warning: while this adden-
dum tries to be reasonably self-contained, to really appreciate the details you
may have to read some other addenda too.

The problem with the descriptions of emission and absorption of radiation in
chapter 7.7 and 7.8 is that they assume that the electromagnetic field is given.
The electromagnetic field is not given; it changes by one photon. That is rather
important for spontaneous emission, where it changes from no photons to one
photon. To account for that correctly requires that the electromagnetic field is
properly quantized. That is done in this note.

To keep it simple, it will be assumed that the atom is a hydrogen one. Then
there is just one electron to worry about. (The general analysis can be found in
{A.25}). The hydrogen atom is initially in some high energy state ψH. Then it
emits a photon and transitions to a lower energy state ψL. The emitted photon
comes out in a state with energy

Eγ = ~ω ≈ EH − EL

Recall that the photon energy is given in terms of its frequency ω by the Planck-
Einstein relation. This photon energy is approximately the difference between
the atomic energies. It does not have to be exact; there can be some energy
slop, chapter 7.6.1.

Only a single photon energy state needs to be considered at a time. At the
end of the story, the results can be summed over all possible photon states. To
allow for stimulated emission, it will be assumed that initially there may already
be i preexisting photons present. For spontaneous emission, i = 0. The initial
system state will be indicated as:

ψ1 = ψH|i〉

Here the so-called Fock space ket |i〉 is simply a concise way of indicating that
there are i photons in the considered photon quantum state.
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In the final state the atom has decayed to a lower energy state ψL. In doing
so it has released 1 more photon into the considered photon state. So the final
wave function is

ψ2 = ψL|i+1〉
The key to the emission process is now the set of Hamiltonian coefficients,

chapter 7.6,

〈E1〉 = 〈ψ1|Hψ1〉 H21 = 〈ψ2|Hψ1〉 〈E2〉 = 〈ψ2|Hψ2〉
Here H is the Hamiltonian. All that really needs to be done in this note is to
identify these coefficients, and in particular the so-called matrix element H21.
With the matrix element known, Fermi’s golden rule can be used to find the
precise transition rate, chapter 7.6.1.

To identify the Hamiltonian coefficients, first the Hamiltonian must be iden-
tified. Recall that the Hamiltonian is the operator of the total energy of the
system. It will take the form

H = Hatom +Hγ +Hatom,γ

The first term in the right hand side is the inherent energy of the hydrogen
atom. This Hamiltonian was written down way back in chapter 4.3. However,
its precise form is of no interest here. The second term in the right hand
side is the energy in the electromagnetic field. Electromagnetic fields too have
inherent energy, about ~ω per photon in fact. The third term is the energy of
the interaction between the atomic electron and the electromagnetic field.

Unlike the first term in the Hamiltonian, the other two are inherently rel-
ativistic: the number of photons is hardly a conserved quantity. Photons are
readily created or absorbed by a charged particle, like the electron here. And
it turns out that Hamiltonians for photons are intrinsically linked to operators
that annihilate and create photons. Mathematically, at least. These operators
are defined by the relations

â|i〉 =
√
i|i−1〉 â†|i−1〉 =

√
i|i〉 (A.166)

for any number of photons i. In words, the annihilation operator â takes a state
of i photons and turns it into a state with one less photon. The creation operator
â† puts the photon back in. The scalar factors

√
i are a matter of convenience.

If you did not put them in here, you would have to do it elsewhere.
The Hamiltonian that describes the inherent energy in the electromagnetic

field turns out to be, {A.23},
Hγ =

1
2
~ω(â†â+ ââ†)

As a sanity check, this Hamiltonian can be applied on a state of i photons.
Using the definitions of the annihilation and creation operators given above,

Hγ|i〉 = 1
2
~ω(â†

√
i|i−1〉+ â

√
i+ 1|i+1〉) = 1

2
~ω(i|i〉+ (i+ 1)|i〉) = ~ω(i+ 1

2
)|i〉
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The factor in front of the final ket is the energy eigenvalue. So the energy in the
field increases by one unit ~ω for each photon added, exactly as it should. The
additional half photon is the ground state energy of the electromagnetic field.
Even in its ground state, the electromagnetic field has some energy left. That
is much like a one-dimensional harmonic oscillator still has 1

2
~ω of energy left

in its ground state, chapter 4.1.
Finally the energy of the interaction between the electron and electromag-

netic field is needed. This third part of the total Hamiltonian is the messiest.
To keep it as simple as possible, it will assumed that the transition is of the nor-
mal electric dipole type. In such transitions the electron interacts only with the
electric part of the electromagnetic field. In addition, just like in the analysis
of chapter 7.7.1 using a classical electromagnetic field, it will be assumed that
the electric field is in the z-direction and propagates in the y-direction. (The
general multipole analysis can be found in {A.25}).

Now recall that in quantum mechanics, observable properties of particles are
the eigenvalues of Hermitian operators, chapter 3.3. For example, the observable
values of linear momentum of an electron in the y-direction are the eigenvalues of
the linear momentum operator p̂y = ~∂/i∂y. This operator acts on the electron
wave function.

Similarly, the electric field Ez that the electron interacts with is an observable
property of the corresponding photons. So the observable values of the electric
field must be the eigenvalues of a Hermitian electric field operator Êz. And this
operator acts on photon wave functions.

In the analysis using a classical electromagnetic field, the energy of inter-
action between the electron and the electromagnetic field was taken to be ap-
proximately eEzz. That is similar to the mgh potential of a particle due to
gravity. The electron electric charge −e takes the place of the mass m, the
electric field Ez that of the acceleration of gravity g, and z that of the height h.
Using the quantized electric field, there is no given classical field Ez, and instead
the operator Êz must be used:

Hatom,γ = eÊzz
The operator Êz acts on the ket part of the combined atom-photon wave func-
tion. (And, although you may not think of it that way, the factor z is really an
operator that acts on the electron wave function part. That is true even in the
analysis using the classical field.)

The electric field operator Êz can be identified from the appropriate photon
wave function. The photon wave function here is assumed to have its linear
momentum in the y-direction and its unobservable electric field in the z-direc-
tion. The corresponding normalized wave function and unobservable electric
field were given in {A.21.6} (A.95):

~An
γ =

εk
ikc

k̂eiky ~Enγ = εkk̂e
iky εk =

√
~ω

ǫ0V
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Here ǫ0 is the permittivity of space. Also V is the volume of the large periodic
box in which the entire system will be assumed to be located. In truly infinite
space the analysis would be extremely messy, littered with ugly delta functions.

The rules to get the operator of the observable electric field were discussed
in addendum {A.23}. First the unobservable electric field above is multiplied
by the annihilation operator, then the Hermitian conjugate of that product is
added, and the sum is divided by

√
2:

Êz =
εk√
2
(âeiky + â†e−iky)

(Note that for the usual Schrödinger approach followed here, time dependence
is described by the wave function. Most sources switch here to a Heisenberg
approach where the time-dependence is pushed into the operators. There is
however no particular need to do so.)

In the electric dipole approximation, it is assumed that the atom is so small
compared to the wave length of the photon that ky can be assumed to be zero.
Therefore

Êz =
εk√
2
(â+ â†)

The combined Hamiltonian is then

H = Hatom +Hγ + e
εk√
2
(â+ â†)z

with the first two terms as described earlier.
Next the Hamiltonian matrix coefficients are needed. The first one is

〈E1〉 = 〈ψ1|Hψ1〉 = 〈i|ψH

∣∣∣
(
Hatom +Hγ + e

εk√
2
(â+ â†)z

)
ψH|i〉

Now the atomic part of the Hamiltonian produces a mere factor EH when it
acts on the atomic part of the right hand wave function. Further, as discussed
above, the electromagnetic Hamiltonian produces a factor (i+ 1

2
)~ω when it acts

on the right hand ket. Finally the interaction part of the Hamiltonian does not
produce a contribution. One way to see that is from the atomic inner product.
The atomic inner product is zero because negative values of z integrate away
against positive ones. Another way to see it is from the electromagnetic inner
product. The operators â and â† produce states |i−1〉 respectively |i+1〉 when
they act on the right hand ket. And those are orthogonal to the left hand ket;
inner products between kets with different numbers of photons are zero. Kets
are by definition orthonormal.

All together then
〈E1〉 = EH + (i+ 1

2
)~ω

The same way
〈E2〉 = EL + (i+ 1 + 1

2
)~ω
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Finally the matrix element:

H21 = 〈ψ2|Hψ1〉 = 〈i+ 1|ψL

∣∣∣
(
Hatom +Hγ + e

εk√
2
(â+ â†)z

)
ψH|i〉

In this case the atomic part of the Hamiltonian produces zero. The reason
is that this Hamiltonian produces a simple scalar factor EH when it acts on
the right hand state. It leaves the state ψH itself unchanged. And this state
produces zero in an inner product with the atomic state ψL; energy eigenstates
are orthonormal. Similarly, the electromagnetic Hamiltonian produces zero. It
leaves the ket |i〉 in the right hand wave wave function unchanged, and that
is orthogonal to the left hand 〈i+ 1|. However, in this case the interaction
Hamiltonian produces a nonzero contribution:

H21 =
εk
√
i+ 1√
2
〈ψL|ezψH〉

The reason is that the creation operator â† acting on the right hand ket pro-
duces a multiple

√
i+ 1 times the left hand ket. The remaining inner product

〈ψL|ezψH〉 is called the “atomic matrix element,” as it only depends on what
the atomic states are.

The task laid out in chapter 7.6.1 has been accomplished: the relativistic
matrix element has been found. A final expression for the spontaneous emission
rate can now be determined.

Before doing so, however, it is good to first compare the obtained result
with that of chapter 7.7.1. That section used a classical given electromagnetic
field, not a quantized one. So the comparison will show up the effect of the
quantization of the electromagnetic field. The section defined a modified matrix
element

H21 = H21e
i(〈E2〉−〈E1〉)t/~

This matrix element determined the entire evolution of the system. For the
quantized electric field discussed here, this coefficient works out to be

H21 =
εk
√
i+ 1√
2
〈ψL|ezψH〉ei(ω−ω0)t εk =

√
~ω

ǫ0V
(A.167)

where ω0 = (EH − EL)/~.
That is essentially the same form as for the classical field. Recall that the

second term in (7.44) for the classical field can be ignored. The first term is the
same as above, within a constant. To see the real difference in the constants,
note that the transition probability is proportional to the square magnitude of
the matrix element. The square magnitudes are:

quantized: |H2

21| =
(i+ 1)~ω

2ǫ0V
|〈ψL|ezψH〉|2 classical: |H2

21| =
E2f
4
|〈ψL|ezψH〉|2
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Now if there is a large number i of photons in the state, the two expressions are
approximately the same. The electromagnetic energy of the wave according to
classical physics, ǫ0E2f V/2, {A.23}, is then approximately the number of photons
i ≈ i+ 1 times ~ω.

But for spontaneous emission there is a big difference. In that case, classical
physics would take the initial electromagnetic field Ef to be zero. And that then
implies that the atom stays in the excited state ψH for always. There is no
electromagnetic field to move it out of the state. So there is no spontaneous
emission.

Instead quantum mechanics takes the initial field to have i = 0 photons. But
note the square matrix element above. It is not zero! The matrix element is as
if there is still a full photon left in the electromagnetic field. So spontaneous
emission can and does occur in the quantized electromagnetic field. Also, as
noted in chapter 7.8, one full photon is exactly what is needed to explain spon-
taneous emission. Einstein’s A coefficient has been found using pure quantum
analysis. Without peeking at the black body spectrum.

That can also be seen without detouring through the messy analysis of chap-
ter 7.7 and 7.8. To find the spontaneous emission rate directly, the matrix el-
ement above can be plugged into Fermi’s Golden Rule (7.38) of chapter 7.6.1.
The density of states needed in it was given earlier in chapter 6.3 (6.7) and 6.19.
Do note that these modes include all directions of the electric field, not just the
z-direction. To account for that, you need to average the square atomic ma-
trix element over all three Cartesian directions. That produces the spontaneous
transition rate

ω3

π~c3ǫ0

|〈ψL|exψH〉|2 + |〈ψL|eyψH〉|2 + |〈ψL|ezψH〉|2
3

The above result is the same as Einstein’s, (7.47) and (7.48). (To see why a
simple average works in the final term, first note that it is obviously the right
average for photons with axial linear momenta and fields. Then note that the
average is independent of the angular orientation of the axis system in which
the photons are described. So it also works for photons that are axial in any
rotated coordinate system. To verify that the average is independent of angular
orientation does not really require linear algebra; it suffices to show that it is
true for rotation about one axis, say the z-axis.)

Some additional observations may be interesting. You might think of the
spontaneous emission as caused by excitation from the ground state electro-
magnetic field. But as seen earlier, the actual energy of the ground state is half
a photon, not one photon. And the zero level of energy should not affect the
dynamics anyway. According to the analysis here, spontaneous emission is a
twilight effect, chapter 5.3. The Hamiltonian coefficient H21 is the energy if the
atom is not excited and there is a photon if the atom is excited and there is no
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photon. In quantum mechanics, the twilight term allows the excited atom to
interact with the photon that would be there if it was not excited. Sic.

A.25 Multipole transitions

This addendum gives a description of the multipole interaction between atoms
or nuclei and electromagnetic fields. In particular, the spontaneous emission of
a photon of electromagnetic radiation in an atomic or nuclear transition will be
examined. But stimulated emission and absorption are only trivially different.

The basic ideas were already worked out in earlier addenda, especially in
{A.21} on photon wave functions and {A.24} on spontaneous emission. How-
ever, these addenda left the actual interaction between the atom or nucleus and
the field largely unspecified. Only a very simple form of the interaction, called
the electric dipole approximation, was worked out there.

Many transitions are not possible by the electric dipole mechanism. This
addendum will describe the more general multipole interaction mechanisms.
That will allow rough estimates of how fast various possible transitions occur.
These will include the Weisskopf and Moszkowski estimates for the gamma decay
of nuclei. It will also allow a general description exactly how the selection rules
of chapter 7.4.4 relate to nuclear and photon wave functions.

The overall picture is that before the transition, the atom or nucleus is in a
high energy state ψH. Then it transitions to a lower energy state ψL. During
the transition it emits a photon that carries away the excess energy. The energy
of that photon is related to its frequency ω by the Planck-Einstein relation:

EH − EL = ~ω0 ≈ ~ω

Here ω0 is the nominal frequency of the photon. The actual photon frequency
ω might be slightly different; there can be some slop in energy conservation.
However, that will be taken care of by using Fermi’s golden rule, chapter 7.6.1.

It is often useful to express the photon frequency in terms of the so-called
wave number k:

ω = kc

Here c is the speed of light. The wave number is a physically important quantity
since it is inversely proportional to the wave length of the photon. If the typical
size of the atom or nucleus is R, then kR is an nondimensional quantity. It
describes the ratio of atom or nucleus size to photon wave length. Normally
this ratio is very small, which allows helpful simplifications.

It will be assumed that only the electrons need to be considered for atomic
transitions. The nucleus is too heavy to move much in such transitions. For
nuclear transitions, (inside the nuclei), it is usually necessary to consider both
types of nucleons, protons and neutrons. Protons and neutrons will be treated
as point particles, though each is really a combination of three quarks.
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As noted in chapter 7.5.3 and 7.6.1, the “driving force” in a transition is the
so-called Hamiltonian matrix element:

H21 = 〈ψL|H|ψH〉

Here H is the Hamiltonian, which will depend on the type of transition. In
particular, it depends on the properties of the emitted photon.

If the matrix element H21 is zero, transitions of that type are not possible.
The transition is “forbidden.” If the matrix element is very small, they will be
very slow. (If the term “forbidden” is used without qualification, it indicates
that the electric-dipole type of transition cannot occur,)

A.25.1 Approximate Hamiltonian

The big ideas in multipole transitions are most clearly seen using a simple model.
That model will be explained in this subsection. However, the results in this
subsection will not be quantitatively correct for multipole transitions of higher
order. Later subsections will correct these deficiencies. This two-step approach
is followed because otherwise it can be easy to get lost in all the mathematics
of multipole transitions. Also, the terminology used in multipole transitions
really arises from the simple model discussed here. And in any case, the needed
corrections will turn out to be very simple.

An electromagnetic wave consists of an electric field ~E and a magnetic field
~B. A basic plane wave takes the form, (13.10):

~E = ı̂
√
2E0 cos

(
kz − ωt− α0

)
~B = ̂

√
2E0
c

cos
(
kz − ωt− α0

)

For convenience the z-axis was taken in the direction of propagation of the wave.
Also the x-axis was taken in the direction of the electric field. The constant c
is the speed of light and the constant E0 is the root-mean-square value of the
electric field. (The amplitude of the electric field is then

√
2E0, but the root

mean square value is more closely related to what you end up with when the
electromagnetic field is properly quantized.) Finally α0 is some unimportant
phase angle.

The above waves need to be written as complex exponentials using the Euler
formula (2.5):

~E = ı̂
E0√
2

(
ei(kz−ωt−α0)+e−i(kz−ωt−α0)

)
~B = ̂

E0√
2c

(
ei(kz−ωt−α0)+e−i(kz−ωt−α0)

)

Only one of the two exponentials will turn out to be relevant to the transition
process. For absorption that is the first exponential. But for emission, the case
discussed here, the second exponential applies.
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There are different ways to see why only one exponential is relevant. Chapter
7.7 follows a classical approach in which the field is given. In that case, the
evolution equation that gives the transition probability is, {D.38},

i~ ˙̄c2 ≈ H21e
i(E2−E1)t/~

Here |c2|2 is the transition probability. For emission, the final state is the low
energy state. Then the Planck-Einstein relation gives the exponential above as
e−iω0t. (By convention, frequencies are taken to be positive.) Now the Hamilto-
nian matrix element H21 will involve the electric and magnetic fields, with their
exponentials. The first exponentials, combined with the exponential above, pro-
duce a time-dependent factor e−i(ω0+ω)t. Since normal photon frequencies are
large, this factor oscillates extremely rapidly in time. Because of these oscilla-
tions, the corresponding terms never produce a significant contribution to the
transition probability. Opposite contributions average away against each other.
So the first exponentials can be ignored. But the second exponentials produce
a time dependent factor e−i(ω0−ω)t. That does not oscillate rapidly provided
that the emitted photon has frequency ω ≈ ω0. So such photons can achieve a
significant probability of being emitted.

For absorption, the low energy state is the first one, instead of the second.
That makes the exponential above e+iω0t, and the entire story inverts.

The better way to see that the first exponentials in the fields drop out
is to quantize the electromagnetic field. This book covers that only in the
addenda. In particular, addendum {A.24} described the process. Fortunately,
quantization of the electromagnetic field is mainly important to figure out the
right value of the constant E0 to use, especially for spontaneous emission. It
does not directly affect the actual analysis in this addendum. In particular the
conclusion remains that only the second exponentials survive.

The bottom line is that for emission

~E = ı̂
E0√
2
e−i(kz−ωt−α0) ~B = ̂

E0√
2c
e−i(kz−ωt−α0) (A.168)

Also, as far as this addendum is concerned, the difference between spontaneous
and stimulated emission is only in the value of the constant E0.

Next the Hamiltonian is needed. For the matrix element, only the part of the
Hamiltonian that describes the interaction between the atom or nucleus and the
electromagnetic fields is relevant, {A.24}. (Recall that the matrix element drives
the transition process; no interaction means no transition.) Assume that the
electrons in the atom, or the protons and neutrons in the nucleus, are numbered
using an index i. Then by approximation the interaction Hamiltonian of a single
particle i with the electromagnetic field is

Hi ≈ −qi~E i ·~ri −
qi
2mi

~Bi · ~̂Li −
qi
2mi

gi~Bi · ~̂Si
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In general, you will need to sum this over all particles i. But the discussion here
will usually look at one particle at a time.

The first term in the Hamiltonian above is like the mgh potential of gravity,
with the particle charge qi taking the place of the mass m, the electric field that
of the acceleration of gravity g, and the particle position ~ri that of the height
h.

The second and third terms in the Hamiltonian are due to the fact that a
charged particle that is going around in circles acts as a little electromagnet.
An electromagnet wants to align itself with an ambient magnetic field. That is
just like a compass needle aligns itself with the magnetic field of earth.

This effect shows up as soon as there is angular momentum. Indeed, the

operator ~̂Li above is the orbital angular momentum of the particle and ~̂Si is
the spin. The factor gi is a nondimensional number that describes the relative
efficiency of the particle spin in creating an electromagnetic response. For an
electron in an atom, gi is very close to 2. That is a theoretical value expected
for fundamental particles, chapter 13.4. However, for a proton in a nucleus
the value is about 5.6, assuming that the effect of the surrounding protons and
neutrons can be ignored. (Actually, it is quite well established that normally
the surrounding particles cannot be ignored. But it is difficult to say what value
for gi to use instead, except that it will surely be smaller than 5.6, and greater
than 2.)

A special case needs to be made for the neutrons in a nucleus. Since the
neutron has no charge, qi = 0, you would expect that its contribution to the
Hamiltonian is zero. However, the final term in the Hamiltonian is not zero. A
neutron has a magnetic response. (A neutron consists of three charged quarks.
The combined charge of the three is zero, but the combined magnetic response
is not.) To account for that, in the final term, you need to use the charge e and
mass mp of the proton, and take gi about −3.8. This value of gi ignores again
the effects of surrounding protons and neutrons.

There are additional issues that are important. Often it is assumed that in
a transition only a single particle changes states. If that particle is a neutron,
it might then seem that the first two terms in the Hamiltonian can be ignored.
But actually, the neutron and the rest of the nucleus move around their common
center of gravity. And the rest of the nucleus is charged. So normally the first
two terms cannot be ignored. This is mainly important for the so-called electric
dipole transitions; for higher multipole orders, the electromagnetic field is very
small near the origin, and the motion of the rest of the nucleus does not produce
much effect. In a transition of a single proton, you may also want to correct the
first term for the motion of the rest of the nucleus. But also note that the rest of
the nucleus is not really a point particle. That may make a significant difference
for higher multipole orders. Therefore simple corrections remain problematic.
See [33] and [11] for further discussion of these nontrivial issues.
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The given Hamiltonian ignores the fact that the electric and magnetic fields
are unsteady and not uniform. That is the reason why the higher multipoles
found in the next subsection will not be quite right. They will be good enough to
show the basic ideas however. And the quantitative problems will be corrected
in later subsections.

A.25.2 Approximate multipole matrix elements

The last step is to write down the matrix element. Substituting the approximate
Hamiltonian and fields of the previous subsection into the matrix element of the
introduction gives:

H21,i = 〈ψL|H|ψH〉 ≈ −
E0√
2
〈ψL|e−ikzi [qixi + (qi/2mic)(L̂i,y + giŜi,y)]|ψH〉

This will normally need to be summed over all electrons i in the atom, or all
nucleons i in the nucleus. Note that the time dependent part of the exponential
is of no interest. It will in fact not even appear when the electromagnetic field
is properly quantized, {A.24}. In a classical treatment, it drops out versus the
ei(E2−E1)t/~ exponential mentioned in the previous subsection.

To split the above matrix element into different multipole orders, write the
exponential as a Taylor series:

e−ikzi =
∞∑

n=0

(−ikzi)n
n!

=
∞∑

ℓ=1

(−ikzi)ℓ−1
(ℓ− 1)!

In the second equality, the summation index was renotated as n = ℓ − 1. The
reason is that ℓ turns out to be what is conventionally defined as the multipole
order.

Using this Taylor series, the matrix element gets split into separate electric
and magnetic multipole contributions:

H21,i =
∞∑

ℓ=1

HEℓ
21,i +HMℓ

21,i = HE1
21,i +HM1

21,i +HE2
21,i +HM2

21,i + . . .

HEℓ
21,i ≈ −

qiE0√
2

(−ik)ℓ−1
(ℓ− 1)!

〈ψL|zℓ−1i xi|ψH〉

HMℓ
21,i ≈ −

qiE0
2
√
2mic

(−ik)ℓ−1
(ℓ− 1)!

〈ψL|zℓ−1i (L̂i,y + giŜi.y)|ψH〉

The terms with ℓ = 1 are the dipole ones, ℓ = 2 the quadrupole ones, 3 the
octupole ones, 4 the hexadecapole ones, etcetera. Superscript E indicates an
electric contribution, M a magnetic one. The first contribution that is nonzero
gives the lowest multipole order that is allowed.



A.25. MULTIPOLE TRANSITIONS 1055

A.25.3 Corrected multipole matrix elements

The multipole matrix elements of the previous subsection were rough approx-
imations. The reason was the approximate Hamiltonian that was used. This
subsection will describe the corrections needed to fix them up. It will still be
assumed that the atomic or nuclear particles involved are nonrelativistic. They
usually are.

The corrected Hamiltonian is

H =
∑

i

[
1

2mi

(
~̂pi − qi ~Ai

)2
+ qiϕi − gi

qi
2mi

~Bi · ~̂Si
]
+ V (A.169)

where the sum is over the individual electrons in the atom or the protons and
neutrons in the nucleus. In the sum, mi is the mass of the particle, ~̂pi its
momentum, and qi its charge. The potential V is the usual potential that keeps
the particle inside the atom or nucleus. The remaining parts in the Hamiltonian
express the effect of the additional external electromagnetic field. In particular,
ϕi is the electrostatic potential of the field and ~Ai the so-called vector potential,
each evaluated at the particle position. Finally

~B = ∇× ~A

is the magnetic part of the field. The spin ~̂Si of the particle interacts with
this field at the location of the particle, with a relative strength given by the
nondimensional constant gi. See chapter 1.3.2 for a classical justification of this
Hamiltonian, or chapter 13 for a quantum one.

Nonrelativistically, the spin does not interact with the electric field. That is
particularly limiting for the neutron, which has no net charge to interact with
the electric field. In reality, a rapidly moving particle with spin will also interact
with the electric field, {A.39}. See the Dirac equation and in particular {D.74}
for a relativistic description of the interaction of spin with an electromagnetic
field. That would be too messy to include here, but it can be found in [44].
Note also that since in reality the neutron consists of three quarks, that should
allow it to interact directly with a nonuniform electric field.

If the field is quantized, you will also want to include the Hamiltonian of the
field in the total Hamiltonian above. And the field quantities become operators.
That goes the same way as in {A.24}. It makes no real difference for the analysis
in this addendum.

It is always possible, and a very good idea, to take the unperturbed electro-
magnetic potentials so that

ϕ = 0 ∇ · ~A = 0

See for example the addendum on photon wave functions {A.21} for more on
that. That addendum also gives the potentials that correspond to photons
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of definite linear, respectively angular momentum. These will be used in this
addendum.

The square in the above Hamiltonian may be multiplied out to give

H = H0 +
∑

i

[
− qi
mi

~Ai · ~̂pi +
q2i
2mi

~A2
i − gi

qi
2mi

~Bi · ~̂Si
]

The term H0 is the Hamiltonian of the atom or nucleus in the absence of inter-
action with the external electromagnetic field. Like in the previous subsection,
it is not directly relevant to the interaction with the electromagnetic field. Note
further that ~̂p and ~A commute because ∇ · ~A is zero. The term proportional
to ~A2 will be ignored as it is normally very small. (It gives rise to two-photon
emission, [33].)

That makes the interaction Hamiltonian of a single particle i equal to

Hi = −
qi
mi

~Ai · ~̂pi − gi
qi
2mi

~Bi · ~̂Si (A.170)

Note that the final spin term has not changed from the approximate Hamiltonian
written down earlier. However, the first term appears completely different from
before. Still, there must obviously be a connection.

To find that connection requires considerable manipulation. First the vector
potential ~A must be identified in terms of the simple electromagnetic wave as
written down earlier in (A.168). To do so, note that the vector potential must
be related to the fields as

~E = −∂
~A

∂t
~B = ∇× ~A

See, for example, {A.21} for a discussion. That allows the vector potential
corresponding to the simple wave (A.168) to be identified as:

~A = −ı̂ E0√
2iω

e−i(kz−ωt−α0)

This wave can be generalized to allow general directions of wave propagation
and fields. That gives:

~A = −ı̂E
E0√
2iω

e−i(
~k·~r−ωt−α0) ~E = ı̂E

E0√
2
e−i(

~k·~r−ωt−α0) ~B = ı̂B
E0√
2c
e−i(

~k·~r−ωt−α0)

Here the unit vector ı̂E is in the direction of the electric field and ı̂B in the direc-
tion of the magnetic field. A unit vector ı̂k in the direction of wave propagation
can be defined as their cross product. This defines the wave number vector as

~k ≡ ı̂kk ı̂k = ı̂E × ı̂B ı̂E · ı̂B = 0
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The three unit vectors are orthonormal. Note that for a given direction of
wave propagation ı̂k, there will be two independent waves. They differ in the
direction of the electric field ı̂E . The choice for the direction of the electric field
for first wave is not unique; the field must merely be orthogonal to the direction
of wave propagation. An arbitrary choice must be made. The electric field of
the second wave needs to be orthogonal to that of the first wave. The example
in the previous subsections took the wave propagation in the z-direction, ı̂k =
k̂, and the electric field in the x-direction, ı̂E = ı̂, to give the magnetic field in
the y-direction, ı̂B = ̂. In that case the second independent wave will have its
electric field in the y-direction, ı̂E = ̂, and its magnetic field in the negative x-
direction, ı̂B = −ı̂.

The single-particle matrix element is now, dropping again the time-depen-
dent factors,

H21,i = 〈ψL|Hi|ψH〉

=
qi
mi

E0√
2iω
〈ψL|e−i~k·~r ı̂E · ~̂pi|ψH〉 − gi

qi
2mi

E0√
2c
〈ψL|e−i~k·~r ı̂B · ~̂Si|ψH〉

The first term needs to be cleaned up to make sense out of it. That is an
extremely messy exercise, banned to {D.43}.

However, the result is much like before:

H21,i =
∞∑

ℓ=1

HEℓ
21,i +HMℓ

21,i = HE1
21,i +HM1

21,i +HE2
21,i +HM2

21,i + . . .

where

HEℓ
21,i = −

qiE0√
2

(−ik)ℓ−1
(ℓ− 1)!

〈ψL|1
ℓ
rℓ−1i,k ri,E |ψH〉 (A.171)

HMℓ
21,i ≈ −

qiE0
2
√
2mic

(−ik)ℓ−1
(ℓ− 1)!

〈ψL|rℓ−1i,k

(
2

ℓ+ 1
L̂i,B + giŜi,B

)
|ψH〉 (A.172)

Here ri,k is the component of the position of the particle in the direction of
motion. Similarly, ri,E is the component of position in the direction of the
electric field, while the angular momentum components are in the direction of
the magnetic field.

This can now be compared to the earlier results using the approximate
Hamiltonian. Those earlier results assumed the special case that the wave prop-
agation was in the z-direction and had its electric field in the x-direction. In
that case,

example: ri,k = zi ri,E = xi L̂i,B = L̂i.y Ŝi,B = Ŝi,y (A.173)

Noting that, it is seen that the correct electric contributions only differ from the
approximate ones by a simple factor 1/ℓ. This factor is 1 for electric dipole con-
tributions, so these were correct already. Similarly, the magnetic contribution
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differs only by the additional factor 2/(ℓ+1) for the orbital angular momentum
from the approximate result. This factor is 1 for magnetic dipole contributions.
So these too were already correct.

However, there is a problem with the electric contribution in the case of
nuclei. A nuclear potential does not just depend on the position of the nuclear
particles, but also on their momentum. That introduces an additional term
in the electric contribution, {D.43}. A ballpark for that term shows that this
may well make the listed electric contribution quantitatively invalid, {N.14}.
Unfortunately, nuclear potentials are not known to sufficient accuracy to give a
solid prediction for the contribution. In the following, this problem will usually
simply be ignored, like other textbooks do.

A.25.4 Matrix element ballparks

Recall that electromagnetic transitions are driven by the matrix element. The
previous subsection managed to split the matrix element into separate electric
and magnetic multipole contributions. The intent in this subsection is now to
show that normally, the first nonzero multipole contribution is the important
one. Subsequent multipole contributions are normally small compared to the
first nonzero one.

To do so, this subsection will ballpark the multipole contributions. The
ballparks will show that the magnitude of the contributions decreases rapidly
with increasing multipole order ℓ.

But of course ballparks are only that. If a contribution is exactly zero
for some special reason, (usually a symmetry), then the ballpark is going to
be wrong. That is why it is the first nonzero multipole contribution that is
important, rather than simply the first one. The next subsection will discuss
the so-called selection rules that determine when contributions are zero.

The ballparks are formulated in terms a typical size R of the atom or nucleus.
For the present purposes, this size will be taken to be the average radial position
of the particles away from the center of atom or nucleus. Then the magnitudes
of the electric multipole contributions can be written as

|HEℓ
21,i| =

|qi|E0R√
2

(kR)ℓ−1

ℓ(ℓ− 1)!
|〈ψL|(ri,k/R)ℓ−1(ri,E/R)|ψH〉|

There is no easy way to say exactly what the inner product above will be.
However, since the positions inside it have been scaled with the mean radius R,
its value is supposedly some normal finite number. Unless the inner product
happens to be zero for some special reason of course. Assuming that this does
not happen, the inner product can be ignored for the ballpark. And that then
shows that each higher nonzero electric multipole contribution is smaller than
the previous one by a factor kR. Now k is inversely proportional to the wave
length of the photon that is emitted or absorbed. This wave length is normally
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very much larger than the size of the atom or nucleus R. That means that
kR is very small. And that then implies that a nonzero multipole contribution
at a higher value of ℓ will be very much less than one at a lower value. So
contributions for values of ℓ higher than the first nonzero one can normally be
ignored.

The magnitudes of the magnetic contributions can be written as

|HMℓ
21,i| ≈ −

|qi|E0R√
2

(kR)ℓ−1

ℓ(ℓ− 1)!
|〈ψL|(ri,k/R)ℓ−1 1

~

(
2

ℓ+ 1
L̂i,B + giŜi,B

)
|ψH〉|ℓ

~

2micR

Recall that angular momentum values are multiples of ~. Therefore the matrix
element can again be ballparked as some finite number, if nonzero. So once
again, the multipole contributions get smaller by a factor kR for each increase
in order. That means that the nonzero magnetic contributions too decrease
rapidly with ℓ.

That leaves the question how magnetic contributions compare to electric
ones. First compare a magnetic multipole term to the electric one of the same
multipole order ℓ. The above estimates show that the magnetic term is mainly
different from the electric one by the factor

~

2micR
≈





atoms: 1 Å
500R

nuclei: 1 fm
10R

Atomic sizes are in the order of an Ångstrom, and nuclear ones in the order
of a few femtometers. So ballpark magnetic contributions are small compared
to electric ones of the same order ℓ. And more so for atoms than for nuclei.
(Transition rates are proportional to the square of the first nonzero contribution.
So the ballpark transition rate for a magnetic transition is smaller than an
electric one of the same order by the square of the above factor.)

A somewhat more physical interpretation of the above factor can be given:

~

2micR
=

√
Tbp

2mic2
Tbp ≡

~
2

2miR2

Here Tbp is a ballpark for the kinetic energy −~2∇2/2mi of the particle. Note
that this ballpark is exact for the hydrogen atom ground state if you take the
Bohr radius as the average radius R of the atom. However, for heavier atoms
and nuclei, this ballpark may be low: it ignores the exclusion effects of the other
particles. Further mic

2 is the rest mass energy of the particle. Now protons and
neutrons in nuclei, and at least the outer electrons in atoms are nonrelativistic;
their kinetic energy is much less than their rest mass energy. It follows again
that magnetic contributions are normally much smaller than electric ones of the
same multipole order.
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Compare the magnetic multipole term also to the electric one of the next
multipole order. The trailing factor in the magnetic element can for this case
be written as

~

2micR
= kR

Tbp
~ω

The denominator in the final ratio is the energy of the emitted or absorbed
photon. Typically, it is significantly less than the ballpark kinetic energy of
the particle. That then makes magnetic matrix elements significantly larger
than electric ones of the next-higher multipole order. Though smaller than the
electric ones of the same order.

A.25.5 Selection rules

Based on the ballparks given in the previous subsection, the E1 electric dipole
contribution should dominate transitions. It should be followed in size by the
M1 magnetic dipole one, followed by the E2 electric quadrupole one, etcetera.

But this order gets modified because matrix elements are very often zero
for special reasons. This was explained physically in chapter 7.4.4 based on
the angular momentum properties of the emitted photon. This subsection will
instead relate it directly to the matrix element contributions as identified in
subsection A.25.3. To simplify the reasoning, it will again be assumed that the
z-axis is chosen in the direction of wave motion and the y-axis in the direction
of the electric field. So (A.173) applies for the multipole contributions (A.171)
and (A.172).

Consider first the electric dipole contribution HE1
21,i. According to (A.171)

and (A.173) this contribution contains the inner product

〈ψL|xi|ψH〉

Why would this be zero? Basically because in the inner product integrals,
positive values of xi might exactly integrate away against corresponding negative
values. That can happen because of symmetries in the nuclear wave functions.

One such symmetry is parity. For all practical purposes, atomic and nuclear
states have definite parity. If the positive directions of the Cartesian axes are
inverted, atomic and nuclear states either stay the same (parity 1 or positive), or
change sign (parity −1 or negative). Assume, for example, that ψL and ψH have
both positive parity. That means that they do not change under an inversion
of the axes. But the factor xi in the inner product above has odd parity: axes
inversion replaces xi by −xi. So the complete inner product above changes sign
under axes inversion. But inner products are defined in a way that they do not
change under axes inversion. (In terms of chapter 2.3, the effect of the axes
inversion can be undone by a further inversion of the integration variables.)
Something can only change sign and still stay the same if it is zero, (−0 is 0
but say −5 is not 5).
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So if both ψL and ψH have positive parity, the electric dipole contribution
is zero. The only way to get a nonzero inner product is if exactly one of ψL

and ψH has negative parity. Then the factor −1 that this state picks up under
axes inversion cancels the −1 from xi, leaving the inner product unchanged as it
should. So the conclusion is that in electric dipole transitions ψL and ψH must
have opposite parities. In other words, the atomic or nuclear parity must “flip
over” in the transition. This condition is called the parity “selection rule” for an
electric dipole transition. If it is not satisfied, the electric dipole contribution
is zero and a different contribution will dominate. That contribution will be
much smaller than a typical nonzero electric dipole one, so the transition will
be much slower.

The HM1
21,i magnetic dipole contribution contains the inner product

〈ψL|L̂i,y + giŜi.y|ψH〉

The angular momentum operators do nothing under axes inversion. One way to
see that is to think of ψH as written in terms of states of definite y-momentum.
Then the angular momentum operators merely add scalar factors m~ to those
states. These do not affect what happens to the remainder of the inner product
under axes inversion. Alternatively, note that L̂y = ~(z∂/∂x − x∂/∂z)/i and
each term has two position coordinates that change sign. And surely spin should
behave the same as orbital angular momentum.

If the angular momentum operators do nothing under axes inversion, the
parities of the initial and final atomic or nuclear states will have to be equal.
So the parity selection rule for magnetic dipole transitions is the opposite from
the one for electric dipole transitions. The parity has to stay the same in the
transition.

Assuming again that the wave motion is in the z-direction, each higher
multipole order ℓ adds a factor zi to the electric or magnetic inner product.
This factor changes sign under axes inversion. So for increasing ℓ, alternatingly
the atomic or nuclear parity must flip over or stay the same.

If the parity selection rule is violated for a multipole term, the term is zero.
However, if it is not violated, the term may still be zero for some other reason.
The most important other reason is angular momentum. Atomic and nuclear
states have definite angular momentum. Consider again the electric dipole inner
product

〈ψL|xi|ψH〉

States of different angular momentum are orthogonal. That is a consequence of
the fact that the momentum operators are Hermitian. What it means is that the
inner product above is zero unless xiψH has at least some probability of having
the same angular momentum as state ψL. Now the factor xi can be written in



1062 APPENDIX A. ADDENDA

terms of spherical harmonics using chapter 4.2.3, table 4.3:

xi =

√
8π

3
ri
(
Y −11 − Y 1

1

)

So it is a sum of two states, both with square angular momentum quantum
number lx = 1, but with z angular momentum quantum number mx = −1,
respectively 1.

Now recall the rules from chapter 7.4.2 for combining angular momenta:

Y −11 ψH =⇒ jnet = jH − 1, jH, or jH + 1 mnet = mH − 1

Here jH is the quantum number of the square angular momentum of the atomic
or nuclear state ψH. AndmH is the quantum number of the z angular momentum
of the state. Similarly jnet and mnet are the possible values for the quantum
numbers of the combined state Y −11 ψH. Note again that mx and mH values
simply add together. However, the jH-value changes by up to lx = 1 unit in
either direction. (But if jH = 0, the combined state cannot have zero angular
momentum.)

(It should be noted that you should be careful in combining these angular
momenta. The normal rules for combining angular momenta apply to different
sources of angular momentum. Here the factor xi does not describe an additional
source of angular momentum, but a particle that already has been given an
angular momentum within the wave function ψH. That means in particular that
you should not try to write out Y −11 ψH using the Clebsch-Gordan coefficients
of chapter 12.7, {N.13}. If you do not know what Clebsch-Gordan coefficients
are, you have nothing to worry about.)

To get a nonzero inner product, one of the possible states of net angular
momentum above will need to match the quantum numbers jL and mL of state
ψL. So

jL = jH − 1, jH, or jH + 1 mL = mH − 1

(And if jH = 0, jL cannot be zero.) But recall that xi also contained a Y 1
1 state.

That state will allow mL = mH+1. And if you take a wave that has its electric
field in the z-direction instead of the x-direction, you also get a Y 0

1 state that
gives the possibility mL = mH.

So the complete selection rules for electric dipole transitions are

jL = jH − 1, jH, or jH + 1 mL = mH − 1, mH, or mH + 1 πLπH = −1

where π means the parity. In addition, at least one of jL or jH must be nonzero.
And as always for these quantum numbers, jL > 0 and |mL| 6 jL. Equiva-
lent selection rules were written down for the hydrogen atom with spin-orbit
interaction in chapter 7.4.4.
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For magnetic dipole transitions, the relevant inner product is

〈ψL|L̂i,y + giŜi.y|ψH〉

Note that it is either L̂y or Ŝy that is applied on ψH, not both at the same
time. It will be assumed that ψH is written in terms of states with definite
angular momentum in the z-direction. In those terms, the effect of L̂y or Ŝy is
known to raise or lower the corresponding magnetic quantum number m by one
unit, chapter 12.11. Which means that the net angular momentum can change
by one unit. (Like when opposite orbital angular momentum and spin change
into parallel ones. Note also that for the hydrogen atom in the nonrelativistic
approximation of chapter 4.3, there is no interaction between the electron spin
and the orbital motion. In that case, the magnetic dipole term can only change
the value of ml or ms by one unit. Simply put, only the direction of the angular
momentum changes. That is normally a trivial change as empty space has no
preferred direction.)

One big limitation is that in either an electric or a magnetic dipole transition,
the net atomic or nuclear angular momentum j can change by no more than
one unit. Larger changes in angular momentum require higher multipole orders
ℓ. These add a factor zℓ−1i to the inner products. Now it turns out that:

zℓ−1i ∼ (ℓ− 1)!
√

4π(2ℓ− 1)

(2ℓ− 1)!!
rℓ−1i Y 0

ℓ−1+. . . (2ℓ−1)!! ≡ (2ℓ− 1)!

2ℓ−1(ℓ− 1)!
(A.174)

Here the dots stand for spherical harmonics with lower square angular momen-
tum. (To verify the above relation, use the Rayleigh formula of {A.6}, and
expand the Bessel function and the exponential in it in Taylor series.) So the
factor zℓ−1i has a maximum azimuthal quantum number l equal to ℓ− 1. That
means that the maximum achievable change in atomic or nuclear angular mo-
mentum increases by one unit for each unit increase in multipole order ℓ.

It follows that the first multipole term that can be nonzero has ℓ = |jH− jL|,
or ℓ = 1 if the angular momenta are equal. At that multipole level, either the
electric or the magnetic term can be nonzero, depending on parity. Normally
this term will then dominate the transition process, as the terms of still higher
multipole levels are ballparked to be much smaller.

A further limitation applies to orbital angular momentum. The angular
momentum operators will not change the orbital angular momentum values.
And the factors zℓ−1i and xi can only change it by up to ℓ − 1, respectively 1
units. So the minimum difference in possible orbital angular momentum values
will have to be no larger than that:

electric: |lH − lL|min 6 ℓ magnetic: |lH − lL|min 6 ℓ− 1 (A.175)

This is mainly important for single-particle states of definite orbital angular
momentum. That includes the hydrogen atom, even with the relativistic spin-
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orbit interaction. (But it does assume the nonrelativistic Hamiltonian in the
actual transition process.)

The final limitation is that jH and jL cannot both be zero. The reason is
that if jH is zero, the possible angular momentum values of zℓ−1i xijH are those
of zℓ−1i xi. And those values do not include zero to match jL = 0. (According
to the rules of quantum mechanics, the probability of zero angular momentum
is given by the inner product with the spherical harmonic Y 0

0 of zero angular
momentum. Since Y 0

0 is just a constant, the inner product is proportional to
the average of zℓ−1i xi on a spherical surface around the origin. That average will
be zero because by symmetry positive values of xi will average away against
corresponding negative ones.)

A.25.6 Ballpark decay rates

It may be interesting to find some actual ballpark values for the spontaneous
decay rates. More sophisticated values, called the Weisskopf and Moszkowski
estimates, will be derived in a later subsection. However, they are ballparks one
way or the other.

It will be assumed that only a single particle, electron or proton, changes
states. It will also be assumed that the first multipole contribution allowed by
angular momentum and parity is indeed nonzero and dominant. In fact, it will
be assumed that this contribution is as big as it can reasonably be.

To get the spontaneous emission rate, first the proper amplitude E0 of the
electric field to use needs to be identified. The same relativistic procedure as in
{A.24} may be followed to show it should be taken as

spontaneous emission: E0 =
√

~ω

ǫ0V
That assumes that the entire system is contained in a very large periodic box
of volume V . Also, ǫ0 = 8.85 10−12 C2/J m is the permittivity of space

Next, Fermi’s golden rule of chapter 7.6.1 says that the transition rate is

λH→L = |H21|2
2π

~

dN

dE

Here H21 is approximated as the first allowed (nonzero) multipole contribution
HEℓ

21,i or H
Mℓ
21,i. So the additional higher order nonzero contributions are ignored,

The overline means that this contribution needs to be suitably averaged over
all directions of the electromagnetic wave. Further dN/dE is the number of
photon states in the periodic box per unit energy range. This is the density of
states as given in chapter 6.3 (6.7). Using the Planck-Einstein relation it is:

dN

dE
=

ω2

~π2c3
V
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Ballpark matrix coefficients were given in subsection A.25.4. However, a
more accurate estimate is desirable. The main problem is the factor rℓ−1i,k in

the matrix elements (A.171) and (A.172). This factor equals zℓ−1i if the z-
axis is taken to be in the direction of wave motion. According to the previous
subsection

zℓ−1i ∼ (ℓ− 1)!
√

4π(2ℓ− 1)

(2ℓ− 1)!!
rℓ−1i Y 0

ℓ−1 + . . .

The dots indicate spherical harmonics of lower angular momentum that do not
do anything. Only the shown term is relevant for the contribution of lowest
multipole order. So only the shown term should be ballparked. That can be
done by estimating ri as R, and Y

0
ℓ−1 as 1/

√
4π, (which is exact for ℓ = 1).

The electric inner product contains a further factor xi, taking the x-axis
in the direction of the electric field. That will be accounted for by upping the
value of ℓ one unit in the expression above. The magnetic inner product contains
angular momentum operators. Since not much can be said about these easily,
they will simply be estimated as ~.

Putting it all together, the estimated decay rates become

λEℓ ∼ αω(kR)2ℓ
4(2ℓ+ 1)

(2ℓ+ 1)!!2
fEℓ λMℓ ∼ αω(kR)2ℓ

4(2ℓ− 1)

(2ℓ− 1)!!2

(
~

2micR

)2

fMℓ

(A.176)
Here

α =
e2

4πǫ0~c
≈ 1

137

is the so-called fine structure constant. with e = 1.6 10−19 C the proton or
electron charge, ǫ0 = 8.85 10−12 C2/J m the permittivity of space, and c =
3 108 m/s the speed of light. This nondimensional constant gives the strength
of the coupling between charged particles and photons, so it should obviously be
there. The factor ω is expected for dimensional reasons; it gives the decay rate
units of inverse time. The nondimensional factor kR reflects the fact that the
atom or nucleus has difficulty interacting with the photon because its size is so
small compared to the photon wave length. That is worse for higher multipole
orders ℓ, as their photons produce less of a field near the origin. The factors fEℓ

and fMℓ represent unknown corrections for the errors in the ballparks. These
factors are hoped to be 1. (Fat chance.) As far as the remaining numerical
factors are concerned, . . .

The final parenthetical factor in the magnetic decay rate was already dis-
cussed in subsection A.25.4. It normally makes magnetic decays slower than
electric ones of the same multipole order, but faster than electric ones of the
next order.

These estimates are roughly similar to the Weisskopf ones. While they tend
to be larger, that is largely compensated for by the fact that in the above
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estimates R is the mean radius. In the Weisskopf estimates it is the edge of the
nucleus.

In any case, actual decay rates can vary wildly from either pair of estimates.
For example, nuclei satisfy an approximate conservation law for a quantity called
isospin. If the transition violates an approximate conservation law like that, the
transition rate will be unusually small. Also, it may happen that the initial
and final wave functions have little overlap. That means that the regions where
they both have significant magnitude are small. (These regions should really
be visualized in the high-dimensional space of all the particle coordinates.) In
that case, the transition rate can again be unexpectedly small.

Conversely, if a lot of particles change state in a transition, their individ-
ual contributions to the matrix element can add up to an unexpectedly large
transition rate.

A.25.7 Wave functions of definite angular momentum

The analysis so far has represented the electromagnetic field in terms of photon
states of definite linear momentum. But it is usually much more convenient to
use states of definite angular momentum. That allows full use of the conserva-
tion laws of angular momentum and parity.

The states of definite angular momentum have vector potentials given by
the photon wave functions of addendum {A.21.7}. For electric Eℓ and magnetic
Mℓ multipole transitions respectively:

~AE
γ =

A0

k
∇×~r ×∇jℓ(kr)Y m

ℓ (θ, φ) ~AM
γ = A0~r ×∇jℓ(kr)Y m

ℓ (θ, φ)

Here jℓ is a spherical Bessel function, {A.6} and Y m
ℓ a spherical harmonic, chap-

ter 4.2.3. The azimuthal angular momentum quantum number of the photon
is ℓ. Its quantum number of angular momentum in the chosen z-direction is
m. The electric state has parity (−1)ℓ and the magnetic one (−1)ℓ−1. (That
includes the intrinsic parity, unlike in some other sources). Further A0 is a
constant.

The contribution of a particle i to the matrix element is as before

H21,i = −
qi
mi

〈ψL|~Ai · ~̂pi|ψH〉 −
qi
2mi

gi〈ψL|~Bi · ~̂Si|ψH〉 ~Bi = ∇i × ~Ai

But now, for electric transitions ~Ai needs to be taken as the complex conjugate
of the photon wave function ~AE

γ above, evaluated at the position of particle

i. For magnetic transitions ~Ai needs to be taken as the complex conjugate
of ~AM

γ . The complex conjugates are a result of the quantization of radiation,
{A.24}. And they would not be there for absorption. (The classical reasons
are much like the story for plane electromagnetic waves given earlier. But here
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the nonquantized waves are too messy to even bother about, in this author’s
opinion.)

The matrix elements can be approximated assuming that the wave length
of the photon is large compared to the size R of the atom or nucleus. The
approximate contribution of the particle to the Eℓ electric matrix element is
then, {D.43.2},

HEℓ
21,i ≈ −iqicA0

(ℓ+ 1)kℓ

(2ℓ+ 1)!!
〈ψL|rℓiY m∗

ℓi |ψH〉

The subscript i on the spherical harmonic means that its arguments are the
coordinates of particle i. For nuclei, the above result is again suspect for the
reasons discussed in {N.14}.

The approximate contribution of the particle to the Mℓ magnetic matrix
element is {D.43.2},

HMℓ
21,i ≈

qi
2mi

A0
(ℓ+ 1)kℓ

(2ℓ+ 1)!!
〈ψL|(∇ir

ℓ
iY

m∗
ℓi ) ·

(
2

ℓ+ 1
~̂Li + gi ~̂Si

)
|ψH〉

In general these matrix elements will need to be summed over all particles.
The above matrix elements can be analyzed similar to the earlier linear

momentum ones. However, the above matrix elements allow you to keep the
atom or nucleus in a fixed orientation. For the linear momentum ones, the
nuclear orientation must be changed if the direction of the wave is to be held
fixed. And in any cases, linear momentum matrix elements must be averaged
over all directions of wave propagation. That makes the above matrix elements
much more convenient in most cases.

Finally the matrix elements can be converted into spontaneous decay rates
using Fermi’s golden rule of chapter 7.6.1. In doing so, the needed value of
the constant A0 and corresponding density of states are, following {A.21.7} and
{A.24},

A0 = −
1

ic

√
~ω

ℓ(ℓ+ 1)ǫ0rmax

dN

dE
≈ 1

~πc
rmax

This assumes that the entire system is contained inside a very big sphere of
radius rmax. This radius rmax disappear in the final answer, and the final decay
rates will be the ones in infinite space. (Despite the absence of rmax they do not
apply to a finite sphere, because the density of states above is an approximation
for large rmax.)

It is again convenient to nondimensionalize the matrix elements using some
suitably defined typical atomic or nuclear radius R. Recent authorative sources,
like [33] and [[4]], take the nuclear radius equal to

R = 1.2A1/3 fm (A.177)
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Here A is the number of protons and neutrons in the nucleus and a fm is 10−15

m.
The final decay rates are much like the ones (A.176) found earlier for linear

momentum modes. In fact, linear momentum modes should give the same
answer as the angular ones, if correctly averaged over all directions of the linear
momentum. The decay rates in terms of angular momentum modes are:

λEℓ = αω(kR)2ℓ
2(l + 1)

l(2l + 1)!!2
|hEℓ21 |2 (A.178)

λMℓ = αω(kR)2ℓ
2(l + 1)

l(2l + 1)!!2

(
~

2mcR

)2

|hMℓ21 |2 (A.179)

where α ≈ 1/137 is again the fine structure constant. The nondimensional
matrix elements in these expressions are

|hEℓ21 | =
∑

i

√
4π

qi
e
〈ψL|rℓiY m∗

ℓi /Rℓ|ψH〉 (A.180)

|hMℓ21 | =
∑

i

√
4π

qi
e

m

mi

〈ψL|(∇ir
ℓ
iY

m∗
ℓi /Rℓ−1) ·

( 2~̂Li
(ℓ+ 1)~

+
gi ~̂Si
~

)
|ψH〉 (A.181)

The sum is over the electrons or protons and neutrons, with qi their charge and
mi their mass. The reference mass m would normally be taken to be the mass
of an electron for atoms and of a proton for nuclei. That means that for the
electron or proton the charge and mass ratios can be set equal to 1. For an
electron gi is about 2, while for a proton, gi would be about 5.6 if the effect
of the neighboring protons and neutrons is ignored. For the neutron, the (net)
charge qi is zero. Therefore the electric matrix element is zero, and so is the
first term in the magnetic one. In the second term, however, the charge and
mass of the proton need to be used, along with gi = −3.8, assuming again that
the effect of the neighboring protons and neutrons is ignored.

A.25.8 Weisskopf and Moszkowski estimates

The Weisskopf and Moszkowski estimates are ballpark spontaneous decay rates.
They are found by ballparking the nondimensional matrix elements (A.180) and
(A.181) given in the previous subsection. The estimates are primarily intended
for nuclei. However, they can easily be adopted to the hydrogen atom with a
few straightforward changes.

It is assumed that a single proton numbered i makes the transition. The
rest of the nucleus stays unchanged and can therefore be ignored in the analysis.
Note that this does not take into account that the proton and the rest of the
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nucleus should move around their common center of gravity. Correction factors
for that can be applied, see [33] and [11] for more. In a similar way, the case
that a single neutron makes the transition can be accounted for.

It is further assumed that the initial and final wave functions of the proton
are of a relatively simple form, In spherical coordinates:

ψH = RH(ri)Θ
mjH

lHjH
(θi, φi) =⇒ ψL = RL(ri)Θ

mjL

lLjL
(θi, φi)

These wave functions are very much like the Rnl(ri)Y
ml

l (θi, φi)l wave func-
tions for the electron in the hydrogen atom, chapter 4.3. However, for nuclei,
it turns out that you want to combine the orbital and spin states into states
with definite net angular momentum j and definite net angular momentum mj

in the chosen z-direction. Such combinations take the form

Θ
mj

lj (θi, φi) = c1Y
mj− 1

2
l (θi, φi)↑+ c2Y

mj+
1
2

l (θi, φi)↓

The coefficients c1 and c2 are of no interest here, but you can find them in
chapter 12.8 2 if needed.

In fact even for the hydrogen atom you really want to take the initial and final
states of the electron of the above form. That is due to a small relativistic effect
called “spin-orbit interaction,” {A.39}. It just so happens that for nuclei, the
spin-orbit effect is much larger. Note however that the electric matrix element
ignores the spin-orbit effect. That is a significant problem, {N.14}. It will make
the ballparked electric decay rate for nuclei suspect. But there is no obvious
way to fix it.

The nondimensional electric matrix element (A.180) can be written as an
integral over the spherical coordinates of the proton. It then falls apart into a
radial integral and an angular one:

|hEℓ21 | ≈
∫
RL(ri)

∗(ri/R)
ℓRH(ri)r

2
i dri

√
4π

∫
Θ
mjL∗
lLjLi

Y m∗
ℓi Θ

mjH

lHjHi
sin2 θidθidφi

Note that in the angular integral the product of the angular wave functions
implicitly involves inner products between the spin states. Spin states are or-
thonormal, so their product is 0 if the spins are different and 1 if they are the
same.

The bottom line is that the square electric matrix element can be written
as a product of a radial factor,

f rad,ℓ
LH ≡

[∫
R∗L(ri)(ri/R)

ℓRH(ri)r
2
i dri

]2
(A.182)

and an angular one,

f ang,ℓ
LH ≡

[√
4π

∫
Θ
mjL∗
lLjLi

Y m∗
ℓi Θ

mjH

lHjHi
sin2 θidθidφi

]2
(A.183)
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As a result, the electric multipole decay rate (A.180) becomes

λEℓ = αω(kR)2ℓ
2(l + 1)

l(2l + 1)!!2
f rad,ℓ
LH f ang,ℓ

LH (A.184)

Here the trailing factors represent the square matrix element.
A similar expression can be written for the nondimensional magnetic matrix

element, {D.43.3}: It gives the decay rate (A.181) as

λMℓ = αω(kR)2ℓ
2(l + 1)

l(2l + 1)!!2

(
~

2mcR

)2

f rad,ℓ−1
LH f ang,ℓ

LH fmom,ℓ
LH (A.185)

In this case, there is an third factor related to the spin and orbital angular
momentum operators that appear in the magnetic matrix element. Also, the
integrand in the radial factor is one order of r lower than in the electric element.
That is due to the nabla operator ∇ in the magnetic element. It means that in
terms of the radial electric factor as defined above, the value of ℓ to use is one
unit below the actual multipole order.

Consider now the values of these factors. The radial factor (A.182) is the
simplest one. The Weisskopf and Moszkowski estimates use a very crude ap-
proximation for this factor. They assume that the radial wave functions are
equal to some constant up to the nuclear radius R and zero beyond it. (This
assumption is not completely illogical for nuclei, as nuclear densities are fairly
constant until the nuclear edge.) That gives, {D.43.3},

f rad,ℓ
LH =

(
3

ℓ+ 3

)2

Note that the magnetic decay rate uses ℓ+2 in the denominator instead of ℓ+3
because of the lower power of ri.

More reasonable assumptions for the radial wave functions are possible. For
a hydrogen atom instead of a nucleus, the obvious thing to do is to use the
actual radial wave functions Rnl from chapter 4.3. That gives the radial factors
listed in table A.1. These take R equal to the Bohr radius. That explains why
some values are so large: the average radial position of the electron can be
much larger than the Bohr radius in various excited states. In the table, n is
the principal quantum number that gives the energy of the state. Further l is
the azimuthal quantum number of orbital angular momentum. The two pairs
of nl values correspond to those of the initial and final states; in what order
does not make a difference. There are two radial factors listed for each pair of
states. The first value applies to electric and multipole transitions at the lowest
possible multipole order. That is usually the important one, because normally
transition rates decrease rapidly with multipole order.
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nl nl f
rad,|∆l|
LH f

rad,|∆l|+2
LH nl nl f

rad,|∆l|
LH f

rad,|∆l|+2
LH

10 10 F F 41 10 222335−13

(0.0928) F

20 10 F F 41 20 2193−135
(1.6442) F

20 20 F F 41 21 0 2293−165
(62.359)

21 10 2153−9

(1.6648) F 41 30 22238537−16172

(29.914) F

21 20 33

(27) F 41 31 0 2373105 7−18232

(13182.)

21 21 1 223252

(900) 41 32 233387−16

(1.6959)
247312527−20112

(2.84E6)

30 10 F F 41 40 22335
(540) F

30 20 F F 41 41 1 263254

(360000)

30 21 215385−12

(0.8806) F 42 10 232325−15

(1.2666) F

30 30 F F 42 20 2293−165
(62.359) F

31 10 2−1337

(0.2670) F 42 21 2233−155
(2.9231) 0

31 20 220375−12

(9.3931) F 42 30 2323135 7−18432

(38876.) F

31 21 0 2263105−14

(649.25) 42 31 2313115 7−16

(57.235)
249315537−20

(1.27E7)

31 30 2 34

(162) F 42 32 0 2433137−18

(8611.9)

31 31 1 243452

(32400) 42 40 283253

(288000) F

32 10 2−15395
(3.0034) F 42 41 2433

(432)
28335472

(2.12E8)

32 20 232395−15

(2770.1) F 42 42 1 263472

(254016)

32 21 222385−13

(22.543)
2323125−1772

(1.47E5) 43 10 236325−177
(5.6745) F

32 30 2 3453

(20250) F 43 20 2333−16537
(1.75E5) F

32 31 2−2345
(101.25)

365372

(4.47E6) 43 21 2313−175 7
(582.02)

2413−17537
(1.49E7)

32 32 1 223472

(15876) 43 30 236317537−211012

(2.03E7) F

40 10 F F 43 31 2393135 7−19112

(46520.)
249323557−23

(6.05E9)

40 20 F F 43 32 2373117−17

(104.66)
247319527−21

(7.32E6)

40 21 2213−15

(0.1462) F 43 40 28325373

(9.88E7) F

40 30 F F 43 41 283 527
(134400)

212375273

(7.7E10)

40 31 229377−16132

(5.9709) F 43 42 22327
(252)

2834547
(9.07E7)

40 32 245395 7−18

(2126.4) F 43 43 1 263452

(129600)

40 40 F F

Table A.1: Radial integral correction factors for hydrogen atom wave functions.
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To understand the given values more clearly, first consider the relation be-
tween multipole order and orbital angular momentum. The derived matrix
elements implicitly assume that the potential of the proton or electron only
depends on its position, not its spin. So spin does not really affect the or-
bital motion. That means that the multipole order for nontrivial transitions is
constrained by orbital angular momentum conservation, [33]:

|lH − lL| 6 ℓ 6 lH + lL (A.186)

Note that this is a consequence of (A.175) within the single-particle model. It
is just like for the nonrelativistic hydrogen atom, (7.17). (M1 transitions that
merely change the direction of the spin, like a Y 0

0 ↑ to Y 0
0 ↓ one, are irrelevant

since they do not change the energy. Fermi’s golden rule makes the transition
rate for transitions with no energy change theoretically zero, chapter 7.6.1.)

The minimum multipole order implied by the left-hand constraint above
corresponds to an electric transition because of parity. However, this transition
may be impossible because of net angular momentum conservation or because
ℓ must be at least 1. That will make the transition of lowest multipole order a
magnetic one. The magnetic transition still uses the same value for the radial
factor though. The second radial factor in the table is provided since the next-
higher electric multipole order might reasonably compete with the magnetic
one.

More realistic radial factors for nuclei can be formulated along similar lines.
The simplest physically reasonable assumption is that the protons and neutrons
are contained within an impenetrable sphere of radius R. A hydrogen-like num-
bering system of the quantum states can again be used, figure 14.14, with one
difference. For hydrogen, a given energy level n allows all orbital momentum
quantum numbers l up to n − 1. For nuclei, l must be even if n is odd and
vice-versa, chapter 14.12.1. Also, while for the (nonrelativistic) hydrogen atom
the energy does not depend on l, for nuclei that is only a rough approximation.
(It assumes that the nuclear potential is like an harmonic oscillator one, and
that is really crude.)

Radial factors for the impenetrable-sphere model using this numbering sys-
tem are given in table A.2.

These results illustrate the limitations of M1 transitions in the single-particle
model. Because of the condition (A.186) above and parity, the orbital quantum
number l cannot change in M1 transitions. A glance at the table then shows
that the radial factor is zero unless the initial and final radial states are iden-
tical. (That is a consequence of the orthonormality of the energy states.) So
M1 transitions cannot change the radial state. All they can do is change the
direction of the orbital angular momentum or spin of a given state. Obviously
that is ho-hum, though with a spin-orbit term it may still do something. With-
out a spin-orbit term, there would be no energy change, and Fermi’s golden
rule would make the theoretical transition rate then zero. That is similar to the
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nl nl f
rad,|∆l|
LH f

rad,|∆l|+2
LH nl nl f

rad,|∆l|
LH f

rad,|∆l|+2
LH nl nl f

rad,|∆l|
LH f

rad,|∆l|+2
LH

10 10 F F 61 50 0.2066 F 72 65 0.0173 0.0150
21 10 0.2810 F 61 52 0.0918 0.0462 72 70 0.1073 F
21 21 1 0.1403 61 54 0.0211 0.0161 72 72 1 0.1270
30 10 F F 61 61 1 0.1158 74 10 0.0018 F
30 21 0.0922 F 63 10 0.0021 F 74 21 0.0030 0.0055
30 30 F F 63 21 0.0029 0.0087 74 30 0.0188 F
32 10 0.1116 F 63 30 0.0348 F 74 32 0.0032 0.0103
32 21 0.3727 0.0760 63 32 0.0018 0.0164 74 41 0.0495 0.0219
32 30 0.0949 F 63 41 0.1058 0.0358 74 43 0.0018 0.0168
32 32 1 0.1925 63 43 0 0.0267 74 50 0.0434 F
41 10 0.0015 F 63 50 0.0684 F 74 52 0.1322 0.0436
41 21 0 0.0317 63 52 0.3243 0.0754 74 54 0 0.0244
41 30 0.2264 F 63 54 0.0390 0.0398 74 61 0.0710 0.0302
41 32 0.0647 0.0418 63 61 0.0969 0.0395 74 63 0.3611 0.0878
41 41 1 0.1206 63 63 1 0.1620 74 65 0.0320 0.0381
43 10 0.0537 F 65 10 0.0174 F 74 70 0.0343 F
43 21 0.1707 0.0445 65 21 0.0514 0.0182 74 72 0.0897 0.0409
43 30 0.0714 F 65 30 0.0357 F 74 74 1 0.1823
43 32 0.4367 0.1085 65 32 0.1226 0.0420 76 10 0.0110 F
43 41 0.0824 0.0383 65 41 0.0549 0.0248 76 21 0.0317 0.0125
43 43 1 0.2371 65 43 0.2618 0.0866 76 30 0.0255 F
50 10 F F 65 50 0.0274 F 76 32 0.0737 0.0281
50 21 0.0013 F 65 52 0.0682 0.0346 76 41 0.0413 0.0194
50 30 F F 65 54 0.5231 0.1673 76 43 0.1531 0.0567
50 32 0.0157 F 65 61 0.0254 0.0164 76 50 0.0238 F
50 41 0.1175 F 65 63 0.0634 0.0408 76 52 0.0567 0.0284
50 43 0.0267 F 65 65 1 0.3093 76 54 0.2978 0.1071
50 50 F F 70 10 F F 76 61 0.0254 0.0154
52 10 0.0022 F 70 21 1.4E-4 F 76 63 0.0648 0.0366
52 21 0.0018 0.0151 70 30 F F 76 65 0.5542 0.1935
52 30 0.0775 F 70 32 0.0013 F 76 70 0.0134 F
52 32 0 0.0293 70 41 0.0016 F 76 72 0.0221 0.0160
52 41 0.2803 0.0633 70 43 0.0049 F 76 74 0.0565 0.0407
52 43 0.0490 0.0412 70 50 F F 76 76 1 0.3389
52 50 0.1042 F 70 52 0.0221 F 87 10 0.0074 F
52 52 1 0.1411 70 54 0.0092 F 87 21 0.0207 0.0088
54 10 0.0292 F 70 61 0.1297 F 87 30 0.0186 F
54 21 0.0894 0.0278 70 63 0.0345 F 87 32 0.0469 0.0195
54 30 0.0506 F 70 65 0.0121 F 87 41 0.0310 0.0152
54 32 0.2200 0.0656 70 70 F F 87 43 0.0953 0.0387
54 41 0.0708 0.0314 72 10 2.6E-4 F 87 50 0.0200 F
54 43 0.4849 0.1390 72 21 1.6E-4 0.0015 87 52 0.0450 0.0229
54 50 0.0294 F 72 30 0.0027 F 87 54 0.1810 0.0716
54 52 0.0719 0.0402 72 32 0 0.0016 87 61 0.0234 0.0138
54 54 1 0.2756 72 41 0.0020 0.0166 87 63 0.0570 0.0311
61 10 1.3E-4 F 72 43 0.0011 0.0068 87 65 0.3292 0.1268
61 21 0 0.0016 72 50 0.0656 F 87 70 0.0134 F
61 30 0.0019 F 72 52 0 0.0352 87 72 0.0234 0.0155
61 32 0.0012 0.0077 72 54 0.0087 0.0120 87 74 0.0613 0.0379
61 41 0 0.0369 72 61 0.2449 0.0597 87 76 0.5803 0.2177
61 43 0.0113 0.0133 72 63 0.0747 0.0458 87 87 1 0.3653

Table A.2: More realistic radial integral correction factors for nuclei.
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limitation of M1 transitions for the nonrelativistic hydrogen atom in chapter
7.4.4.

It may be instructive to use the more realistic radial factors of table A.2 to
get a rough idea of the errors in the Weisskopf ones. The initial comparison
will be restricted to changes in the principal quantum number of no more than
one unit. That means that transitions between widely separated shells will be
ignored. Also, only the lowest possible multipole level will be considered. That
corresponds to the first of each pair of values in the table. Assuming an electric
transition, ℓ is the difference between the l values in the table. Consider now
the following two simple approximations of the radial factor:

Weisskopf: f rad,ℓ
LH =

(
3

ℓ+ 3

)2

Empirical: f rad,ℓ
LH =

(
1.5

ℓ+ 3

)2

or 1

(A.187)
The coefficient 1.5 comes from a least square approximation of the data. For
M1 transitions, the exact value 1 should be used.

For the given data, it turns out that the Weisskopf estimate is on average
too large by a factor 5. In the worst case, the Weisskopf estimate is too large
by a factor 18. The empirical formula is on average off by a factor 2, and in the
worst case by a factor 4.

If any arbitrary change in principal quantum number is allowed, the possible
errors are much larger. In that case the Weisskopf estimates are off by average
factor of 20, and a maximum factor of 4 000. The empirical estimates are off by
an average factor of 8, and a maximum one of 1 000. Including the next number
in table A.2 does not make much of a difference here.

These errors do depend on the change in principal quantum numbers. For
changes in principal quantum number no larger than 2 units, the empirical
estimate is off by a factor no greater that 10. For 3 or 4 unit changes, the
estimate is off by a factor no greater than about 100. The absolute maximum
error factor of 1 000 occurs for a 5 unit change in the principal quantum number.
For the Weiskopf estimate, multiply these maximum factors by 4.

These data exclude the M1 transitions mentioned earlier, for which the radial
factor is either 0 or 1 exactly. The value 0 implies an infinite error factor for a
Weisskopf-type estimate of the radial factor. But that requires an M1 transition
with at least a two unit change in the principal quantum number. In other
words, it requires an M1 transition with a huge energy change.

Consider now the angular factor in the decay rates (A.184) and (A.185). It
arises from integrating the spherical harmonics, (A.183). But the actual angu-
lar factor really used in the transition rates (A.184) and (A.185) also involves
an averaging over the possible angular orientations of the initial atom. (This
orientation is reflected in its magnetic quantum number mjH.) And it involves
a summation over the different angular orientations of the final nucleus that can
be decayed to. The reason is that experimentally, there is usually no control
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over the orientation of the initial and final nuclei. An average initial nucleus
will have an average orientation. But each final orientation that can be decayed
to is a separate decay process, and the decay rates add up. (The averaging over
the initial orientations does not really make a difference; all orientations decay
at the same rate, since space has no preferred direction. The summation over
the final orientations is critical.)

jL jH: 1/2
3/2

5/2
7/2

9/2
11/2

13/2
1/2 F 1 1 1 1 1 1 1 1 1 1 1 1 1

3/2 2 2 F 1
5

6
5

2
7

9
7

1
3

4
3

4
11

15
11

5
13

18
13

2
5

5/2 3 3 9
5

3
7

F 3
35

9
7

1
7

10
7

2
11

50
33

30
143

225
143

3
13

7/2 4 4 18
7

2
3

12
7

4
21

F 1
21

4
3

20
231

50
33

50
429

700
429

20
143

9/2 5 5 10
3

10
11

50
21

10
33

5
3

25
231

F 1
33

15
11

25
429

225
143

35
429

11/2 6 6 45
11

15
13

100
33

60
143

25
11

25
143

18
11

10
143

F 3
143

18
13

6
143

13/2 7 7 63
13

7
5

525
143

7
13

1225
429

35
143

315
143

49
429

21
13

7
143

F 1
65

15/2 8 8 28
5

28
17

56
13

56
85

490
143

70
221

392
143

392
2431

28
13

196
2431

8
5

8
221

Table A.3: Angular integral correction factors f
ang,|∆j|
LH and f

ang,|∆j|+1
LH for the

Weisskopf electric unit and the Moszkowski magnetic one. The correction for
the Weisskopf magnetic unit is to cross it out and write in the Moszkowski unit.

Values for the angular factor are in table A.3. For the first and second
number of each pair respectively:

ℓ = |jH − jL| ℓ = |jH − jL|+ 1

More generally, the angular factor is given by, [33, p. 878],

f ang,ℓ
LH = (2jL + 1)[〈ℓ 0||jH 1/2〉|jL−1/2〉]2 (A.188)

Here the quantity in square brackets is called a Clebsch-Gordan coefficient. For
small angular momenta, values can be found in figure 12.5. For larger values,
refer to {N.13}. The leading factor is the reason that the values in the table
are not the same if you swap the initial and final states. When the final state
has the higher angular momentum, there are more nuclear orientations that an
atom can decay to.

It may be noted that [11, p. 9-178] gives the above factor for electric tran-
sitions as

f ang,ℓ
LH = (2jL + 1)(2ℓ+ 1)(2lL + 1)(2lH + 1)

(
lL lH l
0 0 0

)2{
lL jL

1
2

jH lH ℓ

}2



1076 APPENDIX A. ADDENDA

Here the array in parentheses is the so-called Wigner 3j symbol and the one in
curly brackets is the Wigner 6j symbol, {N.13}. The idea is that this expression
will take care of the selection rules automatically. And so it does, if you assume
that the multiply-defined l is ℓ, as the author seems to say. Of course, selection
rules might be a lot easier to evaluate than 3j and 6j symbols.

For magnetic multipole transitions, with ℓ = |jH − jL| = |lH − lL| + 1, the
same source comes up with

f ang,ℓ
LH = (2jL + 1)

3(2ℓ+ 1)2(2ℓ− 1)

2ℓ
(2lL + 1)(2lH + 1)

×
(
lL lH ℓ− 1
0 0 0

)2{
lL jL

1
2

jH lH ℓ− 1

}2





lH lL ℓ− 1
1
2

1
2

1
jH jL ℓ





2

Here the final array in curly brackets is the Wigner 9j symbol. The bad news
is that the 6j symbol does not allow any transitions of lowest multipole order
to occur! Someone familiar with 6j symbols can immediately see that from the
so-called triangle inequalities that the coefficients of 6j symbols must satisfy,
{N.13}. Fortunately, it turns out that if you simply leave out the 6j symbol,
you do seem to get the right values and selection rules.

The magnetic multipole matrix element also involves an angular momentum
factor. This factor turns out to be relatively simple, {D.43.3}:

f
mom,|∆j|
LH =

(
gi −

2

1 + ℓ

)2

ℓ2
lmin = jmin + 1

2

lmax = jmax − 1
2

f
mom,|∆j|+1
LH =





(
gi −

2− 4jmin

1 + ℓ

)2

(jmax + 1)2
lmin = jmin − 1

2
6= 0

lmax = jmax − 1
2

(
gi −

2 + 4(ℓ+ jmin)

1 + ℓ

)2

j2min

lmin = jmin + 1
2

lmax = jmax +
1
2

(A.189)
Here “min” and “max” refer to whatever is the smaller, respectively larger, one
of the initial and final values.

The stated values of the orbital angular momentum l are the only ones
allowed by parity and the orbital angular momentum conservation condition
(A.186). In particular, consider the first expression above, for the minimum
multipole order ℓ = |∆j|. According to this expression, the change in orbital
angular momentum cannot exceed the change in net angular momentum. That
forbids a lot of magnetic transitions in a shell model setting, transitions that
seem perfectly fine if you only look at net angular momentum and parity. Add to
that the earlier observation that M1 transitions cannot change the radial state at
all. Magnetic transitions are quite handicapped according to the single-particle
model used here.
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Of course, a single-particle model is not exact for multiple-particle systems.
In a more general setting, transitions that in the ideal model would violate
the orbital angular momentum condition can occur. For example, consider
the possibility that the true state picks up some uncertainty in orbital angular
momentum.

Presumably such transitions would be unexpectedly slow compared to tran-
sitions that do not violate any approximate orbital angular momentum condi-
tions. That makes estimating the magnetic transition rates much more tricky.
After all, for nuclei the net angular momentum is usually known with some
confidence, but the orbital angular momentum of individual nucleons is not.

Fortunately, for electric transitions orbital angular momentum conservation
does not provide additional limitations. Here the orbital requirements are al-
ready satisfied if net angular momentum and parity are conserved.

The derived decay estimates are now used to define standard decay rates.
It is assumed that the multipole order is minimal, ℓ = |∆j|, and that the final
angular momentum is 1

2
. As table A.3 shows, that makes the angular factor

equal to 1. The standard electric decay rate is then

λEℓWeisskopf = αω(kR)2ℓ
2(ℓ+ 1)

ℓ(2ℓ+ 1)!!2
9

(ℓ+ 3)2
(A.190)

This decay rate is called the “Weisskopf unit” for electric multipole transitions.
It is commonly indicated by W.u. Measured actual decay rates are compared
to this unit to get an idea whether they are unusually high or low.

Note that the decay rates are typically orders of magnitude off the mark.
That is due to effects that cannot be accounted for. Nucleons are not inde-
pendent particles by far. And even if they were, their radial wave functions
would not be constant. The used expression for the electric matrix element is
probably no good, {N.14}. And especially higher multipole orders depend very
sensitively on the nuclear radius, which is imprecisely defined.

The standard magnetic multipole decay rate becomes under the same as-
sumptions:

λMℓMoszkowski = αω(kR)2ℓ
2(ℓ+ 1)

ℓ(2ℓ+ 1)!!2

(
~

2mcR

)2
9

(ℓ+ 2)2

(
gi −

2

ℓ+ 1

)2

ℓ2

(A.191)
This decay rate is called the “Moszkowski unit” for magnetic multipole transi-
tions.

Finally, it should be mentioned that it is customary to ballpark the final
momentum factor in the Moszkowski unit by 40. That is because Jesus spent
40 days in the desert. Also, the factor (ℓ+2)2 is customarily replaced by (ℓ+3)2,
[10, p. 9-49], [36, p. 676], [5, p. 242], because, hey, anything for a laugh. Other
sources keep the (ℓ+2)2 factor just like it is, [11, p. 9-178], [31, p. 332], because,
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hey, why not? Note that the Handbook of Physics does both, depending on the
author you look at. Taking the most recent of the cited sources, as well as [[4]],
as reference the new and improved magnetic transition rate may be:

λMℓWeisskopf = αω(kR)2ℓ
2(ℓ+ 1)

ℓ(2ℓ+ 1)!!2

(
~

mcR

)2
90

(ℓ+ 3)2
(A.192)

This is called the Weisskopf magnetic unit. Note that the humor factor has been
greatly increased. Whether there is a 2 or 3 in the final fraction does not make
a difference. All analysis is relative to the perception of the observer. Where
one perceives a 2 another sees a 3. Everthing is relative, as Einstein supposedly
said, and otherwise quantum mechanics definitely did.

Note that the Weisskopf magnetic unit looks exactly like the electric one,
except for the addition of a zero and the additional fraction between parentheses.
That makes it easier to remember, especially for those who can remember the
electric unit. For them the savings in time is tremendous, because they do not
have to look up the correct expression. That can save a lot of time because
many standard references have the formulae wrong or in some weird system of
units. All that time is much better spend trying to guess whether your source,
or your editor, uses a 2 or a 3.

A.25.9 Errors in other sources

There is a notable amount of errors in descriptions of the Weisskopf and Mosz-
kowski estimates found elsewhere. That does not even include not mentioning
that the electric multipole rate is likely no good, {N.14}. Or randomly using
ℓ+ 2 or ℓ+ 3 in the Weisskopf magnetic unit.

These errors are more basic. The first edition of the Handbook of Physics,
[10, p. 9-49], gives both Weisskopf units wrong. Squares are missing on the ℓ+3,
and so is the fine structure constant. The other numerical factors are consistent
between the two units, but not right. Probably a strangely normalized matrix
element is given, rather than the stated decay rates λ, and in addition the square
was forgotten.

The same Handbook, [10, p. 9-110], but a different author, uses gi/2 instead
of gi in the Moszkowski estimate. (Even physicists themselves can get confused
if sometimes you define gp to be 5.6 and sometimes 2.8, which also happens
to be the magnetic moment µp in nuclear magnetons, which is often used as a
“nondimensional” unit where gp is really needed, etcetera.) More seriously, this
error is carried over to the given plot of the Moszkowski unit, which is therefore
wrong. Which is in addition to the fact that the nuclear radius used in it is too
large by modern standards, using 1.4 rather than 1.2 in (A.177).

The error is corrected in the second edition, [11, p. 9-178], but the Mosz-
kowski plot has disappeared. In favor of the Weisskopf magnetic unit, of course.
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Think of the scientific way in which the Weisskopf unit has been deduced! This
same reference also gives the erroneous angular factor for magnetic transitions
mentioned in the previous subsection. Of course an additional 6j symbol that
sneaks in is easily overlooked.

No serious errors were observed in [33]. (There is a readily-fixed error in
the conversion formula for when the initial and final states are swapped.) This
source does not list the Weisskopf magnetic unit. (Which is certainly defensible
in view of its nonsensical assumptions.) Unfortunately non-SI units are used.

The electric dipole matrix element in [36, p. 676] is missing a factor 1/2c.
The claim that this element can be found by “straightforward calculation” is
ludicrous. Not only is the mathematics convoluted, it also involves the major
assumption that the potentials depend only on position. A square is missing in
the Moszkowski unit, and the table of corresponding widths are in eV instead
of the stated 1/s.

All three units are given incorrectly in [31, p. 332]. There is a factor 4π in
them that should not be there. And the magnetic rate is missing a factor ℓ2. The
constant in the numerical expression for M3 transitions should be 15, not 16.
Of course, the difference is negligible compared to replacing the parenthetical
expression by 40, or compared to the orders of magnitude that the estimate is
commonly off anyway.

The Weisskopf units are listed correctly in [5, p. 242]. Unfortunately non-SI
units are used. The Moszkowski unit is not mentioned. The nonsensical nature
of the Weisskopf magnetic unit is not pointed out. Instead it is claimed that it
is found by a similar calculation as the electric unit.

A.26 Fourier inversion theorem and Parseval

This note discusses Fourier series, Fourier integrals, and Parseval’s identity.
Consider first one-dimensional Fourier series. They apply to functions f(x)

that are periodic with some given period ℓ:

f(x+ ℓ) = f(x) for all x

Such functions can be written as a “Fourier series:”

f(x) =
∑

all k

fk
eikx√
ℓ

fk =

∫ ℓ

0

f(x)
e−ikx√
ℓ

dx (A.193)

Here the k values are those for which the exponentials are periodic of period
ℓ. According to the Euler formula (2.5), that means that kℓ must be a whole
multiple n of 2π, so

k = n
2π

ℓ
n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (A.194)
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Note that notations for Fourier series can vary from one author to the next.
The above form of the Fourier series is the prefered one for quantum mechanics.
The reason is that the functions eikx/

√
ℓ form an orthonormal set:

∫ ℓ

0

e−ikx√
ℓ

eikx√
ℓ
dx =

{
1 if k = k
0 if k 6= k

(A.195)

Quantum mechanics just loves orthonormal sets of functions. In particular,
note that the above functions are momentum eigenfunctions. Just apply the
linear momentum operator p̂ = ~d/idx on them. That shows that their linear
momentum is given by the de Broglie relation p = ~k. Here these momen-
tum eigenfunctions are properly normalized. They would not be using different
conventions.

That any (reasonable) periodic function f(x) can be written as a Fourier
series was already shown in {D.8}. That derivation took ℓ be the half-period.
The formula for the coefficients fk can also be derived directly: simply multi-
ply the expression (A.193) for f(x) with eikx/

√
ℓ for any arbitrary value of k

and integrate over x. Because of the orthonormality (A.195), the integration
produces zero for all k except if k = k, and then it produces fk as required.

Note from (A.193) that if you known f(x) you can find all the fk. Conversely,
if you know all the fk, you can find f(x) at every position x. The formulae work
both ways.

But the symmetry goes even deeper than that. Consider the inner product
of a pair of functions f(x) and g(x):

∫ ℓ

0

f ∗(x)g(x) dx =

∫ ℓ

0

∑

all k

f ∗k
e−ikx√
ℓ

∑

all k

gk
eikx√
ℓ
dx

Using the orthonormality property (A.195) that becomes

∫ ℓ

0

f ∗(x)g(x) dx =
∑

all k

f ∗kgk (A.196)

Now note that if you look at the coefficients fk and gk as the coefficients of
infinite-dimensional vectors, then the right hand side is just the inner product
of these vectors. In short, Fourier series preserve inner products.

Therefore the equation above may be written more concisely as

〈f(x)|g(x)〉 = 〈fk|gk〉 (A.197)

This is the so-called “Parseval identity.” Now transformations that preserve
inner products are called “unitary” in mathematics. So the Parseval identity
shows that the transformation from periodic functions to their Fourier coeffi-
cients is unitary.
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That is quite important for quantum mechanics. For example, assume that
f(x) is a wave function of a particle stuck on a ring of circumference ℓ. Wave
functions should be normalized, so:

∫ ℓ

0

f ∗(x)f(x) dx = 1 =
∑

all k

f ∗kfk

According to the Born interpretation, the left hand side says that the probability
of finding the particle is 1, certainty, if you look at every position on the ring.
But according to the orthodox interpretation of quantum mechanics, f ∗kfk in
the right hand side gives the probability of finding the particle with momentum
p = ~k. The fact that the total sum is 1 means physically that it is certain that
the particle will be found with some momentum.

So far, only periodic functions have been covered. But functions in infinite
space can be handled by taking the period ℓ infinite. To do that, note from
(A.194) that the k values of the Fourier series are spaced apart over a distance

∆k =
2π

ℓ

In the limit ℓ → ∞, ∆k becomes an infinitesimal increment dk, and the sums
become integrals. Now in quantum mechanics it is convenient to replace the
coefficients fk by a new function f(k) that is defined so that

fk =
√
∆kf(k) =⇒ |fk|2 = |f(k)|2∆k

The reason that this is convenient is that |fk|2 gives the probability for wave
number k. Then for a function f(k) that is defined as above, |f(k)|2 gives the
probability per unit k-range.

If the above definition and
√
ℓ =
√
2π/∆k are substituted into the Fourier

series expressions (A.193), in the limit ℓ → ∞ it gives the “Fourier integral”
formulae:

f(x) =
1√
2π

∫ ∞

−∞
f(k)eikx dk f(k) =

1√
2π

∫ ∞

−∞
f(x)e−ikx dx (A.198)

In books on mathematics you will usually find function f(k) indicated as f̂(k),
to clarify that it is a completely different function than f(x). Unfortunately, the
hat is already used for something much more important in quantum mechanics.
So in quantum mechanics you will have to look at the argument, x or k, to know
which function it really is.

Of course, in quantum mechanics you are often more interested in the mo-
mentum than in the wave number. So it is often convenient to define a new
function f(p) so that |f(p)|2 gives the probability per unit momentum range
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rather than unit wave number range. Because p = ~k, the needed rescaling of
f(k) is by a factor

√
~. That gives

f(x) =
1√
2π~

∫ ∞

−∞
f(p)eipx/~ dp f(p) =

1√
2π~

∫ ∞

−∞
f(x)e−ipx/~ dx

(A.199)
Using similar substitutions as for the Fourier series, the Parseval identity

(A.197) becomes
∫ ∞

−∞
f ∗(x)g(x) dx =

∫ ∞

−∞
f ∗(k)g(k) dk =

∫ ∞

−∞
f ∗(p)g(p) dp

or in short
〈f(x)|g(x)〉 = 〈f(k)|g(k)〉 = 〈f(p)|g(p)〉 (A.200)

This identity is sometimes called the “Plancherel theorem,” after a later math-
ematician who generalized its applicability. The bottom line is that Fourier
integral transforms too conserve inner products.

So far, this was all one-dimensional. However, the extension to three di-
mensions is straightforward. The first case to be considered is that there is
periodicity in each Cartesian direction:

f(x+ℓx, y, z) = f(x, y, z) f(x, y+ℓy, z) = f(x, y, z) f(x, y, z+ℓz) = f(x, y, z)

In quantum mechanics, this would typically correspond to the wave function of
a particle stuck in a periodic box of dimensions ℓx × ℓy × ℓz. When the particle
leaves such a box through one side, it reenters it at the same time through the
opposite side.

There are now wave numbers for each direction,

kx = nx
2π

ℓx
ky = ny

2π

ℓy
kz = nz

2π

ℓz

where nx, ny, and nz are whole numbers. For brevity, vector notations may be
used:

~r ≡ xı̂+ ŷ+ zk̂ ~k ≡ kxı̂+ ky ̂+ kzk̂ eikxxeikyyeikzz = ei
~k·~r

Here ~k is the “wave number vector.”
The Fourier series for a three-dimensional periodic function is

f(~r) =
∑

all ~k

f~k
ei
~k·~r
√
V

f~k =

∫

V
f(~r)

e−i
~k·~r
√
V

d3~r (A.201)

Here f(~r) is shorthand for f(x, y, z) and V = ℓxℓyℓz is the volume of the periodic
box.
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The above expression for f may be derived by applying the one-dimensional
transform in each direction in turn:

f(x, y, z) =
∑

all kx

fkx(y, z)
eikxx√
ℓx

=
∑

all kx

∑

all ky

fkxky(z)
eikxx√
ℓx

eikyy√
ℓy

=
∑

all kx

∑

all ky

∑

all kz

fkxkykz
eikxx√
ℓx

eikyy√
ℓy

eikzz√
ℓz

This is equivalent to what is given above, except for trivial changes in notation.
The expression for the Fourier coefficients can be derived analogous to the one-
dimensional case, integrating now over the entire periodic box.

The Parseval equality still applies

〈f(~r)|g(~r)〉 =
〈
f~k
∣∣g~k
〉

(A.202)

where the left inner product integration is over the periodic box.
For infinite space

f(~r) =
1
√
2π

3

∫

all ~k

f(~k)ei
~k·~r d3~k f(~k) =

1
√
2π

3

∫

all ~r

f(~r)e−i
~k·~r d3~r

(A.203)

f(~r) =
1

√
2π~

3

∫

all ~p

f(~p)ei~p·~r/~ d3~p f(~p) =
1

√
2π~

3

∫

all ~r

f(~r)e−i~p·~r/~ d3~r

(A.204)

〈f(~r)|g(~r)〉 =
〈
f(~k)

∣∣∣g(~k)
〉
= 〈f(~p)|g(~p)〉 (A.205)

These expressions are all obtained completely analogously to the one-dimen-
sional case.

Often, the function is a vector rather than a scalar. That does not make
a real difference since each component transforms the same way. Just put a
vector symbol over f and g in the above formulae. The inner products are now
defined as

〈
~f(~r)|~g(~r)〉 ≡ 〈fx(~r)|gx(~r)〉+ 〈fy(~r)|gy(~r)〉+ 〈fz(~r)|gz(~r)〉

〈
~f~k
∣∣~g~k
〉
≡
〈
f~kx
∣∣g~kx

〉
+
〈
f~ky

∣∣∣g~ky
〉
+
〈
f~kz
∣∣g~kz

〉
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For the picky, converting Fourier series into Fourier integrals only works
for well-behaved functions. But to show that it also works for nasty wave
functions, you can set up a limiting process in which you approximate the nasty
functions increasingly accurately using well-behaved ones. Now if the well-
behaved functions are converging, then their Fourier transforms are too. The
inner products of the differences in functions are the same according to Parseval.
And according to the abstract Lebesgue variant of the theory of integration, that
is enough to ensure that the transform of the nasty function exists. This works
as long as the nasty wave function is square integrable. And wave functions
need to be in quantum mechanics.

But being square integrable is not a strict requirement, as you may have
been told elsewhere. A lot of functions that are not square integrable have
meaningful, invertible Fourier transforms. For example, functions whose square
magnitude integrals are infinite, but absolute value integrals are finite can still
be meaningfully transformed. That is more or less the classical version of the
inversion theorem, in fact. (See D.C. Champeney, A Handbook of Fourier The-
orems, for more.)

A.27 Details of the animations

This note explains how the wave packet animations of chapter 7.11 and 7.12
were obtained. If you want a better understanding of unsteady solutions of the
Schrödinger equation and their boundary conditions, this is a good place to
start. In fact, deriving such solutions is a popular item in quantum mechanics
books for physicists.

First consider the wave packet of the particle in free space, as shown in
chapter 7.11.1. An energy eigenfunction with energy E in free space takes the
general form

ψE = Cfe
ipx/~ + Cbe

−ipx/~ p =
√
2mE

where p is the momentum of the particle and Cf and Cb are constants.
To study a single wave packet coming in from the far left, the coefficient Cb

has to be set to zero. The reason was worked out in chapter 7.10: combina-
tions of exponentials of the form Cbe

−ipx/~ produce wave packets that propagate
backwards in x, from right to left. Therefore, a nonzero value for Cb would add
an unwanted second wave packet coming in from the far right.

eipx/~

Figure A.9: Example energy eigenfunction for the particle in free space.
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With only the coefficient Cf of the forward moving part left, you may as well
scale the eigenfunction so that Cf = 1, simplifying it to

ψE = eipx/~

A typical example is shown in figure A.9. Plus and minus the magnitude of the
eigenfunction are shown in black, and the real part is shown in red. This wave
function is an eigenfunction of linear momentum, with p the linear momentum.

To produce a coherent wave packet, eigenfunctions with somewhat different
energies E have to be combined together. Since the momentum is given by p
=
√
2mE, different energy means different momentum p; therefore the wave

packet can be written as

Ψ(x, t) =

∫

all p

c(p)e−iEt/~ψE(x) dp (A.206)

where c(p) is some function that is only nonzero in a relatively narrow range of
momenta p around the nominal momentum. Except for that basic requirement,
the choice of the function c(p) is quite arbitrary. Choose some suitable function
c(p), then use a computer to numerically integrate the above integral at a large
number of plot points and times. Dump the results into your favorite animation
software and bingo, out comes the movie.

C l
fe

iplcx/~ + C l
be
−iplcx/~ Cr [Bi(x) + iAi(x)]A

Figure A.10: Example energy eigenfunction for a particle entering a constant
accelerating force field.

Next consider the animation of chapter 7.11.2, where the particle accelerates
along a downward potential energy ramp starting from point A. A typical energy
eigenfunction is shown in figure A.10. Since to the left of point A, the potential
energy is still zero, in that region the energy eigenfunction is still of the form

ψE = C l
fe

iplcx/~ + C l
be
−iplcx/~ for x < xA plc =

√
2mE

where plc is the momentum that a classical particle of energy E would have in
the left region. (Quantum mechanics looks at the complete wave function, not
just a single point of it, and would say that the momentum is uncertain.)

In this case, it can no longer be argued that the coefficient C l
b must be zero

to avoid a packet entering from the far right. After all, the C l
be
−iplcx/~ term does

not extend to the far right anymore. To the right of point A, the potential
changes linearly with position, and the exponentials are no longer valid.
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In fact, it is known that the solution of the Hamiltonian eigenvalue problem
in a region with a linearly varying potential is a combination of two weird
functions Ai and Bi that are called the “Airy” functions. The bad news is that
if you are interested in learning more about their properties, you will need an
advanced mathematical handbook like [1] or at least look at addendum {A.29}.
The good news is that free software to evaluate these functions and their first
derivatives is readily available on the web. The general solution for a linearly
varying potential is of the form

ψE = CBBi(x) + CAAi(x) x =
3

√
2mV ′

~2

V − E
V ′

V ′ ≡ dV

dx

Note that (V −E)/V ′ is the x-position measured from the point where V = E.
Also note that the cube root is negative, so that x is.

It may be deduced from the approximate analysis of addendum {A.28} that
to prevent a second wave packet coming in from the far right, Ai and Bi must
appear together in the combination Bi + iAi as shown in figure A.10. The fact
that no second packet comes in from the far right in the animation can be taken
as an experimental confirmation of that result, so there seems little justification
to go over the messy argument.

To complete the determination of the eigenfunction for a given value of E,
the constants C l

f , C
l
b and Cr must still be determined. That goes as follows. For

now, assume that Cr has the provisional value cr = 1. Then provisional values
clf and c

l
b for the other two constants may be found from the requirements that

the left and right regions give the same values for ψE and dψE/dx at the point
A in figure A.10 where they meet:

clfe
iplcxA/~ + clbe

−iplcxA/~ = cr [Bi(xA) + iAi(xA)]

clf
iplc
~
eip

l
cxA/~ − clb

iplc
~
e−ip

l
cxA/~ = cr [Bi′(xA) + iAi′(xA)]

dx

dx

That is equivalent to two equations for the two constants clf and c
l
b, since every-

thing else can be evaluated, using the mentioned software. So clf and c
l
b can be

found from solving these two equations.
As the final step, it is desirable to normalize the eigenfunction ψE so that C l

f

= 1. To do so, the entire provisional eigenfunction can be divided by clf , giving
C l

b = clb/c
l
f and Cr = cr/clf . The energy eigenfunction has now been found.

And since C l
f = 1, the eip

l
cx/~ term is exactly the same as the free space energy

eigenfunction of the first example. That means that if the eigenfunctions ψE are
combined into a wave packet in the same way as in the free space case, (A.206)
with p replaced by plc, the e

iplcx/~ terms produce the exact same wave packet
coming in from the far left as in the free space case.

For larger times, the C l
be
−iplcx/~ terms produce a “reflected” wave packet that

returns toward the far left. Note that e−ip
l
cx/~ is the complex conjugate of eip

l
cx/~,
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and it can be seen from the unsteady Schrödinger equation that if the complex
conjugate of a wave function is taken, it produces a reversal of time. Wave
packets coming in from the far left at large negative times become wave packets
leaving toward the far left at large positive times. However, the constant C l

b

turns out to be very small in this case, so there is little reflection.

C l
fe

iplcx/~ + C l
be
−iplcx/~ CrAi(x)A

Figure A.11: Example energy eigenfunction for a particle entering a constant
decelerating force field.

Next consider the animation of chapter 7.11.3, where the particle is turned
back by an upward potential energy ramp. A typical energy eigenfunction for
this case is shown in figure A.11. Unlike in the previous example, where the
argument x of the Airy functions was negative at the far right, here it is positive.
Table books that cover the Airy functions will tell you that the Airy function
Bi blows up very strongly with increasing positive argument x. Therefore, if
the solution in the right hand region would involve any amount of Bi, it would
locate the particle at infinite x for all times. For a particle not at infinity, the
solution in the right hand region can only involve the Airy function Ai. That
function decays rapidly with positive argument x, as seen in figure A.11.

The further determination of the energy eigenfunctions proceeds along the
same lines as in the previous example: give Cr a provisional value cr = 1, then
compute clf and c

l
b from the requirements that the left and right regions produce

the same values for ψ and dψ/dx at the point A where they meet. Finally divide
the eigenfunction by clf . The big difference is that now C l

b is no longer small;
C l

b turns out to be of unit magnitude just like C l
f . It means that the incoming

wave packet is reflected back completely.

h50(x)

Figure A.12: Example energy eigenfunction for the harmonic oscillator.

For the harmonic oscillator of chapter 7.11.4, the analysis is somewhat dif-
ferent. In particular, chapter 4.1.2 showed that the energy levels of the one-di-
mensional harmonic oscillator are discrete,

En =
2n+ 1

2
~ω for n = 0, 1, 2, . . .
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so that unlike the motions just discussed, the solution of the Schrödinger equa-
tion is a sum, rather than the integral (A.206),

Ψ(x, t) =
∞∑

n=0

cne
−iEnt/~hn(x)

However, for large n the difference between summation and integration is small.

Also, while the energy eigenfunctions hn(x) are not exponentials as for the
free particle, for large n they can be pairwise combined to approximate such
exponentials. For example, eigenfunction h50, shown in figure A.12, behaves
near the center point much like a cosine if you scale it properly. Similarly, h51
behaves much like a sine. A cosine plus i times a sine gives an exponential,
according to the Euler formula (2.5). Create similar exponential combinations
of eigenfunctions with even and odd values of n for a range of n values, and
there are the approximate exponentials that allow you to create a wave packet
that is at the center point at time t = 0. In the animation, the range of n
values was centered around n = 50, making the nominal energy hundred times
the ground state energy. The exponentials degenerate over time, since their
component eigenfunctions have slightly different energy, hence time evolution.
That explains why after some time, the wave packet can return to the center
point going the other way.

C l
fe

iplcx/~ + C l
be
−iplcx/~ Cm

BBi(x) + Cm
AAi(x) Creip

r
cx/~

A B

Figure A.13: Example energy eigenfunction for a particle encountering a brief
accelerating force.

For the particle of chapter 7.12.1 that encounters a brief accelerating force,
an example eigenfunction looks like figure A.13. In this case, the solution in
the far right region is similar to the one in the far left region. However, there
cannot be a term of the form e−ip

r
cx/~ in the far right region, because when

the eigenfunctions are combined, it would produce an unwanted wave packet
coming in from the far right. In the middle region of linearly varying potential,
the wave function is again a combination of the two Airy functions. The way
to find the constants now has an additional step. First give the constant Cr of
the far right exponential the provisional value cr = 1 and from that, compute
provisional values cmA and cmB by demanding that the Airy functions give the
same values for ψ and dψ/dx as the far-right exponential at point B, where
they meet. Next compute provisional values clf and c

l
b by demanding that the

far-left exponentials give the same values for ψ and dψ/dx as the Airy functions
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C l
fe

iplcx/~ + C l
be
−iplcx/~ Cm

p e
|pmc |x/~ + Cm

n e
−|pmc |x/~ Creip

r
cx/~

A B

Figure A.14: Example energy eigenfunction for tunneling through a barrier.

at point A, where they meet. Finally, divide all the constants by clf to make C l
f

= 1.
For the tunneling particle of chapter 7.12.2, an example eigenfunction is as

shown in figure A.14. In this case, the solution in the middle part is not a com-
bination of Airy functions, but of real exponentials. It is essentially the same
solution as in the left and right parts, but in the middle region the potential
energy is greater than the total energy, making pmc =

√
2m(E − Vm) an imag-

inary number. Therefore the arguments of the exponentials become real when
written in terms of the absolute value of the momentum |pmc | =

√
2m(Vm − E).

The rest of the analysis is similar to that of the previous example.

C l
fe

iplcx/~ + C l
be
−iplcx/~ Creip

r
cx/~A

Figure A.15: Tunneling through a delta function barrier.

For the particle tunneling through the delta function potential in chapter
7.12.2, an example energy eigenfunction is shown in figure A.15. The potential
energy in this case is V = νδ(x−xA), where δ(x−xA) is a spike at point A that
integrates to one and the strength ν is a chosen constant. In the example, ν was
chosen to be

√
2~2Enom/m with Enom the nominal energy. For that strength,

half the wave packet will pass through.
For a delta function potential, a modification must be made in the analysis as

used so far. As figure A.15 illustrates, there are kinks in the energy eigenfunction
at the location A of the delta function. The left and right expressions for the
eigenfunction do not predict the same value for its derivative dψ/dx at point
A. To find the difference, integrate the Hamiltonian eigenvalue problem from
a point a very short distance ε before point A to a point the same very short
distance behind it:

− ~
2

2m

∫ xA+ε

x=xA−ε

d2ψ

dx2
dx+ ν

∫ xA+ε

x=xA−ε
δ(x− xA)ψ dx =

∫ xA+ε

x=xA−ε
Eψ dx

The integral in the right hand side is zero because of the vanishingly small inter-
val of integration. But the delta function spike in the left hand side integrates
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to one regardless of the small integration range, so

− ~
2

2m

dψ

dx

∣∣∣
xA+ε

xA−ε
+ νψ(xA) = 0

For vanishingly small ε, dψ/dx at xA + ε becomes what the right hand part of
the eigenfunction gives for dψ/dx at xA, while dψ/dx at xA − ε becomes what
the left hand part gives for it. As seen from the above equation, the difference
is not zero, but 2mνψ(xA)/~

2.
So the correct equations for the provisional constants are in this case

clfe
iplcxA/~ + clbe

−iplcxA/~ = creip
r
cxA/~

iplc
~
clfe

iplcxA/~ − iplc
~
clbe
−iplcxA/~ =

iprc
~
creip

r
cxA/~ − 2mν

~2
creip

r
cxA/~

Compared to the analysis as used previously, the difference is the final term in
the second equation that is added by the delta function.

The remainder of this note gives some technical details for if you are actually
planning to do your own animations. It is a good idea to assume that the units
of mass, length, and time are chosen such that ~ and the nominal energy are one,
while the mass of the particle is one-half. That avoids having to guesstimate
suitable values for all sorts of very small numbers. The Hamiltonian eigenvalue
problem then simplifies to

−d2ψ

dx2
+ V ψ = Eψ

where the values of E of interest cluster around 1. The nominal momentum will
be one too. In those units, the length of the plotted range was one hundred in
all but the harmonic oscillator case.

It should be noted that to select a good function c(p) in (A.206) is somewhat
of an art. The simplest idea would be to choose c(p) equal to one in some limited
range around the nominal momentum, and zero elsewhere, as in

c(p) = 1 if (1− r)pnom < p < (1 + r)pnom c(p) = 0 otherwise

where r is the relative deviation from the nominal momentum below which
c(p) is nonzero. However, it is know from Fourier analysis that the locations
where c(p) jumps from one to zero lead to lengthy wave packets when viewed
in physical space. {D.44}. Functions c(p) that do lead to nice compact wave
packets are known to be of the form

c(p) = exp

(
−(p− pnom)2

r2p2nom

)

And that is essentially the function c(p) used in this study. The typical width
of the momentum range was chosen to be r = 0.15, or 15%, by trial and error.
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However, it is nice if c(p) becomes not just very small, but exactly zero beyond
some point, for one because it cuts down on the number of energy eigenfunctions
that have to be evaluated numerically. Also, it is nice not to have to worry about
the possibility of p being negative in writing energy eigenfunctions. Therefore,
the final function used was

c(p) = exp

(
− (p− pnom)2
r2[p2nom − (p− pnom)2]

)
for 0 < p < 2pnom c(p) = 0 otherwise

The actual difference in numerical values is small, but it does make c(p) exactly
zero for negative momenta and those greater than twice the nominal value.
Strictly speaking, c(p) should still be multiplied by a constant to make the total
probability of finding the particle equal to one. But if you do not tell people
what numbers for Ψ are on the vertical axes, you do not need to bother.

In doing the numerical integrations to find Ψ(x, t), note that the mid point
and trapezium rules of numerical integration are exponentially accurate under
the given conditions, so there is probably not much motivation to try more
advanced methods. The mid point rule was used.

The animations in this book used the numerical implementations daie.f,
dbie.f, daide.f, and dbide.f from netlib.org for the Airy functions and
their first derivatives. These offer some basic protection against underflow and
overflow by splitting off an exponential for positive x. It may be a good idea
to check for underflow and overflow in general and use 64 bit precision. The
examples here did.

For the harmonic oscillator, the larger the nominal energy is compared to
the ground state energy, the more the wave packet can resemble a single point
compared to the limits of motion. However, the computer program used to
create the animation computed the eigenfunctions by evaluating the analytical
expression given in derivation {D.12}, and explicitly evaluating the Hermite
polynomials is very round-off sensitive. That limited it to a maximum of about
hundred times the ground state energy when allowing for enough uncertainty to
localize the wave packet. Round-off is a general problem for power series, not
just for the Hermite polynomials. If you want to go to higher energies to get
a smaller wave packet, you will want to use a finite difference or finite element
method to find the eigenfunctions.

The plotting software used to produce the animations was a mixture of
different programs. There are no doubt much simpler and better ways of doing
it. In the animations presented here, first plots were created of Ψ versus x for
a large number of closely spaced times covering the duration of the animation.
These plots were converted to gifs using a mixture of personal software, netpbm,
and ghostview. The gifs were then combined into a single movie using gifsicle.
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A.28 WKB Theory of Nearly Classical Motion

WKB theory provides simple approximate solutions for the energy eigenfunc-
tions when the conditions are almost classical, like for the wave packets of chap-
ter 7.11. The approximation is named after Wentzel, Kramers, and Brillouin,
who refined the ideas of Liouville and Green. The bandit scientist Jeffreys tried
to rob WKB of their glory by doing the same thing two years earlier, and is
justly denied all credit.

h50

E50

V

x

1 2

✻
❄
p2c/2m

Figure A.16: Harmonic oscillator potential energy V , eigenfunction h50, and its
energy E50.

The WKB approximation is based on the rapid spatial variation of energy
eigenfunctions with almost macroscopic energies. As an example, figure A.16
shows the harmonic oscillator energy eigenfunction h50. Its energy E50 is hun-
dred times the ground state energy. That makes the kinetic energy E−V quite
large over most of the range, and that in turn makes the linear momentum large.
In fact, the classical Newtonian linear momentum pc = mv is given by

pc ≡
√
2m(E − V ) (A.207)

In quantum mechanics, the large momentum implies rapid oscillation of the
wave function: quantum mechanics associates the linear momentum with the
operator ~d/idx that denotes spatial variation.

The WKB approximation is most appealing in terms of the classical mo-
mentum pc as defined above. To find its form, in the Hamiltonian eigenvalue
problem

− ~
2

2m

d2ψ

dx2
+ V ψ = Eψ

take the V ψ term to the other side and then rewrite E − V in terms of the
classical linear momentum. That produces

d2ψ

dx2
= −p

2
c

~2
ψ (A.208)

Now under almost classical conditions, a single period of oscillation of the
wave function is so short that normally pc is almost constant over it. Then
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by approximation the solution of the eigenvalue problem over a single period is
simply an arbitrary combination of two exponentials,

ψ ∼ cfe
ipcx/~ + cbe

−ipcx/~

where the constants cf and cb are arbitrary. (The subscripts denote whether the
wave speed of the corresponding term is forward or backward.)

It turns out that to make the above expression work over more than one
period, it is necessary to replace pcx by the antiderivative

∫
pc dx. Further-

more, the “constants” cf and cb must be allowed to vary from period to period
proportional to 1/

√
pc.

In short, the WKB approximation of the wave function is, {D.46}:

classical WKB: ψ ≈ 1√
pc

[
Cfe

iθ + Cbe
−iθ] θ ≡ 1

~

∫
pc dx (A.209)

where Cf and Cb are now true constants.
If you ever glanced at notes such as {D.12}, {D.14}, and {D.15}, in which

the eigenfunctions for the harmonic oscillator and hydrogen atom were found,
you recognize what a big simplification the WKB approximation is. Just do the
integral for θ and that is it. No elaborate transformations and power series to
grind down. And the WKB approximation can often be used where no exact
solutions exist at all.

In many applications, it is more convenient to write the WKB approximation
in terms of a sine and a cosine. That can be done by taking the exponentials
apart using the Euler formula (2.5). It produces

rephrased WKB: ψ ≈ 1√
pc

[Cc cos θ + Cs sin θ] θ ≡ 1

~

∫
pc dx

(A.210)
The constants Cc and Cs are related to the original constants Cf and Cb as

Cc = Cf + Cb Cs = iCf − iCb Cf =
1
2
(Cc − iCs) Cb = 1

2
(Cc + iCs)

(A.211)
which allows you to convert back and forward between the two formulations as
needed. Do note that either way, the constants depend on what you chose for
the integration constant in the θ integral.

As an application, consider a particle stuck between two impenetrable walls
at positions x1 and x2. An example would be the particle in a pipe that was
studied way back in chapter 3.5. The wave function ψ must become zero at
both x1 and x2, since there is zero possibility of finding the particle outside the
impenetrable walls. It is now smart to chose the integration constant in θ so
that θ1 = 0. In that case, Cc must be zero for ψ to be zero at x1, (A.210). The
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wave function must be just the sine term. Next, for ψ also to be zero at x2, θ2
must be a whole multiple n of π, because that are the only places where sines
are zero. So θ2 − θ1 = nπ, which means that

particle between impenetrable walls:
1

~

∫ x2

x=x1

pc(x) dx = nπ (A.212)

Recall that pc was
√
2m(E − V ), so this is just an equation for the energy

eigenvalues. It is an equation involving just an integral; it does not even require
you to find the corresponding eigenfunctions!

It does get a bit more tricky for a case like the harmonic oscillator where
the particle is not caught between impenetrable walls, but merely prevented to
escape by a gradually increasing potential. Classically, such a particle would
still be rigorously constrained between the so called “turning points” where the
potential energy V becomes equal to the total energy E, like the points 1 and 2
in figure A.16. But as the figure shows, in quantum mechanics the wave function
does not become zero at the turning points; there is some chance for the particle
to be found somewhat beyond the turning points.

A further complication arises since the WKB approximation becomes in-
accurate in the immediate vicinity of the turning points. The problem is the
requirement that the classical momentum can be approximated as a nonzero
constant on a small scale. At the turning points the momentum becomes zero
and that approximation fails.

However, it is possible to solve the Hamiltonian eigenvalue problem near the
turning points assuming that the potential energy is not constant, but varies
approximately linearly with position, {A.29}. Doing so and fixing up the WKB
solution away from the turning points produces a simple result. The classical
WKB approximation remains a sine, but at the turning points, sin θ stays an
angular amount π/4 short of becoming zero. (Or to be precise, it just seems
to stay π/4 short, because the classical WKB approximation is no longer valid
at the turning points.) Assuming that there are turning points with gradually
increasing potential at both ends of the range, like for the harmonic oscillator,
the total angular range will be short by an amount π/2.

Therefore, the expression for the energy eigenvalues becomes:

particle trapped between turning points:
1

~

∫ x2

x=x1

pc(x) dx = (n− 1
2
)π

(A.213)
The WKB approximation works fine in regions where the total energy E is

less than the potential energy V . The classical momentum pc =
√
2m(E − V )

is imaginary in such regions, reflecting the fact that classically the particle does
not have enough energy to enter them. But, as the nonzero wave function
beyond the turning points in figure A.16 shows, quantum mechanics does allow
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some possibility for the particle to be found in regions where E is less than V .
It is loosely said that the particle can “tunnel” through, after a popular way for
criminals to escape from jail. To use the WKB approximation in these regions,
just rewrite it in terms of the magnitude |pc| =

√
2m(V − E) of the classical

momentum:

tunneling WKB: ψ ≈ 1√
|pc|

[
Cpe

γ + Cne
−γ] γ ≡ 1

~

∫
|pc| dx (A.214)

Note that γ is the equivalent of the angle θ in the classical approximation.

Key Points

0 The WKB approximation applies to situations of almost macroscopic
energy.

0 The WKB solution is described in terms of the classical momentum
pc ≡

√
2m(E − V ) and in particular its antiderivative θ =

∫
pc dx/~.

0 The wave function can be written as (A.209) or (A.210), whatever is
more convenient.

0 For a particle stuck between impenetrable walls, the energy eigen-
values can be found from (A.212).

0 For a particle stuck between a gradually increasing potential at both
sides, the energy eigenvalues can be found from (A.213).

0 The “tunneling” wave function in regions that classically the particle
is forbidden to enter can be approximated as (A.214). It is in terms
of the antiderivative γ =

∫
|pc| dx/~.

A.28 Review Questions

1. Use the equation
1

~

∫ x2

x=x1

pc(x) dx = nπ

to find the WKB approximation for the energy levels of a particle stuck
in a pipe of chapter 3.5.5. The potential V is zero inside the pipe, given
by 0 6 x 6 ℓx
In this case, the WKB approximation produces the exact result, since

the classical momentum really is constant. If there was a force field in
the pipe, the solution would only be approximate.
Solution wkb-a

2. Use the equation
1

~

∫ x2

x=x1

pc(x) dx = (n− 1
2)π

to find the WKB approximation for the energy levels of the harmonic
oscillator. The potential energy is 1

2mωx
2 where the constant ω is the

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/wkb-a.html
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classical natural frequency. So the total energy, expressed in terms of the
turning points x2 = −x1 at which E = V , is E = 1

2mωx2
2.

In this case too, the WKB approximation produces the exact energy
eigenvalues. That, however, is just a coincidence; the classical WKB wave
functions are certainly not exact; they become infinite at the turning
points. As the example h50 above shows, the true wave functions most
definitely do not.
Solution wkb-b

A.29 WKB solution near the turning points

Both the classical and tunneling WKB approximations of addendum {A.28} fail
near so-called “turning points” where the classical kinetic energy E−V becomes
zero. This note explains how the problem can be fixed.

x1

1

Ai

x1

1

Bi

Figure A.17: The Airy Ai and Bi functions that solve the Hamiltonian eigenvalue
problem for a linearly varying potential energy. Bi very quickly becomes too
large to plot for positive values of its argument.

The trick is to use a different approximation near turning points. In a small
vicinity of a turning point, it can normally be assumed that the x-derivative
V ′ of the potential is about constant, so that the potential varies linearly with
position. Under that condition, the exact solution of the Hamiltonian eigenvalue
problem is known to be a combination of two special functions Ai and Bi that
are called the “Airy” functions. These functions are shown in figure A.17. The
general solution near a turning point is:

ψ = CAAi(x) + CBBi(x) x =
3

√
2mV ′

~2

V − E
V ′

V ′ ≡ dV

dx

Note that (V −E)/V ′ is the x-position measured from the point where V = E,
so that x is a local, stretched x-coordinate.

The second step is to relate this solution to the normal WKB approximations
away from the turning point. Now from a macroscopic point of view, the WKB

http://www.eng.famu.fsu.edu/~dommelen/quantum/solman/wkb-b.html
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approximation follows from the assumption that Planck’s constant ~ is very
small. That implies that the validity of the Airy functions normally extends
to region where |x| is relatively large. For example, if you focus attention on a
point where V −E is a finite multiple of ~1/3, V −E is small, so the value of V ′

will deviate little from its value at the turning point: the assumption of linearly
varying potential remains valid. Still, if V −E is a finite multiple of ~1/3, |x| will
be proportional to 1/~1/3, and that is large. Such regions of large, but not too
large, |x| are called “matching regions,” because in them both the Airy function
solution and the WKB solution are valid. It is where the two meet and must
agree.

It is graphically depicted in figures A.18 and A.19. Away from the turning
points, the classical or tunneling WKB approximations apply, depending on
whether the total energy is more than the potential energy or less. In the vicinity
of the turning points, the solution is a combination of the Airy functions. If
you look up in a mathematical handbook like [1] how the Airy functions can be
approximated for large positive respectively negative x, you find the expressions
listed in the bottom lines of the figures. (After you rewrite what you find in
table books in terms of useful quantities, that is!)

The expressions in the bottom lines must agree with what the classical,
respectively tunneling WKB approximation say about the matching regions.
At one side of the turning point, that relates the coefficients Cp and Cn of the
tunneling approximation to the coefficients of CA and CB of the Airy functions.
At the other side, it relates the coefficients Cf and Cb (or Cc and Cs) of the
classical WKB approximation to CA and CB. The net effect of it all is to relate,
“connect,” the coefficients of the classical WKB approximation to those of the
tunneling one. That is why the formulae in figures A.18 and A.19 are called the
“connection formulae.”

You may have noted the appearance of an additional constant c in figures
A.18 and A.19. This nasty constant is defined as

c =

√
π

(2m|V ′|~)1/6 (A.215)

and shows up uninvited when you approximate the Airy function solution for
large |x|. By cleverly absorbing it in a redefinition of the constants CA and CB,
figures A.18 and A.19 achieve that you do not have to worry about it unless
you specifically need the actual solution at the turning points.

As an example of how the connection formulae are used, consider a right
turning point for the harmonic oscillator or similar. Near such a turning point,
the connection formulae of figure A.18 apply. In the tunneling region towards
the right, the term Cpe

γ better be zero, because it blows up at large x, and
that would put the particle at infinity for sure. So the constant Cp will have to
be zero. Now the matching at the right side equates Cp to CBe

−γt so CB will
have to be zero. That means that the solution in the vicinity of the turning
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1√
pc

[
Cfe

iθ + Cbe
−iθ]

1√
pc

[Cc cos θ + Cs sin θ]





⇑
⇓equate

1√
pc

[
CB cos(θ−θt−

π

4
)− CA sin(θ−θt−

π

4
)
]

CBcBi(x) + CAcAi(x)

1√
|pc|

[
CBe

γ−γt + 1
2
CAe

γt−γ]

⇑
⇓ equate

1√
|pc|

[
Cpe

γ + Cne
−γ]

t

Figure A.18: Connection formulae for a turning point from normal motion to
tunneling.

1√
|pc|

[
Cpe

γ + Cne
−γ]

⇑
⇓equate

1√
|pc|

[
CBe

γt−γ + 1
2
CAe

γ−γt]

CBcBi(x) + CAcAi(x)

1√
pc

[
CB cos(θ−θt+

π

4
) + CA sin(θ−θt+

π

4
)
]

⇑
⇓ equate





1√
pc

[
Cfe

iθ + Cbe
−iθ]

1√
pc

[Cc cos θ + Cs sin θ]

t

Figure A.19: Connection formulae for a turning point from tunneling to normal
motion.



A.29. WKB SOLUTION NEAR THE TURNING POINTS 1099

point will have to be a pure Ai function. Then the matching towards the left
shows that the solution in the classical WKB region must take the form of a
sine that, when extrapolated to the turning point θ = θt, stops short of reaching
zero by an angular amount π/4. Hence the assertion in addendum {A.28} that
the angular range of the classical WKB solution should be shortened by π/4 for
each end at which the particle is trapped by a gradually increasing potential
instead of an impenetrable wall.

[C l
fe

iθ + C l
be
−iθ]/
√
pc [Cm

p e
γ + Cm

n e
−γ]/
√
|pc| Creiθ/

√
pc

✲ ✛ ✲ ✛

1 2
V

E

Figure A.20: WKB approximation of tunneling.

As another example, consider tunneling as discussed in chapter 7.12 and
7.13. Figure A.20 shows a sketch. The WKB approximation may be used if the
barrier through which the particle tunnels is high and wide. In the far right
region, the energy eigenfunction only involves a term Creiθ with a forward wave
speed. To simplify the analysis, the constant Cr can be taken to be one, because
it does not make a difference how the wave function is normalized. Also, the
integration constant in θ can be chosen such that θ = π/4 at turning point 2;
then the connection formulae of figure A.19 along with the Euler formula (2.5)
show that the coefficients of the Airy functions at turning point 2 are CB = 1
and CA = i. Next, the integration constant in γ can be taken such that γ = 0
at turning point 2; then the connection formulae of figure A.19 imply that Cm

p

= 1
2
i and Cm

n = 1.
Next consider the connection formulae for turning point 1 in figure A.18.

Note that e−γ1 can be written as eγ12 , where γ12 = γ2−γ1, because the integration
constant in γ was chosen such that γ2 = 0. The advantage of using eγ12 instead of
e−γ1 is that it is independent of the choice of integration constant. Furthermore,
under the typical conditions that the WKB approximation applies, for a high
and wide barrier, eγ12 will be a very large number. It is then seen from figure
A.18 that near turning point 1, CA = 2eγ12 which is large while CB is small
and will be ignored. And that then implies, using the Euler formula to convert
Ai’s sine into exponentials, that |C l

f | = eγ12 . As discussed in chapter 7.13, the
transmission coefficient is given by

T =
prc
plc

|Cr/
√
prc|2

|C l
f/
√
plc|2

and plugging in Cr = 1 and |C l
f | = eγ12 , the transmission coefficient is found to

be e−2γ12 .
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A.30 Three-dimensional scattering

This note introduces some of the general concepts of three-dimensional scat-
tering, in case you run into them. For more details and actual examples, a
quantum mechanics text for physicists will need to be consulted; it is a big
thing for them.

C l
fe

ip∞z/~

Cf(θ, φ)
eip∞r/~

r

Figure A.21: Scattering of a beam off a target.

The basic idea is as sketched in figure A.21. A beam of particles is sent in
from the far left towards a three-dimensional target. Part of the beam hits the
target and is scattered, to be picked up by surrounding detection equipment.

It will be assumed that the collision with the target is elastic, and that
the particles in the beam are sufficiently light that they scatter off the target
without transferring kinetic energy to it. In that case, the target can be modeled
as a steady potential energy field. And if the target and/or incoming particles
are electrically neutral, it can also be assumed that the potential energy decays
fairly quickly to zero away from the target. (In fact, a lot of results in this note
turn out not apply to a slowly decaying potential like the Coulomb one.)

It is convenient to use a spherical coordinate system (r, θ, φ) with its origin at
the scattering object and with its axis aligned with the direction of the incoming
beam. Since the axis of a spherical coordinate system is usually called the z-
axis, the horizontal coordinate will now be indicated as z, not x like in the
one-dimensional analysis done earlier.

In the energy eigenfunctions, the incoming particle beam can be represented
as a one-dimensional wave. However, unlike for the one-dimensional scattering
of figure 7.22, now the wave is not just scattered to the left and right, but in
all directions, in other words to all angles θ and φ. The far-field behavior of the
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energy eigenfunctions is

ψE ∼ C l
fe

ip∞z/~ + Cf(θ, φ)
eip∞r/~

r
for r →∞ p∞ ≡

√
2mE (A.216)

Here E is the kinetic energy of the incoming particles andm the mass. Therefore
p∞ is what classical physics would take to be the momentum of the particles at
infinity. The first term in the far field behavior allows the incoming particles
to be described, as well as the same particles going out again unperturbed. If
some joker removes the target, that is all there is.

The second term describes the outgoing scattered particles. The constant
Cf(θ, φ) is called the “scattering amplitude.” The second term also contains a
factor eip∞r/~ consistent with wave packets that move radially away from the
target in the far field.

Finally, the second term contains a factor 1/r. Therefore the magnitude of
the second term decreases with the distance r from the target. This happens
because the probability of finding a particle in a given detection area should
decrease with distance. Indeed, the total detection area is 4πr2, where r is the
distance at which the detectors are located. That increases proportional to r2,
and the total number of particles to detect per unit time is the same regardless of
where the detectors are located. Therefore the probability of finding a particle
per unit area should decrease proportional to 1/r2. Since the probability of
finding a particle is proportional to the square of the wave function, the wave
function itself must be proportional to 1/r. The second term above makes it so.

Consider now the number of particles that is detected in a given small detec-
tion area dA. The scattered stream of particles moving towards the detection
area has a velocity v = p∞/m. Therefore in a time interval dt, the detection
area samples a volume of the scattered particle stream equal to dA × vdt. The
chances of finding particles are proportional to the square magnitude of the
wave function times that volume. Using the asymptotic wave function above,
the number of particles detected will be

dI = [constant] |Cf(θ, φ)|2
dA

r2
dt

The constant includes the factor p∞/m. The constant must also account for the
fact that the wave function is not normalized, and that there is a continuous
stream of particles to be found, rather than just one particle.

According to the above expression, the number of particles detected in a
given area dA is proportional to its three-dimensional angular extent

dΩ ≡ dA

r2

This is the so-called “solid angle” occupied by the detection area element. It is
the three-dimensional generalization of two-dimensional angles. In two dimen-
sions, an element of a circle with arc length ds occupies an angle ds/r when
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expressed in radians. Similarly, in three dimensions, an element of a sphere with
area dA occupies a solid angle dA/r2 when expressed in “steradians.”

In those terms, the number dI of particles detected in an infinitesimal solid
angle dΩ is

dI = [constant] |Cf(θ, φ)|2dΩdt
As noted, the constant of proportionality depends on the rate at which

particles are sent at the target. The more particles are sent at the target, the
more will be deflected. The number of particles in the incoming beam per unit
beam cross-sectional area and per unit time is called the “luminosity” of the
beam. It is related to the square of the wave function of the incoming beam
through the relation

dIb = [constant] |C l
f |2dAbdt

Here dAb is a cross sectional area element of the incoming particle beam and
dIb the number of particles passing through that area.

Physicist like to relate the scattered particle flow in a given infinitesimal
solid angle dΩ to an equivalent incoming beam area dAb through which the
same number of particles flow. Therefore they define the so-called “differential
cross-section” as

dσ

dω
≡ dAb,equiv

dΩ
(A.217)

The quantity dAb,equiv can be thought of as the infinitesimal area of the incoming
beam that ends up in the infinitesimal solid angle dΩ. So the differential cross-
section is a scattered particle density expressed in suitable terms.

Note how well chosen the term “differential cross-section” really is. If physi-
cists had called it something like “scattered cross-section density,” or even sim-
ply “scattered cross-section,” nonexperts would probably have a pretty good
guess what physicists were talking about. But “cross section” by itself can
mean anything. There is nothing in the term to indicate that it is a measure for
how many particles are scattered. And preceding it by “differential” is a stroke
of genius because it is not a differential, it is a differential quotient. This will
confuse mathematically literate nonexperts even more.

The differential cross section does not depend on how many particles are sent
at the target, nor on wave function normalization. Following the expressions
for the particle flows given above, the differential cross section is simply

dσ

dω
=
|Cf(θ, φ)|2
|C l

f |2
(A.218)

Moreover, the particle flow in an incoming beam area dAb may be measured
using the same experimental techniques as are used to measure the deflected
particle flow. Various systematic errors in the experimental method will then
cancel in the ratio, giving more accurate values.
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The total area of the incoming beam that gets scattered is called the “total
cross-section” σ:

σ ≡ Ab,total (A.219)

Of course, the name is quite below the normal standards of physicists, since
it really is a total cross-section. Fortunately, physicist are clever enough not
to say what cross section it is, and cross-section can mean many things. Also,
by using the symbol σ instead of something logical like Ab for the differential
cross-section, physicists do their best to reduce the damage as well as possible.

If you remain disappointed in physicists, take some comfort in the following
term for scattering that can be described using classical mechanics: the “impact
parameter.” If you guess that it describes the local physics of the particle impact
process, it is really hilarious to physicists. Instead, think “centerline offset;” it
describes the location relative to the centerline of the incoming beam at which
the particles come in; it has no direct relation whatsoever to what sort of impact
(if any) these particles end up experiencing.

The total cross section can be found by integrating the differential cross
section over all deflection angles:

σ =

∫

all

dAb,equiv

dΩ
dΩ

In spherical coordinates this can be written out explicitly as

σ =

π∫

θ=0+

2π∫

φ=0

|Cf(θ, φ)|2
|C l

f |2
sin θ dθdφ (A.220)

A.30.1 Partial wave analysis

Jim Napolitano from RPI and Cornell notes:

The term “Partial Wave Analysis” is poorly defined and overused.

Gee, what a surprise! For one, they are component waves, not partial waves.
But you already componently assumed that they might be.

This discussion will restrict itself to spherically symmetric scattering poten-
tials. In that case, the analysis of the energy eigenfunctions can be done much
like the analysis of the hydrogen atom of chapter 4.3. However, the boundary
conditions at infinity will be quite different; the objective is not to describe
bound particles, but particles that come in from infinity with positive kinetic
energy and are scattered back to infinity. Also, the potential will of course not
normally be a Coulomb one.
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But just like for the hydrogen atom, the energy eigenfunctions can be taken
to be radial functions times spherical harmonics Y m

l :

ψElm(r, θ, φ) = REl(r)Y
m
l (θ, φ) (A.221)

These energy eigenfunctions have definite angular momentum in the z-direction
m~, as well definite square angular momentum l(l + 1)~2. The radial functions
REl will not be the same as the hydrogen Rnl ones.

The incoming plane wave eip∞z/~ has zero angular momentum in the z-di-
rection. Unfortunately, it does not have definite square angular momentum.
Instead, it can be written as a linear combination of free-space energy eigenfunc-
tions with different values of l, hence with different square angular momentum:

eip∞z/~ =
∞∑

l=0

cw,ljl(p∞r/~)Y
0
l (θ) cw,l = il

√
4π(2l + 1) (A.222)

See {A.6} for a derivation and the precise form of the “spherical Bessel func-
tions” jl.

Now finding the complete energy eigenfunction corresponding to the incom-
ing wave directly is typically awkward, especially analytically. Often it is easier
to solve the problem for each term in the above sum separately and then add
these solutions all together. That is where the name “partial wave analysis”
comes from. Each term in the sum corresponds to a partial wave, if you use
sufficiently lousy terminology.

The partial wave analysis requires that for each term in the sum, an energy
eigenfunction is found of the form ψEl = RElY

0
l . The required behavior of this

eigenfunction in the far field is

ψEl ∼
[
cw,ljl(p∞r/~) + cf,lh

(1)
l (p∞r/~)

]
Y 0
l (θ) for r →∞ (A.223)

Here the first term is the component of the incoming plane wave corresponding
to spherical harmonic Y 0

l . The second term represents the outgoing deflected
particles. The value of the coefficient cf,l is determined in the solution process.

Note that the above far field behavior is quite similar to that of the complete
energy eigenfunction as given earlier in (A.216). However, here the coefficient
C l

f was set to 1 for simplicity. Also, the radial part of the reflected wave function

was written using a “Hankel function of the first kind” h
(1)
l . This Hankel function

produces the same eip∞r/~/r radial behavior as the second term in (A.216), {A.6}
(A.25). However, the Hankel function has the advantage that it becomes exact
as soon as the scattering potential becomes zero. It is not just valid at very
large r like the bare exponential.

To be sure, for a slowly decaying potential like the Coulomb one, the Hankel
function is no better than the exponential. However, the Hankel function is very
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closely related to the Bessel function jl, {A.6}, allowing various helpful results
to be found in table books. If the potential energy is piecewise constant, it is
even possible to solve the complete problem using Bessel and Hankel functions.
These functions can be tied together at the jumps in potential in a way similar
to addendum {A.27}.

In terms of the asymptotic behavior above, the differential cross section is

dσ

dω
=

~
2

p2∞

∞∑

l=0

∞∑

l=0

il−lc∗f,lcf,lY
0
l (θ)Y

0
l (θ) (A.224)

This can be verified using {A.6} (A.25), (A.216), and (A.218). The Bessel
functions form the incoming wave and do not contribute. For the total cross-
section, note that the spherical harmonics are orthonormal, so

σ =
~
2

p2∞

∞∑

l=0

|cf,l|2

One special case is worth mentioning. Consider particles of such low mo-
mentum that their typical quantum wave length, 2π~/p∞, is gigantic compared
to the radial size of the scattering potential. Particles of such large wave lengths
do not notice the fine details of the scattering potential at all. Conversely, nor-
mally the scattering potential only “notices” the incoming partial wave with l
= 0. That is because the Bessel functions are proportional to

(p∞r/~)
l

for small arguments. If the wave length is large compared to the typical radial
size r of the scattering potential, this is negligible unless l = 0. Now l = 0 cor-
responds to a wave function that is the same in all directions; it is proportional
to the constant spherical harmonic Y 0

0 . If only the partial wave that is the same
in all directions gets scattered, then the particles get scattered equally in all
directions (if they get scattered at all.)

Coincidently, equal scattering in all directions also happens in another case:
scattering of classical point particles from a hard elastic sphere. That is very
much the opposite case, because negligible uncertainty in position requires high,
not low, energy of the particles. In any case, the similarity between the two cases
is is superficial. If a beam of classical particles is directed at a hard sphere, only
an area of the beam equal to the frontal area of the sphere gets scattered. But if
you work out the scattering of low-energy quantum particles from a hard sphere,
you get a total scattering cross section that is 4 times bigger.

A.30.2 Partial wave amplitude

This subsection gives some further odds and ends on partial wave analysis, for
the incurably curious.
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Recall that a partial wave has an asymptotic behavior

ψEl ∼
[
cw,ljl(p∞r/~) + cf,lh

(1)
l (p∞r/~)

]
Y 0
l (θ) for r →∞

The first term corresponds to the wave function of the incoming particles. The
second term is the effect of the scattering potential.

Physicists like to write the coefficient of the scattered wave as

cf,l = ikcw,lal (A.225)

They call the so-defined constant al the “partial wave amplitude” because ob-
viously it is not a partial wave amplitude. Confusing people is always funny.

Now every partial wave by itself is a solution to the Hamiltonian eigenvalue
problem. That means that every partial wave must ensure that particles cannot
just simply disappear. That restricts what the partial wave amplitude can be.
It turns out that it can be written in terms of a real number δl:

al =
1

k
eiδl sin δl (A.226)

The real number δl is called the “phase shift.”
Some physicist must have got confused here, because it really is a phase shift.

To see that, consider the derivation of the above result. First the asymptotic
behavior of the partial wave is rewritten in terms of exponentials using {A.6}
(A.24) and (A.25). That gives

ψEl ∼ . . .
[
e−ip∞r/~ + (−1)l+1eip∞r/~(1 + 2ikal)

]

The dots stand for common factors that are not important for the discussion.
Physically, the first term above describes spherical wave packets that move
radially inwards toward the target. The second term describes wave packets
that move radially outwards away from the target.

Now particles cannot just disappear. Wave packets that go in towards the
target must come out again with the same amplitude. And that means that the
two terms in the asymptotic behavior above must have the same magnitude.
(This may also be shown mathematically using procedures like in {A.32}.)

Obviously the two terms do have the same magnitude in the absence of scat-
tering, where al is zero. But in the presence of scattering, the final parenthetical
factor will have to stay of magnitude one. And that means that it can be written
in the form

1 + 2ikal = ei2δl (A.227)

for some real number δl. (The factor 2 in the exponential is put in because
physicists like to think of the wave being phase shifted twice, once on the way
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in to the target and once on the way out.) Cleaning up the above expression
using the Euler formula (2.5) gives the stated result.

If you add in the time dependent factor eiEt/~ of the complete unsteady
wave function, you can see that indeed the waves are shifted by a phase angle
2δl compared to the unperturbed wave function. Without any doubt, the name
of the physicist responsible for calling the phase angle a “phase angle” has been
ostracized from physics. She will never be heard of again.

A.30.3 The Born approximation

The Born approximation assumes that the scattering potential is weak to derive
approximate expressions for the scattering.

Consider first the case that the scattering potential is zero. In that case, the
wave function is just that of the incoming particles:

ψE = eip∞z/~ p∞ =
√
2mE

where E is the energy of the particle and m its mass.
Born considered the case that the scattering potential V is not zero, but

small. Then the wave function ψE will still be close to the incoming wave
function, but no longer exactly the same. In that case an approximation to the
wave function can be obtained from the so-called integral Schrödinger equation,
{A.13} (A.42):

ψE(~r) = eip∞z/~ − m

2π~2

∫

all ~r ′

eip∞|~r−~r
′|/~

|~r −~r ′| V (~r ′)ψE(~r
′) d3~r ′

In particular, inside the integral the true wave function ψE can be replaced by
the incoming wave function:

ψE(~r) ≈ eip∞z/~ − m

2π~2

∫

all ~r ′

eip∞|~r−~r
′|/~

|~r −~r ′| V (~r ′)eip∞z′/~ d3~r ′ (A.228)

It is not exact, but it is much better than just setting the integral to zero. The
latter would make the wave function equal to the incoming wave. With the
approximate integral, you get a valid approximation to the particle deflections.

To get the differential cross section, examine the behavior of (A.228) at given
scattering angles θ and φ for large r. That produces, {D.47}:

dσ

dω
(θ, φ) ≈

∣∣∣∣
m

2π~2

∫

all ~r ′

e−i(~p∞−~p
l
∞)·~r ′/~ V (~r ′) d3~r ′

∣∣∣∣
2

(V small) (A.229)

Here
~p l
∞ = p∞k̂ ~p∞ = p∞ı̂r (with p∞ =

√
2mE) (A.230)
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are the classical momentum vectors of the incoming and scattered particles.
Note that the direction of ~p∞ depends on the considered scattering angles θ and
φ. And that apparently the momentum change of the particles is a key factor
affecting the amount of scattering.

One additional approximation is worth mentioning. Consider particles of
such low momentum that their quantum wave length, 2π~/p∞, is gigantic com-
pared to the radial size of the scattering potential. Particles of such wave lengths
do not notice the fine details of the scattering potential at all. Mathematically,
p∞ is so small that the argument of the exponential in the differential cross
section above can be assumed zero. Then:

dσ

dω
≈
∣∣∣∣
m

2π~2

∫

all ~r ′

V (~r ′) d3~r ′
∣∣∣∣
2

(V and p∞ small) (A.231)

The differential cross section no longer depends on the angular position. If
particles get scattered at all, they get scattered equally in all directions.

Note that the integral is infinite for a Coulomb potential.

A.31 The Born series

The Born approximation is concerned with the problem of a particle of a given
momentum that is slightly perturbed by a nonzero potential that it encounters.
This note gives a description how this problem may be solved to high accuracy.
The solution provides a model for the so-called “Feynman diagrams” of quantum
electrodynamics.

It is assumed that in the absence of the perturbation, the wave function of
the particle would be

ψ0 = eikz

In this state, the particle has a momentum ~k that is purely in the z-direction.
Note that the above state is not normalized, and cannot be. That reflects the
Heisenberg uncertainty principle: since the particle has precise momentum, it
has infinite uncertainty in position. For real particles, wave functions of the
form above must be combined into wave packets, chapter 7.10. That is not
important for the current discussion.

The perturbed wave function ψ can in principle be obtained from the so-
called integral Schrödinger equation, {A.13} (A.42):

ψ(~r) = ψ0(~r)−
m

2π~2

∫

all ~r ′

eik|~r−~r
′|

|~r −~r ′|V (~r ′)ψ(~r ′) d3~r ′

Evaluating the right hand side in this equation would give ψ. Unfortunately, the
right hand side cannot be evaluated because the integral contains the unknown
wave function ψ still to be found. However, Born noted that if the perturbation
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is small, then so is the difference between the true wave function ψ and the
unperturbed one ψ0. So a valid approximation to the integral can be obtained
by replacing ψ in it by the known ψ0. That is certainly much better than just
leaving the integral away completely, which would give ψ = ψ0.

And note that you can repeat the process. Since you now have an approx-
imation for ψ that is better than ψ0, you can put that approximation into the
integral instead. Evaluating the right hand side then produces a still better
approximation for ψ. Which can then be put into the integral. Etcetera.

sψ = sψ0 + s
g′✓
✓✼q
v′ψ′0

+ s g′✁✁☛
qv′g′′′❍❍❥

qv′′ψ′′0

+ sg′❅❅❘

qv′
g′′′

✁
✁
✁✕

q
v′′

g′′′′′
❇
❇
❇❇◆

qv′′′ψ′′′0
+ . . .

Figure A.22: Graphical interpretation of the Born series.

Graphically, the process is illustrated in figure A.22. The most inaccurate
approximation is to take the perturbed wave function as the unperturbed wave
function at the same position ~r:

ψ ≈ ψ0

An improvement is to add the integral evaluated using the unperturbed wave
function:

ψ(~r) = ψ0(~r)−
m

2π~2

∫

all ~r ′

eik|~r−~r
′|

|~r −~r ′|V (~r ′)ψ0(~r
′) d3~r ′

To represent this concisely, it is convenient to introduce some shorthand nota-
tions:

ψ′0 ≡ ψ0(~r
′) v′ ≡ V (~r ′) d3~r ′ g′ = −

m

2π~2
eik|~r−~r

′|

|~r −~r ′|
Using those notations the improved approximation to the wave function is

ψ ≈ ψ0 +

∫
ψ′0v

′g′

Note what the second term does: it takes the unperturbed wave function at
some different location ~r ′, multiplies it by a “vertex factor” v′, and then adds it
to the wave function at ~r multiplied by a “propagator” g′. This is then summed
over all locations ~r ′. The second term is illustrated in the second graph in the
right hand side of figure A.22.

The next better approximation is obtained by putting the two-term approx-
imation above in the integral:

ψ ≈ ψ0 +

∫ [
ψ′0 +

∫
ψ′′0v

′′g′′′

]
v′g′
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where

ψ′′0 ≡ ψ0(~r
′′) v′′ ≡ V (~r ′′) d3~r ′′ g′′′ = −

m

2π~2
eik|~r

′−~r ′′|

|~r ′ −~r ′′|

Note that it was necessary to change the notation for one integration variable
to ~r ′′ to avoid using the same symbol for two different things. Compared to the
previous approximation, there is now a third term:

ψ = ψ0 +

∫
ψ′0v

′g′ +

∫∫
ψ′′0v

′′g′′′ v
′g′

This third term takes the unperturbed wave function at some position ~r ′′, mul-
tiplies it by the local vertex factor v′′, propagates that to a location ~r ′ using
propagator g′′′, multiplies it by the vertex factor v′, and propagates it to the lo-
cation ~r using propagator g′. That is summed over all combinations of locations
~r ′′ and ~r ′. The idea is shown in the third graph in the right hand side of figure
A.22.

Continuing this process produces the Born series:

ψ = ψ0 +

∫
ψ′0v

′g′ +

∫∫
ψ′′0v

′′g′′′ v
′g′ +

∫∫∫
ψ′′′0 v

′′′g′′′′′ v
′′g′′′ v

′g′ + . . .

The Born series inspired Feynman to formulate relativistic quantum me-
chanics in terms of vertices connected together into “Feynman diagrams.” Since
there is a nontechnical, very readable discussion available from the master him-
self, [19], there does not seem much need to go into the details here.

A.32 The evolution of probability

This note looks at conservation of probability, and the resulting definitions of
the reflection and transmission coefficients in scattering. It also explains the
concept of the “probability current” that you may occasionally run into.

For the unsteady Schrödinger equation to provide a physically correct de-
scription of nonrelativistic quantum mechanics, particles should not be able to
disappear into thin air. In particular, during the evolution of the wave func-
tion of a single particle, the total probability of finding the particle if you look
everywhere should stay one at all times:

∫ ∞

x=−∞
|Ψ|2 dx = 1 at all times

Fortunately, the Schrödinger equation

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ VΨ
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does indeed conserve this total probability, so all is well.
To verify this, note first that |Ψ|2 = Ψ∗Ψ, where the star indicates the

complex conjugate, so
∂|Ψ|2
∂t

= Ψ∗
∂Ψ

∂t
+Ψ

∂Ψ∗

∂t

To get an expression for that, take the Schrödinger equation above times Ψ∗/i~
and add the complex conjugate of the Schrödinger equation,

−i~∂Ψ
∗

∂t
= − ~

2

2m

∂2Ψ∗

∂x2
+ VΨ∗,

times −Ψ/i~. The potential energy terms drop out, and what is left is

∂|Ψ|2
∂t

=
i~

2m

(
Ψ∗
∂2Ψ

∂x2
−Ψ

∂2Ψ∗

∂x2

)
.

Now it can be verified by differentiating out that the right hand side can be
rewritten as a derivative:

∂|Ψ|2
∂t

= −∂J
∂x

where J =
i~

2m

(
Ψ
∂Ψ∗

∂x
−Ψ∗

∂Ψ

∂x

)
(A.232)

For reasons that will become evident below, J is called the “probability current.”
Note that J , like Ψ, will be zero at infinite x for proper, normalized wave
functions.

If (A.232) is integrated over all x, the desired result is obtained:

d

dt

∫ ∞

x=−∞
|Ψ|2 dx = −J

∣∣∣
∞

x=−∞
= 0.

Therefore, the total probability of finding the particle does not change with
time. If a proper initial condition is provided to the Schrödinger equation in
which the total probability of finding the particle is one, then it stays one for
all time.

It gets a little more interesting to see what happens to the probability of
finding the particle in some given finite region a 6 x 6 b. That probability is
given by ∫ b

x=a

|Ψ|2 dx

and it can change with time. A wave packet might enter or leave the region. In
particular, integration of (A.232) gives

d

dt

∫ b

x=a

|Ψ|2 dx = Ja − Jb

This can be understood as follows: Ja is the probability flowing out of the region
x < a into the interval [a, b] through the end a. That increases the probability
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within [a, b]. Similarly, Jb is the probability flowing out of [a, b] at b into the
region x > b; it decreases the probability within [a, b]. Now you see why J
is called probability current; it is equivalent to a stream of probability in the
positive x-direction.

The probability current can be generalized to more dimensions using vector
calculus:

~J =
i~

2m
(Ψ∇Ψ∗ −Ψ∗∇Ψ) (A.233)

and the net probability flowing out of a region is given by
∫

~J · ~n dA (A.234)

where A is the outside surface area of the region, and ~n is a unit vector normal
to the surface. A surface integral like this can often be simplified using the
divergence (Gauss or whatever) theorem of calculus.

Returning to the one-dimensional case, it is often desirable to relate conser-
vation of probability to the energy eigenfunctions of the Hamiltonian,

− ~
2

2m

d2ψ

dx2
+ V ψ = Eψ

because the energy eigenfunctions are generic, not specific to one particular
example wave function Ψ.

To do so, first an important quantity called the “Wronskian” must be intro-
duced. Consider any two eigenfunctions ψ1 and ψ2 of the Hamiltonian:

− ~
2

2m

d2ψ1

dx2
+ V ψ1 = Eψ1

− ~
2

2m

d2ψ2

dx2
+ V ψ2 = Eψ2

If you multiply the first equation above by ψ2, the second by ψ1 and then
subtract the two, you get

~
2

2m

(
ψ1

d2ψ2

dx2
− ψ2

d2ψ1

dx2

)
= 0

The constant ~2/2m can be divided out, and by differentiation it can be verified
that the remainder can be written as

dW

dx
= 0 where W = ψ1

dψ2

dx
− ψ2

dψ1

dx

The quantity W is called the Wronskian. It is the same at all values of x.
As an application, consider the example potential of figure A.11 in addendum

{A.27} that bounces a particle coming in from the far left back to where it came
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from. In the left region, the potential V has a constant value Vl. In this region,
an energy eigenfunction is of the form

ψE = C l
fe

iplcx/~ + C l
be
−iplcx/~ for x < xA where plc =

√
2m(E − Vl)

At the far right, the potential grows without bound and the eigenfunction be-
comes zero rapidly. To make use of the Wronskian, take the first solution ψ1

to be ψE itself, and ψ2 to be its complex conjugate ψ∗E. Since at the far right
the eigenfunction becomes zero rapidly, the Wronskian is zero there. And since
the Wronskian is constant, that means it must be zero everywhere. Next, if
you plug the above expression for the eigenfunction in the left region into the
definition of the Wronskian and clean up, you get

W =
2iplc
~

(
|C l

b|2 − |C l
f |2
)
.

If that is zero, the magnitude of C l
b must be the same as that of C l

f .
This can be understood as follows: if a wave packet is created from eigen-

functions with approximately the same energy, then the terms C l
fe

iplcx/~ combine
for large negative times into a wave packet coming in from the far left. The
probability of finding the particle in that wave packet is proportional to the
integrated square magnitude of the wave function, hence proportional to the
square magnitude of C l

f . For large positive times, the C l
be
−iplcx/~ terms combine

in a similar wave packet, but one that returns towards the far left. The prob-
ability of finding the particle in that departing wave packet must still be the
same as that for the incoming packet, so the square magnitude of C l

b must be
the same as that of C l

f .
Next consider a generic scattering potential like the one in figure 7.22. To

the far left, the eigenfunction is again of the form

ψE = C l
fe

iplcx/~ + C l
be
−iplcx/~ for x << 0 where plc =

√
2m(E − Vl)

while at the far right it is now of the form

ψE = Creip
r
cx/~ for x >> 0 where prc =

√
2m(E − Vr)

The Wronskian can be found the same way as before:

W =
2iplc
~

(
|C l

b|2 − |C l
f |2
)
= −2iprc

~
|Cr|2

The fraction of the incoming wave packet that ends up being reflected back
towards the far left is called the “reflection coefficient” R. Following the same
reasoning as above, it can be computed from the coefficients in the far left region
of constant potential as:

R =
|C l

b|2
|C l

f |2
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The reflection coefficient gives the probability that the particle can be found to
the left of the scattering region at large times.

Similarly, the fraction of the incoming wave packet that passes through the
potential barrier towards the far right is called the “transmission coefficient”
T . It gives the probability that the particle can be found to the right of the
scattering region at large times. Because of conservation of probability, T =
1−R.

Alternatively, because of the Wronskian expression above, the transmission
coefficient can be explicitly computed from the coefficient of the eigenfunction
in the far right region as

T =
prc|Cr|2
plc|C l

f |2
plc =

√
2m(E − Vl) prc =

√
2m(E − Vr)

If the potential energy is the same at the far right and far left, the two classical
momenta are the same, prc = plc. Otherwise, the reason that the ratio of clas-
sical momenta appears in the transmission coefficient is because the classical
momenta in a wave packet have a different spacing with respect to energy if
the potential energy is different. (The above expression for the transmission
coefficient can also be derived explicitly using the Parseval equality of Fourier
analysis, instead of inferred from conservation of probability and the constant
Wronskian.)

A.33 Explanation of the London forces

To fully understand the details of the London forces, it helps to first understand
the popular explanation of them, and why it is all wrong. To keep things
simple, the example will be the London attraction between two neutral hydrogen
atoms that are well apart. (This will also correct a small error that the earlier
discussion of the hydrogen molecule made; that discussion implied incorrectly
that there is no attraction between two neutral hydrogen atoms that are far
apart. The truth is that there really is some Van der Waals attraction. It was
ignored because it is small compared to the chemical bond that forms when the
atoms are closer together and would distract from the real story.)

The popular explanation for the London force goes something like this:
“Sure, there would not be any attraction between two distant hydrogen atoms
if they were perfectly spherically symmetric. But according to quantum me-
chanics, nature is uncertain. So sometimes the electron clouds of the two atoms
are somewhat to the left of the nuclei, like in figure A.23 (b). This polarization
[dipole creation] of the atoms turns out to produce some electrostatic attraction
between the atoms. At other times, the electron clouds are somewhat to the
right of the nuclei like in figure A.23 (c); it is really the same thing seen in the
mirror. In cases like figure A.23 (a), where the electron clouds move towards
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a) b)

c) d)

Figure A.23: Possible polarizations of a pair of hydrogen atoms.

each other, and (b), where they move away from each other, there is some repul-
sion between the atoms; however, the wave functions become correlated so that
(b) and (c) are more likely than (a) and (d). Hence a net attraction results.”

Before examining what is wrong with this explanation, first consider what
is right. It is perfectly right that figure A.23 (b) and (c) produce some net
attraction between the atoms, and that (a) and (d) produce some repulsion.
This follows from the net Coulomb potential energy between the atoms for
given positions of the electrons:

Vlr =
e2

4πǫ0

(
1

d
− 1

rl
− 1

rr
+

1

rlr

)

where e = 1.6 10−19 C is the magnitude of the charges of the protons and
electrons, ǫ0 = 8.85 10−12 C2/J m is the permittivity of space, d is the distance
between the nuclei, rl is the distance between the left electron and the right
nucleus, rr the one between the right electron and the left nucleus, and rlr is the
distance between the two electrons. If the electrons charges are distributed over
space according to densities nl(~rl) and nr(~rr), the classical potential energy is

Vlr =
e2

4πǫ0

∫

all ~rl

∫

all ~rr

(
1

d
− 1

rl
− 1

rr
+

1

rlr

)
nl(~rl)nr(~rr) d

3~rld
3~rr

(Since the first, 1/d, term represents the repulsion between the nuclei, it may
seem strange to integrate it against the electron charge distributions, but the
charge distributions integrate to one, so they disappear. Similarly in the second
and third term, the charge distribution of the uninvolved electron integrates
away.)

Since it is assumed that the atoms are well apart, the integrand above can
be simplified using Taylor series expansions to give:

Vlr =
e2

4πǫ0

∫

all ~rl

∫

all ~rr

xlxr + ylyr − 2zlzr
d3

nl(~rl)nr(~rr) d
3~rld

3~rr

extrascale=3,notransparent
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where the positions of the electrons are measured from their respective nuclei.
Also, the two z axes are both taken horizontal and positive towards the left. For
charge distributions as shown in figure A.23, the xlxr and ylyr terms integrate
to zero because of odd symmetry. However, for a distribution like in figure A.23
(c), nl and nr are larger at positive zl, respectively zr, than at negative one, so
the integral will integrate to a negative number. That means that the potential
is lowered, there is attraction between the atoms. In a similar way, distribution
(b) produces attraction, while (a) and (d) produce repulsion.

So there is nothing wrong with the claim that (b) and (c) produce attraction,
while (a) and (d) produce repulsion. It is also perfectly right that the combined
quantum wave function gives a higher probability to (b) and (c) than to (a) and
(d).

So what is wrong? There are two major problems with the story.
1. Energy eigenstates are stationary. If the wave function oscillated in

time like the story suggests, it would require uncertainty in energy,
which would act to kill off the lowering of energy. True, states with
the electrons at the same side of their nuclei are more likely to show
up when you measure them, but to reap the benefits of this increased
probability, you must not do such a measurement and just let the
electron wave function sit there unchanging in time.

2. The numbers are all wrong. Suppose the wave functions in figures
(b) and (c) shift (polarize) by a typical small amount ε. Then the
attractive potential is of order ε2/d3. Since the distance d between
the atoms is assumed large, the energy gained is a small amount
times ε2. But to shift atom energy eigenfunctions by an amount ε
away from their ground state takes an amount of energy Cε2 where
C is some constant that is not small. So it would take more energy
to shift the electron clouds than the dipole attraction could recover.
In the ground state, the electron clouds should therefore stick to
their original centered positions.

On to the correct quantum explanation. First the wave function is needed. If
there were no Coulomb potentials linking the atoms, the combined ground-state
electron wave function would simply take the form

ψ(~rl,~rr) = ψ100(~rl)ψ100(~rr)

where ψ100 is the ground state wave function of a single hydrogen atom. To get
a suitable correlated polarization of the atoms, throw in a bit of the ψ210 “2pz”
states, as follows:

ψ(~rl,~rr) =
√
1− ε2ψ100(~rl)ψ100(~rr) + εψ210(~rl)ψ210(~rr).

For ε > 0, it produces the desired correlation between the wave functions: ψ100

is always positive, and ψ210 is positive if the electron is at the positive-z side of
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its nucleus and negative otherwise. So if both electrons are at the same side of
their nucleus, the product ψ210(~rl)ψ210(~rr) is positive, and the wave function is
increased, giving increased probability of such states. Conversely, if the electrons
are at opposite sides of their nucleus, ψ210(~rl)ψ210(~rr) is negative, and the wave
function is reduced.

Now write the expectation value of the energy:

〈E〉 = 〈
√
1− ε2ψ100ψ100 + εψ210ψ210|Hl +Hr + Vlr|

√
1− ε2ψ100ψ100 + εψ210ψ210〉

where Hl and Hr are the Hamiltonians of the individual electrons and

Vlr =
e2

4πǫ0

xlxr + ylyr − 2zlzr
d3

is again the potential between atoms. Working out the inner product, noting
that the ψ100 and ψ210 are orthonormal eigenfunctions of the atom Hamiltonians
Hl and Hr with eigenvalues E1 and E2, and that most Vlr integrals are zero on
account of odd symmetry, you get

〈E〉 = 2E1 + 2ε2(E2 − E1)− 4ε
√
1− ε2 e2

4πǫ0

1

d3
〈ψ100ψ100|zlzr|ψ210ψ210〉.

The final term is the savior for deriving the London force. For small values
of ε, for which the square root can be approximated as one, this energy-lowering
term dominates the energy 2ε2(E2−E1) needed to distort the atom wave func-
tions. The best approximation to the true ground state is then obtained when
the quadratic in ε is minimal. That happens when the energy has been lowered
by an amount

2

E2 − E1

(
e2

4πǫ0
〈ψ100|z|ψ210〉2

)2
1

d6
.

Since the assumed eigenfunction is not exact, this variational approximation
will underestimate the actual London force. For example, it can be seen that
the energy can also be lowered similar amounts by adding some of the 2px and
2py states; these cause the atom wave functions to move in opposite directions
normal to the line between the nuclei.

So what is the physical meaning of the savior term? Consider the inner
product that it represents:

〈ψ100ψ100|Vlr|ψ210ψ210〉.

That is the energy if both electrons are in the spherically symmetric ψ100 ground
state if both electrons are in the antisymmetric 2pz state. The savior term is a
twilight term, like the ones discussed earlier in chapter 5.3 for chemical bonds.
It reflects nature’s habit of doing business in terms of an unobservable wave
function instead of observable probabilities.
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A.34 Explanation of Hund’s first rule

Hund’s first rule of spin-alignment applies because electrons in atoms prefer to
go into spatial states that are antisymmetric with respect to electron exchange.
Spin alignment is then an unavoidable consequence of the weird antisymmetriza-
tion requirement.

To understand why electrons want to go into antisymmetric spatial states,
the interactions between the electrons need to be considered. Sweeping them
below the carpet as the discussion of atoms in chapter 5.9 did is not going to
cut it.

To keep it as simple as possible, the case of the carbon atom will be consid-
ered. As the crude model of chapter 5.9 did correctly deduce, the carbon atom
has two 1s electrons locked into a zero-spin singlet state, and similarly two 2s
electrons also in a singlet state. Hund’s rule is about the final two electrons
that are in 2p states. As far as the simple model of chapter 5.9 was concerned,
these electrons can do whatever they want within the 2p subshell.

To go one better than that, the correct interactions between the two 2p
electrons will need to be considered. To keep the arguments manageable, it will
still be assumed that the effects of the 1s and 2s electrons are independent of
where the 2p electrons are.

Call the 2p electrons α and β. Under the stated conditions, their Hamilto-
nian takes the form

Hα +Hβ + Vαβ

where Hα and Hβ are the single-electron Hamiltonians for the electrons α and
β, consisting of their kinetic energy, their attraction to the nucleus, and the
repulsion by the 1s and 2s electrons. Note that in the current analysis, it is not
required that the 1s and 2s electrons are treated as located in the nucleus. Lack
of shielding can be allowed now, but it must still be assumed that the 1s and
2s electrons are unaffected by where the 2p electrons are. In particular, Hα is
assumed to be be independent of the position of electron β, and Hβ independent
of the position of electron α. The mutual repulsion of the two 2p electrons is
given by Vαβ = e2/4πǫ0|~rα −~rβ|.

Now assume that electrons α and β appropriate two single-electron spatial
2p states for themselves, call them ψ1 and ψ2. For carbon, ψ1 can be thought
of as the 2pz state and ψ2 as the 2px state, The general spatial wave function
describing the two electrons takes the generic form

aψ1(~r1)ψ2(~r2) + bψ2(~r1)ψ1(~r2).

The two states ψ1 and ψ2 will be taken to be orthonormal, like pz and px are,
and then the normalization requirement is that |a|2 + |b|2 = 1.

The expectation value of energy is

〈aψ1ψ2 + bψ2ψ1|Hα +Hβ + Vαβ|aψ1ψ2 + bψ2ψ1〉.
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That can be multiplied out and then simplified by noting that in the various
inner product integrals involving the single-electron Hamiltonians, the integral
over the coordinate unaffected by the Hamiltonian is either zero or one because
of orthonormality. Also, the inner product integrals involving Vαβ are pairwise
the same, the difference being just a change of names of integration variables.

The simplified expectation energy is then:

Eψ1 + Eψ2 + 〈ψ1ψ2|Vαβ|ψ1ψ2〉+ (a∗b+ b∗a)〈ψ1ψ2|Vαβ|ψ2ψ1〉.

The first two terms are the single-electron energies of states ψ1 and ψ2. The third
term is the classical repulsion between between two electron charge distributions
of strengths |ψ1|2 and |ψ2|2. The electrons minimize this third term by going
into spatially separated states like the 2px and 2pz ones, rather than into the
same spatial state or into greatly overlapping ones.

The final one of the four terms is the interesting one for Hund’s rule; it de-
termines how the two electrons occupy the two states ψ1 and ψ2, symmetrically
or antisymmetrically. Consider the detailed expression for the inner product
integral appearing in the term:

〈ψ1ψ2|Vαβ|ψ2ψ1〉 =
∫

all ~r1

∫

all ~r2

Vαβf(~r1,~r2)f
∗(~r2,~r1) d

3~r1d
3~r2

where f(~r1,~r2) = ψ2(~r1)ψ1(~r2).
The sign of this inner product can be guesstimated. If Vαβ would be the

same for all electron separation distances, the integral would be zero because of
orthonormality of ψ1 and ψ2. However, Vαβ favors positions where ~r1 and ~r2 are
close to each other; in fact Vαβ is infinitely large if ~r1 = ~r2. At such a location
f(~r1,~r2)f

∗(~r2,~r1) is a positive real number, so it tends to have a positive real
part in regions it really counts. That means the inner product integral should
have the same sign as Vαβ; it should be repulsive.

And since this integral is multiplied by a∗b+b∗a, the energy is smallest when
that is most negative, which is for the antisymmetric spatial state a = −b. Since
this state takes care of the sign change in the antisymmetrization requirement,
the spin state must be unchanged under particle exchange; the spins must be
aligned. More precisely, the spin state must be some linear combination of
the three triplet states with net spin one. There you have Hund’s rule, as an
accidental byproduct of the Coulomb repulsion.

This leaves the philosophical question why for the two electrons of the hydro-
gen molecule in chapter 5.2 the symmetric state is energetically most favorable,
while the antisymmetric state is the one for the 2p electrons. The real differ-
ence is in the kinetic energy. In both cases, the antisymmetric combination
reduces the Coulomb repulsion energy between the electrons, and in the hydro-
gen molecule model, it also increases the nuclear attraction energy. But in the
hydrogen molecule model, the symmetric state achieves a reduction in kinetic
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energy that is more than enough to make up for it all. For the 2p electrons, the
reduction in kinetic energy is nil. When the positive component wave functions
of the hydrogen molecule model are combined into the symmetric state, they
allow greater access to fringe areas farther away from the nuclei. Because of the
uncertainty principle, less confined electrons tend to have less indeterminacy in
momentum, hence less kinetic energy. On the other hand, the 2p states are
half positive and half negative, and even their symmetric combination reduces
spatial access for the electrons in half the locations.

A.35 The third law

In the simplest formulation, the third law of thermodynamics says that the
entropy at absolute zero temperature is zero.

The original theorem is due to Nernst. A more recent formulation is

“The contribution to the entropy of a system due to each com-
ponent that is in internal equilibrium disappears at absolute zero.”
[D. Ter Haar (1966) Elements of Thermostatistics. Holt, Rinehart
& Winston.]

A more readable version is

“The entropy of every chemically simple, perfectly crystalline,
body equals zero at the absolute zero of temperature.” [G.H. Wan-
nier (1966) Statistical Physics. Wiley.]

These formulations allow for the existence of meta-stable equilibria. The third
law in its simple form assumes that strictly speaking every ground state is
reasonably unique and that the system is in true thermal equilibrium. Exper-
imentally however, many substances do not appear to approach zero entropy.
Random mixtures as well as ice are examples. They may not be in true equi-
librium, but if true equilibrium is not observed, it is academic.

The zero of entropy is important for mixtures, in which you need to add
the entropies of the components together correctly. It also has implications for
the behavior of various quantities at low temperatures. For example, it implies
that the specific heats become zero at absolute zero. To see why, note that in a
constant volume or constant pressure process the entropy changes are given by

∫
C

T
dT

If the specific heat C would not become zero at T = 0, this integral would give
an infinite entropy at that temperature instead of zero.

Another consequence of the third law is that it is not possible to bring a
system to absolute zero temperature completely even in ideal processes. That
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seems pretty self-evident from a classical point of view, but it is not so obvious
in quantum terms. The third law also implies that isothermal processes become
isentropic when absolute zero temperature is approached.

It may seem that the third law is a direct consequence of the quantum
expression for the entropy,

S = −kB
∑

Pq ln(Pq)

At absolute zero temperature, the system is in the ground state. Assuming that
the ground state is not degenerate, there is then only one nonzero probability
Pq = 1 and for that probability ln(Pq) is zero. So the entropy is zero.

Even if the ground state is not unique, often it does not make much of a
difference. For example, consider the case of a system of I noninteracting spin 1
bosons in a box. If you could really ignore the effect of all particle interactions
on the energy, the I spin states would be arbitrary in the ground state. But
even then there would be only about 1

2
I2 different system states with the ground

state energy, chapter 5.7. That produces an entropy of only about −kB ln(2/I2).
It would make the specific entropy proportional to ln(I)/I, which is zero for a
large-enough system.

On the other hand, if you ignore electromagnetic spin couplings of nuclei in
a crystal, it becomes a different matter. Since the nuclear wave functions have
no measurable overlap, to any conceivable accuracy the nuclei can assume inde-
pendent spatial states. That gets rid of the (anti) symmetrization restrictions
on their spin. And then the associated entropy can be nonzero. But of course,
if the nuclear spin does not interact with anything, you may be able to ignore
its existence altogether.

Even if a system has a unique ground state, the third law is not as trivial as
it may seem. Thermodynamics deals not with finite systems but with idealized
systems of infinite size. A very simple example illustrates why it makes a differ-
ence. Consider the possibility of a hypothetical system whose specific entropy
depends on the number of particles I, temperature T , and pressure P as

sh.s.(I, T, P ) =
IT

1 + IT

This system is consistent with the expression for the third law given above: for
a given system size I, the entropy becomes zero at zero temperature. However,
the idealized infinite system always has entropy 1; its entropy does not go to
zero for zero temperature. The third law should be understood to say that this
hypothetical system does not exist.

If infinite systems seem unphysical, translate it into real-life terms. Suppose
your test tube has say I = 1020 particles of the hypothetical system in it instead
of infinitely many. Then to reduce the specific entropy from 1 to 0.5 would
require the temperature to be reduced to a completely impossible 10−20 K. And
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if you double the number of particles in the test tube, you would need another
factor two reduction in temperature. In short, while formally the entropy for
the finite hypothetical system goes to zero at absolute zero, the temperatures
required to do so have no actual meaning.

A.36 Alternate Dirac equations

If you look in advanced books on quantum mechanics, you will likely find the
Dirac equation written in a different form than given in chapter 12.12.

The Hamiltonian eigenvalue problem as given in that section was
(
α0mc

2 +
∑

i

αip̂ic

)
~ψ = E ~ψ

where ~ψ was a vector with four components.
Now assume for a moment that ψ is a state of definite momentum. Then

the above equation can be rewritten in the form
(
γ0
E

c
−
∑

i

γipi

)
~ψ = mc~ψ

The motivation for doing so is that the coefficients of the γ matrices are the
components of the relativistic momentum four-vector, chapter 1.3.1.

It is easy to check that the only difference between the α and γ matrices
is that γ1 through γ3 get a minus sign in front of their bottom element. (Just
multiply the original equation by α−10 /c and rearrange.)

The parenthetical expression above is essentially a four-vector dot product
between the gamma matrices and the momentum four-vector. Especially if you
give the dot product the wrong sign, as many physicists do. In particular, in
the index notation of chapter 1.2.5, the parenthetical expression is then γµpµ.
Feynman hit upon the bright idea to indicate dot products with γ matrices by
a slash through the name. So you are likely to find the above equation as

p/ ~ψ = mc~ψ

Isn’t it beautifully concise? Isn’t it completely incomprehensible?
Also consider the case that ~ψ is not an energy and momentum eigenfunc-

tion. In that case, the equation of interest is found from the usual quantum
substitutions that E becomes i~∂/∂t and ~̂p becomes ~∂/i∂t. So the rewritten
Dirac equation is then:

i~

(
γ0

1

c

∂

∂t
+
∑

i

γi
∂

∂xi

)
~ψ = mc~ψ
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In index notation, the parenthetical expression reads γµ∂µ. So following Feyn-
man

i~∂/ ~ψ = mc~ψ

Now all that the typical physics book wants to add to that is a suitable non-SI
system of units. If you use the electron mass m as your unit of mass instead
of the kg, c as unit of velocity instead of m/s, and ~ as your unit of angular
momentum instead of kg m2/s, you get

i∂/ ~ψ = ~ψ

No outsider will ever guess what that stands for!

A.37 Maxwell’s wave equations

This note derives the wave equations satisfied by electromagnetic fields. The
derivation will use standard formulae of vector analysis, as found in, for example,
[41, 20.35-45].

The starting point is Maxwell’s equations for the electromagnetic field in
vacuum:

∇ · ~E =
ρ

ǫ0
(1) ∇ · ~B = 0 (2)

∇× ~E = −∂
~B
∂t

(3) ∇× ~B =
~

ǫ0
+
∂~E
∂t

(4)

Here ~E is the electric field, ~B the magnetic field, ρ the charge density, ~ the
current density, c the constant speed of light, and ǫ0 is a constant called the
permittivity of space. The charge and current densities are related by the con-
tinuity equation

∂ρ

∂t
+∇ · ~ = 0 (5)

To get a wave equation for the electric field, take the curl, ∇×, of (3) and
apply the standard vector identity (D.1), (1) and (4) to get

1

c2
∂2~E
∂t2
−∇2~E = − 1

ǫ0c2
∂~

∂t
− 1

ǫ0
∇ρ (A.235)

Similarly, for the magnetic field take the curl of (4) and use (2) and (3) to get

1

c2
∂2~B
∂t2
−∇2~B =

1

ǫ0c2
∇× ~ (A.236)
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These are uncoupled inhomogeneous wave equations for the components of
~E and ~B, for given charge and current densities. According to the theory of
partial differential equations, these equations imply that effects propagate no
faster than the speed of light. You can also see the same thing pretty clearly
from the fact that the homogeneous wave equation has solutions like

sin
(
k(y − ct) + ϕ

)

which are waves that travel with speed c in the y-direction.
The wave equations for the potentials ϕ and ~A are next. First note from

(2) that the divergence of ~B is zero. Then vector calculus says that it can be

written as the curl of some vector. Call that vector ~A0.

~B = ∇× ~A0 (6a)

Next define

~Eϕ ≡ ~E + ∂ ~A0

∂t

Plug this into (3) to show that the curl of ~Eϕ is zero. Then vector calculus says
that it can be written as minus the gradient of a scalar. Call this scalar ϕ0.
Plug that into the expression above to get

~E = −∇ϕ0 −
∂ ~A0

∂t
(7a)

Next, note that if you define modified versions ~A and ϕ of ~A0 and ϕ0 by
setting

ϕ = ϕ0 −
∂χ

∂t
~A = ~A0 +∇χ

where χ is any arbitrary function of x, y, z, and t, then still

~B = ∇× ~A (6)

since the curl of a gradient is always zero, and

~E = −∇ϕ− ∂ ~A

∂t
(7)

because the two χ terms drop out against each other.
The fact that ~A0, ϕ0 and ~A, ϕ produce the same physical fields is the famous

“gauge property” of the electromagnetic field.
Now you can select χ so that

∇ · ~A+
1

c2
∂ϕ

∂t
= 0 (8)
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That is known as the “Lorenz condition.” A corresponding gauge function is a
“Lorenz gauge.”

To find the gauge function χ that produces this condition, plug the defini-
tions for ~A and ϕ in terms of ~A0 and ϕ0 into the left hand side of the Lorentz
condition. That produces, after a change of sign,

1

c2
∂2χ

∂t2
−∇2χ−∇ · ~A0 −

1

c2
∂ϕ0

∂t
= 0

That is a second order inhomogeneous wave equation for χ.

Now plug the expressions (6) and (7) for ~E and ~B in terms of ~A and ϕ
into the Maxwell’s equations. Equations (2) and (3) are satisfied automatically.
From (2), after using (8),

1

c2
∂2ϕ

∂t2
−∇2ϕ =

ρ

ǫ0
(A.237)

From (4), after using (8),

1

c2
∂2 ~A

∂t2
−∇2 ~A =

~

ǫ0c2
(A.238)

You can still select the two initial conditions for χ. The smart thing to do
is select them so that ϕ and its time derivative are zero at time zero. In that
case, if there is no charge density, ϕ will stay zero for all time. That is because
its wave equation is then homogeneous. The Lorenz condition will then ensure
that ∇ · ~A is zero too.

Instead of the Lorenz condition, you could select χ to make ∇· ~A zero. That
is called the “Coulomb gauge” or “transverse gauge” or “transverse gauge.” It
requires that χ satisfies the Poisson equation

−∇2χ = ∇ · ~A0

Then the governing equations become

−∇2ϕ =
ρ

ǫ0

1

c2
∂2 ~A

∂t2
−∇2 ~A =

~

ǫ0c2
− 1

c2
∇∂ϕ
∂t

Note that ϕ now satisfies a purely spatial Poisson equation.
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A.38 Perturbation Theory

Most of the time in quantum mechanics, exact solution of the Hamiltonian
eigenvalue problem of interest is not possible. To deal with that, approximations
are made.

Perturbation theory can be used when the Hamiltonian H consists of two
parts H0 and H1, where the problem for H0 can be solved and where H1 is
small. The idea is then to adjust the found solutions for the “unperturbed
Hamiltonian” H0 so that they become approximately correct for H0 +H1.

This addendum explains how perturbation theory works. It also gives a few
simple but important examples: the helium atom and the Zeeman and Stark
effects. Addendum,{A.39} will use the approach to study relativistic effects on
the hydrogen atom.

A.38.1 Basic perturbation theory

To use perturbation theory, the eigenfunctions and eigenvalues of the unper-
turbed Hamiltonian H0 must be known. These eigenfunctions will here be
indicated as ψ~n,0 and the corresponding eigenvalues by E~n,0. Note the use of
the generic ~n to indicate the quantum numbers of the eigenfunctions. If the
basic system is an hydrogen atom, as is often the case in textbook examples,
and spin is unimportant, ~n would likely stand for the set of quantum numbers
n, l, and m. But for a three-dimensional harmonic oscillator, ~n might stand for
the quantum numbers nx, ny, and nz. In a three-dimensional problem with one
spinless particle, it takes three quantum numbers to describe an energy eigen-
function. However, which three depends on the problem and your approach to
it. The additional subscript 0 in ψ~n,0 and E~n,0 indicates that they ignore the
perturbation Hamiltonian H1. They are called the unperturbed wave functions
and energies.

The key to perturbation theory are the “Hamiltonian perturbation coeffi-
cients” defined as

H~n~n,1 ≡ 〈ψ~n,0|H1ψ~n,0〉 (A.239)

If you can evaluate these for every pair of energy eigenfunctions, you should be
OK. Note that evaluating inner products is just summation or integration; it is
generally a lot simpler than trying to solve the eigenvalue problem (H0 +H1)ψ
= Eψ.

In the application of perturbation theory, the idea is to pick one unperturbed
eigenfunction ψ~n,0 of H0 of interest and then correct it to account for H1, and
especially correct its energy E~n,0. Caution! If the energy E~n,0 is degenerate,
i.e. there is more than one unperturbed eigenfunction ψ~n,0 of H0 with that
energy, you must use a “good” eigenfunction to correct the energy. How to do
that will be discussed in subsection A.38.3.
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For now just assume that the energy is not degenerate or that you picked a
good eigenfunction ψ~n,0. Then a first correction to the energy E~n,0 to account
for the perturbation H1 is very simple, {D.79}; just add the corresponding
Hamiltonian perturbation coefficient:

E~n = E~n,0 +H~n~n,1 + . . . (A.240)

This is a quite user-friendly result, because it only involves the selected energy
eigenfunction ψ~n,0. The other energy eigenfunctions are not involved. In a
numerical solution, you might only have computed one state, say the ground
state of H0. Then you can use this result to correct the ground state energy for
a perturbation even if you do not have data about any other energy states of
H0.

Unfortunately, it does happen quite a lot that the above correction H~n~n,1 is
zero because of some symmetry or the other. Or it may simply not be accurate
enough. In that case, to find the energy change you have to use what is called
“second order perturbation theory:”

E~n = E~n,0 +H~n~n,1 −
∑

E~n,0 6=E~n,0

|H~n~n,1|2
E~n,0 − E~n,0

+ . . . (A.241)

Now all eigenfunctions of H0 will be needed, which makes second order theory a
lot nastier. Then again, even if the “first order” correction H~n~n,1 to the energy is
nonzero, the second order formula will likely give a much more accurate result.

Sometimes you may also be interested in what happens to the energy eigen-
functions, not just the energy eigenvalues. The corresponding formula is

ψ~n = ψ~n,0 −
∑

E~n,0 6=E~n,0

H~n~n,1

E~n,0 − E~n,0
ψ~n,0 +

∑

E~n,0=E~n,0

~n 6=~n

c~nψ~n,0 + . . . (A.242)

That is the first order result. The second sum is zero if the problem is not
degenerate. Otherwise its coefficients c~n are determined by considerations found
in derivation {D.79}.

In some cases, instead of using second order theory as above, it may be
simpler to compute the first order wave function perturbation and the second
order energy change from

(H0 − E~n,0)ψ~n,1 = −(H1 − E~n,1)ψ~n,0 E~n,2 = 〈ψ~n,0|(H1 − E~n,1)ψ~n,1〉
(A.243)

Eigenfunction ψ~n,0 must be good. The good news is that this does not require
all the unperturbed eigenfunctions. The bad news is that it requires solution
of a nontrivial equation involving the unperturbed Hamiltonian instead of just
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integration. It may be the best way to proceed for a perturbation of a numerical
solution.

One application of perturbation theory is the “Hellmann-Feynman theo-
rem.” Here the perturbation Hamiltonian is an infinitesimal change ∂H in the
unperturbed Hamiltonian caused by an infinitesimal change in some parameter
that it depends on. If the parameter is called λ, perturbation theory says that
the first order energy change is

∂E~n
∂λ

=

〈
ψ~n,0

∣∣∣∂H
∂λ

ψ~n,0

〉
(A.244)

when divided by the change in parameter ∂λ. If you can figure out the inner
product, you can figure out the change in energy. But more important is the re-
verse: if you can find the derivative of the energy with respect to the parameter,
you have the inner product. For example, the Hellmann-Feynman theorem is
helpful for finding the expectation value of 1/r2 for the hydrogen atom, a nasty
problem, {D.83}. Of course, always make sure the eigenfunction ψ~n,0 is a good
one for the derivative of the Hamiltonian.

A.38.2 Ionization energy of helium

One prominent deficiency in the approximate analysis of the heavier atoms in
chapter 5.9 was the poor ionization energy that it gave for helium. The purpose
of this example is to derive a much more reasonable value using perturbation
theory.

Exactly speaking, the ionization energy is the difference between the energy
of the helium atom with both its electrons in the ground state and the helium
ion with its second electron removed. Now the energy of the helium ion with
electron 2 removed is easy; the Hamiltonian for the remaining electron 1 is

HHe ion = − ~
2

2me

∇2
1 − 2

e2

4πǫ0

1

r1

where the first term represents the kinetic energy of the electron and the second
its attraction to the two-proton nucleus. The helium nucleus normally also
contains two neutrons, but they do not attract the electron.

This Hamiltonian is exactly the same as the one for the hydrogen atom in
chapter 4.3, except that it has 2e2 where the hydrogen one, with just one proton
in its nucleus, has e2. So the solution for the helium ion is simple: just take the
hydrogen solution, and everywhere where there is an e2 in that solution, replace
it by 2e2. In particular, the Bohr radius a for the helium ion is half the Bohr
radius a0 for hydrogen,

a =
4πǫ0~

2

me2e2
= 1

2
a0
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and so its energy and wave function become

Egs,ion = − ~
2

2mea2
= 4E1 ψgs,ion(~r) =

1√
πa3

e−r/a

where E1 = −13.6 eV is the energy of the hydrogen atom.
It is interesting to see that the helium ion has four times the energy of the

hydrogen atom. The reasons for this much higher energy are both that the
nucleus is twice as strong, and that the electron is twice as close to it: the
Bohr radius is half the size. More generally, in heavy atoms the electrons that
are poorly shielded from the nucleus, which means the inner electrons, have
energies that scale with the square of the nuclear strength. For such electrons,
relativistic effects are much more important than they are for the electron in a
hydrogen atom.

The neutral helium atom is not by far as easy to analyze as the ion. Its
Hamiltonian is, from (5.34):

HHe = −
~
2

2me

∇2
1 − 2

e2

4πǫ0

1

r1
− ~

2

2me

∇2
2 − 2

e2

4πǫ0

1

r2
+

e2

4πǫ0

1

|~r2 −~r1|
The first two terms are the kinetic energy and nuclear attraction of electron
1, and the next two the same for electron 2. The final term is the electron
to electron repulsion, the curse of quantum mechanics. This final term is the
reason that the ground state of helium cannot be found analytically.

Note however that the repulsion term is qualitatively similar to the nuclear
attraction terms, except that there are four of these nuclear attraction terms
versus a single repulsion term. So maybe then, it may work to treat the repulsion
term as a small perturbation, call it H1, to the Hamiltonian H0 given by the
first four terms? Of course, if you ask mathematicians whether 25% is a small
amount, they are going to vehemently deny it; but then, so they would for any
amount if there is no limit process involved, so just don’t ask them, OK?

The solution of the eigenvalue problem H0ψ = Eψ is simple: since the
electrons do not interact with this Hamiltonian, the ground state wave function
is the product of the ground state wave functions for the individual electrons,
and the energy is the sum of their energies. And the wave functions and energies
for the separate electrons are given by the solution for the ion above, so

ψgs,0 =
1

πa3
e−(r1+r2)/a Egs,0 = 8E1

According to this result, the energy of the atom is 8E1 while the ion had
4E1, so the ionization energy would be 4|E1|, or 54.4 eV. Since the experimental
value is 24.6 eV, this is no better than the 13.6 eV chapter 5.9 came up with.

To get a better ionization energy, try perturbation theory. According to first
order perturbation theory, a better value for the energy of the hydrogen atom
should be

Egs = Egs,0 + 〈ψgs,0|H1ψgs,0〉
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or substituting in from above,

Egs = 8E1 +
e2

4πǫ0

〈 1

πa3
e−(r1+r2)/a

∣∣∣ 1

|~r2 −~r1|
1

πa3
e−(r1+r2)/a

〉

The inner product of the final term can be written out as

e2

4πǫ0

1

π2a6

∫

all ~r1

∫

all ~r2

e−2(r1+r2)/a

|~r2 −~r1|
d3~r1d

3~r2

This integral can be done analytically. Try it, if you are so inclined; integrate
d3~r1 first, using spherical coordinates with ~r2 as their axis and doing the az-
imuthal and polar angles first. Be careful,

√
(r1 − r2)2 = |r1−r2|, not r1−r2, so

you will have to integrate r1 < r2 and r1 > r2 separately in the final integration
over dr1. Then integrate d3~r2.

The result of the integration is

e2

4πǫ0

〈 1

πa3
e−(r1+r2)/a

∣∣∣ 1

|~r2 −~r1|
1

πa3
e−(r1+r2)/a

〉
=

e2

4πǫ0

5

8a
=

5

2
|E1|

Therefore, the helium atom energy increases by 2.5|E1| due to the electron
repulsion, and with it, the ionization energy decreases to 1.5|E1|, or 20.4 eV. It
is not 24.6 eV, but it is clearly much more reasonable than 54 or 13.6 eV were.

The second order perturbation result should give a much more accurate
result still. However, if you did the integral above, you may feel little inclination
to try the ones involving all possible products of hydrogen energy eigenfunctions.

Instead, the result can be improved using a variational approach, like the
ones that were used earlier for the hydrogen molecule and molecular ion, and
this requires almost no additional work. The idea is to accept the hint from
perturbation theory that the wave function of helium can be approximated
as ψa(~r1)ψa(~r2) where ψa is the hydrogen ground state wave function using a
modified Bohr radius a instead of a0:

ψgs = ψa(~r1)ψa(~r2) ψa(~r) ≡
1√
πa3

e−r/a

However, instead of accepting the perturbation theory result that a should be
half the normal Bohr radius a0, let a be optimized to make the expectation
energy for the ground state

Egs = 〈ψgs|HHeψgs〉

as small as possible. This will produce the most accurate ground state energy
possible for a ground state wave function of this form, guaranteed no worse than
assuming that a = 1

2
a0, and probably better.
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No new integrals need to be done to evaluate the inner product above. In-
stead, noting that for the hydrogen atom according to the virial theorem of
chapter 7.2 the expectation kinetic energy equals −E1 = ~

2/2mea
2
0 and the po-

tential energy equals 2E1, two of the needed integrals can be inferred from the
hydrogen solution: chapter 4.3,

〈
ψa

∣∣∣− ~
2

2me

∇2ψa

〉
=

~
2

2mea2

− e2

4πǫ0

〈
ψa

∣∣∣1
r
ψa

〉
= − ~

2

mea0

〈
ψa

∣∣∣1
r
ψa

〉
= − ~

2

mea0

1

a

and this subsection added
〈
ψaψa

∣∣∣ 1

|~r2 −~r1|
ψaψa

〉
=

5

8a

Using these results with the helium Hamiltonian, the expectation energy of the
helium atom can be written out to be

〈ψaψa|HHeψaψa〉 =
~
2

mea2
− 27

8

~
2

mea0a

Setting the derivative with respect to a to zero locates the minimum at a = 16
27
a0,

rather than 1
2
a0. Then the corresponding expectation energy is −36~2/28mea

2
0,

or 36E1/2
7. Putting in the numbers, the ionization energy is now found as 23.1

eV, in quite good agreement with the experimental 24.6 eV.

A.38.3 Degenerate perturbation theory

Energy eigenvalues are degenerate if there is more than one independent eigen-
function with that energy. Now, if you try to use perturbation theory to correct
a degenerate eigenvalue of a Hamiltonian H0 for a perturbation H1, there may
be a problem. Assume that there are d > 1 independent eigenfunctions with
energy E~n,0 and that they are numbered as

ψ~n1,0, ψ~n2,0, . . . , ψ~nd,0

Then as far as H0 is concerned, any combination

ψ~n,0 = c1ψ~n1,0 + c2ψ~n2,0 + . . .+ cdψ~nd,0

with arbitrary coefficients c1, c2, . . . , cd, (not all zero, of course), is just as good
an eigenfunction with energy E~n,0 as any other.

Unfortunately, the full Hamiltonian H0 +H1 is not likely to agree with H0

about that. As far as the full Hamiltonian is concerned, normally only very
specific combinations are acceptable, the “good” eigenfunctions. It is said that
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the perturbation H1 “breaks the degeneracy” of the energy eigenvalue. The
single energy eigenvalue splits into several eigenvalues of different energy. Only
good combinations will show up these changed energies; the bad ones will pick
up uncertainty in energy that hides the effect of the perturbation.

The various ways of ensuring good eigenfunctions are illustrated in the fol-
lowing subsections for example perturbations of the energy levels of the hydro-
gen atom. Recall that the unperturbed energy eigenfunctions of the hydrogen
atom electron, as derived in chapter 4.3, and also including spin, are given as
ψnlm↑ and ψnlm↓. They are highly degenerate: all the eigenfunctions with the
same value of n have the same energy En, regardless of what is the value of the
azimuthal quantum number 0 6 l 6 n− 1 corresponding to the square orbital
angular momentum L2 = l(l+1)~2; regardless of what is the magnetic quantum
number |m| 6 l corresponding to the orbital angular momentum Lz = m~ in
the z-direction; and regardless of what is the spin quantum number ms = ±1

2

corresponding to the spin angular momentum ms~ in the z-direction. In par-
ticular, the ground state energy level E1 is two-fold degenerate, it is the same
for both ψ100↑, i.e. ms = 1

2
and ψ100↓, ms = −1

2
. The next energy level E2 is

eight-fold degenerate, it is the same for ψ200l, ψ211l, ψ210l, and ψ21−1l, and so
on for higher values of n.

There are two important rules to identify the good eigenfunctions, {D.79}:
1. Look for good quantum numbers. The quantum numbers that make

the energy eigenfunctions of the unperturbed HamiltonianH0 unique
correspond to the eigenvalues of additional operators besides the
Hamiltonian. If the perturbation Hamiltonian H1 commutes with
one of these additional operators, the corresponding quantum num-
ber is good. You do not need to combine eigenfunctions with differ-
ent values of that quantum number.

In particular, if the perturbation Hamiltonian commutes with all
additional operators that make the eigenfunctions ofH0 unique, stop
worrying: every eigenfunction is good already.

For example, for the usual hydrogen energy eigenfunctions ψnlml,
the quantum numbers l, m, and ms make the eigenfunctions at a
given unperturbed energy level n unique. They correspond to the
operators L̂2, L̂z, and Ŝz. If the perturbation Hamiltonian H1 com-
mutes with any one of these operators, the corresponding quantum
number is good. If the perturbation commutes with all three, all
eigenfunctions are good already.

2. Even if some quantum numbers are bad because the perturbation
does not commute with that operator, eigenfunctions are still good if
there are no other eigenfunctions with the same unperturbed energy
and the same good quantum numbers.

Otherwise linear algebra is required. For each set of energy eigen-
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functions
ψ~n1,0, ψ~n2,0, . . .

with the same unperturbed energy and the same good quantum
numbers, but different bad ones, form the matrix of Hamiltonian
perturbation coefficients



〈ψ~n1,0|H1ψ~n1,0〉 〈ψ~n1,0|H1ψ~n2,0〉 · · ·
〈ψ~n2,0|H1ψ~n1,0〉 〈ψ~n2,0|H1ψ~n2,0〉 · · ·

...
...

. . .




The eigenvalues of this matrix are the first order energy corrections.
Also, the coefficients c1, c2, . . . of each good eigenfunction

c1ψ~n1,0 + c2ψ~n2,0 + . . .

must be an eigenvector of the matrix.
Unfortunately, if the eigenvalues of this matrix are not all different,

the eigenvectors are not unique, so you remain unsure about what
are the good eigenfunctions. In that case, if the second order energy
corrections are needed, the detailed analysis of derivation {D.79}
will need to be followed.
If you are not familiar with linear algebra at all, in all cases men-

tioned here the matrices are just two by two, and you can find that
solution spelled out in the notations under “eigenvector.”

The following, related, practical observation can also be made:

Hamiltonian perturbation coefficients can only be nonzero if all the
good quantum numbers are the same.

A.38.4 The Zeeman effect

If you put an hydrogen atom in an external magnetic field ~Bext, the energy levels
of the electron change. That is called the “Zeeman effect.”

If for simplicity a coordinate system is used with its z-axis aligned with the
magnetic field, then according to chapter 13.4, the Hamiltonian of the hydrogen
atom acquires an additional term

H1 =
e

2me

Bext
(
L̂z + 2Ŝz

)
(A.245)

beyond the basic hydrogen atom HamiltonianH0 of chapter 4.3.1. Qualitatively,
it expresses that a spinning charged particle is equivalent to a tiny electromag-
net, and a magnet wants to align itself with a magnetic field, just like a compass
needle aligns itself with the magnetic field of earth.
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For this perturbation, the ψnmll energy eigenfunctions are already good ones,

because H1 commutes with all of L̂2, L̂z and Ŝz. So, according to perturbation
theory, the energy eigenvalues of an hydrogen atom in a magnetic field are
approximately

En + 〈ψnmll|H1|ψnmll〉 = En +
e

2me

Bext(m+ 2ms)~

Actually, this is not approximate at all; it is the exact eigenvalue of H0 + H1

corresponding to the exact eigenfunction ψnmll.
The Zeeman effect can be seen in an experimental spectrum. Consider first

the ground state. If there is no electromagnetic field, the two ground states ψ100↑
and ψ100↓ would have exactly the same energy. Therefore, in an experimental
spectrum, they would show up as a single line. But with the magnetic field, the
two energy levels are different,

E100↓ = E1 −
e~

2me

Bext E100↑ = E1 +
e~

2me

Bext E1 = −13.6 eV

so the single line splits into two! Do note that the energy change due to even
an extremely strong magnetic field of 100 Tesla is only 0.006 eV or so, chapter
13.4, so it is not like the spectrum would become unrecognizable. The single
spectral line of the eight ψ2lml “L” shell states will similarly split in five closely
spaced but separate lines, corresponding to the five possible values −2, −1, 0,
1 and 2 for the factor m+ 2ms above.

Some disclaimers should be given here. First of all, the 2 in m+2ms is only
equal to 2 up to about 0.1% accuracy. More importantly, even in the absence
of a magnetic field, the energy levels at a given value of n do not really form a
single line in the spectrum if you look closely enough. There are small errors in
the solution of chapter 4.3 due to relativistic effects, and so the theoretical lines
are already split. That is discussed in addendum {A.39}. The description given
above is a good one for the “strong” Zeeman effect, in which the magnetic field
is strong enough to swamp the relativistic errors.

A.38.5 The Stark effect

If an hydrogen atom is placed in an external electric field ~Eext instead of the
magnetic one of the previous subsection, its energy levels will change too. That
is called the “Stark effect.” Of course a Zeeman, Dutch for sea-man, would be
most interested in magnetic fields. A Stark, maybe in a spark? (Apologies.)

If the z-axis is taken in the direction of the electric field, the contribution of
the electric field to the Hamiltonian is given by:

H1 = eEextz (A.246)
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It is much like the potential energy mgh of gravity, with the electron charge e
taking the place of the mass m, Eext that of the gravity strength g, and z that
of the height h.

Since the typical magnitude of z is of the order of a Bohr radius a0, you
would expect that the energy levels will change due to the electric field by an
amount of rough size eEexta0. A strong laboratory electric field might have
eEexta0 of the order of 0.000 5 eV, [25, p. 339]. That is really small compared to
the typical electron energy levels.

And additionally, it turns out that for many eigenfunctions, including the
ground state, the first order correction to the energy is zero. To get the energy
change in that case, you need to compute the second order term, which is a
pain. And that term will be much smaller still than even eEexta0 for reasonable
field strengths.

Now first suppose that you ignore the warnings on good eigenfunctions, and
just compute the energy changes using the inner product 〈ψnlml|H1ψnlml〉. You
will then find that this inner product is zero for whatever energy eigenfunction
you take:

〈ψnlml|eEextzψnlml〉 = 0 for all n, l, m, and ms

The reason is that negative z values integrate away against positive ones. (The
inner products are integrals of z times |ψnlm|2, and |ψnlm|2 is the same at opposite
sides of the nucleus while z changes sign, so the contributions of opposite sides
to the inner product pairwise cancel.)

So, since all first order energy changes that you compute are zero, you would
naturally conclude that to first order approximation none of the energy levels of
a hydrogen atom changes due to the electric field. But that conclusion is wrong
for anything but the ground state energy. And the reason it is wrong is because
the good eigenfunctions have not been used.

Consider the operators L̂2, L̂z, and Sz that make the energy eigenfunctions
ψnlml unique. If H1 = eEextz commuted with them all, the ψnlml would be good

eigenfunctions. Unfortunately, while z commutes with L̂z and Sz, it does not
commute with L̂2, see chapter 4.5.4. The quantum number l is bad.

Still, the two states ψ100l with the ground state energy are good states,
because there are no states with the same energy and a different value of the
bad quantum number l. Really, spin has nothing to do with the Stark problem.
If you want, you can find the purely spatial energy eigenfunctions first, then
for every spatial eigenfunction, there will be one like that with spin up and one
with spin down. In any case, since the two eigenfunctions ψ100l are both good,
the ground state energy does indeed not change to first order.

But now consider the eight-fold degenerate n = 2 energy level. Each of the
four eigenfunctions ψ211l and ψ21−1l is a good one because for each of them,
there is no other n = 2 eigenfunction with a different value of the bad quantum
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number l. The energies corresponding to these good eigenfunctions too do
indeed not change to first order.

However, the remaining two n = 2 spin-up states ψ200↑ and ψ210↑ have
different values for the bad quantum number l, and they have the same values
m = 0 and ms = 1

2
for the good quantum numbers of orbital and spin z-

momentum. These eigenfunctions are bad and will have to be combined to
produce good ones. And similarly the remaining two spin-down states ψ200↓
and ψ210↓ are bad and will have to be combined.

It suffices to just analyze the spin up states, because the spin down ones
go exactly the same way. The coefficients c1 and c2 of the good combinations
c1ψ200↑+ c2ψ210↑ must be eigenvectors of the matrix

(
〈ψ200↑|H1ψ200↑〉 〈ψ200↑|H1ψ210↑〉
〈ψ210↑|H1ψ200↑〉 〈ψ210↑|H1ψ210↑〉

)
H1 = eEextz

The “diagonal” elements of this matrix (top left corner and bottom right corner)
are zero because of cancellation of negative and positive z values as discussed
above. And the top right and bottom left elements are complex conjugates,
(2.16), so only one of them needs to be actually computed. And the spin part
of the inner product produces one and can therefore be ignored. What is left is
a matter of finding the two spatial eigenfunctions involved according to (4.36),
looking up the spherical harmonics in table 4.2 and the radial functions in table
4.4, and integrating it all against eEextz. The resulting matrix is

(
0 −3eEexta0

−3eEexta0 0

)

The eigenvectors of this matrix are simple enough to guess; they have either
equal or opposite coefficients c1 and c2:

(
0 −3eEexta0

−3eEexta0 0

)

√

1
2√
1
2


 = −3eEexta0



√

1
2√
1
2




(
0 −3eEexta0

−3eEexta0 0

)


√
1
2

−
√

1
2


 = 3eEexta0




√
1
2

−
√

1
2




If you want to check these expressions, note that the product of a matrix times
a vector is found by taking dot products between the rows of the matrix and

the vector. It follows that the good combination
√

1
2
ψ200↑+

√
1
2
ψ210↑ has a first

order energy change −3eEexta0, and the good combination
√

1
2
ψ200↑−

√
1
2
ψ210↑

has +3eEexta0. The same applies for the spin down states. It follows that to
first order the n = 2 level splits into three, with energies E2− 3eEexta0, E2, and
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E2+3eEexta0, where the value E2 applies to the eigenfunctions ψ211l and ψ21−1l
that were already good. The conclusion, based on the wrong eigenfunctions, that
the energy levels do not change was all wrong.

Remarkably, the good combinations of ψ200 and ψ210 are the “sp” hybrids
of carbon fame, as described in chapter 5.11.4. Note from figure 5.13 in that
section that these hybrids do not have the same magnitude at opposite sides of
the nucleus. They have an intrinsic “electric dipole moment,” with the charge
shifted towards one side of the atom, and the electron then wants to align this
dipole moment with the ambient electric field. That is much like in Zeeman
splitting, where electron wants to align its orbital and spin magnetic dipole
moments with the ambient magnetic field.

The crucial thing to take away from all this is: always, always, check whether
the eigenfunction is good before applying perturbation theory.

It is obviously somewhat disappointing that perturbation theory did not give
any information about the energy change of the ground state beyond the fact
that it is second order, i.e. very small compared to eEexta0. You would like to
know approximately what it is, not just that it is very small. Of course, now that
it is established that ψ100↑ is a good state with m = 0 and ms =

1
2
, you could

think about evaluating the second order energy change (A.241), by integrating
〈ψ100↑|eEextzψnl0↑〉 for all values of n and l. But after refreshing your memory
about the analytical expression (D.8) for the ψnlm, you might think again.

It is however possible to find the perturbation in the wave function from the
alternate approach (A.243), {D.80}. In that way the second order ground state
energy is found to be

E100 = E1 −
3eEexta0
8|E1|

3eEexta0 E1 = −13.6 eV

Note that the atom likes an electric field: it lowers its ground state energy. Also
note that the energy change is indeed second order; it is proportional to the
square of the electric field strength. You can think of the attraction of the atom
to the electric field as a two-stage process: first the electric field polarizes the
atom by distorting its initially symmetric charge distribution. Then it interacts
with this polarized atom in much the same way that it interacts with the sp
hybrids. But since the polarization is now only proportional to the field strength,
the net energy drop is proportional to the square of the field strength.

Finally, note that the typical value of 0.000 5 eV or so for eEexta0 quoted
earlier is very small compared to the about 100 eV for 8|E1|, making the fraction
in the expression above very small. So, indeed the second order change in the
ground state energy E1 is much smaller than the first order energy changes
±3eEexta0 in the E2 energy level.

A weird prediction of quantum mechanics is that the electron will eventu-
ally escape from the atom, leaving it ionized. The reason is that the potential
is linear in z, so if the electron goes out far enough in the z-direction, it will
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eventually encounter potential energies that are lower than the one it has in
the atom. Of course, to get at such large values of z, the electron must pass
positions where the required energy far exceeds the −13.6 eV it has available,
and that is impossible for a classical particle. However, in quantum mechanics
the position of the electron is uncertain, and the electron does have some minis-
cule chance of “tunneling out” of the atom through the energy barrier, chapter
7.12.2. Realistically, though, for even strong experimental fields like the one
mentioned above, the “life time” of the electron in the atom before it has a
decent chance of being found outside it far exceeds the age of the universe.

A.39 The relativistic hydrogen atom

The description of the hydrogen atom given earlier in chapter 4.3 is very accurate
by engineering standards. However, it is not exact. This addendum examines
various relativistic effects that were ignored in the analysis.

The approach will be to take the results of chapter 4.3 as the starting point.
Then corrections are applied to them using perturbation theory as described in
addendum {A.38}.

A.39.1 Introduction

According to the description of the hydrogen atom given in chapter 4.3, all
energy eigenfunctions ψnlml with the same value of n have the same energy
En. Therefore they should show up as a single line in an experimental line
spectrum. But actually, when these spectra are examined very precisely, the
En energy levels for a given value of n are found to consist of several closely
spaced lines, rather than a single one. That is called the “hydrogen atom fine
structure.” It means that eigenfunctions that all should have exactly the same
energy, don’t.

To explain why, the solution of chapter 4.3 must be corrected for a variety
of relativistic effects. Before doing so, it is helpful to express the nonrelativistic
energy levels of that chapter in terms of the “rest mass energy” mec

2 of the
electron, as follows:

En = − α2

2n2
mec

2 where α =
e2

4πǫ0~c
≈ 1

137
(A.247)

The constant α is called the “fine structure constant.” It combines the constants
e2/4πǫ0 from electromagnetism, ~ from quantum mechanics, and the speed of
light c from relativity into one nondimensional number. It is without doubt the
single most important number in all of physics, [19].

Nobody knows why it has the value that it has. Still, obviously it is a
measurable value, so, following the stated ideas of quantum mechanics, maybe
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the universe “measured” this value during its early formation by a process that
we may never understand, (since we do not have other measured values for α to
deduce any properties of that process from.) If you have a demonstrably better
explanation, Sweden awaits you.

In any case, for engineering purposes it is a small number, less than 1%.
That makes the hydrogen energy levels really small compared to the rest mass
energy of the electron, because they are proportional to the square of α, which
is as small as 0.005%. In simple terms, the electron in hydrogen stays well clear
of the speed of light.

And that in turn means that the relativistic errors in the hydrogen energy
levels are small. Still, even small errors can sometimes be very important. The
required corrections are listed below in order of decreasing magnitude.

• Fine structure.

The electron should really be described relativistically using the Dirac
equation instead of classically. In classical terms, that will introduce three
corrections to the energy levels:
• Einstein’s relativistic correction of the classical kinetic energy
p2/2me of the electron.
• “Spin-orbit interaction”, due to the fact that the spin of the
moving electron changes the energy levels. The spin of the
electron makes it act like a little electromagnet. It can be
seen from classical electrodynamics that a moving magnet will
interact with the electric field of the nucleus, and that changes
the energy levels. Note that the name spin-orbit interaction is
a well chosen one, a rarity in physics.
• There is a third correction for states of zero angular momen-
tum, the Darwin term. It is a crude fix for the fundamen-
tal problem that the relativistic wave function is not just a
modified classical one, but also involves interaction with the
anti-particle of the electron, the positron.

Fortunately, all three of these effects are very small; they are smaller than
the uncorrected energy levels by a factor of order α2, and the error they
introduce is on the order of 0.001%. So the “exact” solution of chapter
4.3 is, by engineering standards, pretty exact after all.

• Lamb shift. Relativistically, the electron is affected by virtual photons
and virtual electron-positron pairs. It adds a correction of relative magni-
tude α3 to the energy levels, one or two orders of magnitude smaller still
than the fine structure corrections. To understand the correction properly
requires quantum electrodynamics.

• Hyperfine splitting. Like the electron, the proton acts as a little elec-
tromagnet too. Therefore the energy depends on how it aligns with the
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magnetic field generated by the electron. This effect is a factor me/mp

smaller still than the fine structure corrections, making the associated
energy changes about two orders of magnitude smaller.

Hyperfine splitting couples the spins of proton and electron, and in the
ground state, they combine in the singlet state. A slightly higher energy
level occurs when they are in a spin-one triplet state; transitions between
these states radiate very low energy photons with a wave length of 21 cm.
This is the source of the “21 centimeter line” or “hydrogen line” radiation
that is of great importance in cosmology. For example, it has been used
to analyze the spiral arms of the galaxy, and the hope at the time of this
writing is that it can shed light on the so called “dark ages” that the
universe went through. Since so little energy is released, the transition is
very slow, chapter 7.6.1. It takes on the order of 10 million years, but that
is a small time on the scale of the universe.

The message to take away from that is that even errors in the ground state
energy of hydrogen that are two million times smaller than the energy itself
can be of critical importance under the right conditions.

The following subsections discuss each correction in more detail.

A.39.2 Fine structure

From the Dirac equation, it can be seen that three terms need to be added to
the nonrelativistic Hamiltonian of chapter 4.3 to correct the energy levels for
relativistic effects. The three terms are worked out in derivation {D.81}. But
that mathematics really provides very little insight. It is much more instructive
to try to understand the corrections from a more physical point of view.

The first term is relatively easy to understand. Consider Einstein’s famous
relation E =mc2, where E is energy,mmass, and c the speed of light. According
to this relation, the kinetic energy of the electron is not 1

2
mev

2, with v the
velocity, as Newtonian physics says. Instead it is the difference between the
energy me,vc

2 based on the mass me,v of the electron in motion and the energy
mec

2 based on the mass me of the electron at rest. In terms of momentum p =
me,vv, chapter 1.1.2,

T = mec
2

√
1 +

p2

m2
ec

2
−mec

2 (A.248)

Since the speed of light is large compared to the typical speed of the electron,
the square root can be expanded in a Taylor series, [41, 22.12], to give:

T ≈ p2

2me

− p4

8m3
ec

2
+ . . .
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The first term corresponds to the kinetic energy operator used in the nonrela-
tivistic quantum solution of chapter 4.3. (It may be noted that the relativistic
momentum ~p is based on the moving mass of the electron, not its rest mass. It
is this relativistic momentum that corresponds to the operator ~̂p = ~∇/i. So
the Hamiltonian used in chapter 4.3 was a bit relativistic already, because in
replacing ~p by ~∇/i, it used the relativistic expression.) The second term in the
Taylor series expansion above is the first of the corrections needed to fix up the
hydrogen energy levels for relativity. Rewritten in terms of the square of the
classical kinetic energy operator, the Bohr ground state energy E1 and the fine
structure constant α, it is

H1,Einstein = − α 2

4|E1|

(
p̂2

2me

)2

(A.249)

The second correction that must be added to the nonrelativistic Hamiltonian
is the so-called “spin-orbit interaction.” In classical terms, it is due to the spin
of the electron, which makes it into a “magnetic dipole.” Think of it as a magnet
of infinitesimally small size, but with infinitely strong north and south poles to
make up for it. The product of the infinitesimal vector from south to north
pole times the infinite strength of the poles is finite, and defines the magnetic
dipole moment ~µ. By itself, it is quite inconsequential since the magnetic dipole
does not interact directly with the electric field of the nucleus. However, moving
magnetic poles create an electric field just like the moving electric charges in
an electromagnet create a magnetic field. The electric fields generated by the
moving magnetic poles of the electron are opposite in strength, but not quite
centered at the same position. Therefore they correspond to a motion-induced
electric dipole. And an electric dipole does interact with the electric field of the
nucleus; it wants to align itself with it. That is just like the magnetic dipole
wanted to align itself with the external magnetic field in the Zeeman effect.

So how big is this effect? Well, the energy of an electric dipole ~℘ in an
electric field ~E is

E1,spin-orbit = −~℘ · ~E

As you might guess, the electric dipole generated by the magnetic poles of the
moving electron is proportional to the speed of the electron ~v and its magnetic
dipole moment ~µ. More precisely, the electric dipole moment ~℘ will be propor-
tional to ~v × ~µ because if the vector connecting the south and north poles is
parallel to the motion, you do not have two neighboring currents of magnetic
poles, but a single current of both negative and positive poles that completely
cancel each other out. Also, the electric field ~E of the nucleus is minus the
gradient of its potential e/4πǫ0r, so

E1,spin-orbit ∝ (~v × ~µ) · e

4πǫ0r3
~r
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Now the order of the vectors in this triple product can be changed, and the
dipole strength ~µ of the electron equals its spin ~S times the charge per unit
mass −e/me, so

E1,spin-orbit ∝
e2

me4πǫ0r3
(~r × ~v) · ~S

The expression between the parentheses is the angular momentum ~L save for
the electron mass. The constant of proportionality is worked out in derivation
{D.82}, giving the spin-orbit Hamiltonian as

H1,spin-orbit = α2|E1|
(a0
r

)3 1

~2
~̂L · ~̂S (A.250)

The final correction that must be added to the nonrelativistic Hamiltonian
is the so-called “Darwin term:”

H1,Darwin = α2|E1| πa30δ3(~r) (A.251)

According to its derivation in {D.81}, it is a crude fix-up for an interaction with
a virtual positron that simply cannot be included correctly in a nonrelativistic
analysis.

If that is not very satisfactory, the following much more detailed derivation
can be found on the web. It does succeed in explaining the Darwin term fully
within the nonrelativistic picture alone. First assume that the electric potential
of the nucleus does not really become infinite as 1/r at r = 0, but is smoothed
out over some finite nuclear size. Also assume that the electron does not “see”
this potential sharply, but perceives of its features a bit vaguely, as diffused
out symmetrically over a typical distance equal to the so-called Compton wave
length ~/mec. There are several plausible reasons why it might: (1) the electron
has illegally picked up a chunk of a negative rest mass state, and it is trembling
with fear that the uncertainty in energy will be noted, moving rapidly back
and forwards over a Compton wave length in a so-called “Zitterbewegung”; (2)
the electron has decided to move at the speed of light, which is quite possible
nonrelativistically, so its uncertainty in position is of the order of the Compton
wave length, and it just cannot figure out where the right potential is with all
that uncertainty in position and light that fails to reach it; (3) the electron
needs glasses. Further assume that the Compton wave length is much smaller
than the size over which the nuclear potential is smoothed out. In that case,
the potential within a Compton wave length can be approximated by a second
order Taylor series, and the diffusion of it over the Compton wave length will
produce an error proportional to the Laplacian of the potential (the only fully
symmetric combination of derivatives in the second order Taylor series.). Now
if the potential is smoothed over the nuclear region, its Laplacian, giving the
charge density, is known to produce a nonzero spike only within that smoothed
nuclear region, figure 13.7 or (13.30). Since the nuclear size is small compared
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to the electron wave functions, that spike can then be approximated as a delta
function. Tell all your friends you heard it here first.

The key question is now what are the changes in the hydrogen energy lev-
els due to the three perturbations discussed above. That can be answered by
perturbation theory as soon as the good eigenfunctions have been identified.
Recall that the usual hydrogen energy eigenfunctions ψnlml are made unique by

the square angular momentum operator L̂2, giving l, the z angular momentum
operator L̂z, giving m, and the spin angular momentum operator Ŝz giving the
spin quantum number ms = ±1

2
for spin up, respectively down. The decisive

term whether these are good or not is the spin-orbit interaction. If the inner
product in it is written out, it is

H1,spin-orbit = α2|E1|
(a0
r

)3 1

~2

(
L̂xŜx + L̂yŜy + L̂zŜz

)

The radial factor is no problem; it commutes with every orbital angular mo-
mentum component, since these are purely angular derivatives, chapter 4.2.2.
It also commutes with every component of spin because all spatial functions
and operators do, chapter 5.5.3. As far as the dot product is concerned, it

commutes with L̂2 since all the components of ~̂L do, chapter 4.5.4, and since all

the components of ~̂S commute with any spatial operator. But unfortunately,
L̂x and L̂y do not commute with L̂z, and Ŝx and Ŝy do not commute with Ŝz
(chapters 4.5.4 and 5.5.3):

[L̂x, L̂z] = −i~L̂y [L̂y, L̂z] = i~L̂x [Ŝx, Ŝz] = −i~Ŝy [Ŝy, Ŝz] = i~Ŝx

The quantum numbers m and ms are bad.

Fortunately, ~̂L · ~̂S does commute with the net z angular momentum Ĵz,
defined as L̂z + Ŝz. Indeed, using the commutators above and the rules of
chapter 4.5.4 to take apart commutators:

[L̂xŜx, L̂z + Ŝz] = [L̂x, L̂z]Ŝx + L̂x[Ŝx, Ŝz] = −i~L̂yŜx − i~L̂xŜy

[L̂yŜy, L̂z + Ŝz] = [L̂y, L̂z]Ŝy + L̂y[Ŝy, Ŝz] = i~L̂xŜy + i~L̂yŜx

[L̂zŜz, L̂z + Ŝz] = [L̂z, L̂z]Ŝz + L̂z[Ŝz, Ŝz] = 0

and adding it all up, you get [~̂L · ~̂S, Ĵz] = 0. The same way of course ~̂L · ~̂S
commutes with the other components of net angular momentum ~̂J , since the

z-axis is arbitrary. And if ~̂L · ~̂S commutes with every component of ~̂J , then it
commutes with their sum of squares Ĵ2. So, eigenfunctions of L̂2, Ĵ2, and Ĵz
are good eigenfunctions.

Such good eigenfunctions can be constructed from the ψnlml by forming
linear combinations of them that combine different m and ms values. The
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coefficients of these good combinations are called Clebsch-Gordan coefficients
and are shown for l = 1 and l = 2 in figure 12.5. Note from this figure that the
quantum number j of net square momentum can only equal l+ 1

2
or l− 1

2
. The

half unit of electron spin is not big enough to change the quantum number of
square orbital momentum by more than half a unit. For the rest, however, the
detailed form of the good eigenfunctions is of no interest here. They will just
be indicated in ket notation as |nljmj〉, indicating that they have unperturbed
energy En, square orbital angular momentum l(l+1)~2, square net (orbital plus
spin) angular momentum j(j + 1)~2, and net z angular momentum mj~.

As far as the other two contributions to the fine structure are concerned,

according to chapter 4.3.1 ~̂p
2
in the Einstein term consists of radial functions

and radial derivatives plus L̂2. These commute with the angular derivatives

that make up the components of ~̂L, and as spatial functions and operators, they
commute with the components of spin. So the Einstein Hamiltonian commutes

with all components of ~̂L and ~̂J = ~̂L + ~̂S, hence with L̂2, Ĵ2, and Ĵz. And the
delta function in the Darwin term can be assumed to be the limit of a purely
radial function and commutes in the same way. The eigenfunctions |nljmj〉
with given values of l, j, and mj are good ones for the entire fine structure
Hamiltonian.

To get the energy changes, the Hamiltonian perturbation coefficients

〈mjjln|H1,Einstein +H1,spin-orbit +H1,Darwin|nljmj〉

must be found. Starting with the Einstein term, it is

〈mjjln|H1,Einstein|nljmj〉 = −
α2

4|E1|
〈mjjln|

p̂ 4

4m2
e

|nljmj〉

Unlike what you may have read elsewhere, p̂ 4 is indeed a Hermitian operator,
but p̂ 4|nljmj〉 may have a delta function at the origin, (13.30), so watch it
with blindly applying mathematical manipulations to it. The trick is to take
half of it to the other side of the inner product, and then use the fact that the
eigenfunctions satisfy the nonrelativistic energy eigenvalue problem:

〈mjjln|
p̂2

2me

∣∣∣ p̂
2

2me

|nljmj〉 = 〈mjjln|En − V
∣∣∣En − V |nljmj〉

= 〈mjjln|E2
n − 2V En + V 2|nljmj〉

Noting from chapter 4.3 that En = E1/n
2, V = 2E1a0/r and that the expectation

values of a0/r and (a0/r)
2 are given in derivation {D.83}, you find that

〈mjjln|H1,Einstein|nljmj〉 = −
α2

4n2

(
4n

l + 1
2

− 3

)
|En|
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The spin-orbit energy correction is

〈mjjln|H1,spin-orbit|nljmj〉 = α2|E1|〈mjjln|
(a0
r

)3 1

~2
~̂L · ~̂S|nljmj〉

For states with no orbital angular momentum, all components of ~̂L produce zero,

so there is no contribution. Otherwise, the dot product ~̂L · ~̂S can be rewritten
by expanding

Ĵ2 = (~̂L+ ~̂S)2 = L̂2 + Ŝ2 + 2~̂L · ~̂S
to give

~̂L · ~̂S|nljmj〉 = 1
2

(
Ĵ2 − L̂2 − Ŝ2

)
|nljmj〉

= 1
2
~
2
(
j(j + 1)− l(l + 1)− 1

2
(1 + 1

2
)
)
|nljmj〉

That leaves only the expectation value of (a0/r)
3 to be determined, and that

can be found in derivation {D.83}. The net result is

〈mjjln|H1,spin-orbit|nljmj〉 =
α2

4n2
2n
j(j + 1)− l(l + 1)− 1

2
(1 + 1

2
)

l(l + 1
2
)(l + 1)

|En| if l 6= 0

or zero if l = 0.
Finally the Darwin term,

〈mjjln|H1,Darwin|nljmj〉 = α2|E1| πa30〈mjjln|δ3(~r)|nljmj〉

Now a delta function at the origin has the property to pick out the value at
the origin of whatever function it is in an integral with, compare chapter 7.9.1.
Derivation {D.15}, (D.9), implies that the value of the wave functions at the
origin is zero unless l = 0, and then the value is given in (D.10). So the Darwin
contribution becomes

〈mjjln|H1,Darwin|nljmj〉 =
α2

4n2
4n|En| if l = 0

To get the total energy change due to fine structure, the three contributions
must be added together. For l = 0, add the Einstein and Darwin terms. For l 6=
0, add the Einstein and spin-orbit terms; you will need to do the two possibilities
that j = l+ 1

2
and j = l− 1

2
separately. All three produce the same final result,

anyway:

Enljmj ,1 = −
(

1

n(j + 1
2
)
− 3

4

1

n2

)
α2|En| (A.252)
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Since j + 1
2
is at most n, the energy change due to fine structure is always

negative. And it is the biggest fraction of En for j = 1
2
and n = 2, where it is

− 5
16
α2|En|, still no more than a sixth of a percent of a percent change in energy.
In the ground state j can only be one half, (the electron spin), so the ground

state energy does not split into two due to fine structure. You would of course
not expect so, because in empty space, both spin directions are equivalent. The
ground state does show the largest absolute change in energy.

Woof.

A.39.3 Weak and intermediate Zeeman effect

The weak Zeeman effect is the effect of a magnetic field that is sufficiently
weak that it leaves the fine structure energy eigenfunctions almost unchanged.
The Zeeman effect is then a small perturbation on a problem in which the
“unperturbed” (by the Zeeman effect) eigenfunctions |nljmj〉 derived in the
previous subsection are degenerate with respect to l and mj.

The Zeeman Hamiltonian

H1 =
e

2me

Bext
(
L̂z + 2Ŝz

)

commutes with both L̂2 and Ĵz = Ŝz + L̂z, so the eigenfunctions |nljmj〉 are
good. Therefore, the energy perturbations can be found as

e

2me

Bext〈mjjln|L̂z + 2Ŝz|nljmj〉

To evaluate this rigorously would require that the |nljmj〉 state be converted
into the one or two ψnlml states with −l 6 m = mj± 1

2 6 l and ms = ∓1
2
using

the appropriate Clebsch-Gordan coefficients from figure 12.5.
However, the following simplistic derivation is usually given instead, includ-

ing in this book. First get rid of Lz by replacing it by Ĵz−Ŝz. The inner product
with Ĵz can then be evaluated as being mj~, giving the energy change as

e

2me

Bext
[
mj~+ 〈mjjln|Ŝz|nljmj〉

]

For the final inner product, make a semi-classical argument that only the com-

ponent of ~̂S in the direction of ~J gives a contribution. Don’t worry that ~J does
not exist. Just note that the component in the direction of ~J is constrained by

the requirement that ~̂L and ~̂S must add up to ~̂J , but the component normal to
~J can be in any direction and presumably averages out to zero. Dismissing this
component, the component in the direction of ~J is

~̂SJ =
1

J2
( ~̂S · ~̂J) ~̂J
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and the dot product in it can be found from expanding

L̂2 = ~̂L · ~̂L = ( ~̂J − ~̂S).( ~̂J − ~̂S) = J2 − 2 ~̂J · ~̂S + S2

to give

~̂SJ =
J2 − L̂2 + S2

2J2
~̂J

For a given eigenfunction |nljmj〉, J2 = ~
2j(j + 1), L̂2 = ~

2l(l + 1), and S2 =
~
2s(s+ 1) with s = 1

2
.

If the z-component of ~̂SJ is substituted for Ŝz in the expression for the
Hamiltonian perturbation coefficients, the energy changes are[

1 +
j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)

]
e~

2me

Bextmj (A.253)

(Rigorous analysis using figure 12.5, or more generally item 2 in chapter 12.8,
produces the same results.) The factor within the brackets is called the “Landé
g-factor.” It is the factor by which the magnetic moment of the electron in
the atom is larger than for a classical particle with the same charge and total
angular momentum. It generalizes the g-factor of the electron in isolation to
include the effect of orbital angular momentum. Note that it equals 2, the Dirac
g-factor, if there is no orbital momentum, and 1, the classical value, if the orbital
momentum is so large that the half unit of spin can be ignored.

In the intermediate Zeeman effect, the fine structure and Zeeman effects
are comparable in size. The dominant perturbation Hamiltonian is now the
combination of the fine structure and Zeeman ones. Since the Zeeman part
does not commute with Ĵ2, the eigenfunctions |nljmj〉 are no longer good.
Eigenfunctions with the same values of l and mj, but different values of j must
be combined into good combinations. For example, if you look at n = 2, the
eigenfunctions

∣∣213
2
1
2

〉
and

∣∣211
2
1
2

〉
have the same unperturbed energy and good

quantum numbers l and mj. You will have to write a two by two matrix of
Hamiltonian perturbation coefficients for them, as in addendum {A.38.3}, to
find the good combinations and their energy changes. And the same for the∣∣213

2
1
2

〉
and

∣∣211
2

1
2

〉
eigenfunctions. To obtain the matrix coefficients, use the

Clebsch-Gordan coefficients from figure 12.5 to evaluate the effect of the Zeeman
part. The fine structure contributions to the matrices are given by (A.252) when
the j values are equal, and zero otherwise. This can be seen from the fact that
the energy changes must be the fine structure ones when there is no magnetic
field; note that j is a good quantum number for the fine structure part, so its
perturbation coefficients involving different j values are zero.

A.39.4 Lamb shift

A famous experiment by Lamb & Retherford in 1947 showed that the hydrogen
atom state n = 2, l = 0, j = 1

2
, also called the 2S1/2 state, has a somewhat
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different energy than the state n = 2, l = 1, j = 1
2
, also called the 2P1/2

state. That was unexpected, because even allowing for the relativistic fine
structure correction, states with the same principal quantum number n and
same total angular momentum quantum number j should have the same energy.
The difference in orbital angular momentum quantum number l should not affect
the energy.

The cause of the unexpected energy difference is called Lamb shift. To ex-
plain why it occurs would require quantum electrodynamics, and that is well
beyond the scope of this book. Roughly speaking, the effect is due to a vari-
ety of interactions with virtual photons and electron/positron pairs. A good
qualitative discussion on a nontechnical level is given by Feynman [19].

Here it must suffice to list the approximate energy corrections involved. For
states with zero orbital angular momentum, the energy change due to Lamb
shift is

E~n,1,Lamb = −α
3

2n
k(n, 0)En if l = 0 (A.254)

where k(n, 0) is a numerical factor that varies a bit with n from about 12.7 to
13.2. For states with nonzero orbital angular momentum,

E~n,1,Lamb = −α
3

2n

[
k(n, l)± 1

π(j + 1
2
)(l + 1

2
)

]
En if l 6= 0 and j = l ± 1

2

(A.255)
where k(n, l) is less than 0.05 and varies somewhat with n and l.

It follows that the energy change is really small for states with nonzero orbital
angular momentum, which includes the 2P1/2 state. The change is biggest for
the 2S1/2 state, the other state in the Lamb & Retherford experiment. (True,
the correction would be bigger still for the ground state n = 1, but since there
are no states with nonzero angular momentum in the ground state, there is no
splitting of spectral lines involved there.)

Qualitatively, the reason that the Lamb shift is small for states with nonzero
angular momentum has to do with distance from the nucleus. The nontrivial
effects of the cloud of virtual particles around the electron are most pronounced
in the strong electric field very close to the nucleus. In states of nonzero angular
momentum, the wave function is zero at the nucleus, (D.9). So in those states
the electron is unlikely to be found very close to the nucleus. In states of zero
angular momentum, the square magnitude of the wave function is 1/n3πa30 at the
nucleus, reflected in both the much larger Lamb shift as well as its approximate
1/n3 dependence on the principal quantum number n.

A.39.5 Hyperfine splitting

Hyperfine splitting of the hydrogen atom energy levels is due to the fact that the
nucleus acts as a little magnet just like the electron. The single-proton nucleus



A.39. THE RELATIVISTIC HYDROGEN ATOM 1149

and electron have magnetic dipole moments due to their spin equal to

~µp =
gpe

2mp

~̂Sp ~µe = −
gee

2me

~̂Se

in which the g-factor of the proton is about 5.59 and that of the electron 2.
The magnetic moment of the nucleus is much less than the one of the electron,
since the much greater proton mass appears in the denominator. That makes
the energy changes associated with hyperfine splitting really small compared to
other effects such as fine structure.

This discussion will restrict itself to the ground state, which is by far the
most important case. For the ground state, there is no orbital contribution to
the magnetic field of the electron. There is only a “spin-spin coupling” between
the magnetic moments of the electron and proton, The energy involved can be
thought of most simply as the energy −~µe · ~Bp of the electron in the magnetic

field ~Bp of the nucleus. If the nucleus is modelled as an infinitesimally small
electromagnet, its magnetic field is that of an ideal current dipole as given in
table 13.2. The perturbation Hamiltonian then becomes

H1,spin-spin =
gpgee

2

4mempǫ0c2


3( ~̂Sp ·~r)( ~̂Se ·~r)− ( ~̂Sp · ~̂Se)r

2

4πr5
+

2( ~̂Sp · ~̂Se)

3
δ3(~r)




The good states are not immediately self-evident, so the four unperturbed
ground states will just be taken to be the ones which the electron and proton
spins combine into the triplet or singlet states of chapter 5.5.6:

triplet: ψ100|1 1〉 ψ100|1 0〉 ψ100|1 1〉 singlet: ψ100|0 0〉

or ψ100|snetmnet〉 for short, where snet and mnet are the quantum numbers of net
spin and its z-component. The next step is to evaluate the four by four matrix
of Hamiltonian perturbation coefficients

〈mnetsnet|ψ100|H1,spin-spinψ100|snetmnet〉

using these states.
Now the first term in the spin-spin Hamiltonian does not produce a contribu-

tion to the perturbation coefficients. The reason is that the inner product of the
perturbation coefficients written in spherical coordinates involves an integration
over the surfaces of constant r. The ground state eigenfunction ψ100 is constant
on these surfaces. So there will be terms like 3Ŝp,xŜe,yxy in the integration, and
those are zero because x is just as much negative as positive on these spherical
surfaces, (as is y). There will also be terms like 3Ŝp,xŜe,xx

2 − Ŝp,xŜe,xr
2 in the

integration. These will be zero too because by symmetry the averages of x2, y2,
and z2 are equal on the spherical surfaces, each equal to one third the average
of r2.
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So only the second term in the Hamiltonian survives, and the Hamiltonian
perturbation coefficients become

gpgee
2

6mempǫ0c2
〈mnetsnet|ψ100|( ~̂Sp · ~̂Se)δ

3(~r)ψ100|snetmnet〉

The spatial integration in this inner product merely picks out the value
ψ2
100(0) = 1/πa30 at the origin, as delta functions do. That leaves the sum over

the spin states. According to addendum {A.10},

triplet: ~̂Sp · ~̂Se |1mnet〉 = 1
4
~
2|1mnet〉 singlet: ~̂Sp · ~̂Se |0 0〉 = −3

4
~
2|0 0〉

Since the triplet and singlet spin states are orthonormal, only the Hamiltonian
perturbation coefficients for which snet = snet and mnet = mnet survive, and
these then give the leading order changes in the energy.

Plugging it all in and rewriting in terms of the Bohr energy and fine structure
constant, the energy changes are:

triplet: E1,spin-spin = 1
3
gpge

me

mp

α2|E1| singlet: E1,spin-spin = −gpge
me

mp

α2|E1|
(A.256)

The energy of the triplet states is raised and that of the singlet state is lowered.
Therefore, in the true ground state, the electron and proton spins combine into
the singlet state. If they somehow get kicked into a triplet state, they will
eventually transition back to the ground state, say after 10 million years or so,
and release a photon. Since the difference between the two energies is so tiny
on account of the very small values of both α2 and me/mp, this will be a very
low energy photon. Its wave length is as long as 0.21 m, producing the 21 cm
hydrogen line.

A.40 Deuteron wave function

This addendum examines the form of the wave function of the deuteron. It
assumes that the deuteron can be described as a two particle system; a proton
and a neutron. In reality, both the proton and the neutron consist of three
quarks. So the deuteron is really a six particle system. That will be ignored
here.

Then the deuteron wave function is a function of the positions and spin
angular momenta of the proton and neutron. That however can be simplified
considerably. First of all, it helps if the center of gravity of the deuteron is taken
as origin of the coordinate system. In that coordinate system, the individual
positions of proton and neutron are no longer important. The only quantity
that is important is the position vector going from neutron to proton, {A.5}:

~r ≡ ~rp −~rn
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That represents the relative position of the proton relative to the neutron.

Consider now the spin angular momenta of proton and neutron. The two
have spin angular momenta of the same magnitude. The corresponding quantum
number, called the “spin” for short, equals sp = sn = 1

2
. However, the proton

and neutron can still have different spin angular momentum along whatever is
chosen to be the z-axis. In particular, each can have a spin Sz along the z-axis
that is either 1

2
~ or −1

2
~.

All together it means that the deuteron wave function depends nontrivially
on both the nucleon spacing and the spin components in the z-direction:

ψ = ψ (~r, Sz,p, Sz,n)

The square magnitude of this wave function gives the probability density to find
the nucleons at a given spacing ~r and with given spin values along the z-axis.

It is solidly established by experiments that the wave function of the deuteron
has net nuclear spin jN = 1 and even parity. The question to be examined now is
what that means for the orbital angular momentum and the spins of the proton
and neutron. To answer that, the wave function needs to be written in terms
of states that have definite combined orbital angular momentum and definite
combined spin.

The conditions for a state to have definite orbital angular momentum were
discussed in chapter 4.2. The angular dependence of the state must be given by
a spherical harmonic Y m

l (θ, φ). Here θ and φ are the angles that the vector ~r
makes with the axes of the chosen spherical coordinate system. The azimuthal
quantum number l describes the magnitude of the orbital angular momentum.
In particular, the magnitude of the orbital momentum is

√
l(l + 1)~. The mag-

netic quantum number m describes the component of the orbital angular mo-
mentum along the chosen z-axis. In particular, that component equals m~.
Both l > 0 and |m| 6 l must be integers.

As far as the combined spin angular momentum is concerned, the possibilities
were discussed in chapter 5.5.6 and in more detail in chapter 12. First, the
proton and neutron spins can cancel each other perfectly, producing a state
of zero net spin. This state is called the “singlet” state. Zero net spin has a
corresponding quantum number s = 0. And since the component of the angular
momentum along any chosen z-axis can only be zero, so is the spin magnetic
quantum number ms = 0.

The second possibility is that the proton and neutron align their spins in
parallel, crudely speaking. More precisely, the combined spin has a magnitude
given by quantum number s = 1

2
+ 1

2
= 1. The combined spin angular momentum

along the chosen z direction is ms~ where ms can be −1, 0, or 1.
The wave function of the deuteron can be written as a combination of the

above states of orbital and spin angular momentum. It then takes the generic
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form:
ψ =

∑

nlmsms

cnlmsms
Rn(|~r|)Y m

l (θ, φ)|sms〉 (A.257)

Here the cnlmsms
are constants. The functions Rn are not of particular interest

here; any complete set of orthonormal radial functions will do. Note that the
individual terms in the sum above are not supposed to be energy eigenfunctions.
They are merely chosen states of definite orbital and spin angular momentum.
The ket |sms〉 is a way of indicating the combined spin state of the two nucleons.
It is defined in terms of the separate spins of the proton and neutron in chapter
5.5.6 (5.26).

The above expression for the wave function is quite generally valid for a
system of two fermions. But it can be made much more specific based on the
mentioned known properties of the deuteron.

The simplest is the fact that the parity of the deuteron is even. Spherical
harmonics have odd parity if l is odd, and even if l is even, {D.14}. So there
cannot be any odd values of l in the sum above. In other words, the constants
cnlmsms

must be zero for odd l.
Physically, that means that the spatial wave function is symmetric with

respect to replacing ~r by −~r. It may be noted that this spatial symmetry
and the corresponding even parity are exactly what is expected theoretically.
The reasons were explored earlier in {A.8} and {A.9}. The wave function for
any given spin state should not change sign, and odd parity cannot meet that
requirement. However, it should be noted that the arguments in {A.8} and
{A.9} are not valid if the potential includes terms of second or higher order in
the momentum. Some more advanced potentials that have been written down
include such terms.

The spatial symmetry also means that the wave function is symmetric with
respect to swapping the two nucleons. That is because ~r is the vector from
neutron to proton, so swapping the two inverts the sign of ~r. This does assume
that the small difference in mass between the neutron and proton is ignored.
Otherwise the swap would change the center of gravity. Recall that the (part
of the) wave function considered here is relative to the center of gravity. In any
case, the hypothetical wave functions for a bound state of two protons or one
of two neutrons would be exactly symmetric under exchange of the positions of
the two identical particles.

The condition that the nuclear spin jN = 1 is a bit more complex. First a brief
review is needed into how angular momenta combine in quantum mechanics.
(For a more complete description, see chapter 12.) A state with definite quantum
numbers l and s has in general quantum uncertainty in the net nuclear spin jN.
But the values of jN cannot be completely arbitrary. The only values that can
have nonzero probability are in the range

|l − s| 6 jN 6 l + s
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The key is now that unless a state l, s has a nonzero probability for jN = 1,
it cannot appear in the deuteron wave function at all. To verify that, take an
inner product of the state with the representation (A.257) of the deuteron wave
function. In the left hand side, you get zero because the deuteron wave function
has jN = 1 and states of different jN are orthogonal. In the right hand side,
all terms except one drop out because the states in the sum are orthonormal.
The one remaining term is the coefficient of the considered state. Then this
coefficient must be zero since the left hand side is.

Using the above criterion, consider which states cannot appear in the deuter-
on wave function. First of all, states with s = 0 are according to the inequalities
above states of nuclear spin jN = l. That cannot be 1, since l had to be even
because of parity. So states with s = 0 cannot appear in the deuteron wave
function. It follows that the deuteron wave function has a combined nucleon
spin s = 1 without quantum uncertainty.

Secondly, states with l > 4 have jN at least equal to 3 according to the above
inequalities. So these states cannot appear. That leaves only states with l = 0
or 2 and s = 1 as possibilities.

Now states with l = 0 and s = 1 are states with jN = 1. Any such state can
appear in the deuteron wave function. To what amount remains unknown. That
would only be answerable if an exact solution to the proton-neutron deuteron
would be available. But surely, based on arguments like those in {A.8} and
{A.9}, it is to be expected that there is a significant l = 0 component.

States with l = 2 and s = 1 are also a possibility. But they cannot appear
in arbitrary combinations. Any such state has multiple possible values for jN in
the range from 1 to 3. That uncertainty must be eliminated before the states are
acceptable for the deuteron wave function. It turns out that pure jN = 1 states
can be obtained by taking specific combinations of states. In particular, groups
of states that vary only in the quantum numbers m and ms can be combined
into states with jN = 1. (For the curious, the specific combinations needed can
be read off in figure 12.6).

The bottom line is that the deuteron wave function can have uncertainty in
the orbital angular momentum. In particular, both orbital angular momentum
numbers l = 0 and l = 2 can and do have a nonzero probability.

A.41 Deuteron model

A very simple model can be used to give some context to the data of the
deuteron. This addendum describes that model. Then it discusses the vari-
ous major problems of the model. Some possible fixes for these problems are
indicated.

In all cases it is assumed that the deuteron is modelled as a two-particle
system, a proton and a neutron. Furthermore, the proton and neutron are
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assumed to have the same properties in the deuteron as they have in free space.
These assumptions are not really true. For one, the proton and neutron are not
elementary particles but combinations of quarks. However, ignoring that is a
reasonable starting point in trying to understand the deuteron.

A.41.1 The model

The deuteron contains two nucleons, a proton and a neutron. The simple model
assumes that the potential energy of the deuteron only depends on the distance
r between the nucleons. More specifically, it assumes that the potential energy
has some constant value −V0 up to some spacing r = d0. And it assumes that
the potential is zero for spacings larger than d0. Figure A.24 shows the idea.

This model is analytically solvable. First, the deuteron involves the motion
of two particles, the proton and the neutron. However, the problem may be
simplified to that of an imaginary single “reduced mass” encircling the center
of gravity of the deuteron, addendum {A.5}.

The reduced mass in the simplified problem is half the mass of the proton
or neutron. (That ignores the tiny difference in mass between the proton and
neutron.) The potential for the reduced mass is −V0 if the reduced mass is
within a distance d0 of the center of gravity and zero beyond that. A potential
of this type is commonly called a [spherical] [square] well potential. Figure A.24
shows the potential in green.

r fm5

V

0 MeV

50 MeV

V
−V0

d0

r2|ψ|2

Figure A.24: Crude deuteron model. The potential is in green. The relative
probability of finding the nucleons at a given spacing is in black.

The solution for the reduced mass problem may be worked out following
addendum {A.6}. Note that the model involves two unknown parameters, the
potential V0 and the distance d0. Two pieces of experimental information need
to be used to fix values for these parameters.

First of all, the binding energy should match the experimental 2.2247 MeV.
Also, the root-mean square radial position of the nucleons away from the center
of the nucleus should be about 1.955 fm, [J.P. McTavish 1982 J. Phys. G 8
911; J.L. Friar et al 1984 Phys. Rev. C 30 1084]. (Based on electron scattering
experiments, physicists are confident that the root-mean-square radial position
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of the charge from the center of the deuteron is 2.14 fm. However, this “charge
radius” is larger than the root mean square radial position of the nucleons.
The main reason is that the proton has a finite size. For example, even in
the hypothetical case that the distance of the two nucleons from the center of
gravity would be zero, there would still be a positive charge radius; the one
of the proton. The proton by itself has a significant charge radius, 0.88 fm.)
The distance r of the reduced mass from the origin should match the distance
between the nucleons; in other words it should be twice the 1.955 fm radius.

d0 V0,min V0 〈V 〉 〈T 〉 E rrms/2 〈T 〉min AS

fm MeV MeV MeV MeV MeV fm MeV 1/
√
fm

1.2 71.1 88.5 −21.0 18.8 −2.22 1.77 7.6 0.79
2.1 23.2 33.7 −12.5 10.3 −2.22 1.95 6.2 0.88
3.0 11.4 19.2 −9.2 7.0 −2.22 2.15 5.1 0.98
1.8 31.6 43.0 −13.7 11.7 −2.02 1.96 6.1 0.82
2.1 23.2 33.7 −12.5 10.3 −2.22 1.95 6.2 0.88
2.4 17.8 27.7 −11.7 9.3 −2.42 1.95 6.1 0.94

Table A.4: Deuteron model data. The top half of the table allows some deviation
from the experimental nucleon root-mean-square radial position. The bottom
half allows some deviation from the experimental energy.

Table A.4 shows that these two experimental constraints are met when the
distance d0 is 2.1 fm and the potential V0 about 35 MeV. The fact that the
distance d0 matches the charge radius is just a coincidence.

There is some justification for this model. For one, it is well established that
the nuclear force very quickly becomes negligible beyond some typical spac-
ing between the nucleons. The above potential reflects that. Based on better
models, (in particular the so-called OPEP potential), the typical range of the
nuclear force is roughly 1.5 fm. The potential cut-off d0 in the model is at
2.1 fm. Obviously that is in the ballpark, though it seems a bit big. (For a
full-potential/zero-potential cut-off.)

The fact that both the model and exact potentials vanish at large nucleon
spacings also reflects in the wave function. It means that the rate of decay of
the wave function at large nucleon spacings is correctly represented. The rate
of decay depends only on the binding energy E.

To be more precise, the model wave function is, {A.6},

ψ =
AS√
4π

e−
√

2mred|E|r/~

r
for r > d0
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where AS is some constant. Unlike the model, the experimental wave function
has some angular variation. However, if this variation is averaged away, the
experimental wave function decays just like the model for distances much larger
than 1.5 fm. In addition, the model matches the experimental value for the
constant AS, 0.88, table A.4.

To be fair, this good agreement does not actually support the details of
the potential as much as it may seem. As the difference between −V0 and
the expectation potential 〈V 〉 in table A.4 shows, the nucleons are more likely
to be found beyond the spacing d0 than below it. And the root mean square
separation of the nucleons depends mostly on the wave function at large values
of r. As a consequence, if the model gets AS right, then the root mean square
separation of the nucleons cannot be much wrong either. That is true regardless
of what exactly the potential for r < d0 is. Still, the model does get the right
value.

Another point in favor of the model is that the kinetic energy cannot be
all wrong. In particular, the Heisenberg uncertainty relationship implies that
the kinetic energy of the deuteron must be at least 6.2 MeV. The second-last
column in the table shows the minimum kinetic energy that is possible for the
root-mean-square radial nucleon position in the previous column. It follows that
unavoidably the kinetic energy is significantly larger than the binding energy.
That reflects the fact that the deuteron is only weakly bound. (For comparison,
for the proton-electron hydrogen atom the kinetic energy and binding energy
are equal.)

The model also supports the fact that there is only a single bound state
for the deuteron. The second column in the table gives the smallest value of
V0 for which there is a bound state at all. Clearly, the estimated values of V0
are comfortably above this minimum. But for a second bound state to exist,
the value of V0 needs to exceed the value in the second column by a factor 4.
Obviously, the estimated values get nowhere close to that.

A final redeeming feature of the model is that the deduced potential V0 is
reasonable. In particular, 35 MeV is a typical potential for a nucleon inside a
heavy nucleus. It is used as a ballpark in the computation of so-called alpha
decay of nuclei, [31, p. 83, 252].

A.41.2 The repulsive core

While the model of the deuteron described in the previous subsection has sev-
eral redeeming features, it also has some major problems. The problem to be
addressed in this subsection is that the nuclear force becomes repulsive when
the nucleons try to get too close together. The model does not reflect such a
“repulsive core” at all.

A simple fix is to declare nucleon spacings below a certain value dmin to be
off-limits. Typically, half a femtometer is used for dmin. The potential is taken
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to be infinite, rather than −V0, for spacings below dmin. That prevents the
nucleons from getting closer than half a femtometer together.

d0 V0,min V0 〈V 〉 〈T 〉 E rrms/2 〈T 〉min AS

fm MeV MeV MeV MeV MeV fm MeV 1/
√
fm

0.7 2559.9 2657.3 −119.7 117.5 −2.22 1.75 7.6 0.78
1.7 71.1 88.5 −21.0 18.8 −2.22 1.96 6.1 0.88
2.6 23.2 33.8 −12.5 10.3 −2.22 2.16 5.0 0.99

Table A.5: Deuteron model data with a repulsive core of 0.5 fm.

The modifications needed to the mathematics to include this repulsive core
are minor. Table A.5 summarizes the results. The value of V0 for a second
bound state would need to be about 160 MeV.

Note that the value of the potential cut-off distance d0 has been reduced from
2.1 fm to 1.7 fm. As discussed in the previous subsection, that can be taken to
be an improvement. Also, the expectation potential and kinetic energies seem
much better. A much more advanced potential, the so-called Argonne v18, gives
22 and 19.8 MeV for these expectation values.
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Figure A.25: Crude deuteron model with a 0.5 fm repulsive core. Thin grey
lines are the model without the repulsive core. Thin red lines are more or less
comparable results from the Argonne v18 potential.

Figure A.25 shows the potential and probability density. The previous re-
sults without repulsive core are shown as thin grey lines for easier comparison.
Note that there are very distinctive differences between the wave functions with
and without repulsive core. But astonishingly, the values for the root mean
square nucleon separation rrms are virtually identical. The value of rrms is not
at all a good quantity to gauge the accuracy of the model.
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Figure A.25 also shows corresponding results according to the much more
sophisticated Argonne v18 model, [51]. The top red line shows the probability
density for finding the nucleons at that spacing. The lower curve shows an
effective spherical potential. A note of caution is needed here; the true deuteron
potential has very large deviations from spherical symmetry. So the comparison
of potentials is fishy. What is really plotted in figure A.25 is the effective
potential that integrated against the probability density produces the correct
expectation potential energy.

It is interesting to see from figure A.25 how small the 2.2 MeV binding energy
of the deuteron really is, as compared to the minimum value of the potential
energy.

A.41.3 Spin dependence

An big problem with the model so far is that nucleon-nucleon interactions de-
pend strongly on the nucleon spins. Such an effect also exists for the proton-
electron hydrogen atom, {A.39.5}. However, there the effect is extremely small.
For the deuteron, the effect of spin is dramatic.

The proton and neutron each have spin 1/2. They must align these spins in
parallel into a so-called triplet state of combined spin 1, chapter 5.5.6. If instead
they align their spins in opposite directions in a singlet state of zero net spin,
the deuteron will not bind. The model as given so far does not describe this.

One simple way to fix this up is to write two different potentials. One
potential Vt(r) is taken to apply if the nucleons are in the triplet state. It can
be modeled by the piecewise constant potential as discussed so far. A second
potential Vs(r) is taken to apply if the nucleons are in the singlet state. A
suitable form can be deduced from experiments in which nucleons are scattered
off each other. This potential should not allow a bound state.

That leaves only the problem of how to write the complete potential. The
complete potential should simplify to Vt for the triplet state and to Vs for the
singlet state. A form that does that is

V = Vt(r)

[
3

4
+

1

~2
~̂Sp · ~̂Sn

]
+ Vs(r)

[
1

4
− 1

~2
~̂Sp · ~̂Sn

]
(A.258)

The reason that this works is because the dot product ~̂Sp · ~̂Sn between the
proton and neutron spins is 1

4
~
2 in the triplet state and −3

4
~
2 in the singlet

state, {A.10}.

A.41.4 Noncentral force

So far it has been assumed that the potential in a given spin state only depends
on the distance r between the nucleons. If true, that would imply that the orbital
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angular momentum of the motion of the nucleons is conserved. In terms of
classical physics, the forces between the particles would be along the connecting
line between the particles. That does not produce a moment that can change
orbital angular momentum.

In terms of quantum mechanics, it gets phrased a little differently. A poten-
tial that only depends on the distance between the particles commutes with the
orbital angular momentum operators. Then so does the Hamiltonian. And that
means that the energy states can also be taken to be states of definite orbital
angular momentum.

In particular, in the ground state, the proton and neutron should then be in
a state of zero orbital angular momentum. Such a state is spherically symmetric.
Therefore the proton charge distribution should be spherically symmetric too.
All that would be just like for the electron in the hydrogen atom. See chapters
4.2, 4.3, 4.5, and 7.3, addendum {A.39}, and derivations {A.8} and {A.9} for
more details on these issues.

However, the fact is that the charge distribution of the deuteron is not
quite spherically symmetric. Therefore, the potential cannot just depend on the
distance r between proton and neutron. It must also depend on the direction of
the vector ~r from neutron to proton. In particular, it must depend on how this
vector aligns with the nucleon spins. There are no other directions to compare
to in the deuteron besides the spins.

The orientation of the chosen coordinate system should not make a difference
for the potential energy. From a classical point of view, there are three nuclear
angles that are nontrivial. The first two are the angles that the vector ~r from
neutron to proton makes with the neutron and proton spins. The third is the
angle between the two spins. These three angles, plus the distance between the
neutron and proton, fully determine the geometry of the nucleus.

To check that, imagine a coordinate system with origin at the neutron. Take
the x-axis along the connecting line to the proton. Rotate the coordinate system
around the x-axis until the neutron spin is in the xy-plane. What determines
the geometry in this coordinate system is the angle in the xy-plane between the
connecting line and the neutron spin. And the two angles that fix the direction
of the proton spin; the one with the connecting line and the one with the neutron
spin.

In quantum mechanics, angles involving angular momentum vectors are not
well defined. That is due to angular momentum uncertainty, chapter 4.2. How-
ever, dot products between vectors can be used to substitute for angles between
vectors, for given lengths of the vectors. Because the spin vectors have a given
length, there are four parameters that fix the geometry:

r ~̂Sn · ~̂Sp
~̂Sn ·~r ~̂Sp ·~r

The potential energy should depend on these four parameters. Note that the
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effect of the first two parameters was already modelled in the previous subsec-
tions.

In order that orbital angular momentum is not conserved, the last two pa-
rameters should be involved. But not separately, because they change sign
under a parity transformation or time reversal. It is known that to very good
approximation, nuclei respect the parity and time-reversal symmetries. Terms
quadratic in the last two parameters are needed. And in particular, the product
of the last two parameters is needed. If you just square either parameter, you
get a trivial multiple of r2. That can be seen from writing the spins out in terms
of the so-called Pauli matrices, as defined in chapter 12.

The bottom line is that the needed additional contribution to the potential
is due to the product of the final two terms. This contribution is called the
“tensor potential” for reasons that are not important. By convention, the tensor
potential is written in the form

S12VT(r) with S12 ≡
4

~2

(
3

r2
( ~̂Sn ·~r)( ~̂Sp ·~r)− ~̂Sn · ~̂Sp

)
(A.259)

The choice of the symbol S12 is another one of those confusion-prone physics
conventions. One source uses the same symbol only a few pages away for a
matrix element. The division by r2 is to make S12 independent of the distance
between the nucleons. This distance is separately accounted for in the factor VT.
Also the subtraction of the dot product between the spins makes the average
of S12 over all directions of ~r zero. That means that ∆V only describes the
angular variation of the potential. The angular average must be described by
other potentials such as the ones written down earlier.

It turns out that S12 commutes with the operator of the square net nucleon
spin but not with the operator of orbital angular momentum. That is consistent
with the fact that the deuteron has definite net nucleon spin s = 1 but uncertain
orbital angular momentum. Its quantum number of orbital angular momentum
can be l = 0 or 2.

It should also be noted that S12 produces zero when applied on the singlet
nucleon spin state. So the term has no effect on singlet states. These properties
of S12 may be verified by crunching it out using the properties of the Pauli spin
matrices, chapter 12.10, including that σ2

i = I and σiσı = −σıσi = iσı with i, ı, ı
successive numbers in the cyclic sequence . . . 1231231 . . ..

Figure A.26 illustrates the effects of the uncertainty in orbital angular mo-
mentum on the deuteron. The data are taken from the Argonne v18 potential,
[51].

The black curve is the probability density for finding the nucleons at that
spacing r. Most of this probability density is due to the spherically symmetric,
l = 0, part of the wave function. This contribution is shown as the grey curve
labelled 0. The contribution due to the l = 2 state is the grey curve labelled 2.
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Figure A.26: Effects of uncertainty in orbital angular momentum.

The total probability of the l = 2 state is only 5.8% according to the Argonne
v18 potential.

That might suggest that the effect of the l = 2 state on the deuteron bind-
ing could be ignored. But that is untrue. If the deuteron wave function was
completely spherically symmetric, the potential would given by the thin green
curve labeled 0. The binding energy from this potential is significantly less than
that of the hypothetical dineutron, shown in blue. And the dineutron is not
even bound. If the deuteron was in a pure l = 2 state, the binding would be
less still according to the thin green line labelled 2. However, the deuteron is in
a combination of the l = 0 and l = 2 states. The energy of the interaction of
these two states lowers the potential energy greatly. It produces the combined
potential energy curve shown as the thick green line.

In terms of chapter 5.3, the lowering of the potential energy is a twilight
effect. Even for an l = 2 state probability of only 5.8%, a twilight effect can be
quite large. That is because it is proportional to the square root of the 5.8%
probability, which is a quarter. In addition, the factor VT in the tensor potential
turns out to be quite large.

A.41.5 Spin-orbit interaction

So far, the assumption has been that the potential of the deuteron only depends
on its geometry. But scattering data suggests that the potential also depends
on the motion of the nucleons. A similar effect, the “spin-orbit coupling” occurs
for the proton-electron hydrogen atom, addendum {A.39}. However, there the
effect is very small. Spin-orbit interaction is proportional to the dot product of
net orbital angular momentum and net nucleon spin. In particular, it produces
a term in the potential of the form

Vso(r)~̂L · ~̂S
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This term does not contribute to the uncertainty in orbital angular momentum.
But it can explain how nucleon beams can get polarized with respect to spin in
scattering experiments.

A.42 Nuclear forces

The purpose of this addendum is to examine the nature of nuclear forces some-
what closer. The forces will be modeled using the “meson exchange” idea. This
idea illustrates one primary way that physicists cope with the fact that nuclei
are too complex to describe exactly.

A.42.1 Basic Yukawa potential

As pointed out in chapter 7.5.2, the fundamental forces of nature between el-
ementary particles are due to the exchange of bosons between these particles.
In those terms, nuclei consist of quarks. The exchange of gluons between these
quarks produces the so-called color force. It is that force that holds nuclei to-
gether. Unfortunately, describing that mathematically is not a practical propo-
sition. Quantum chromedynamics is prohibitively difficult.

But you will never find quarks or gluons in isolation. Quarks and their gluons
are always confined inside “colorless” combinations of two or three quarks. (To
be painstakingly honest, there might be more exotic colorless combinations of
quarks and gluons than that. But their energy should be too high to worry
about here.) What is observed physically at the time of writing, 2012, are
groups of three quarks, (baryons), three antiquarks, (antibaryons), and a quark
and an antiquark (mesons). An easier description of nuclear forces can be based
on these groups of quarks.

In this picture, nuclei can be taken to consist of nucleons. A nucleon consists
of a group of three quarks, so it is a baryon. There are two types of nucleons:
protons and neutrons. A proton contains two “up” quarks, at electric charge 2

3
e

each, and one “down” quark, at −1
3
e. That makes the net charge of a proton

2
3
e+ 2

3
e− 1

3
e equal to e. A neutron has one up quark and two down ones, making

its net charge 2
3
e− 1

3
e− 1

3
e equal to zero.

For both protons and neutrons, the group of three quarks is in its ground
state, much like a helium atom is normally in its ground state. Like single
quarks, nucleons are fermions with spin equal to 1/2. (Roughly speaking, two
of the three quarks in nucleons align their spins in opposite directions, causing
them to cancel each other.) Nucleons have positive intrinsic parity. That means
that their mere presence does not produce a change in sign in the wave function
when the coordinate system is inverted, chapter 7.3. (Actually, there is some
ambiguity in the assignment of intrinsic parity to particles. But a fermion and
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the corresponding antifermion must have opposite parity. Taking the parity of
fermions positive makes that of the corresponding antifermions negative.)

Protons and neutrons combine together into nuclei. However, the protons
in nuclei repel each other because of their electric charges. So there must be
some compensating force that keeps the nucleons together anyway. This force
is what is called the “nuclear force.” The question in this addendum is how this
nuclear force can be described. Its physical cause is still the force due to the
exchange of gluons between quarks. But its mathematical description is going
to be different. The reason is that by definition the nuclear force is a net force
on nucleons, i.e. on groups of quarks. And it is assumed to depend on the
average positions, and possibly momenta, of these groups of quarks.

Note that there is some approximation involved here. Exactly speaking,
the nuclear forces should depend on the positions of the individual quarks in
the nucleons, not just on their average position. That is a concern when two
nucleons get very close together. For one, then the distinction between the two
separate groups of quarks must blur. Nucleons do repel one another strongly
at very close distances, much like atoms do due to Pauli repulsion, chapter
5.10. But still their quantum uncertainty in position creates a probability for
them to be very close together. Fortunately, typical energy levels in normal
nuclear physics are low enough that this is not believed to be a dominating
effect. Indeed, the models discussed here are known to work very well at larger
nucleon spacings. For smaller nucleon spacing however, they become much more
complex, and their accuracy much more uncertain. And that happens well
before the nucleons start intruding significantly on each others space. Little in
life is ideal, isn’t it?

In a particle exchange explanation of the nuclear force, roughly speaking
nucleons have to “pop up” particles that other nucleons then absorb and vice-
versa. The first question is what these particles would be. As already mentioned,
only colorless combinations of quarks and their gluons are observed in isolation.
Therefore only such colorless combinations can be expected to be able to readily
bridge the gap between nucleons that are relatively far apart. The lowest energy
of these colorless combinations are the easiest to pop up. And that are the pions;
a pion is a meson consisting of a quark and antiquark pair in its ground state.

There are three types of pions. The π+ pion consists of an up quark plus an
antidown quark. Antiparticles have the opposite charge from the corresponding
particles, so the antidown quark has charge 1

3
e. That makes the net charge of

the π+ pion 2
3
e + 1

3
e equal to e, the same as that of the proton. The π− pion

consists of an antiup quark plus a down quark, producing a net charge −2
3
e− 1

3
e

equal to −e. That is as it should be since self-evidently the π− is the antiparticle
of the π+. The π0 pion is a quantum superposition of an up-antiup pair and a
down-antidown pair and is electrically neutral.

Pions are bosons of zero spin and negative intrinsic parity. The negative
parity is due to the antiquark, and zero spin is due to the fact that in pions the
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quark and antiquark align their spins in opposite directions in a singlet state,
chapter 5.5.6.

These pions are the most important particles that protons and neutrons
exchange. The first question is then of course where they come from. How is
it possible that pions just appear out of nothing? Well, it is possible due to a
mixture of special relativity and the uncertainty inherent in quantum mechanics.

The creation of particles out of energy is allowed by special relativity. As
discussed in chapter 1.1.2, special relativity gives the energy E of a particle as:

E =

√
~p 2c2 + (mc2)2

Here c is the speed of light, ~p the momentum of the particle, and m its mass
(at rest). According to this expression, a particle at rest represents an amount
of energy equal to mc2. This is the rest mass energy. The charged π+ and π−

pions have a rest mass energy of about 140 MeV, and the neutral π0 135 MeV.
So to create an actual pion requires at least 135 MeV of energy.

Quantum mechanics replaces the momentum ~p in the energy above by the
operator ~∇/i in order to find the Hamiltonian. Then it applies that Hamilto-
nian to a pion wave function ϕπ. But the square root in the above expression
is a problem. Fortunately, for spinless bosons like pions an acceptable solution
is easy: just square the energy. Or rather, apply the Hamiltonian twice. That
produces the relativistic so-called Klein-Gordon eigenvalue problem

−~2c2∇2ϕπ +
(
mπc

2
)2
ϕπ = E2ϕπ (A.260)

Now consider first a single nucleon located at the origin. Supposedly this
nucleon can pop up a pion. But where would the nucleon get the 135 MeV
or more of energy? Surely, if there was a probability of actually finding a 135
MeV pion well away from the nucleon, it would violate energy conservation.
But remarkably, despite the positive pion rest mass energy, the Klein-Gordon
equation has a simple solution where the total pion energy E appears to be
zero:

ϕπ = C
e−r/R

r
R ≡ ~c

mπc2
≈ 1.4 fm

Here r is the distance from the nucleon and C an arbitrary constant. In effect,
this solution has a big negative kinetic energy. You might say that a zero-energy
pion “tunnels out” of the nucleon, chapter 7.12.2.

To check the above solution, just plug it in the Klein-Gordon equation
(A.260) with E = 0, using the expression (N.5) for the Laplacian ∇2 found
in the notations. But to be true, this substitution is somewhat misleading. A
more careful analysis shows that the left hand side in the Klein-Gordon equation
does have a nonzero spike at r = 0, {D.2.2}. But there the pion will experience
an interaction energy with the nucleon.
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Now assume that the nucleon does indeed manage to create a pion field
around itself. A field that acts as a potential ϕ that can produce forces on
other nucleons. That would be much like a charged particle creates an elec-
trostatic potential that can produce forces on other charged particles. Then it
seems a plausible guess that the pion potential ϕ will vary with position just
like the zero-energy wave function ϕπ above. Look at electromagnetics. The
photon of electromagnetics has zero rest mass. And for zero rest mass, the
zero-energy wave function above becomes the correct C/r Coulomb potential of
electromagnetics.

Actually, despite the fact that it works for electromagnetics, the zero-energy
wave function above does not quite give the right form for a pion potential.
But it does give the general idea. The correct potential is discussed in the next
subsections. This subsection will stick with the form above as qualitatively OK.

Now consider a second nucleon. This nucleon will of course also create a pion
potential. That is just like if it was all by itself. But in addition, it will interact
with the pion potential created by the first nucleon. So there will be an energy
of interaction between the nucleons. Taking another cue from electromagnetics,
this energy should presumably be proportional to the potential that the first
nucleon creates at the position of the second nucleon.

That idea then gives the interaction energy between two nucleons as

VYukawa = −CY
e−r/R

r
R ≡ ~c

mπc2
≈ 1.4 fm (A.261)

Here r is the distance between the two nucleons, and CY is some positive con-
stant that must be determined experimentally. The above interaction energy
is called the “Yukawa potential” after the Japanese physicist who first derived
it. It is really a potential energy, rather than a potential. (At least in the ter-
minology of this book for fields. In physics, pretty much everything is called a
potential.)

The Yukawa potential is attractive. This is in contrast to the Coulomb po-
tential, which is repulsive between like charges. The best physical explanation
for the difference may be the analysis in {A.22}, in particular {A.22.5}. (There
are many other “explanations” that derive the difference using an electromag-
netic Hamiltonian or Lagrangian that already has the difference build in. But
a derivation is not an explanation.)

Note the exponential in the Yukawa potential. It will make the potential
negligibly small as soon as the distance r between the nucleons is significantly
greater than R. With ~c about 197 MeV fm and the average pion rest mass
energy about 138 MeV, R is about 1.4 fm (femtometer). So unless the nucleons
are within a distance not much greater than 1.4 fm from each other, they do
not experience a nuclear force from each other. Yukawa had derived the typical
range of the nuclear force.
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Actually, at the time that Yukawa did his work, the pion was unknown.
But the range of the nuclear force was fairly well established. So Yukawa really
predicted the existence, as well as the mass of the pion, a then unknown particle!
After a long and frustrating search, this particle was eventually discovered in
cosmic rays.

The Yukawa potential also explained why heavy nuclei are unstable. Sup-
pose that you keep stuffing nucleons, and in particular protons, into a nucleus.
Because of the exponential in the Yukawa potential, the nuclear force is very
short range. It is largely gone beyond distances of a couple of fm. So a proton
gets pulled into the nucleus only by the nucleons in its immediate vicinity. But
the Coulomb repulsion between protons does not have the exponential decay.
So the same proton gets pushed out of the nucleus by protons from all over the
nucleus. If the nucleus is big enough, the pushers simply have to win because
of their much larger numbers.

Putting a lot of neutrons in the nucleus can help, because they produce
nucleon attraction and no Coulomb repulsion. But neutrons by themselves are
unstable. Put too many neutrons in a nucleus, and they will turn into protons
by beta decay. Obviously, that defeats the purpose. As a result, beyond a
certain size, the nucleus is going to fall apart whatever you do.

You can see why Yukawa would end up with the Nobel prize in physics.

A.42.2 OPEP potential

The Yukawa potential energy (A.261) described in the previous section is not
quite right yet. It does not give the true nuclear force between two nucleons
produced by pion exchange.

In a more careful analysis, the potential energy depends critically on the
properties of the exchanged particle. See the next subsection for an explanation
of that. For a pion, the relevant properties are that it has zero spin and negative
parity. Taking that into account produces the so-called “one-pion exchange
potential” energy or “OPEP” for short:

VOPEP ∼
g2π
12

(
mπ

mp

)2

mπc
2 ~τ1 · ~τ2

[
~σ1 · ~σ2 + S12VT

]e−r/R
r/R

(A.262)

S12 ≡
3

r2
(~σ1 ·~r)(~σ2 ·~r)− ~σ1 · ~σ2 VT ≡ 1 + 3

R

r
+ 3

R2

r2

Here r is again the distance between nucleons 1 and 2, equal to the length of
the vector ~r connecting the two nucleons, R is again the typical range of the
nuclear force, mπ again the pion mass, while mp is the nucleon mass:

r ≡ |~r| ≡ |~r2 −~r1| R ≡ ~c

mπc2
≈ 1.4 fm mπc

2 ≈ 138 MeV mpc
2 ≈ 938 MeV
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Also g2π ≈ 15 is an empirical constant, [36, p. 135], [5, p. 85]. Further ~σ1 and ~σ2

are the nucleon spins ~̂S1 and ~̂S2, nondimensionalized by dividing by 1
2
~.

Finally the dot product ~τ1 ·~τ2 involves the so-called “isospin” of the nucleons.
Isospin will be discussed in chapter 14.18. There it will be explained that it has
nothing to do with spin. Instead isospin is related to nucleon type. In particular,
if both nucleons involved are protons, or if both are neutrons, then ~τ1 · ~τ2 = 1.

If one nucleon is a proton and the other a neutron, like in the deuteron, the
value of ~τ1 · ~τ2 can vary. But in any case, it is related to the symmetry of the
spatial and spin states. In particular, compare also chapter 5.5.6 and {A.10},

symmetric spatially: ~σ1 · ~σ2 =
{
−3 (singlet) =⇒ ~τ1 · ~τ2 = 1
1 (triplet) =⇒ ~τ1 · ~τ2 = −3

antisymmetric spatially: ~σ1 · ~σ2 =
{
−3 (singlet) =⇒ ~τ1 · ~τ2 = −3
1 (triplet) =⇒ ~τ1 · ~τ2 = 1

For the deuteron, as well as for the hypothetical diproton and dineutron, the
spatial state is symmetric under nucleon exchange. That is as you would expect
for a ground state, {A.8} and {A.9}. It then follows from the above values that
the first, ~σ1 · ~σ2, term in the square brackets in the OPEP (A.262) produces a
negative, attractive, potential for these nuclei. That is true regardless whether
the spin state is singlet or triplet.

The second, S12VT, term in the OPEP is called a tensor potential, {A.41.4}.
This potential can create uncertainty in orbital angular momentum. As dis-
cussed in {A.41.4}, having a tensor potential is an essential part in getting the
deuteron bound. But the tensor potential is zero for the singlet spin state.
And the spin state must be the singlet one for the diproton and dineutron, to
meet the antisymmetrization requirement for the two identical nucleons. So the
diproton and dineutron are not bound.

The deuteron however can be in the triplet spin state. In that case the tensor
potential is not zero. To be sure, the tensor potential does average out to zero
over all directions of ~r. But that does not prevent attractive niches to be found.
And note how big the multiplying factor VT is for R about 1.4 fm and nucleon
spacings r down to say 2 fm. The tensor potential is big.

Of course, that also depends on S12. But S12 is not small either. For example,
if ~r is in the x-direction, then S12 times a triplet state is three times the opposite
triplet state minus the original one.

A.42.3 Explanation of the OPEP potential

The purpose of this subsection is to explain the OPEP potential between nu-
cleons as given in the previous subsection physically.

Note that the objective is not to give a rigorous derivation of the OPEP
potential using advanced quantum field theory. Physicists presumably already
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got the OPEP right. They better, because it is a standard part of current
nuclear potentials. The explanations here will be based on simple physical
assumptions. They follow the derivation of the Koulomb potential in {A.22.1}.
That derivation was classical, although a simple quantum field version can be
found in {A.22.3}. Note that the original Yukawa derivation was classical too.
It was still worth a Nobel prize.

The arguments here are loosely based on [16, p. 282-288]. However, often
the assumptions made in that reference seem quite arbitrary. To avoid that, the
exposition below makes much more liberal use of quantum ideas. After all, in
final analysis the classical field is just a reflection of underlying quantum me-
chanics. Hopefully the quantum arguments will show much more compellingly
that things just have to be the way they are.

First of all, like in the first subsection it will be assumed that every nucleon
can generate a pion potential. Other nucleons can observe that potential and
interact with it, producing forces between the nucleons involved.

The net pion potential produced by all the nucleons will be called ϕ. It will
be assumed that the energy in the observable pion field is given in terms of ϕ
as

Eϕ =
ǫ1
2

∫ ∣∣∣∣
1

c

∂ϕ

∂t

∣∣∣∣
2

+ |∇ϕ|2 +
∣∣∣∣
mπc

2

~c
ϕ

∣∣∣∣
2

d3~r

Here ǫ1 is some empirical constant, mπ the pion mass, and the integral is over
all space. There should be some expression for the energy in the observable
field, and the integral above is what the Klein-Gordon equation for free pions
preserves, {D.32}. So it seems the likely expression. Also, the above integral
gives the correct energy in an electrostatic field, chapter 13.2 (13.11), taking
into account that the photon has no mass.

(Do note that there are some qualifications to the statement that the above
integral gives the correct energy in an electrostatic field. The electromagnetic
field is quite tricky because, unlike the pion, the photon wave function is a
relativistic four-vector. See {A.22} for more. But at the very least, the integral
above gives the correct expression for the effective energy in the electrostatic
field.)

Finally it will be assumed that there is an interaction energy between the
observable pion field and the nucleons. But the precise expression for that inter-
action energy is not yet obvious. Only a generic expression can reasonably be
postulated at this stage. In particular, it will be postulated that the interaction
energy of the pion field with an arbitrary nucleon numbered i takes the form:

Eϕi = −
∫
ϕfi d

3~r

The minus sign is inserted since the interaction will presumably lower the energy.
If it did not, there should be no pion field at all in the ground state. The factor
fi will be called the interaction factor of nucleon i.
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It still needs to be figured out what is the appropriate form of this interaction
factor. But it will be assumed that it involves the wave function Ψi of nucleon i
in some way. In particular, in regions where the wave function is zero, fi will be
zero too. That means that where there is no probability of finding the nucleon,
there is no interaction of the nucleon with the field either. In other words, the
interaction is “local,” rather than long range; it occurs at the location of the
nucleon. One motivation for this assumption is that long-range interactions are
just bound to produce problems with special relativity.

It will further be assumed that the wave function of each nucleon i is slighly
spread out around some nominal position ~ri. After all, if you want a potential
in terms of nucleon positions, then nucleons should at least approximately have
positions. One immediate consequence is then that the interaction factor fi is
zero except close to the nominal position ~ri of the nucleon.

The ground state is the state in which the combined pion field and interaction
energy is minimal. To find the properties of that state requires variational
calculus. This is worked out in considerable detail in {A.22.1} and {A.2}.
(While those derivations do not include the mπ term, its inclusion is trivial.)
The analysis shows that the observable potential must satisfy

−∇2ϕ+

(
mπc

2

~c

)2

ϕ =
1

ǫ1

∑

i

fi (A.263)

As noted above, the interaction factors fi in the right hand side are zero away
from the nucleons. And that means that away from the nucleons the potential
satisfies the Klein-Gordon eigenvalue problem with zero energy. That was a
good guess, in the first subsection! But now the complete potential can be
figured out, given the interaction factors fi.

The variational analysis further shows that the energy of interaction between
a nucleon numbered i and one numbered j is:

Vij = −
∫
ϕi(~r)fj(~r) d

3~r (A.264)

Here ϕi is the potential caused by nucleon i. In other words, ϕi is the solution
of (A.263) if only a single interaction factor fi in the sum in the right hand side
is included.

The big question remains, what exactly is the interaction factor fi between
the pion field and a nucleon i? The first guess would be that the interaction en-
ergy at a given position is proportional to the probability of finding the nucleon
at that position. In short,

fi,fg = g|Ψi|2 ?

where “fg” stands for “first-guess” and g is some constant. This reflects that
the probability of finding the nucleon is given by its square wave function |Ψi|2.
The above interaction factor is essentially what you would have in electrostatics.
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There g would be the electric charge, so for pions you could call it the “mesic
charge.” (Note that the square wave function integrates to 1 so the integrated
interaction factor above is g.)

Given the above first-guess interaction factor, according to (A.263) a nucleon
i would create a first-guess potential, {D.2.2},

ϕi,fg =
g

4πǫ1

e−r/R

r
(except vanishingly close to the nucleon i) (A.265)

Here r is the distance from the nucleon. If you assume for simplicity that the
nucleon is at the origin, r is the distance from the origin.

The above potential is spherically symmetric; it is the same in all directions.
(That is true even if the nucleon wave function is not spherically symmetric.
The wave function is only nonzero very close to ~ri, so it looks like a single point
away from the immediate vicinity of the nucleon.)

The interaction energy with a second nucleon j may now be found using
(A.264). In particular, because the wave function of nucleon j is only nonzero
very close to its nominal position ~rj, you can approximate ϕi(~r) in (A.264) as
ϕi(~rj). Then you can take it out of the integral. So the interaction energy is
proportional to ϕi(~rj). That is the potential caused by nucleon i evaluated at
the position of nucleon j. That was another good guess, in the first subsection!
More precisely, you get

Vij,fg = −
g2

4πǫ1

e−rij/R

rij

where rij = |~rj − ~ri| is the distance between the nucleons. This first guess
potential energy is the Yukawa potential of the first subsection.

The Yukawa potential would be appropriate for a field of spinless pions with
positive intrinsic parity. And except for the sign problem mentioned in the first
subsection, it also gives the correct Coulomb potential energy in electrostatics.

Unfortunately, as noted in the first subsection, the pion has negative intrinsic
parity, not positive. And that is a problem. Imagine for a second that a nucleon
pops up a pion. The nucleon has positive parity. However, the pion that pops
up has negative intrinsic parity. And parity is preserved, chapter 7.3. If the
intrinsic parity of the pion is negative, its orbital parity must be negative too
to maintain a positive combined system parity, chapter 7.4.2. Negative orbital
parity means that the pion wave function ϕπ must have opposite values at ~r
and −~r. But as mentioned, the first-guess potential is spherically symmetric;
the values at ~r and −~r are the same.

(Note that this argument blurs the distinction between a pion wave function
ϕπ and an observable pion potential ϕ. But you would expect them to be
closely related, {A.22.3}. In particularly, reasonably speaking you would expect
that spherically symmetric wave functions correspond to spherically symmetric
observable potentials, as well as vice-versa.)
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(You might also, correctly, object to the inaccurate picture that the nu-
cleon pops up a pion. The ground state of the nucleon-pions system is a state
of definite energy. Energy states are stationary, chapter 7.1.4. However, in
energy states the complete nucleon-pions system should have definite angular
momentum and parity, chapter 7.3. That is just like nuclei in energy states
have definite angular momentum and parity, chapter 14.1. The term in the
nucleon-pions system wave function in which there is just the nucleon, with no
pions, already sets the angular momentum and parity. A different term in the
system wave function, in particular one in which there is a pion in a state of def-
inite angular momentum and parity, cannot have different angular momentum
or parity. Otherwise angular momentum and parity would have uncertainty.)

So how to fix this? Suppose that you differentiate the first-guess potential
(A.265) with respect to, say, x. The differentiation will bring in a factor x in
the potential,

∂ϕi,fg
∂x

=
∂ϕi,fg
∂r

x

r

And that factor x will produce an opposite sign at −~r compared to ~r. That
means that the parity is now negative as it should be.

According to (A.263), the first guess potential satisfies

−∇2ϕi,fg +

(
mπc

2

~c

)2

ϕi,fg =
1

ǫ1
g|Ψi|2

Differentiating both sides with respect to x, you get for its x-derivative, the
second-guess potential ϕi,sg:

−∇2ϕi,sg +

(
mπc

2

~c

)2

ϕi,sg =
1

ǫ1

∑

i

g
∂

∂x
|Ψi|2 ϕi,sg =

∂ϕi,fg
∂x

So apparently, if you put a x-derivative on the square nucleon wave function in
the first-guess interaction factor fi,fg you get a pion potential consistent with
parity conservation.

There are a couple of new problems. First of all, this potential now has
orbital angular momentum. If you check out the spherical harmonics in table
4.3, you see that a spherically symmetric wave function has no orbital angular
momentum. But the factor x produces a wave function of the form

c(r)Y 1
1 − c(r)Y −11

where c(r) is some spherically symmetric function. The first term above has an-
gular momentum ~ in the z-direction. The second term has angular momentum
−~ in the z-direction. So there is uncertainty in angular momentum, but it is
not zero. The azimuthal quantum number of square orbital angular momentum,
call it lπ, is 1 with no uncertainty.
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So where does this angular momentum come from? Angular momentum
should be preserved. The pion itself has no spin. So its orbital angular momen-
tum will have to come from the half unit of nucleon spin. Indeed it is possible
for half a unit of nucleon spin, si =

1
2
, and one unit of pion orbital angular mo-

mentum, lπ = 1, to combine into still only half a unit of net angular momentum
j = 1

2
, 7.4.2.

But consider also the angular momentum in the z-direction. If the pion is
given ~ in the z-direction, then that must come from the fact that the nucleon
spin changes from 1

2
~ in the z-direction to −1

2
~. Conversely, if the pion has −~,

then the nucleon must change from −1
2
~ to 1

2
~. Either way, the nucleon spin in

the z-direction must flip over.
In quantum terms, how does that happen? Consider the scaled nucleon

z spin operator σz for a second. If you apply this operator on the “spin-up”
state with z spin 1

2
~, you get a multiple of the same state back. (Actually,

because of the scaling, you get the exact same state back.) The spin-up state
is an eigenstate of the operator σz as it should. But the spin-up state is not an
eigenstate of the operators σx and σy. These operators do not commute with
σz. So if you apply σx or σy on the spin-up state, you will also get some of the
−1

2
~ spin-down state. In fact, if you look a bit closer at angular momentum,

chapter 12.10, you see that you get only a spin-down state. So both σx and σy
do exactly what is needed; they flip spin-up over to spin-down. Similarly, they
flip spin-down over to spin-up.

The second problem has to do with the original notion of differentiating the
spherically symmetric potential with respect to x. Why not y or z or some
oblique direction? The pion field should not depend on how you have oriented
your mathematical axes system. But the x-derivative does depend on it. A
similar problem exists of course with arbitrarily choosing one of the operators
σx or σy above.

Now dot products are the same regardless of how the coordinate system is
oriented. That then suggests how both problems above can be solved at the
same time. In the first-guess interaction factor, add the dot product between
the scaled nucleon spin ~σi and the spatial differentiation operator ∇i. That
gives the third-guess interaction factor as

fi,tg = gR~σi · ∇i|Ψi|2 = gR

[
σx

∂

∂xi
+ σy

∂

∂yi
+ σz

∂

∂zi

]
|Ψi|2

The factor R has been added to keep the units of the first guess intact.
Time for a reality check. Consider a nucleon in the spin-up state. If the

“mesic charge” g would be zero, there would be no pion field. There would
just be this bare nucleon with half a unit of spin-up and positive parity. Next
assume that g is not zero, but still small. Then the bare nucleon term should still
dictate the spin and intrinsic parity. There will now also be terms with pions
in the complete system wave function, but they must obey the same spin and
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parity. You can work out the detailed effect of the third guess interaction factor
above using table 4.3 and chapter 12.10. If you do, you see that it associates
the spin-up nucleon with a state

√
4π
∂ϕi,fg
∂r

(√
1
3
Y 0
1 ↑ −

√
2
3
Y 1
1 ↓
)

where Y 0
1 and Y 1

1 , table 4.3, describe the spatial pion potential and ↑ and ↓
nucleon spin-up, respectively spin-down. Loosely associating the pion potential
with a pion wave function, you can check from the Clebsch-Gordon tables 12.5
that the state in parentheses obeys the spin and parity of the original bare
nucleon.

So the third guess seems pretty good. But there is one more thing. Recall
that there are three different pions, with different charges, So you would expect
that there are really three different functions fi, one for each pion field. Alter-
natively, the function fi should be three-dimensional vector. But what sort of
vector?

Note that charge is preserved. If a proton pops up a positively charged
π+ pion, it must itself change into a uncharged neutron. And if a neighboring
neutron absorbs that π+, it acquires its positive charge and turns into a proton.
The same thing happens when a neutron emits a negatively charged π− that a
proton absorbs. Whenever a charged particle is exchanged between a proton and
a neutron, both change type. (Charged particles cannot be exchanged between
nucleons of the same type because there are no nucleons with negative charge
or with two units of positive charge.)

So, it is necessary to describe change of nucleon type. Physicists do that
in a very weird way; they pattern the mathematics on that of spin, chapter
14.18. First a completely abstract “123” coordinate system is introduced. If a
nucleon is a proton, then it is said that the nucleon has a component 1

2
along

the abstract 3-axis. If a nucleon is a neutron, it is said that it has a component
−1

2
along the 3-axis.
Compare that with spin. If a nucleon is spin-up, it has a spin component

1
2
~ along the physical z-axis. If it is spin-down, it has a spin component −1

2
~

along the z-axis. The idea is very similar.
Now recall from above that the operators σx and σy flip over the spin in the

z-direction. In 123-space, physicist define abstract operators τ1 and τ2 that do
a similar thing: they flip over the value along the 3-axis. And that means that
these operators change protons into neutrons or vice-versa. So they do exactly
what is needed in exchanges of charged pions. Physicist also define an operator
τ3, analogous to σz, which does not change the 3-component.

Of course, all this may seem an extremely round-about way of doing some-
thing simple: define operators that flip over nucleon type. And normally it re-
ally would be. But if it is assumed that nuclear forces are charge-independent,
(which is a reasonable approximation), things change. In that case it turns out
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that the physics must remain the same under rotations of this abstract 123-
coordinate system. And that requirement can again be met by forming a dot
product, this time between ~τ = (τ1, τ2, τ3) vectors.

That idea then gives the final expression for the functions fi:

~fi = gR~τi ~σi · ∇i|Ψi|2 = gR~τi

[
σx

∂

∂xi
+ σy

∂

∂yi
+ σz

∂

∂zi

]
|Ψi|2

Note that ~fi is now a three-dimensional vector because ~τi is. In the final poten-
tial, ~τi gets into a dot product with ~τj of the other nucleon. That makes the
complete potential the same regardless of rotation of the abstract 123-coordinate
system as it should.

Now it is just a matter of working out the final potential. Do one thing at
a time. Recall first the effect of the x-derivative on the nucleon wave function.
It produces a potential that is the x-derivative of the spherically symmetric
first-guess potential (A.265). That works out to

gR

4πǫ1

de−r/R/r

dr

∂r

∂x
= − gR

4πǫ1

[
1

Rr2
+

1

r3

]
e−r/Rx

Of course, there ares similar expressions for the derivatives in the other two
directions. So the potential produced by nucleon i at the origin is

ϕi(~r) = −
gR

4πǫ1
~τi

[
1

Rr2
+

1

r3

]
e−r/R~r · ~σi

Now the interaction potential with another nucleon follows from (A.264).
But here you need to be careful. The integral will involve terms like

[some constant]

∫
ϕi(~r)

∂|Ψj|2
∂x

d3~r

In this case, you cannot just approximate ~r in ϕi(~r) as the nominal position
~rj of nucleon j. That is not accurate. Since the x-derivative works on a very
concentrated wave function, it will produce large negative and positive values,
and errors will accumulate. The solution is to perform an integration by parts
in the x-direction. That puts the derivative on the potential instead of the wave
function and adds a minus sign. Then you can evaluate this negative derivative
of the potential at the nominal position of nucleon ~rj.

Differentating the potential is a bit of a mess, but straightforward. Then
the potential becomes

Vij ∼
g2

12πǫ1R
~τi · ~τj

[
~σi · ~σj + SijVT

]e−r/R
r/R

If you define the constant gπ appropriately, this gives the OPEP potential
(A.262).
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A.42.4 Multiple pion exchange and such

Unfortunately, the nuclear force is not just a matter of the exchange of single
pions. While the OPEP works very well at nucleon distances above 3 fm, at
shorter ranges other processes become important.

The most important range is the one of the primary nucleon attractions.
Conventionally, this range is ballparked as nucleon distances in the range 1 <
r < 2 fm, [5, p. 91], [[3]]. (References vary about the actual range however, [31,
p. 111], [36, pp. 177].) In this range, two-pion exchanges dominate. In such
exchanges two pions appear during the course of the interaction. Since this
requires double the uncertainty in energy, the typical range is correspondingly
smaller than for one-pion exchanges.

Two-pion exchanges are much more difficult to crunch out than one-pion
ones. In addition, it turns out that straightforward two-pion exchanges are
not enough, [[3]]. The interactions also have to include various so-called “reso-
nances.”

Resonances are extremely short-lived excited states of baryons and mesons.
They decay through the strong force, which typically takes on the order of
10−23 s. A particle moving near the speed of light will only travel a distance
of the order of a femtometer during such a time. Therefore resonances are
not observed directly. Instead they are deduced from experiments in which
particles are scattered off each other. Excited states of nucleons can be deduced
from preferred scattering of particular frequencies. More or less bound states
of pions can be deduced from collision dynamics effects. Collisions involving
three particles are quite different if two of the three particles stick together,
even briefly, than if all three go off in separate directions.

The lowest energy excited state for nucleons is a set of resonances called the
“delta particles,” ∆++, ∆+, ∆0, and ∆−. In the deltas, the three constituent
quarks of the nucleons align their spins in the same direction for a net spin
of 3

2
. The state further has enough antisymmetry to allow three quarks to be

equal. That explains the nucleon charge 2e of the ∆++, consisting of three
up quarks at 2

3
e each, and the charge −e of the ∆−, consisting of three down

quarks at −1
3
e each. The delta resonances are often indicated by ∆(1232), where

the quantity between parentheses is the nominal rest mass energy in MeV. That
allows excited states of higher energy to be accommodated. If the excited states
allow no more than two quarks to be equal, like the normal nucleons, they are
indicated by N instead of ∆. In those terms, the normal proton and neutron are
N(939) states. (The rest mass energies are nominal because resonances have a
tremendous uncertainty in energy. That is to be expected from their short life
time on account of the energy-time uncertainty relationship. The “width” of
the delta energy is over 100 MeV.)

Pion resonances of interest involve the 775 MeV rho (ρ), and the 783 MeV
omega (ω) resonances. Both of these states have spin 1 and odd parity. The
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550 MeV eta (η) particle is also of importance. This particle has spin 0 and odd
parity like the pions. The eta is not really a resonance, based on its relatively
long 0.5 10−18 s life time.

Older references like [36] picture the resonances as correlated multi-pion
states. However, quantum chromedynamics has been associating actual particles
with them. Take the rho, for example. In [36] it is pictured as a two-pion
correlated state. (A true bound state of two 140 MeV pions should have an
energy less than 280 MeV, not 775 MeV.) However, quantum chromedynamics
identifies a rho as a single excited pion with a 775 MeV rest mass. It does decay
almost instantly into two pions. The omega, pictured as a three-pion correlated
state, is according to quantum chromedynamics a quantum superposition of half
an up-antiup and half a down-antidown quark pair, not unlike the neutral rho.
It usually decays into three pions. Quantum chromedynamics describes the η
as a meson having a strange-antistrange quark component.

The rho and omega resonances appear to be important for the nucleon re-
pulsions at short range. And 3 and 4 pion exchanges have about the same range
as the ω. So if the omega is included, as it normally is, it seems that multi-pion
exchanges should be included too. Crunching out complete multi-pion pion ex-
changes, with the additional complications of the mentioned resonances, is a
formidable task.

One-meson exchanges are much easier to analyze than multi-meson ones.
Therefore physicists may model the multi-pion processes as the exchange of one
combined boson, rather than of multiple pions. That produces so-called “one-
boson exchange potentials,” or “OBEP”s for short. They work surprisingly
well.

The precise Yukawa potential that is produced depends on the spin and
parity of the exchanged boson, [36, pp. 176ff], [[3]]. The pion has zero spin and
negative parity. Such a particle is often called “pseudoscalar.” Scalar means
that its wave function at each point is a just a number. However, normal
numbers, like say a mass, do not change sign if the directions of the axes are
inverted. The eta is a 0− pseudoscalar like the pion. It produces a similar
potential as the OPEP.

However, the rho and omega are 1− bosons. Such bosons are often called
“”vector particles.” Their wave function at each point is a three-dimension-
al vector, {A.20}. And normal vectors do change sign if the directions of the
axes are inverted, so the rho and omega are not pseudovectors. Vector bosons
generate a repulsive potential, among various other effects. That can take care
of the needed repulsive short range forces quite nicely.

Unfortunately, to describe the attractive forces in the intermediate range,
OBEP models need a roughly 600 MeV 0+ “scalar” boson. In fact, many OBEP
models use both a 500 MeV and a 700 MeV scalar boson. The existence of
such scalar resonances has never been accepted. While an older reference like
[36, pp. 172] may point to a perceived very wide resonance at 700 MeV, how
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convincing can a 700 MeV resonance with a width of at least 600 MeV be? This
lack of physical justification does detract from the OBEP potentials.

And of course, they are approximations in any case. There are important
issues like multi-nucleon interactions and electromagnetic properties that prob-
ably only a comprehensive description of the actual exchange processes can
correctly describe, [[3]]. Despite much work, nuclear potentials remain an active
research area. One author already thinks in terms of millennia, [32].

A.43 Classical vibrating drop

The simplest collective description for a nucleus models it as a vibrating drop of
a macroscopic liquid. To represent the nuclear Coulomb repulsions the liquid can
be assumed to be positively charged. This section gives a condensed derivation
of small vibrations of such a liquid drop according to classical mechanics. It will
be a pretty elaborate affair, condensed or not.

A.43.1 Basic definitions

The drop is assumed to be a sphere of radius R0 when it is not vibrating. For
a nucleus, R0 can be identified as the nuclear radius,

R0 = RAA
1/3

When vibrating, the radial position of the surface will be indicated by R. This
radial position will depend on the spherical angular coordinates θ and φ, figure
N.3, and time.

The mass density, (mass per unit volume), of the liquid will be indicated by
ρm. Ignoring the difference between proton and neutron mass, for a nucleus the
mass density can be identified as

ρm =
Amp

4
3
πR3

0

The mass density is assumed constant throughout the drop. This implies that
the liquid is assumed to be incompressible, meaning that the volume of any
chunk of liquid is unchangeable.

The charge density is defined analogously to the mass density:

ρc =
Ze

4
3
πR3

0

It too is assumed constant.
The surface tension σ can be identified as

σ =
CsA

2/3

4πR2
0

=
Cs

4πR2
A
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A.43.2 Kinetic energy

The possible frequencies of vibration can be figured out from the kinetic and
potential energy of the droplet. The kinetic energy is easiest to find and will be
done first.

As noted, the liquid will be assumed to be incompressible. To see what that
means for the motion, consider an arbitrary chunk of liquid. An elementary
element of surface area dS of that chunk gobbles up an amount of volume while
it moves given by ~v · ~n dS, where v is the liquid velocity and ~n is a unit vector
normal to the surface. But for a given chunk of an incompressible liquid, the
total volume cannot change. Therefore:

∫

S

~v · ~n dS = 0

Using the Gauss-Ostrogradsky, or divergence theorem, this means that∇·~v must
integrate to zero over the interior of the chunk of liquid. And if it must integrate
to zero for whatever you take the chunk to be, it must be zero uniformly:

∇ · ~v = 0

This is the famous “continuity equation” for incompressible flow. But it is
really no different from Maxwell’s continuity equation for the flow of charges if
the charge density remains constant, chapter 13.2.

To describe the dynamics of the drop, the independent variables will be taken
to be time and the unperturbed positions ~r0 of the infinitesimal volume elements
d3~r of liquid. The velocity field inside the drop is governed by Newton’s second
law. On a unit volume basis, this law takes the form

ρm
∂~v

∂t
= −ρc∇ϕ−∇p

where ϕ is the electrostatic potential and p is the pressure. It will be assumed
that the motion is slow enough that electrostatics may be used for the elec-
tromagnetic force. As far as the pressure force is concerned, it is one of the
insights obtained in classical fluid mechanics that a constant pressure acting
equally from all directions on a volume element of liquid does not produce a
net force. To get a net force on an element of liquid, the pressure force on the
front of the element pushing it back must be different from the one on the rear
pushing it forward. So there must be variations in pressure to get a net force
on elements of liquid. Using that idea, it can be shown that for an infinitesi-
mal element of liquid, the net force per unit volume is minus the gradient of
pressure. For a real classical liquid, there may also be viscous internal forces in
addition to pressure forces. However, viscosity is a macroscopic effect that is
not relevant to the nuclear quantum system of interest here. (That changes in
a two-liquid description, [40, p. 187].)
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Note that the gradients of the potential and pressure should normally be
evaluated with respect to the perturbed position coordinates ~r. But if the
amplitude of vibrations is infinitesimally small, it is justified to evaluate ∇ using
the unperturbed position coordinates ~r0 instead. Similarly, ∇ in the continuity
equation can be taken to be with respect to the unperturbed coordinates.

If you take the divergence of Newton’s equation. i.e. multiply with ∇·, the
left hand side vanishes because of continuity, and so the sum of potential and
pressure satisfies the so-called “Laplace equation:”

∇2(ρcϕ+ p) = 0

The solution can be derived in spherical coordinates r0, θ0, and φ0 using similar,
but simpler, techniques as used to solve the hydrogen atom. The solution takes
the form

ρcϕ+ p =
∑

l,m

clm(t)
rl0
Rl

0

Ȳ m
l (θ0, φ0)

where the clm are small unknown coefficients and the Ȳ m
l are real spherical

harmonics. The precise form of the Ȳ m
l is not of importance in the analysis.

Plugging the solution for the pressure into Newton’s second law shows that
the velocity can be written as

~v =
∑

l,m

vlm(t)R0∇
(
rl0
Rl

0

Ȳ m
l (θ0, φ0)

)

where the coefficients vlm are multiples of time integrals of the clm. What
multiples is irrelevant as the potential and pressure will no longer be used.

(You might wonder about the integration constant in the time integration.
It is assumed that the droplet was initially spherical and at rest before some
surface perturbation put it into motion. If the drop was initially rotating, the
analysis here would need to be modified. More generally, if the droplet was not
at rest initially, it must be assumed that the initial velocity is “irrotational,”
meaning that ∇ × ~v = 0.)

Since the velocity is the time-derivative of position, the positions of the fluid
elements are

~r = ~r0 +
∑

l,m

rlm(t)R0∇
rl0
Rl

0

Ȳ m
l (θ0, φ0)

where ~r0 is the unperturbed position of the fluid element and the coefficients of
velocity are related to those of position by

vlm = ṙlm

What will be important in the coming derivations is the radial displacement
of the liquid surface away from the spherical shape. It follows from taking the
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radial component of the displacement evaluated at the surface r0 = R0. That
produces

R(θ0, φ0) = R0 + δ(θ0, φ0) δ =
∑

l,m

rlm(t)lȲ
m
l (θ0, φ0) (A.266)

To be sure, in the analysis δ will be defined to be the radial surface displacement
as a function of the physical angles θ and φ. However, the difference between
physical and unperturbed angles can be ignored because the perturbations are
assumed to be infinitesimal.

The kinetic energy is defined by

T =

∫
1
2
ρm~v · ~v d3~r0

Putting in the expression for the velocity field in terms of the rlm position
coefficients gives

T =

∫
1
2
ρm
∑

l,m

ṙlmR0

(
∇ rl0
Rl

0

Ȳ m
l

)
·
∑

l,m

ṙlmR0

(
∇ rl0

Rl
0

Ȳ m
l

)
d3~r0

To simplify this, a theorem is useful. If any two functions F and G are
solutions of the Laplace equation, then the integral of their gradients over the
volume of a sphere can be simplified to an integral over the surface of that
sphere:

∫

V

(∇F ) · (∇G) d3~r0 =

∫

V

∇ (F · ∇G) d3~r0 =

∫

S

F
∂G

∂r0
dS0 (A.267)

The first equality is true because the first term obtained in differentiating out
the product F · ∇G is the left hand side, while the second term is zero because
G satisfies the Laplace equation. The second equality is the divergence theorem
applied to the sphere. Further, the surface element of a sphere is in spherical
coordinates:

dS0 = R2
0 sin θ0 dθ0dφ0

Applying these results to the integral for the kinetic energy, noting that r0
= R0 on the surface of the droplet, gives

T = 1
2
ρm
∑

l,m

∑

l,m

ṙlmṙlmlR
3
0

∫ ∫
Ȳ m
l Ȳ

m
l sin θ0 dθ0dφ0

Now the spherical harmonics are orthonormal on the unit sphere; that means
that the final integral is zero unless l = l and m = m, and in that case the
integral is one. Therefore, the final expression for the kinetic energy becomes

T = 1
2
ρmR

3
0

∑

l,m

lṙ2lm (A.268)
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A.43.3 Energy due to surface tension

From here on, the analysis will return to physical coordinates rather than un-
perturbed ones.

The potential energy due to surface tension is simply the surface tension
times the surface of the deformed droplet. To evaluate that, first an expression
for the surface area of the droplet is needed.

The surface can be described using the spherical angular coordinates θ and
φ as r = R(θ, φ). An infinitesimal coordinate element dθdφ corresponds to a
physical surface element that is approximately a parallelogram. Specifically, the
sides of that parallelogram are

d~r1 =
∂~rsurface
∂θ

dθ d~r2 =
∂~rsurface
∂φ

dφ

To get the surface area dS, take a vectorial product of these two vectors and
then the length of that. To work it out, note that in terms of the orthogonal
unit vectors of a spherical coordinate system,

~rsurface = ı̂rR
∂ı̂r
∂θ

= ı̂θ
∂ı̂r
∂φ

= sin θı̂φ

That way, the surface area works out to be

S =

∫ ∫ √
1 +

(
1

R

∂R

∂θ

)2

+

(
1

R sin θ

∂R

∂φ

)2

R2 sin θ dθdφ

Multiply by the surface tension σ and you have the potential energy due to
surface tension.

Of course, this expression is too complicated to work with. What needs to
be done, first of all, is to write the surface in the form

R = R0 + δ

where δ is the small deviation away from the radius R0 of a perfect spherical
drop. This can be substituted into the integral, and the integrand can then be
expanded into a Taylor series in terms of δ. That gives the potential energy Vs
= σS as

Vs = σ

∫ ∫
R2

0 sin θ dθdφ+ σ

∫ ∫
2R0δ sin θ dθdφ+ σ

∫ ∫
δ2 sin θ dθdφ

+σ

∫ ∫
1
2

[(
1

R0

∂δ

∂θ

)2

+

(
1

R0 sin θ

∂δ

∂φ

)2
]
R2

0 sin θ dθdφ

where the final integral comes from expanding the square root and where terms
of order of magnitude δ3 or less have been ignored. The first integral in the
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result can be ignored; it is the potential energy of the undeformed droplet, and
only differences in potential energy are important. However, the second integral
is one problem, and the final one another.

The second integral is first. Its problem is that if you plug in a valid approx-
imate expression for δ, you are still not going to get a valid approximate result
for the integral. The radial deformation δ is both negative and positive over the
surface of the cylinder, and if you integrate, the positive parts integrate away
against the negative parts, and what you have left is mainly the errors.

Why is δ both positive and negative? Because the volume of the liquid
must stay the same, and if δ was all positive, the volume would increase. The
condition that the volume must remain the same means that

4π

3
R2

0 =

∫ ∫ ∫
r2 sin θ drdθdφ =

∫ ∫
1
3
R3 sin θdθdφ

the first because of the expression for volume in spherical coordinates and the
second from integrating out r. Writing again R = R0 + δ and expanding in a
Taylor series gives after rearranging

−
∫ ∫

R2
0δ sin θdθdφ =

∫ ∫
R0δ

2 sin θdθdφ

where the integral of δ3 has been ignored. Now the integral in the left hand side
is essentially the one needed in the potential energy. According to this equation,
it can be replaced by the integral in the right hand side. And that one can be
accurately evaluated using an approximate expression for δ: since the integrand
is all positive, there is no cancellation that leaves only the errors. Put more
precisely, if the used expression for δ has an error of order δ2, direct evaluation
of the integral in the left hand side gives an unacceptable error of order δ2, but
evaluation of the integral in the right hand side gives an acceptable error of
order δ3.

If this is used in the expression for the potential energy, it produces

Vs = Vs,0 − σ
∫ ∫

δ2 sin θ dθdφ

+σ

∫ ∫
1
2

[(
1

R0

∂δ

∂θ

)2

+

(
1

R0 sin θ

∂δ

∂φ

)2
]
R2

0 sin θ dθdφ

Now δ can be written in terms of the spherical harmonics defined in the
previous subsection as

δ =
∑

l,m

δlmȲ
m
l

where the δlm are time dependent coefficients still to be found. If this is substi-
tuted into the expression for the potential, the first integral is similar to the one
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encountered in the previous subsection; it is given by the orthonormality of the
spherical harmonics. However, the final term involves an integral of the form

I =

∫ ∫ [
∂Ȳ m

l

∂θ

∂Ȳ m
l

∂θ
+

1

sin2 θ

∂Ȳ m
l

∂φ

∂Ȳ m
l

∂φ

]
sin θ dθdφ

This integral can be simplified by using the same theorem (A.267) used earlier
for the kinetic energy. Just take F = rlȲ m

l and G = rlȲ m
l and integrate over

a sphere of unit radius. The theorem then produces an equality between a
volume integral and a surface one. The surface integral can be evaluated using
the orthonormality of the spherical harmonics. The volume integral can be
integrated explicitly in the radial direction to produce a multiple of I above and
a second term that can once more be evaluated using the orthonormality of the
spherical harmonics. It is then seen that I = 0 unless l = l and m = m and
then I = l(l + 1).

Putting it all together, the potential energy due to surface tension becomes

Vs = Vs,0 +
∑

l,m

1
2
(l − 1)(l + 2)σδ2lm (A.269)

A.43.4 Energy due to Coulomb repulsion

The potential energy due to the Coulomb forces is tricky. You need to make
sure that the derivation is accurate enough. What is needed is the change in
potential energy when the radial position of the surface of the droplet changes
from the spherical value r = R0 to the slightly perturbed value r = R0+ δ. The
change in potential energy must be accurate to the order of magnitude of δ2.

Trying to write a six-dimensional integral for the Coulomb energy would
be a mess. Instead, assume that the surface perturbation is applied in small
increments, as a perturbation δ′ that is gradually increased from zero to δ.
Imagine that you start with the perfect sphere and cumulatively add thin layers
of charged liquid dδ′ until the full surface perturbation δ is achieved. (With
adding negative amounts dδ′ understood as removing charged liquid. At each
stage, just as much liquid is removed as added, so that the total volume of
liquid stays the same.) The change in potential energy due to addition of an
infinitesimal amount of charge equals the amount of charge times the surface
potential at the point where it is added.

The surface radius perturbation and its differential change can be written in
terms of spherical harmonics:

δ′ =
∑

l,m

δ′lmȲ
m
l dδ′ =

∑

l,m

dδ′lmȲ
m
l

The amount of charge added per unit solid angle dΩ = sin θdθdφ will be called
γ′. It is given in terms of the charge density ρc and δ

′ as

γ′ = ρc
(
1
3
(R0 + δ′)3 − 1

3
R3

0

)



1184 APPENDIX A. ADDENDA

To first approximation, the incremental amount of charge laid down per unit
solid angle is

dγ′ ∼ ρcR
2
0dδ

′

However, if dγ is written in terms of spherical harmonics,

dγ′ =
∑

l,m

dγ′lmȲ
m
l dγ′lm ∼ ρcR

2
0dδ

′
lm

then the coefficient dγ′00 is zero exactly, because the net volume, and hence the
net charge, remains unchanged during the build-up process. (The spherical har-
monic Y 0

0 is independent of angular position and gives the average; the average
charge added must be zero if the net charge does not change.) The coefficient
dδ′00 is zero to good approximation, but not exactly.

Now the surface potential is needed for the deformed drop. There are two
contributions to this potential: the potential of the original spherical drop and
the potential of the layer δ′ of liquid that has been laid down, (the removed liquid
here counting as negative charge having been laid down.) For the spherical drop,
to the needed accuracy

V0,surface ∼
Ze

4πǫ0(R0 + δ′)
∼ Ze

4πǫ0R0

− Ze

4πǫ0R2
0

δ′

For the surface potential of the laid-down layer, fortunately only a leading
order approximation is needed. That means that the thickness of the layer can
be ignored. That turns it into a spherical shell of negligible thickness at r =
R0. The potential inside the shell can always be written in the form

V1,inside =
∑

l,m

Vlm
rl

Rl
0

Ȳ m
l

though the coefficients Vlm are still unknown. The potential outside the shell
takes the form

V1,outside =
∑

l,m

Vlm
Rl+1

0

rl+1
Ȳ m
l

where the coefficients Vlm are approximately the same as those inside the shell
because the shell is too thin for the potential to vary significantly across it.

However, the electric field strength does vary significantly from one side of
the shell to the other, and it is that variation that determines the coefficients
Vlm. First, integrate Maxwell’s first equation over a small surface element of the
shell. Since the shell has thickness δ′, you get

ρcδ
′ dS = (Er,immediately outside − Er,immediately inside) dS
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where dS is the area of the shell element. Note that Er = −∂V1/∂r, and sub-
stitute in the inside and outside expressions for V1 above, differentiated with
respect to r and evaluated at r = R0. That gives the Vlm and then

V1,surface =
∑

l,m

ρcR0

(2l + 1)ǫ0
δ′lmȲ

m
l ρc =

Ze
4
3
πR3

0

Multiplying the two surface potentials by the amount of charge laid down
gives the incremental change in Coulomb potential of the drop as

dVc =

[
Ze

4πǫ0R0

− Ze

4πǫ0R2
0

δ′ +
∑

l,m

3Ze

(2l + 1)4πǫ0R2
0

δ′l,mȲ
m
l

]
dγ′ sin θ dθdφ

Substituting in δ′ =
∑

l,m δ
′
lmȲ

m
l and dγ′ =

∑
l,m dγ′lmȲ

m
l , the integrals can be

evaluated using the orthonormality of the spherical harmonics. In particular,
the first term of the surface potential integrates away since it is independent
of angular position, therefore proportional to Ȳ 0

0 , and dγ′00 is zero. For the
other terms, it is accurate enough to set dγ′lm = ρcR

2
0 dδ

′
lm and then δ′ can be

integrated from zero to δ to give the Coulomb potential of the fully deformed
sphere:

Vc = Vc,0 −
∑

l,m

l − 1

2l + 1

Ze

4πǫ0
ρcδ

2
lm (A.270)

A.43.5 Frequency of vibration

Having found the kinetic energy, (A.268), and the potential energy, (A.269) plus
(A.270), the motion of the drop can be determined.

A rigorous analysis would so using a Lagrangian analysis, {A.1}. It would
use the coefficients rlm as generalized coordinates, getting rid of the δlm in the
potential energy terms using (A.266). But this is a bit of an overkill, since the
only thing that the Lagrangian analysis really does is show that each coefficient
rlm evolves completely independent of the rest.

If you are willing to take that for granted, just assume rlm = ε sin(ωt − ϕ)
with ε and ϕ unimportant constants, and then equate the maximum kinetic
energy to the maximum potential energy to get ω. The result is

ω2 =
(l − 1)l(l + 2)

3

Cs
R2
Amp

1

A
− 2(l − 1)l

2l + 1

e2

4πǫ0R3
Amp

Z2

A2

Note that this is zero if l = 0. There cannot be any vibration of a type δ =
δ00Y

0
0 because that would be a uniform radial expansion or compression of the

drop, and its volume must remain constant. The frequency is also zero for l =
1. In that case, the potential energy does not change according to the derived
expressions. If kinetic energy cannot be converted into potential energy, the
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droplet must keep moving. Indeed, solutions for l = 1 describe that the droplet
is translating at a constant speed without deformation. Vibrations occur for l

> 2, and the most important ones are the ones with the lowest frequency, which
means l = 2.

A.44 Relativistic neutrinos

It is certainly dubious to describe beta decay nonrelativistically. Neutrinos are
highly relativistic particles with almost zero rest mass. So [16, p. 258] rightly
states that it is absurd to treat them nonrelativistically. Then he immediately
proceeds to do it anyway. (But he confirms the results later using a proper
analysis.)

One big problem is that relativistically, spin and orbital angular momentum
become mixed-up. That problem was encountered earlier for the photon, which
is an even more relativistic particle. Chapter 7.4.3 needed some contortions to
talk around that problem.

But note that while the problem for the neutrino is qualitatively similar,
the details are quite different. While the photon is a boson, the neutrino is a
fermion. Fermions, unlike bosons, are described by the Dirac equation, chapter
12.12 versus {A.21}.

To understand the Dirac equation requires some linear algebra, in partic-
ular matrices. But to understand the discussion here, the information in the
notations section should be plenty.

Consider first the Dirac Hamiltonian eigenvalue problem for the electron
and its antiparticle, the positron, in empty space. It is simplest thought of as a
system of two equations:

mc2 ~ψ− + c~̂p · ~σ ~ψ+ = E ~ψ− −mc2 ~ψ+ + c~̂p · ~σ ~ψ− = E ~ψ+ (A.271)

Here c is the speed of light and m the rest mass of the electron or positron. So
mc2 is the rest mass energy according to Einstein’s famous relation. Further ~̂p is
the linear momentum operator. And ~σ is the spin angular momentum operator,

except for a scale factor. More precisely, ~σ = ~̂S/1
2
~. The three components of

~σ are the famous “Pauli spin matrices.”
In the nonrelativistic limit, ~ψ− becomes the wave function of an electron.

Recall from chapter 5.5.1 that this wave function can be thought of as a vector
with two components; the first component corresponds to the spin-up state and
the second to the spin-down state. Similarly ~ψ+ becomes the wave function of
a positron.

The nonrelativistic limit means mathematically that the rest mass energies
mc2 are much larger than the kinetic energies. Or more simply, it is the limit
c→∞. Under those conditions, by approximation,

mc2 ~ψ− ≈ E ~ψ− −mc2 ~ψ+ ≈ E ~ψ+
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So in the nonrelativistic limit the energy of the electron is approximately the rest
mass energy, as it should be. Note however that the value of E for a positron
is negative. That should not be taken to mean that the rest mass energy of
a positron is negative. It is the same as the one of an electron, positive. The
positron is an antiparticle, and the value of E of an antiparticle picks up an
extra minus sign because these particles move backward in time. Quantum
mechanics relates E to the time derivative as E → i~∂/∂t, as seen in the Schrö-
dinger equation, so a sign change in E is equivalent to a reversal in time.

If you improve the accuracy of the nonrelativistic approximations a bit us-
ing some mathematical manipulation, the energy will also include the classical
kinetic energy. To see how that works, (without using more proper matrix

eigenvalue methods), premultiply the second equation in (A.271) by ~̂p · ~σ/2mc
and add it to the first. In doing so, note that (~̂p · ~σ)2 is simply p̂ 2. That can
be verified by multiplying out the Pauli matrices given in chapter 12.10. In
particular,

(~̂p · ~σ)(~̂p · ~σ) =
3∑

i=1

3∑

j=1

p̂iσip̂jσj =
3∑

i=1

p̂ip̂i since

{
σiσi = 1 for all i
σiσj + σjσi = 0 if i 6= j

Taking that into account, you get

(
mc2 +

p̂ 2

2m

)
~ψ− +

c~̂p · ~σ
2

~ψ+ = E

(
~ψ− +

c~̂p · ~σ
2mc2

~ψ+

)

This expression can be rewritten as

(
mc2 +

p̂ 2

2m

)(
~ψ− +

c~̂p · ~σ
2mc2

~ψ+

)
= E

(
~ψ− +

c~̂p · ~σ
2mc2

~ψ+

)

(If you multiply this out, you get an additional term, but it is negligibly small
compared to the rest.) Now note that this is an eigenvalue problem for an

electron whose wave function has picked up a little bit of ~ψ+. You might say
that the slightly relativistic electron picks up a bit of a nonrelativistic positron
wave function. Also its energy has picked up an additional term p̂ 2/2m, the
classical kinetic energy.

Derivation {D.81} shows how take this further, and do it rigorously using
proper linear algebra procedures.

But this addendum is not really interested in the nonrelativistic limit. In-
stead it is interested in the ultrarelativistic limit, where it is the rest mass that
is negligible compared to the kinetic energy. And for zero rest mass, the Dirac
eigenvalue problem (A.271) becomes

c~̂p · ~σ ~ψ+ = E ~ψ− c~̂p · ~σ ~ψ− = E ~ψ+ (A.272)
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To make some sense out of this, define two new partial wave functions as

~ψR =
~ψ− + ~ψ+

2
~ψL =

~ψ− − ~ψ+

2

By taking sums and differences of the ultrarelativistic equations above, you then
get

c~̂p · ~σ ~ψR = E ~ψR − c~̂p · ~σ ~ψL = E ~ψL (A.273)

The mathematician Weyl first noted how remarkable these equations really
are. The equations for the two partial wave functions are not coupled! Partial
wave function ~ψL is not in the equation for ~ψR and ~ψR is not in the one for ~ψL.
So it seems like each equation might describe a particle whose wave function is
a simple two-dimensional vector. In other words, each equation could describe
a particle without a partner. Note incidentally that the second equation is the
negative E version of the first. So presumably the second equation could merely
describe the antiparticle of the particle of the first equation.

Reasonably speaking, these particles should be electrically neutral. After
all, their wave functions are equal combinations of ~ψ−, the equivalent of the
negatively charged nonrelativistic electron in this system, and ~ψ+, the equivalent
of the positively charged nonrelativistic positron. So these particles should be
neutral as well as massless. In short, they should be neutrinos.

There are a couple of problems however. The Dirac equation includes both
the electron and the positron, the time-reversed electron. If you write an equa-
tion for a particle that does not inherently include a time-reversed partner, are
you violating time-reversal symmetry?

The other problem is what happens if you look at nature in the mirror. Or
rather, what you really want to do is “inversion:” swap the positive direction of
all three axes in a Cartesian coordinate system. This has the effect of creating a
mirror image of nature, since the coordinate system is now left-handed instead
of right-handed. And its effects are mathematically easier to describe.

First consider what happens to the original Dirac equation (A.271). The

linear momentum operator ~̂p introduces a minus sign under inversion. That
is because this operator is proportional to the gradient operator ∇, and every
Cartesian coordinate in ∇ changes sign. However, the spin operators ~σ are like
orbital angular momentum, ~r × ~̂p, so they introduce two minus signs, which
means no sign change.

(These arguments as presented look at the dot product purely algebraically.
If you consider the gradient as a vector, there is an additional sign change since
the unit vectors change direction. But the same holds for the ~σ vector in the
dot product, so there is no difference in the final answer.)

At face value then, the ~̂p · ~σ terms in the Dirac system change sign. That
would mean that nature does not behave in the same way when seen in the
mirror; the Dirac equation is not the same. And that is definitely wrong; it is
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very accurately established that electromagnetic systems involving electrons do
behave in exactly the same way when seen in the mirror.

Fortunately there is a loophole to save the mathematics of the Dirac equa-
tion. It can be assumed that either the electron or the positron has negative
“intrinsic” parity. In other words it can be assumed that either nonrelativistic
wave function changes sign under inversion. You can check that if either ~ψ− or
~ψ+ changes sign under inversion, then the Dirac system stays the same under
inversion. Which one of the two changes sign is not important, since the sign of
the wave function does not make a difference for the physics. It is convention
to assume that the antiparticles of fermions have the negative intrinsic parity.
In that case, you do not need to worry about intrinsic parity if you have no
antiparticles present.

But now reconsider the Hamiltonian eigenvalue problem (A.273) for the
neutrinos. The trick no longer works! If you can have one of these particles by
itself, not tied to a partner, the physics is no longer the same when seen in the
mirror.

There is an important consequence to that. If nature is the same when seen
in the mirror, there is a conserved mathematical quantity called “parity.” That
is just like there is a conserved quantity called angular momentum because
nature behaves in the same way when you look at it in a rotated coordinate
system, chapter 7.3. What it boils down to is that Weyl was saying that parity
might not be conserved in nature.

At the time, Pauli lambasted Weyl for daring to suggest something so obvi-
ously stupid like that. However, Pauli lived long enough to learn in 1956 that
experiments showed that indeed neutrinos do not conserve parity. (Weyl had
already died.)

The fact that the Weyl Hamiltonians do not conserve parity can be described
more abstractly. Let Π be the “parity operator” that expresses what happens
to a wave function when the axes are inverted. The above discussion can then
be summarized abstractly as

Π(c~̂p · ~σ)~ψ = −(c~̂p · ~σ)Π ~ψ

In words, when you invert axes, the ~̂p · ~σ operator introduces a minus sign.
Also the wave function ~ψ changes into its mirror image. Now the expression
in parentheses is the first Weyl Hamiltonian, or minus the second. So the
expression above can be read that if you interchange the order of the parity
operator and either Hamiltonian, it introduces a minus sign. It is said that the
parity operator and the Hamiltonian do not commute: the order in which they
are applied makes a difference.

It is quite generally true that if an operator does not commute with the
Hamiltonian, the corresponding quantity is not preserved. See for example
chapter 4.5.1, 7.1.4 and {A.19}. So you might ask whether orbital angular mo-
mentum is preserved by the Weyl Hamiltonian. If you grind out the commutator
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of an orbital angular momentum component with the Weyl Hamiltonian using
the rules of chapters 4.5.4 and 5.5.3, you find that you get something nonzero.
So orbital angular momentum is not conserved by the Weyl neutrinos. That
was no big surprise to physicists, because the Dirac equation does not conserve
orbital angular momentum either. Similarly, if you work out the commutator
of a component of spin, you find that spin is not preserved either.

However, if you add the two operators, you get the net angular momentum,
orbital plus spin. That operator does commute with the Weyl Hamiltonians.
So the Weyl Hamiltonians do conserve net angular momentum, like the Dirac
equation does. That is very fortunate, because without doubt Pauli would
have had a fit if Weyl had suggested that nature does not conserve net angular
momentum.

But relativity does mix up orbital angular momentum with spin. Often this
book describes particles as being in states of specific orbital angular momentum
with specific values of the spin. For example, that is how the nonrelativistic
hydrogen atom was described, chapter 4.3. Such a description is not really jus-
tified for particles at relativistic speeds. Fortunately the electron in a hydrogen
atom has a kinetic energy much less than its rest mass energy. Things are much
worse in beta decay, where the neutrino is emitted at almost the speed of light.

You might ask what else the Weyl Hamiltonians commute with. It can
be seen that they commute with the linear momentum operators: different
linear momentum operators commute because basically they are just derivatives,
and spin commutes with nonspin. Different spin components do not commute,
but everything commutes with itself. Since the Hamiltonian only involves the
spin component in the direction of the linear momentum, (because of the dot
product), the Hamiltonian commutes with the spin in that direction.

It is instructive to form a mental picture of these neutrinos. According to
the above, the neutrinos can be in states with definite linear momentum and
with definite spin in the direction of that linear momentum. In those states
the neutrinos move in a specific direction and also rotate around an axis in the
same direction. You can think of it macroscopically as screws; screws too rotate
around their axis of motion while they move in or out of their hole.

Now there are two kinds of screws. Normal, “right-handed,” screws move
into the hole if you rotate them clockwise with a screwdriver. Some special
applications use “left-handed” screws, which are machined so that they move
into the hole when you rotate them counter-clockwise. (One of the screws that
keep the pedals on a bicycle is normally a left-handed screw, to prevent you
from loosening it up when pedaling.)

Experiments show that all antineutrinos observed in a normal lab setting
act like right-handed screws. Neutrinos act like left-handed screws. Since a
right-handed screw turns into a left-handed screw when seen in a mirror, nature
is not the same when seen in a mirror. If, say, a beta decay is observed in a
mirror, the antineutrino that comes out is left-handed, rather than right-handed
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as it should.
(Using arguments like in {D.70}, it can be seen that ~ψR above is righthanded

and ~ψL left handed, [53, p. 95].)
Note that theoretical physicists do not know about screws. So they came up

with a different way to express that antineutrinos are right-handed like normal
screws, while neutrinos are left-handed. They call the component of spin in
the direction of motion, scaled so that its values are ±1, the “helicity.” So
according to theoretical physicists, antineutrinos as seen in a lab have helicity
1, while neutrinos have helicity −1.

It is ironic that Pauli in turn did not live long enough to learn that Weyl’s
neutrinos were wrong on at least one major count. Around 1998, experiments
found that neutrinos and antineutrinos are not massless as was long thought.
Their mass is extremely tiny, (far too tiny to be accurately measured by exper-
imental methods available at the time of writing), but it is not zero.

Fundamentally, it makes a big difference, because then their speed must be
less than the speed of light. Hypothetically, an observer can then move with a
speed faster than some antineutrino produced in a lab. The antineutrino then
seems to go backward for that observer. Since the spin is still in the same
direction, the observer sees a left-handed antineutrino, not a right-handed one.
So the handedness, or helicity, of antineutrinos, and similarly neutrinos, is not
fundamental. A process like the beta decay of an nucleus moving at a speed
extremely close to the speed of light could produce a left-handed antineutrino
trailing the nucleus. But since this does not happen for a nucleus at rest, nature
is still not the same when seen in the mirror.

At the time of writing, the precise nature of neutrinos is not yet fully un-
derstood. Usually, it is assumed that neutrinos are distinct from antineutrinos.
Neutrinos for which that is true are called Dirac neutrinos. However, so-called
Majorana neutrinos would be their own antiparticles; neutrinos and antineutri-
nos would simply differ in the spin state.

A.45 Fermi theory

This note needs more work, but as far as I know is basically OK. Unfortunately,
a derivation of electron capture for zero spin transitions is not included.

This note derives the Fermi theory of beta decay. In particular, it gives
the ballparks that were used to create figure 14.54. It also describes the Fermi
integral plotted in figure 14.52, as well as Fermi’s (second) golden rule. There
is also a final subsection on electron capture, A.45.7.

When beta decay was first observed, it was believed that the nucleus simply
ejected an electron. However, problems quickly arose with energy and momen-
tum conservation. To solve them, Pauli proposed in 1931 that in addition to the
electron, also a neutral particle was emitted. Fermi called it the “neutrino,” for
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“small neutral one.” Following ideas of Pauli in 1933, Fermi in 1934 developed
a comprehensive theory of beta decay. The theory justifies the various claims
made about allowed and forbidden beta decays. It also allows predictions of
the decay rate and the probability that the electron and antineutrino will come
out with given kinetic energies. This note gives a summary. The ballparks as
described in this note are the ones used to produce figure 14.54.

A large amount of work has gone into improving the accuracy of the Fermi
theory, but it is outside the scope of this note. To get an idea of what has
been done, you might start with [23] and work backwards. One point to keep
in mind is that the derivations below are based on expanding the electron and
neutrino wave functions into plane waves, waves of definite linear momentum.
For a more thorough treatment, it may be a better idea to expand into spherical
waves, because nuclear states have definite angular momentum. That idea is
worked out in more detail in the note on gamma decay, {A.25}. That is news
to the author. But it was supposed to be there, I think.

A.45.1 Form of the wave function

A classical quantum treatment will not do for beta decay. To see why, note that
in a classical treatment the wave function state before the decay is taken to be
of the form

ψ1(~r1, Sz,1,~r2, Sz,2, . . . ,~rA, Sz,A)

where 1 through A number the nucleons. However, the decay creates an electron
and a antineutrino out of nothing. Therefore, after the decay the classical wave
function is of the form

ψ2(~r1, Sz,1,~r2, Sz,2, . . . ,~rA, Sz,A,~re, Sz,e,~rν̄ , Sz,ν̄)

There is no way to describe how ψ1 could evolve into ψ2. You cannot just
scribble in two more arguments into a function somewhere half way during the
evolution. That would be voodoo mathematics. And there is also a problem
with one nucleon turning from a neutron into a proton. You should really cross
out the argument corresponding to the old neutron, and write in an argument
for the new proton.

You might think that maybe the electron and antineutrino were always there
to begin with. But that has some major problems. A lone neutron falls apart
into a proton, an electron and an antineutrino. So supposedly the neutron
would consist of a proton, an electron, and an antineutrino. But to confine light
particles like electrons and neutrinos to the size of a nucleon would produce huge
kinetic energies. According to the Heisenberg uncertainty relation p ∼ ~/∆x,
where the energy for relativistic particles is about pc, so the kinetic energy of
a light particle confined to a 1 fm range is about 200 MeV. What conceivable
force could be strong enough to hold electrons and neutrinos that hot? And how
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come the effects of this mysterious force never show up in the atomic electrons
that can be very accurately observed? How come that electrons come out in
beta decays with only a few MeV, rather than 200 MeV?

Further, a high-energy antineutrino can react with a proton to create a
neutron and a positron. That neutron is supposed to consist of a proton, an
electron, and an antineutrino. So, following the same reasoning as before, the
original proton before the reaction would consist of a positron, an electron, and
a proton. That proton in turn would supposedly also consist of a positron,
an electron, and an proton. So the original proton consists of a positron, an
electron, a positron, an electron, and a proton. And so on until a proton consists
of a proton and infinitely many electron / positron pairs. Not just one electron
with very high kinetic energy would need to be confined inside a nucleon, but
an infinite number of them, and positrons to boot. And all these electrons and
positrons would somehow have to be prevented from annihilating each other.

It just does not work. There is plenty of solid evidence that neutrons and
protons each contain three quarks, not other nucleons along with electrons,
positrons, and neutrinos. The electron and antineutrino are created out of pure
energy during beta decay, as allowed by Einstein’s famous relativistic expression
E = mc2. A relativistic quantum treatment is therefore necessary.

In particular, it is necessary to deal mathematically with the appearance of
the electron and an antineutrino out of nothing. To do so, a more general, more
abstract way must be used to describe the states that nature can be in. Consider
a decay that produces an electron and an antineutrino of specific momenta ~pe,
respectively ~pν̄ . The final state is written as

ψ2 = ψ2,nuc|1e,~pe〉|1ν̄,~pν̄〉 (A.274)

where ψ2,nuc is the nuclear part of the final wave function. The electron ket
|1e,~pe〉 is a “Fock-space ket,” and should be read as “one electron in the state
with angular momentum ~pe.” The antineutrino ket should be read as “one
antineutrino in the state with angular momentum ~pν̄ .”

Similarly, the state before the decay is written as

ψ1 = ψ1,nuc|0e,~pe〉|0ν̄,~pν̄〉 (A.275)

where |0e,~pe〉 means “zero electrons in the state with angular momentum ~pe,”
and similar for the antineutrino ket. Written in this way, the initial and final
wave functions are no longer inconsistent. What is different is not the form of
the wave function, but merely how many electrons and antineutrinos are in the
states with momentum ~pe, respectively ~pν̄ . Before the decay, the “occupation
numbers” of these states are zero electrons and zero antineutrinos. After the
decay, the occupation numbers are one electron and one neutrino. It is not
that the initial state does not have occupation numbers for these states, (which
would make ψ1 and ψ2 inconsistent), but merely that these occupation numbers
have the value zero, (which does not).
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(You could also add kets for different momentum states that the final elec-
tron and antineutrino are not in after the decay. But states that have zero
electrons and neutrinos both before and after the considered decay are physi-
cally irrelevant and can be left away.)

That leaves the nuclear part of the wave function. You could use Fock-space
kets to deal with the disappearance of a neutron and appearance of a proton
during the decay. However, there is a neater way. The total number of nucleons
remains the same during the decay. The only thing that happens is that a
nucleon changes type from a neutron into a proton. The mathematical trick is
therefore to take the particles to be nucleons, instead of protons and neutrons.
If you give each nucleon a “nucleon type” property, then the only thing that
happens during the decay is that the nucleon type of one of the nucleons flips
over from neutron to proton. No nucleons are created or destroyed. Nucleon
type is typically indicated by the symbol T3 and is defined to be 1

2
if the nucleon

is a proton and −1
2
if the nucleon is a neutron. (Some older references may

define it the other way around.) The general form of the nuclear wave function
therefore becomes

ΨN(~r1, Sz,1, T3,1,~r2, Sz,2, T3,2, . . . ,~rA, Sz,A, T3,A; t)

During the decay, the T3 value of one nucleon will change from −1
2
to 1

2
.

Of course, the name “nucleon type” for T3 is not really acceptable, because it
is understandable. In the old days, the names “isobaric spin” or “isotopic spin”
were used, because nucleon type has absolutely nothing to do with spin. How-
ever, it was felt that these nonsensical names could cause some smart outsiders
to suspect that the quantity being talked about was not really spin. Therefore
the modern term “isospin” was introduced. This term contains nothing to give
the secret away that it is not spin at all.

A.45.2 Source of the decay

Next the source of the decay must be identified. Ultimately that must be the
Hamiltonian, because the Hamiltonian describes the time evolution of systems
according to the Schrödinger equation.

In a specific beta decay process, two states are involved. A state ψ1 describes
the nucleus before the decay, and a state ψ2 describes the combination of nucleus,
electron, and antineutrino after the decay. That makes the system into a so-
called “two state system.” The unsteady evolution of such systems was discussed
in chapter 7.6 and {D.38}. The key to the solution were the “Hamiltonian
coefficients.” The first one is:

E1 ≡ H11 ≡ 〈ψ1|Hψ1〉
where H is the (relativistic) Hamiltonian. The value of H11 is the expectation
value of the energy E1 when nature is in the state ψ1. Assuming that the
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nucleus is initially at rest, the relativistic energy is just the rest mass energy of
the nucleus. It is given in terms of its mass by Einstein’s famous relation E1 =
mN1c

2.
The Hamiltonian coefficient for the final state is similarly

E2 ≡ H22 ≡ 〈ψ2|Hψ2〉

Using the form given in the previous section for the final wave function, that
becomes

E2 = 〈1ν̄,~pν̄ |〈1e,~pe|ψ2,nuc|Hψ2,nuc|1e,~pe〉|1ν̄,~pν̄〉
It is the expectation value of energy after the decay. It consists of the sum of
the rest mass energies of final nucleus, electron, and antineutrino, as well as
their kinetic energies.

The Hamiltonian coefficient that describes the interaction between the two
states is crucial, because it is the one that causes the decay. It is

H21 ≡ 〈ψ2|Hψ1〉

Using the form for the wave functions given in the previous section:

H21 = 〈1ν̄,~pν̄ |〈1e,~pe|ψ2,nuc|Hψ1,nuc|0e,~pe〉|0ν̄,~pν̄〉

If H21 is zero, no decay will occur. And most of the Hamiltonian does not
produce a contribution to H21. But there is a small part of the Hamiltonian,
call it H ′, that does produce a nonzero interaction. That part is due to the
weak force.

Unfortunately, Fermi had no clue what H ′ was. He assumed that beta
decay would not be that much different from the better understood decay of
excited atomic states in atoms. Gamma decay is the direct equivalent of atomic
decay for excited nuclei. Beta decay is definitely different, but maybe not that
different. In atomic decay an electromagnetic photon is created, rather than an
electron and antineutrino. Still the general idea seemed similar.

In atomic decay H ′ is essentially proportional to the product of the charge of
the excited electron, times the spatial eigenstate of the photon, times a “photon
creation” operator â†:

H ′ ∝ eψphoton(~r)â
†

In words, it says that the interaction of the electron with the electromagnetic
field can create photons. The magnitude of that effect is proportional to the
amplitude of the photon at the location of the electron, and also to the electric
charge of the electron. The electric charge acts as a “coupling constant” that
links electrons and photons together. If the electron was uncharged, it would
not be able to create photons. So it would not be able to create an electric field.
Further, the fact that the coupling between the electron and the photon occurs
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at the location of the electron eliminates some problems that relativity has with
action at a distance.

There is another term in H ′ that involves an annihilation operator â instead
of a creation operator. An annihilation operator destroys photons. However,
that does not produce a contribution to H21; if you try to annihilate the nonex-
isting photon in the initial wave function, you get a zero wave function. On the
other hand for the earlier term, the creation operator is essential. It turns the
initial state with no photon into a state with one photon. States with different
numbers of particles are orthogonal, so the Hamiltonian coefficient H12 would
be zero without the creation operator. Looked at the other way around, the
presence of the creation operator in the Hamiltonian ensures that the final state
must have one more photon for the decay to occur. (See addendum {A.15} for
more details on electromagnetic interactions, including a more precise descrip-
tion of H ′. See also {A.25}.)

Fermi assumed that the general ideas of atomic decay would also hold for
beta decay of nuclei. Electron and antineutrino creation operators in the Hamil-
tonian would turn the zero-electron and zero-antineutrino kets into one-electron
and one-antineutrino ones. Then the inner products of the kets are equal to one
pairwise. Therefore both the creation operators and the kets drop out of the
final expression. In that way the Hamiltonian coefficient simplifies to

H21 = 〈ψ2,nuc|
A∑

i=1

ghiψe,~pe(~ri)ψν̄,~pν̄ (~ri)|ψ1,nuc〉

where the index i is the nucleon number and ghi is the remaining still unknown
part of the Hamiltonian. In indicating this unknown part by ghi, the assumption
is that it will be possible to write it as some generic dimensional constant g times
some simple nondimensional operator hi acting on nucleon number i.

To write expressions for the wave functions of the electron and antineutrino,
you face the complication that unbound states in infinite space are not normal-
izable. That produced mathematical complications for momentum eigenstates
in chapter 7.9.2, and similar difficulties resurface here. To simplify things, the
mathematical trick is to assume that the decaying nucleus is not in infinite
space, but in an extremely large “periodic box.” The assumption is that nature
repeats itself spatially; a particle that exits the box through one side reenters
it through the opposite side. Space “wraps around” if you want, and opposite
sides of the box are assumed to be physically the same location. It is like on
the surface of the earth: if you move along the straightest-possible path on the
surface of the earth, you travel around the earth along a big circle and return
to the same point that you started out at. Still, on a local scale, the surface
on the earth looks flat. The idea is that the empty space around the decaying
nucleus has a similar property, in each of the three Cartesian dimensions. This
trick is also commonly used in solid mechanics, chapter 10.
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In a periodic box, the wave function of the antineutrino is

ψν̄,~pν̄ =
1√
V
ei~pν̄ ·~r/~ =

1√
V
ei(px,ν̄x+py,ν̄y+pz,ν̄z)/~

where V is the volume of the periodic box. It is easy to check that this wave
function is indeed normalized. Also, it is seen that it is indeed an eigenfunction
of the x-momentum operator ~∂/i∂x with eigenvalue px, and similar for the y-
and z-momentum operators.

The wave function of the electron will be written in a similar way:

ψe,~pe(~r) =
1√
V
ei~pe·~r/~ =

1√
V
ei(px,ex+py,ey+pz,ez)/~

This however has an additional problem. It works fine far from the nucleus,
where the momentum of the electron is by definition the constant vector ~pe.
However, near the nucleus the Coulomb field of the nucleus, and to some extent
that of the atomic electrons, affects the kinetic energy of the electron, and hence
its momentum. Therefore, the energy eigenfunction that has momentum ~p far
from the nucleus differs significantly from the above exponential closer to the
nucleus. And this wave function must be evaluated at nucleon positions inside
the nucleus! The problem is particularly large when the momentum ~pe is low,
because then the electron has little kinetic energy and the Coulomb potential
is relatively speaking more important. The problem gets even worse for low-
energy positron emission, because a positively-charged positron is repelled by
the positive nucleus and must tunnel through to reach it.

The usual way to deal with the problem is to stick with the exponential
electron wave function for now, and fix up the problem later in the final results.
The fix-up will be achieved by throwing in an additional fudge factor. While
“Fermi fudge factor” alliterates nicely, it does not sound very respectful, so
physicists call the factor the “Fermi function.”

The bottom line is that for now

H21 =
g√
V
〈ψ2,nuc|

A∑

i=1

hie
i(~pe+~pν̄)·~ri/~ψ1,nuc〉 (A.276)

That leaves the still unknown operator ghi. The constant g is simply defined
so that the operator hi has a magnitude that is of order one. That means that
〈ψ2,nuc|hiψ1,nuc〉 should never be greater than about one, though it could be
much less if ψ2,nuc and hiψ1,nuc turn out to be almost orthogonal. It is found
that g has a rough value of about 100 eV fm3, depending a bit on whether it is
a Fermi or Gamow-Teller decay. Figure 14.54 simply used 100 MeV fm3.
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A.45.3 Allowed or forbidden

The question of allowed and forbidden decays is directly related to the Hamil-
tonian coefficient H21, (A.276), derived in the previous subsection, that causes
the decay.

First note that the emitted electron and antineutrino have quite small mo-
mentum values, on a nuclear scale. In particular, in their combined wave func-
tion

1

V e
i(~pe+~pν̄)·~ri/~

the argument of the exponential is small. Typically, its magnitude is only a few
percent, It is therefore possible to approximate the exponential by one, or more
generally by a Taylor series:

ei(~pe+~pν̄)·~ri/~ ≈ 1 +
i(~pe + ~pν̄) ·~ri

~
+

1

2!

(
i(~pe + ~pν̄) ·~ri

~

)2

+ . . .

Since the first term in the Taylor series is by far the largest, you would
expect that the value of H21, (A.276), can be well approximated by replacing
the exponential by 1, giving:

H0
21 =

g√
V
〈ψ2,nuc|

A∑

i=1

hiψ1,nuc〉

However, clearly this approximation does not work if the value of H0
21 is zero

for some reason:

If the simplified coefficient H0
21 is nonzero, the decay is allowed. If

it is zero, the decay is forbidden.

If the decay is forbidden, higher order terms in the Taylor series will have to be
used to come up with a nonzero value for H21. Since these higher order terms
are much smaller, and H21 drives the decay, a forbidden decay will proceed much
slower than an allowed one.

Why would a decay not be allowed? In other words why would ψ2,nuc and
hiψ1,nuc be exactly orthogonal? If you took two random wave functions for ψ2,nuc

and ψ1,nuc, they definitely would not be. But ψ2,nuc and ψ1,nuc are not random
wave functions. They satisfy a significant amount of symmetry constraints.

One very important one is symmetry with respect to coordinate system ori-
entation. An inner product of two wave functions is independent of the angular
orientation of the coordinate system in which you evaluate it. Therefore, you can
average the inner product over all directions of the coordinate system. However,
the angular variation of a wave function is related to its angular momentum; see
chapter 7.3 and its note. In particular, if you average a wave function of definite
angular momentum over all coordinate system orientations, you get zero unless



A.45. FERMI THEORY 1199

the angular momentum is zero. So, if it was just ψ1,nuc in the inner product in
H0

21, the inner product would be zero unless the initial nucleus had zero spin.
However, the final state is also in the inner product, and being at the other
side of it, its angular variation acts to counteract that of the initial nucleus.
Therefore, H0

21 will be zero unless the initial angular momentum is exactly bal-
anced by the net final angular momentum. And that is angular momentum
conservation. The decay has to satisfy it.

Note that the linear momenta of the electron and antineutrino have become
ignored in H0

21. Therefore, their orbital angular momentum is approximated to
be zero too. Under these condition H0

21 is zero unless the angular momentum of
the final nucleus plus the spin angular momentum of electron and antineutrino
equals the angular momentum of the original nucleus. Since the electron and
antineutrino can have up to one unit of combined spin, the nuclear spin cannot
change more than one unit. That is the first selection rule for allowed decays
given in chapter 14.19.6.

Another important constraint is symmetry under the parity transformation
~r → −~r. This transformation too does not affect inner products, so you can
average the values before and after the transform. However, a wave function
that has odd parity changes sign under the transform and averages to zero. So
the inner product in H0

21 is zero if the total integrand has odd parity. For a
nonzero value, the integrand must have even parity, and that means that the
parity of the initial nucleus must equal the combined parity of the final nucleus
electron, and antineutrino.

Since the electron and antineutrino come out without orbital angular mo-
mentum, they have even parity. So the nuclear parity must remain unchanged
under the transition. (To be sure, this is not absolutely justified. Nuclear wave
functions actually have a tiny uncertainty in parity because the weak force does
not conserve parity, chapter 14.19.8. This effect is usually too small to be ob-
served and will be ignored here.)

So what if either one of these selection rules is violated? In that case, maybe
the second term in the Taylor series for the electron and antineutrino wave
functions produces something nonzero that can drive the decay. For that to be
true,

H1
21 =

g√
V
〈ψ2,nuc|

A∑

i=1

hi
i(~pe + ~pν̄) ·~ri

~
ψ1,nuc〉

has to be nonzero. If it is, the decay is a first-forbidden one. Now the spherical
harmonics Y m

1 of orbital angular momentum are of the generic form, {D.14}

rY m
1 =

∑

j

cjrj

with the cj some constants. Therefore, the factor ~ri in H1
21 brings in angular

variation corresponding to one unit of angular momentum. That means that
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the total spin can now change by up to one unit, and therefore the nuclear spin
by up to two units. That is indeed the selection rule for first forbidden decays.

And note that because ~ri changes sign when every ~r is replaced by −~r, the
initial and final nuclear parities must now be opposite for H1

21 not to be zero.
That is indeed the parity selection rule for first-forbidden decays.

The higher order forbidden decays go the same way. For an ℓth-forbidden
decay,

Hℓ
21 =

g

ℓ!
√
V
〈ψ2,nuc|

A∑

i=1

hi

(
i(~pe + ~pν̄) ·~ri

~

)ℓ
ψ1,nuc〉 (A.277)

must be the first nonzero inner product. Note that an ℓth-forbidden decay has
a coefficient H21 proportional to a factor of order (pR/~)ℓ, with R the nuclear
radius. Since the decay rate turns out to be proportional to |H21|2, an ℓth-
forbidden decay is slowed down by a factor of order (pR/~)2ℓ, making highly
forbidden decays extremely slow.

A.45.4 The nuclear operator

This subsection will have a closer look at the nuclear operator hi. While the
discussion will be kept simple, having some idea about the nature of this oper-
ator can be useful. It can help to understand why some decays have relatively
low decay rates that are not explained by just looking at the electron and an-
tineutrino wave functions, and the nuclear spins and parities. The discussion
will mainly focus on allowed decays.

Although Fermi did not know what hi was, Pauli had already established
the possible generic forms for it allowed by relativity. It could take the form of
a scalar (S), a vector (V), an axial vector (A, a vector like angular momentum,
one that inverts when the physics is seen in a mirror), a pseudoscalar (P, a scalar
like the scalar triple product of vectors that changes sign when the physics is
seen in the mirror), or a tensor (T, a multiple-index object like a matrix that
transforms in specific ways.) Fermi simply assumed the interaction was of the
vector, V, type in analogy with the decay of excited atoms.

Fermi ignored the spin of the electron and antineutrino. However, Gamow
& Teller soon established that to allow for decays where the two come out with
spin, (Gamow-Teller decays), ghi also should have terms with axial, A, and/
or tensor, T, character. Work of Fierz combined with experimental evidence
showed that the Hamiltonian could not have both S and V, nor both A and T
terms. Additional evidence narrowed hi down to STP combinations or VA ones.

Finally, it was established in 1953 that the correct one was the STP com-
bination, because experimental evidence on RaE, (some physicists cannot spell
bismuth-210), showed that P was present. Unfortunately, it did not. For one,
the conclusion depended to an insane degree on the accuracy of a correction
term.
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However, in 1955 it was established that it was STP anyway, because exper-
imental evidence on helium-6 clearly showed that the Gamow-Teller part of the
decay was tensor. The question was therefore solved satisfactorily. It was STP,
or maybe just ST. Experimental evidence had redeemed itself.

However, in 1958, a quarter century after Fermi, it was found that beta
decay violated parity conservation, chapter 14.19.8, and theoretically that was
not really consistent with STP. So experimentalists had another look at their
evidence and quickly came back with good news: “The helium-6 evidence does
not show Gamow-Teller is tensor after all.”

The final answer is that ghi is VA. Since so much of our knowledge about nu-
clei depends on experimental data, it may be worthwhile to keep this cautionary
tale, taken from the Stanford Encyclopedia of Philosophy, in mind.

It may next be noted that ghi will need to include a isospin creation operator
to be able to turn a neutron into a proton. In Fermi decays, hi is assumed to
be just that operator. The constant of proportionality g, usually called the
coupling constant gF, describes the strength of the weak interaction. That is
much like the unit electric charge e describes the strength of the electromagnetic
interaction between charged particles and photons. In Fermi decays it is found
that gF is about 88 eV fm3. Note that this is quite small compared to the MeV
scale of nuclear forces. If you ballpark relative strengths of forces, [31, p. 285]
the nuclear force is strongest, the electromagnetic force about hundred times
smaller, the weak force another thousand times smaller than that, and finally
gravity is another 1034 times smaller than that. The decay rates turn out to be
proportional to the square of the interaction, magnifying the relative differences.

In Gamow-Teller decays, hi is assumed to consist of products of isospin
creation operators times spin creation or annihilation operators. The latter
operators allow the spin of the neutron that converts to the proton to flip over.
Suitable spin creation and annihilation operators are given by the so-called
“Pauli spin matrices,” chapter 12.10 When they act on a nucleon, they produce
states with the spin in an orthogonal direction flipped over. That allows the
net spin of the nucleus to change by one unit. The appropriate constant of
proportionality gGT is found to be a bit larger than the Fermi one.

The relevant operators then become, [5],

hi = τ1 ± iτ2 hi = (τ1 ± iτ2)
3∑

j=1

σj

for Fermi and Gamow-Teller decays respectively. Here the three σj are the
Pauli spin matrices of chapter 12.10. The τi are the equivalents of the Pauli
spin matrices for isospin; in the combinations shown above they turn neutrons
into protons, or vice-versa. Please excuse: using the clarity now made possible
by modern physical terminology, they create, respectively annihilate, isospin.
The upper sign is relevant for beta-minus decay and the lower for beta-plus



1202 APPENDIX A. ADDENDA

decay. The Gamow-Teller operator absorbs the spin part of the electron and
antineutrino wave functions, in particular the averaging over the directions of
their spin.

So how do these nuclear operators affect the decay rate? That is best un-
derstood by going back to the more physical shell-model picture. In beta minus
decay, a neutron is turned into a proton. That proton usually occupies a differ-
ent spatial state in the proton shells than the original neutron in the neutron
shells. And different spatial states are supposedly orthogonal, so the inner prod-
uct 〈ψ2,nuc|hiψ1,nuc〉 will usually be pretty small, if the decay is allowed at all.
There is one big exception, though: mirror nuclei. In a decay between mirror
nuclei, a nucleus with a neutron number N1 = Z1± 1 decays into one with neu-
tron number N2 = Z2 ∓ 1. In that case, the nucleon that changes type remains
in the same spatial orbit. Therefore, the Fermi inner product equals one, and
the Gamow Teller one is maximal too. Allowed decays of this type are called
“superallowed.” The simplest example is the beta decay of a free neutron.

If you allow for beta decay to excited states, more superallowed decays are
possible. States that differ merely in nucleon type are called isobaric analog
states, or isospin multiplets, chapter 14.18. There are about twenty such su-
perallowed decays in which the initial and final nuclei both have spin zero and
positive parity. These twenty are particularly interesting theoretically, because
only Fermi decays are possible for them. And the Fermi inner product is

√
2.

(The reason that it is
√
2 instead of 1 like for mirror nuclei can be seen from

thinking of isospin as if it is just normal spin. Mirror nuclei have an odd num-
ber of nucleons, so the net nuclear isospin is half integer. In particular the net
isospin will be 1

2
in the ground state. However, nuclei with zero spin have an even

number of nucleons, hence integer net isospin. The isospin of the twenty decays
is one; it cannot be zero because at least one nucleus must have a nonzero net
nucleon type T3,net. The net nucleon type is only zero if the number of protons
is the same as the number of neutrons. It is then seen from (12.9) and (12.10)
in chapter 12 that the isospin creation or annihilation operators will produce a
factor

√
2.)

These decays therefore allow the value of the Fermi coupling constant gF
to be determined from the decay rates. It turns out to be about 88 eV fm3,
regardless of the particular decay used to compute it. That seems to suggest
that the interaction with neighboring nucleons in a nucleus does not affect the
Fermi decay process. Indeed, if the value of gF is used to analyze the decay rates
of the mirror nuclei, including the free neutron that has no neighbors, the data
show no such effect. The hypothesis that neighboring nucleons do not affect
the Fermi decay process is known as the “conserved vector current hypothesis.”
What name could be clearer than that? Unlike Fermi decays, Gamow-Teller
decays are somewhat affected by the presence of neighboring nuclei.

Besides the spin and parity rules already mentioned, Fermi decays must
satisfy the approximate selection rule that the magnitude of isospin must be
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unchanged. They can be slowed down by several orders of magnitude if that
rule is violated.

Gamow-Teller decays are much less confined than Fermi ones because of
the presence of the electron spin operator. As the shell model shows, nucleon
spins are uncertain in energy eigenstates. Therefore, the nuclear symmetry
constraints are a lot less restrictive.

A.45.5 Fermi’s golden rule

The previous four subsections have focussed on finding the Hamiltonian coef-
ficients of the decay from a state ψ1 to a state ψ2. Most of the attention was
on the coefficient Hℓ

21 that drives the decay. The next step is solution of the
Schrödinger equation to find the evolution of the decay process.

The quantum amplitude of the pre-decay state ψ1 will be indicated by ā and
the quantum amplitude of the final decayed state ψ2 by b̄. The Schrödinger
equation implies that b̄ increases from zero according to

i~ ˙̄b = Hℓ
21e

i(E2−E1)t/~ā

(To use this expression, the quantum amplitudes must include an additional
phase factor, but it is of no consequence for the probability of the states. See
chapter 7.6 and {D.38} for details.)

Now picture the following. At the initial time there are a large number of
pre-decay nuclei, all with ā = 1. All these nuclei then evolve according to the
Schrödinger equation, above, over a time interval tc that is short enough that ā
stays close to one. (Because the perturbation of the nucleus by the weak force
is small, the magnitudes of the coefficients only change slowly on the relevant
time scale.) In that case, ā can be dropped from the equation and its solution
is then seen to be

b̄ = −Hℓ
21

ei(E2−E1)tc/~ − 1

(E2 − E1)

Half of the exponential can be factored out to produce a real ratio:

b̄ = −Hℓ
21e

i 1
2
(E2−E1)tc/~

i

~

sin
(

1
2
(E2 − E1)tc/~

)

1
2
(E2 − E1)tc/~

tc

Then at the final time tc, assume that the state of all the nuclei is “mea-
sured.” The macroscopic surroundings of the nuclei establishes whether or not
electron and antineutrino pairs have come out. The probability that a give
nucleus has emitted such a pair is given by the square magnitude |b̄|2 of the
amplitude of the decayed state. Therefore, a fraction |b̄|2 of the nuclei will be
found to have decayed and 1−|b̄|2 will be found to be still in the pre-decay state
ψ1. After this “measurement,” the entire process then repeats for the remaining
1− |b̄|2 nuclei that did not decay.
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The bottom line is however that a fraction |b̄|2 did. Therefore, the ratio
|b̄|2/tc gives the specific decay rate, the relative amount of nuclei that decay per
unit time. Plugging in the above expression for b̄ gives:

λsingle final state =
|Hℓ

21|2
~2

sin2
(

1
2
(E2 − E1)tc/~

)

(
1
2
(E2 − E1)tc/~

)2 tc (A.278)

To get the total decay rate, you must still sum over all possible final states. Most
importantly, you need to sum the specific decay rates together for all possible
electron and antineutrino momenta.

And there may be more. If the final nuclear state has spin you also need to
sum over all values of the magnetic quantum number of the final state. (The
amount of nuclear decay should not depend on the angular orientation of the
initial nucleus in empty space. However, if you expand the electron and neutrino
wave functions into spherical waves, you need to average over the possible initial
magnetic quantum numbers. It may also be noted that the total coefficient |Hℓ

21|
for the decay 1→ 2 will not be the same as the one for 2→ 1: you average over
the initial magnetic quantum number, but sum over the final one.) If there are
different excitation levels of the final nucleus that can be decayed to, you also
need to sum over these. And if there is more than one type of decay process
going on at the same time, they too need to be added together.

However, all these details are of little importance in finding a ballpark for
the dominant decay process. The real remaining problem is summing over the
electron and antineutrino momentum states. The total ballparked decay rate
must be found from

λ =
∑

all ~pe,~pν̄

|Hℓ
21|2
~2

sin2
(

1
2
(E2 − E1)tc/~

)

(
1
2
(E2 − E1)tc/~

)2 tc

Based on energy conservation, you would expect that decays should only
occur when the total energy E2 of the nucleus, electron and antineutrino after
the decay is exactly equal to the energy E1 of the nucleus before the decay.
However, the summation above shows that that is not quite true. For a final
state that has E2 exactly equal to E1, the last fraction in the summation is
seen to be unity, using l’Hospital. For a final state with an energy E2 of, for
example, E1 + ~/tc, the ratio is quite comparable. Therefore decay to such a
state proceeds at a comparable rate as to a state that conserves energy exactly.
There is “slop” in energy conservation.

How can energy not be conserved? The reason is that neither the initial state
nor the final state is an energy eigenstate, strictly speaking. Energy eigenstates
are stationary states. The very fact that decay occurs assures that these states
are not really energy eigenstates. They have a small amount of uncertainty
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in energy. The nonzero value of the Hamiltonian coefficient Hℓ
21 assures that,

chapter 5.3, and there may be more decay processes adding to the uncertainty
in energy. If there is some uncertainty in energy, then E2 = E1 is not an exact
relationship.

To narrow this effect down more precisely, the fraction is plotted in figure
7.7. The spikes in the figure indicate the energies E2 of the possible final states.
Now the energy states are almost infinitely densely spaced, if the periodic box
in which the decay is assumed to occur is big enough. And the box must be
assumed very big anyway, to simulate decay in infinite space. Therefore, the
summation can be replaced by integration, as follows:

λ =

∫

all E2

|Hℓ
21|2
~2

sin2
(

1
2
(E2 − E1)tc/~

)

(
1
2
(E2 − E1)tc/~

)2 tc
dN

dE2

dE2

where dN/dE2 is the number of final states per unit energy range, often called
the density of states ρ(E2).

Now assume that the complete problem is cut into bite-size pieces for each
of which |Hℓ

21| is about constant. It can then be taken out of the integral. Also,
the range of energy in figure 7.7 over which the fraction is appreciable, the
energy slop, is very small on a normal nuclear energy scale: beta decay is a slow
process, so the initial and final states do remain energy eigenstates to a very
good approximation. Energy conservation is almost exactly satisfied. Because
of that, the density of states dN/dE2 will be almost constant over the range
where the integrand is nonzero. It can therefore be taken out of the integral
too. What is left can be integrated analytically, [41, 18.36]. That gives:

λ =
|Hℓ

21|2
~2

tc
dN

dE

2π~

tc

That is “Fermi’s (second) golden rule.” It describes how energy slop increases
the total decay rate. It is not specific to beta decay but also applies to other
forms of decay to a continuum of states. Note that it no longer depends on the
artificial length tc of the time interval over which the system was supposed to
evolve without “measurement.” That is good news, since that time interval was
obviously poorly defined.

Because of the assumptions involved, like dividing the problem into bite-size
pieces, the above expression is not very intuitive to apply. It can be rephrased
into a more intuitive form that does not depend on such an assumption. The
obtained decay rate is exactly the same as if in an energy slop range

∆Eslop =
2π~

tc

all states contribute just as much to the decay as one that satisfies energy
conservation exactly, while no states contribute outside of that range.
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(Note that if you ballpark tc as the half-life, then even a half-life as short as
10−15 s gives an energy slop of a few eV, almost impossible to measure. And
any nuclear decay with a half life of 10−15 s should surely produce an amount of
energy equal to very many MeV. Outside the mathematics of the Fermi theory,
the energy slop is imperceptible under normal conditions.)

The good news is that phrased this way, it indicates the relevant physics
much more clearly than the earlier purely mathematical expression for Fermi’s
golden rule. The bad news is that it suffers esthetically from still involving
the poorly defined time t, instead of already having shoved t under the mat.
Therefore, it is more appealing to write things in terms of the energy slop
altogether:

λsingle final state =
2π

~ε
|Hℓ

21|2 ∆Eslop ≡ ε εtc ∼ 2π~ (A.279)

Here ε is the amount that energy conservation seems to be violated, and is
related to a typical time tc between collisions by the energy-time uncertainty
relationship shown.

It may be noted that the golden rule does not apply if the evolution is
not to a continuum of states. It also does not apply if the slop range ε is so
large that dN/dE is not constant over it. And it does not apply for systems
that evolve without being perturbed over times long enough that the decay
probability becomes significant before the system is “measured.” (If b̄ becomes
appreciable, ā can no longer be close to one since the probabilities |ā|2 and
|b̄|2 must add to one.) “Measurements,” or rather interactions with the larger
environment, are called “collisions.” Fermi’s golden rule applies to so-called
“collision-dominated” conditions. Typically examples where the conditions are
not collision dominated are in NMR and atomic decays under intense laser light.

Mathematically, the conditions for Fermi’s golden rule can be written as

|H21| ≪ ε≪ E ε ≡ 2π~

tc
(A.280)

The first inequality means that the perturbation causing the decay must be
weak enough that there is only a small chance of decay before a collision occurs.
The second inequality means that there must be enough time between collisions
that an apparent energy conservation from initial to final state applies. Roughly
speaking, collisions must be sufficiently frequent on the time scale of the decay
process, but rare on the quantum time scale ~/E.

It should also be noted that the rule was derived by Dirac, not Fermi. The
way Fermi got his name on it was that he was the one who named it a “golden
rule.” Fermi had a flair for finding memorable names. God knows how he ended
up being a physicist.
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A.45.6 Mopping up

The previous subsections derived the basics for the rate of beta decay. The
purpose of this section is to pull it all together and get some actual ballpark
estimates for beta decay.

First consider the possible values for the momenta ~pe and ~pν̄ of the electron
and antineutrino. Their wave functions were approximately of the form

ψ~p =
1√
V
ei(pxx+pyy+pzz)/~

where V = ℓ3 is the volume of the periodic box in which the decay is assumed
to occur.

In a periodic box the wave function must be the same at opposite sides of
the box. For example, the exponential factor eipxx/~ is 1 at x=0, and it must be
1 again at x = ℓ. That requires pxℓ/~ to be a whole multiple of 2π. Therefore px
must be a whole multiple of 2π~/ℓ. Successive possible px values are therefore
spaced the finite amount 2π~/ℓ apart. And so are successive py and pz values.

px

py

pz

Figure A.27: Possible momentum states for a particle confined to a periodic
box. The states are shown as points in momentum space. States that have
momentum less than some example maximum value are in red.

Graphically this can by visualized by plotting the possible momentum values
as points in a three-dimensional px, py, pz axis system. That is done in figure
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A.27. Each point correspond to one possible momentum state. Each point
is the center of its own little cube with sides 2π~/ℓ. The “volume” (in this
three-dimensional momentum plot, not physical volume) of that little cube is
(2π~/ℓ)3. Since ℓ3 is the physical volume V of the periodic box, the “volume”
in momentum space taken up by each momentum state is (2π~)3/V

That allows the number of different momentum states to be computed. In
particular, consider how many states have magnitude of momentum |~p ′| less
than some maximum value p. For some example value of p, these are the red
states in figure A.27. Note that they form a sphere of radius p. That sphere has
a “volume” equal to 4

3
πp3. Since each state takes up a “volume” (2π~)2/V , the

number of states N is given by the number of such “volumes” in the sphere:

N|~p ′|6p =
4
3
πp3

(2π~)3/V
The number of electron states that have momentum in a range from pe to

pe + dpe can be found by taking a differential of the expression above:

dNe =
Vp2e
2π2~3

dpe

(Here the range dpe is assumed small, but not so small that the fact that the
number of states is discrete would show up.) Each momentum state still needs
to be multiplied by the number of corresponding antineutrino states to find the
number of states of the complete system.

Now the kinetic energy of the antineutrino Tν̄ is fixed in terms of that of the
electron and the energy release of the decay Q by:

Tν̄ = Q− Te
Here the kinetic energy of the final nucleus is ignored. The heavy final nucleus
is unselfish enough to assure that momentum conservation is satisfied for what-
ever the momenta of the electron and antineutrino are, without demanding a
noticeable share of the energy for itself. That is much like Mother Earth does
not take any of the kinetic energy away if you shoot rockets out to space from
different locations. You might write equations down for it, but the only thing
they are going to tell you is that it is true as long as the speed of the nucleus
does not get close to the speed of light. Beta decays do not release that much
energy by far.

The electron and antineutrino kinetic energies are related to their momenta
by Einstein’s relativistic expression, chapter 1.1.2:

Te =
√

(mec2)2 + p2ec
2 −mec

2 Tν̄ = pν̄c (A.281)

where c is the speed of light and the extremely small rest mass of the neutrino
was ignored. With the neutrino energy fixed, so is the magnitude of the neutrino
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momentum:

pν̄ =
1

c
(Q− Te)

These result shows that the neutrino momentum is fixed for given electron
momentum pe. Therefore there should not be a neutrino momentum range dpν̄
and so no neutrino states. However, Fermi’s golden rule says that the theoretical
energy after the decay does not need to be exactly the same as the one before
it, because both energies have a bit of uncertainty. This slop in the energy
conservation equation allows a range of energies

∆Eslop = ∆Tν̄ = ∆pν̄c ≡ ε

Therefore the total amount of neutrino states for a given electron momentum
is not zero, but

∆Nν̄ =
Vp2ν̄
2π2~3

1

c
ε pν̄ =

1

c
(Q− Te)

The number of complete system states in an electron momentum range dpe is
the product of the number of electron states times the number of antineutrino
states:

dN = dNe∆Nν̄ =
V2

4π4~6c
p2ep

2
ν̄ ε dpe

Each of these states adds a contribution to the specific decay rate given by

λsingle final state =
2π

~ε
|Hℓ

21|2

Therefore the total specific decay rate is

λ =

∫ pe,max

pe=0

V2|Hℓ
21|2

2π3~7c
p2ep

2
ν̄ dpe

where the maximum electron momentum pe,max can be computed from the Q-
value of the decay using (A.281). (For simplicity it will be assumed that |Hℓ

21|2
has already been averaged over all directions of the electron and antineutrino
momentum.)

The derived expression (A.277) for the Hamiltonian coefficient Hℓ
21 can be

written in the form

|Hℓ
21|2 =

g2

V2

1

(ℓ!)2

(√
p2e + p2ν̄R

~

)2ℓ

Cℓ
N

Cℓ
N ≡

∣∣∣
〈
ψ2,nuc

∣∣∣
A∑

i=1

hi

((~pe + ~pν̄) ·~ri√
p2e + p2ν̄R

)ℓ
ψ1,nuc

〉∣∣∣
2

where the overline indicates some suitable average over the directions of the
electron and antineutrino momenta.
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It is not easy to say much about Cℓ
N in general, beyond the fact that its

magnitude should not be much more than one. This book will essentially ignore
Cℓ
N to ballpark the decay rate, assuming that its variation will surely be much

less than that of the beta decay lifetimes, which vary from milliseconds to 1017

year.
The decay rate becomes after clean up

λ =
1

2π3

g2m4
ec

2

~6

mec
2

~

R̃2ℓ

(ℓ!)2
Cℓ
N

∫ p̃e,max

p̃e=0

(p̃2e + p̃2ν̄)
ℓp̃2ep̃

2
ν̄F

ℓdp̃e (A.282)

where the p̃ indicate the electron and antineutrino momenta nondimensionalized
with mec. Also,

Q̃ ≡ Q

mec2
p̃e,max =

√
Q̃2 + 2Q̃ p̃ν̄ = Q̃−

√
1 + p̃2e+1 R̃ ≡ mecR

~
(A.283)

Here Q̃ is the Q-value or kinetic energy release of the decay in units of the
electron rest mass, and the next two relations follow from the expression for
the relativistic kinetic energy. The variable R̃ a suitably nondimensionalized
nuclear radius, and is small.

The factor F ℓ that popped up out of nothing in the decay rate is thrown
in to correct for the fact that the wave function of the electron is not really
just an exponential. The nucleus pulls on the electron with its charge, and
so changes its wave function locally significantly. The correction factor F 0 for
allowed decays is called the “Fermi function” and is given by

F (p̃e, Z2, A) =
2(1 + ξ)

Γ2(1 + 2ξ)

1

(2p̃eR̃)2−2ξ
eπη|Γ(ξ + iη)|2 (A.284)

ξ ≡
√

1− (αZ2)2 η ≡ αZ2

√
1 + p̃2e
p̃e

α =
e2

4πǫ0~c
≈ 1

137

where α is the fine structure constant and Γ the gamma function. The nonrela-
tivistic version follows for letting the speed of light go to infinity, while keeping
pe = mecp̃e finite. That gives ξ = 1 and

F (pe, Z2) =
2πη

1− e−2πη η =
e2

4πǫ0~

me

pe

For beta-plus decay, just replace Z2 by −Z2, because an electron is just as much
repelled by a negatively charged nucleus as a positron is by a positively charged
one.

To ballpark the effect of the nuclear charge on the electron wave function,
this book will use the relativistic Fermi function above whether it is an allowed
decay or not.
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For allowed decays, the factor in the decay rate that is governed by the Q-
value and nuclear charge is

f =

∫ p̃e,max

p̃e=0

p̃2ep̃
2
ν̄Fdp̃e (A.285)

This quantity is known as the “Fermi integral.” Typical values are shown in
figure 14.52.

Note that f also depends a bit on the mass number through the nuclear
radius in F . The figure used

A = 1.82 + 1.9Z2 + 0.012 71Z2
2 − 0.000 06Z3

2 (A.286)

for beta-minus decay and

A = −1.9 + 1.96Z2 + 0.007 9Z2
2 − 0.000 02Z3

2 (A.287)

for beta-plus decay, [23].

A.45.7 Electron capture

Electron capture is much more simply to analyze than beta decay, because the
captured electron is in a known initial state.

It will be assumed that a 1s, or K-shell, electron is captured, though L-shell
capture may also contribute to the decay rate for heavy nuclei. The Hamiltonian
coefficient that drives the decay is

H21 = 〈1ν̄,~pν̄ |〈0e, 1s|ψ2,nuc|H ′ψ1,nuc|1e, 1s〉|0ν̄,~pν̄〉

In this case, it is an electron annihilation term in the Hamiltonian that will
produce a nonzero term. However, the result will be the pretty much same; the
Hamiltonian coefficient simplifies to

H21 =
g√
V
〈ψ2,nuc|

A∑

i=1

ghiψ100(~ri)e
i~pν̄ ·~ri/~ψ1,nuc〉

Here ψ100 is the hydrogen ground state wave function, but rescaled for a
nucleus of charge Ze instead of e. It does not contribute to making forbid-
den decays possible, because ψ100 is spherically symmetric. In other words,
the 1s electron has no orbital angular momentum and so cannot contribute to
conservation of angular momentum and parity. Therefore, ψ100 can safely be
approximated by its value at the origin, from chapter 4.3,

ψ100(~ri) ≈
1√
πa30

a0 =
4πǫ0~

2

mee2Z1

=
~

mecαZ1
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where α is the fine-structure constant.
The square Hamiltonian coefficient for ℓth-forbidden decays then becomes

|Hℓ
21|2 =

g2

V
m3

ec
3α3Z3

π~3
1

(ℓ!)2

(
pν̄R

~

)2ℓ

Cℓ
N

Cℓ
N =≡

∣∣∣
〈
ψ2,nuc

∣∣∣
A∑

i=1

hi

(~pν̄ ·~ri
pν̄R

)ℓ
ψ1,nuc

〉∣∣∣
2

The decay rate for electron capture is

λ =
2π

~ε
|Hℓ

21|2
Vp2ν̄
2π2~3

∆pν̄ ∆pν̄ =
ε

c

where the first ratio is the decay rate of a single state, with ε the energy slop
implied by Fermi’s golden rule.

Put it all together, including the fact that there are two K electrons, and
the electron-capture decay rate becomes

λ =
2

π2

g2m4
ec

2

~6

mec
2

~
(αZ)3

R̃2ℓ

(ℓ!)2
Cℓ
N p̃

2ℓ
ν̄ p̃

2
ν̄ (A.288)

where the p̃ν̄ indicate the neutrino momentum nondimensionalized with mec.
Also,

Q̃ ≡ Q

mec2
p̃ν̄ = Q̃ R̃ ≡ mecR

~
(A.289)

for the coefficients.



Appendix D

Derivations

This appendix gives various derivations. Sometimes you need to see the deriva-
tion to judge whether a result is applicable in given circumstances. And some
people like to see the derivation period.

D.1 Generic vector identities

The rules of engagement are as follows:
• The Cartesian axes are numbered using an index i, with i = 1, 2,
and 3 for x, y, and z respectively.
• Also, ri indicates the coordinate in the i direction, x, y, or z.
• Derivatives with respect to a coordinate ri are indicated by a simple
subscript i.
• If the quantity being differentiated is a vector, a comma is used to
separate the vector index from differentiation ones.
• Index ı is the number immediately following i in the cyclic sequence
. . . 123123. . . and ı is the number immediately preceding i.

The first identity to be derived involves the “vectorial triple product:”

∇×∇× ~v = ∇(∇ · ~v)−∇2~v (D.1)

To do so, first note that the i-th component of ∇ × ~v is given by

vı,ı − vı,ı

Repeating the rule, the i-th component of ∇ × ∇ × ~v is

(vı,i − vi,ı)ı − (vi,ı − vı,i)ı

That writes out to

vi,ii + vı,ıi + vı,ıi − vi,ii − vi,ıı − vi,ıı

1213
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since the first and fourth terms cancel each other. The first three terms can
be recognized as the i-th component of ∇(∇ · ~v) and the last three as the i-th
component of −∇2~vi.

A second identity to be derived involves the “scalar triple product:”

(~a×~b) · ~c = ~a · (~b× ~c) (D.2)

This is easiest derived from simply writing it out. The left hand side is

aybzcx − azbycx + azbxcy − axbzcy + axbycz − aybxcz
while the right hand side is

axbycz − axbzcy + aybzcx − aybxcz + azbxcy − azbycx
Inspection shows it to be the same terms in a different order. Note that since
no order changes occur, the three vectors may be noncommuting operators.

D.2 Some Green’s functions

D.2.1 The Poisson equation

The so-called “Poisson equation” is

−∇2u = f ∇ ≡ ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Here f is supposed to be a given function and u an unknown function that is
to be found.

The solution u to the Poisson equation in infinite space may be found in
terms of its so-called “Green’s function” G(~r). In particular:

u(~r) =

∫

all ~r

G(~r −~r)f(~r) d3~r G(~r −~r) = 1

4π|~r −~r|
Loosely speaking, the above integral solution chops function f up into spikes
f(~r)d3~r. A spike at a position ~r then makes a contribution G(~r −~r)f(~r)d3~r to
u at ~r. Integration over all such spikes gives the complete u.

Note that often, the Poisson equation is written without a minus sign. Then
there will be a minus sign in G.

The objective is now to derive the above Green’s function. To do so, first
an intuitive derivation will be given and then a more rigorous one. (See also
chapter 13.3.4 for a more physical derivation in terms of electrostatics.)

The intuitive derivation defines G(~r) as the solution due to a unit spike,
i.e. a “delta function,” located at the origin. That means that G = G(~r) is the
solution to

∇2G = δ3 with G(~r)→ 0 when ~r →∞
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Here δ3 = δ3(~r) is the three-dimensional delta function, defined as an infinite
spike at the origin that integrates to 1.

By itself the above definition is of course meaningless: infinity is not a valid
number. To give it meaning, it is necessary to define an approximate delta
function, one that is merely a large spike rather than an infinite one. This
approximate delta function δ3ε = δ3ε(~r) must still integrate to 1 and will be
required to be zero beyond some small distance ε from the origin:

∫
δ3ε(~r) d

3~r = 1 and δ3ε(~r) = 0 if r = |~r| > ε

In the above integral the region of integration should at least include the small
region of radius ε around the origin. The approximate delta function will further
be assumed to be nonnegative. It must have large values in the small vicinity
around the origin where it is nonzero; otherwise the integral over the small
vicinity would be small instead of 1. But the key is that the values are not
infinite, just large. So normal mathematics can be used.

The corresponding approximate Green’s function Gε = Gε(~r) of the Poisson
equation satisfies

−∇2Gε = δ3ε with Gε → 0 when ~r →∞
In the limit ε → 0, δ3ε(~r) becomes the Dirac delta function δ3(~r) and Gε(~r)

becomes the exact Green’s function G(~r).
To find the approximate Green’s function, it will be assumed that δ3ε(~r)

only depends on the distance r = |~r| from the origin. In other words, it is
assumed to be spherically symmetric. Then so is Gε. (Note that this assumption
is not strictly necessary. That can be seen from the general solution for the
Poisson equation given earlier. But it should at least be assumed that δ3ε(~r) is
nonnegative. If it could have arbitrarily large negative values, then Gε could be
anything.)

Now integrate both sides of the Poisson equation over a sphere of a chosen
radius r:

−
∫

|~r|6 r
∇2Gε d

3~r =

∫

|~r|6 r
δ3ε d

3~r

As noted, the delta function integrates to 1 as long as the vicinity of the origin
is included. That means that the right hand side is 1 as long as r > ε. This
will now be assumed. The left hand side can be written out. That gives

−
∫

|~r|6 r
∇ · (∇Gε) d

3~r = 1 if r > ε

According to the [divergence] [Gauss] [Ostrogradsky] theorem, the left hand side
can be written as a surface integral to give

−
∫

|~r|=r
~n · (∇Gε) dS = 1 if r > ε
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Here S stands for the surface of the sphere of radius r. The total surface is 4πr2.
Also ~n is the unit vector orthogonal to the surface, in the outward direction.
That is the radial direction. The total differential of calculus then implies that
~n · ∇Gε is the radial derivative ∂Gε/∂r. So,

−∂Gε

∂r
4πr2 = 1 if r > ε

Because Gε is required to vanish at large distances, this integrates to

Gε =
1

4πr
if r > ε

The exact Green’s function G has ε equal to zero, so

G =
1

4πr
if r 6= 0

Finally the rigorous derivation without using poorly defined things like delta
functions. In the supposed general solution of the Poisson equation given earlier,
change integration variable to ~ρ = ~r −~r

u(~r) =

∫

all ~r

G(~r −~r)f(~r) d3~r =

∫

all ~ρ

G(~ρ)f(~r + ~ρ) d3~ρ G(~ρ) =
1

4π|~ρ|

It is to be shown that the function u defined this way satisfies the Poisson
equation ∇2u(~r) = f(~r). To do so, apply ∇ twice:

∇2u(~r) =

∫

all ~ρ

G(~ρ)∇2f(~r + ~ρ) d3~ρ =

∫

all ~ρ

G(~ρ)∇2
ρf(~r + ~ρ) d3~ρ

Here ∇ρ means differentiation with respect to the components of ~ρ instead of
the components of ~r. Because f depends only on ~r+~ρ, you get the same answer
whichever way you differentiate.

It will be assumed that the function f is well behaved, at least continuous,
and becomes zero reasonably quickly at infinity. In that case, you can get a
valid approximation to the integral above if you exclude very small and very
large values of ~r:

∇2u(~r) ≈
∫

ε<|~ρ|<R
G(~ρ)∇2

ρf(~r + ~ρ) d3~ρ

In particular, this approximation becomes exact in the limits where the con-
stants ε→ 0 and R→∞. The integral can now be rewritten as

∇2u(~r) ≈
∫

ε<|~ρ|<R
∇ρ[G(~ρ)∇ρf(~r+~ρ)]−∇ρ[f(~r+~ρ)∇ρG(~ρ)]+f(~r+~ρ)∇2

ρG(~ρ) d
3~ρ
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as can be verified by explicitly differentiating out the three terms of the inte-
grand. Next note that the third term is zero, because as seen above G satisfies
the homogeneous Poisson equation away from the origin. And the other two
terms can be written out using the [divergence] [Gauss] [Ostrogradsky] theorem
much like before. This produces integrals over both the bounding sphere of
radius R, as well as over the bounding sphere of radius ε. But the integrals over
the sphere of radius R will be vanishingly small if f becomes zero sufficiently
quickly at infinity. Similarly, the integral of the first term over the small sphere
is vanishingly small, because G is 1/4πε on the small sphere but the surface of
the small sphere is 4πε2. However, in the second term, the derivative of G in
the negative radial direction is 1/4πε2, which multiplies to 1 against the surface
of the small sphere. Therefore the second term produces the average of f(~r+ ~ρ)
over the small sphere, and that becomes f(~r) in the limit |~ρ| = ε → 0. So the
Poisson equation applies.

D.2.2 The screened Poisson equation

The so-called “screened Poisson equation” is

−∇2u+ c2u = f ∇ ≡ ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Here f is supposed to be a given function and u an unknown function that is
to be found. Further c is a given constant. If c is zero, this is the Poisson
equation. However, nonzero c corresponds to the inhomogeneous steady Klein-
Gordon equation for a particle with nonzero mass.

The analysis of the screened Poisson equation is almost the same as for the
Poisson equation given in the previous subsection. Therefore only the differences
will be noted here. The approximate Green’s function must satisfy, away from
the origin,

−∇2Gε + c2Gε = 0 if r > ε

The solution to this that vanishes at infinity is of the form

Gε = C
e−cr

r
if r > ε

where C is some constant. To check this, plug it in, using the expression (N.5)
for ∇2 in spherical coordinates. To identify the constant C, integrate the full
equation

−∇2Gε + c2Gε = δ3ε

over a sphere of radius ε around the origin and apply the divergence theorem as
in the previous subsection. Taking the limit ε→ 0 then gives C = 1/4π, which
gives the exact Green’s function as

G(~r) =
e−cr

4πr
if r = |~r| 6= 0
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The rigorous derivation is the same as before save for an additional c2Gf
term in the integrand, which drops out against the −f∇2

ρG one.

D.3 Lagrangian mechanics

This note gives the derivations for the addendum on the Lagrangian equations
of motion.

D.3.1 Lagrangian equations of motion

To derive the nonrelativistic Lagrangian, consider the system to be build up from
elementary particles numbered by an index j. You may think of these particles
as the atoms you would use if you would do a molecular dynamics computation
of the system. Because the system is assumed to be fully determined by the
generalized coordinates, the position of each individual particle is fully fixed
by the generalized coordinates and maybe time. (For example, it is implicit
in a solid body approximation that the atoms are held rigidly in their relative
position. Of course, that is approximate; you pay some price for avoiding a full
molecular dynamics simulation.)

Newton’s second law says that the motion of each individual particle j is
governed by

mj
d2~rj
dt2

= −∂V
∂~rj

+ ~F ′j

where the derivative of the potential V can be taken to be its gradient, if you
(justly) object to differentiating with respect to vectors, and ~F ′j indicates any
part of the force not described by the potential.

Now consider an infinitesimal virtual displacement of the system from its
normal evolution in time. It produces an infinitesimal change in position δ~rj(t)
for each particle. After such a displacement, ~rj+δ~rj of course no longer satisfies
the correct equations of motion, but the kinetic and potential energies still exist.

In the equation of motion for the correct position ~rj above, take the mass
times acceleration to the other side, multiply by the virtual displacement, sum
over all particles j, and integrate over an arbitrary time interval:

0 =

∫ t2

t1

∑

j

[
−mj

d2~rj
dt2
− ∂V

∂~rj
+ ~F ′j

]
· δ~rj dt

Multiply out and integrate the first term by parts:

0 =

∫ t2

t1

∑

j

[
mj

d~rj
dt
· δd~rj

dt
− ∂V

∂~rj
· δ~rj + ~F ′jδ~rj

]
dt
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The virtual displacements of interest here are only nonzero over a limited range
of times, so the integration by parts did not produce any end point values.

Recognize the first two terms within the brackets as the virtual change in
the Lagrangian due to the virtual displacement at that time. Note that this
requires that the potential energy depends only on the position coordinates and
time, and not also on the time derivatives of the position coordinates. You get

0 = δ

∫ t2

t1

L dt+
∫ t2

t1

∑

j

[
~F ′j · δ~rj

]
dt (D.3)

In case that the additional forces ~F ′j are zero, this produces the action princi-
ple: the time integral of the Lagrangian is unchanged under infinitesimal virtual
displacements of the system, assuming that they vanish at the end points of in-
tegration. More generally, for the virtual work by the additional forces to be
zero will require that the virtual displacements respect the rigid constraints, if
any. The infinite work done in violating a rigid constraint is not modeled by
the potential V in any normal implementation.

Unchanging action is an integral equation involving the Lagrangian. To get
ordinary differential equations, take the virtual change in position to be that
due to an infinitesimal change δqk(t) in a single generic generalized coordinate.
Represent the change in the Lagrangian in the expression above by its partial
derivatives, and the same for δ~rj:

0 =

∫ t2

t1

[
∂L
∂qk

δqk +
∂L
∂q̇k

δq̇k

]
dt+

∫ t2

t1

∑

j

[
~F ′j ·

∂~rj
∂qk

δqk

]
dt

The integrand in the final term is by definition the generalized force Qk multi-
plied by δqk. In the first integral, the second term can be integrated by parts,
and then the integrals can be combined to give

0 =

∫ t2

t1

[
∂L
∂qk
− d

dt

(
∂L
∂q̇k

)
+Qk

]
δqk dt

Now suppose that there is any time at which the expression within the square
brackets is nonzero. Then a virtual change δqk that is only nonzero in a very
small time interval around that time, and everywhere positive in that small
interval, would produce a nonzero right hand side in the above equation, but
it must be zero. Therefore, the expression within brackets must be zero at all
times. That gives the Lagrangian equations of motion, because the expression
between parentheses is defined as the canonical momentum.

D.3.2 Hamiltonian dynamics

To derive the Hamiltonian equations, consider the general differential of the
Hamiltonian function (regardless of any motion that may go on). According to
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the given definition of the Hamiltonian function, and using a total differential
for dL,

dH =

(∑

k

pckdq̇k

)
+
∑

k

q̇kdp
c
k −

∑

k

∂L
∂qk

dqk −
(∑

k

∂L
∂q̇k

dq̇k

)
− ∂L
∂t

dt

The sums within parentheses cancel each other because of the definition of the
canonical momentum. The remaining differences are of the arguments of the
Hamiltonian function, and so by the very definition of partial derivatives,

∂H

∂qk
= − ∂L

∂qk

∂H

∂pck
= q̇k

∂H

∂t
= −∂L

∂t

Now consider an actual motion. For an actual motion, q̇k is the time deriva-
tive of qk, so the second partial derivative gives the first Hamiltonian equation
of motion. The first partial derivative gives the second equation when combined
with the Lagrangian equation of motion (A.2).

It is still to be shown that the Hamiltonian of a classical system is the sum
of kinetic and potential energy if the position of the system does not depend
explicitly on time. The Lagrangian can be written out in terms of the system
particles as

∑

j

K∑

k=1

K∑

k=1

1
2
mj

∂~rj
∂qk
· ∂~rj
∂qk

q̇kq̇k − V (q1, q2, . . . , qK , t)

where the sum represents the kinetic energy. The Hamiltonian is defined as

∑

k

q̇k
∂L
∂q̇k
− L

and straight substitution shows the first term to be twice the kinetic energy.

D.3.3 Fields

As discussed in {A.1.5}, the Lagrangian for fields takes the form

L = L0 +

∫
£ d3~r

Here the spatial integration is over all space. The first term depends only on
the discrete variables

L0 = L0(. . . ; qk, q̇k; . . .)

where qk = qk(t) denotes discrete variable number k. The dot indicates the time
derivative of that variable. The Lagrangian density also depends on the fields

£ = £(. . . ;ϕα, ϕαt, ϕα1, ϕα2, ϕα3; . . . ; qk; q̇k; . . .)
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where ϕα is field number α. A subscript t indicates the partial time derivative,
and 1, 2, or 3 the partial x, y or z derivative.

The action is

S =

∫ t2

t1

(
L0 +

∫
£ d3~r

)
dt

where the time range from t1 to t2 must include the times of interest. The action
must be unchanged under small deviations from the correct evolution, as long
as these deviations vanish at the limits of integration. That requirement defines
the Lagrangian. (For simple systems the Lagrangian then turns out to be the
difference between kinetic and potential energies. But it is not obvious what to
make of that if there are fields.)

Consider now first an infinitesimal deviation δqk = δqk(t) in a discrete vari-
able qk. The change in action that must be zero is then

0 = δS =

∫ t2

t1

(
∂L0

∂qk
δqk +

∂L0

∂q̇k
δq̇k +

∫
∂£

∂qk
d3~r δqk +

∫
∂£

∂q̇k
d3~r δq̇k

)
dt

After an integration by parts of the second and fourth terms that becomes,
noting that the deviation must vanish at the initial and final times,

0 = δS =

∫ t2

t1

[
∂L0

∂qk
− d

dt

∂L0

∂q̇k
+

∫
∂£

∂qk
d3~r − d

dt

∫
∂£

∂q̇k
d3~r

]
δqk dt

This can only be zero for whatever you take δqk = δqk(t) if the expression within
square brackets is zero. That gives the final Lagrangian equation for the discrete
variable qk as

d

dt

(
∂L0

∂q̇k
+

∫
∂£

∂q̇k
d3~r

)
=
∂L0

∂qk
+

∫
∂£

∂qk
d3~r (1)

Next consider an infinitesimal deviation δϕα = δϕα(~r; t) in field ϕα. The
change in action that must be zero is then

0 = δS =

∫ t2

t1

∫ (
∂£

∂ϕα
δϕα +

∂£

∂ϕαt
δϕαt +

3∑

i=1

∂£

∂ϕαi
δϕαi

)
d3~r dt

Now integrate the derivative terms by parts in the appropriate direction to get,
noting that the deviation must vanish at the limits of integration,

0 = δS =

∫ t2

t1

∫ [
∂£

∂ϕα
− ∂

∂t

(
∂£

∂ϕαt

)
−

3∑

i=1

∂

∂ri

(
∂£

∂ϕαi

)]
δϕα d

3~r dt

Here ri for i = 1, 2, or 3 stands for x, y, or z. If the above expression is to
be zero for whatever you take the small change δϕα = δϕα(~r; t) to be, then the
expression within square brackets will have to be zero at every position and
time. That gives the equation for the field ϕα:
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∂

∂t

(
∂£

∂ϕαt

)
+

3∑

i=1

∂

∂ri

(
∂£

∂ϕαi

)
=

∂£

∂ϕα
(2)

The canonical momenta are defined as

pck ≡
∂L0

∂q̇k
+

∫
∂£

∂q̇k
d3~r πc

α ≡
∂£

∂ϕαt
(3)

These are the quantities inside the time derivatives of the Lagrangian equations.
For Hamilton’s equations, assume at first that there are no discrete variables.

In that case, the Hamiltonian can be written in terms of a Hamiltonian density
h:

H =

∫
h d3~r h =

∑

α

πc
αϕαt −£

Take a differential of the Hamiltonian density

dh =
∑

α

[
πc
αdϕαt + ϕαtdπ

c
α −

∂£

∂ϕαt
dϕαt −

∂£

∂ϕαi
dϕαi −

∂£

∂ϕα
dϕα

]

The first and third terms in the square brackets cancel because of the definition
of the canonical momentum. Then according to calculus

∂h

∂πc
α

= ϕαt
∂h

∂ϕαi
= − ∂£

∂ϕαi

∂h

∂ϕα
= − ∂£

∂ϕα

The first of these expressions gives the time derivative of ϕα. The other expres-
sions may be used to replace the derivatives of the Lagrangian density in the
Lagrangian equations of motion (2). That gives Hamilton’s equations as

∂ϕα
∂t

=
∂h

∂πc
α

∂πc
α

∂t
= − ∂h

∂ϕα
+

3∑

i=1

∂

∂ri

(
∂h

∂ϕαi

)
(4)

If there are discrete variables, this no longer works. The full Hamiltonian is
then

H =
∑

k

pckq̇k +

∫ ∑

α

πc
αϕαt d

3~r − L0 −
∫

£ d3~r

To find Hamilton’s equations, the integrals in this Hamiltonian must be approx-
imated. The region of integration is mentally chopped into little pieces of the
same volume dV . Then by approximation

∫
£ d3~r ≈

∑

n

£ndV

Here n numbers the small pieces and £n stands for the value of £ at the center
point of piece n. Note that this is essentially the Riemann sum of calculus. A
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similar approximation is made for the other integral in the Hamiltonian, and the
one in the canonical momenta (3). Then the approximate Hamiltonian becomes

Happ =
∑

k

pckq̇k +
∑

α,n

πc
αn
ϕαtndV − L0 −

∑

n

£ndV

The differential of this approximate Hamiltonian is

dHapp =
∑

k

q̇kdp
c
k +

∑

k

pckdq̇k +
∑

α,n

ϕαtndVdπ
c
αn

+
∑

α,n

πc
αn
dVdϕαtn

−
∑

k

∂L0

∂qk
dqk −

∑

k

∂L0

∂q̇k
dq̇k −

∑

k,n

∂£n

∂qk
dVdqk −

∑

k,n

∂£n

∂q̇k
dVdq̇k

−
∑

α,n

∂£n

∂ϕαn
dVdϕαn −

∑

α,n

∂£n

∂ϕαtn
dVdϕαtn −

∑

α,n,i

∂£n

∂ϕαin
dVdϕαin

The dq̇k and dϕαtn terms drop out because of the definitions of the canonical
momenta. The remainder allows expressions for the partial derivatives of the
approximate Hamiltonian to be identified.

The dpck term allows the time derivative of qk to be identified with the partial
derivative of Happ with respect to pck. And the Lagrangian expression for the
time derivative of pck, as given in (1), may be rewritten in terms of corresponding
derivatives of the approximate Hamiltonian. Together that gives, in the limit
dV → 0,

dqk
dt

=
∂H

∂pck

dpck
dt

= −∂H
∂qk

(5)

For the field, consider an position ~r corresponding to the center of an arbi-
trary little volume n = n. Then the dπc

αn
term allows the time derivative of

ϕα at this arbitrary position to be identified in terms of the partial derivative
of the approximate Hamiltonian with respect to πc

α at the same location. And
the Lagrangian expression for the time derivative of πc

α, as given by (2), may be
rewritten in terms of corresponding derivatives of the approximate Hamiltonian.
Together that gives, in the limit dV → 0, and leaving n away since it can be
any position,

∂ϕα
∂t

= lim
dV→0

1

dV
∂Happ

∂πc
α

∂πc
α

∂t
= − lim

dV→0

1

dV
∂Happ

∂ϕα
+

3∑

i=1

∂

∂ri
lim
dV→0

1

dV
∂Happ

∂ϕαi
(6)

Of course, in real life you would not actually write out these limits. Instead
you simply differentiate the normal Hamiltonian H until you have to start dif-
ferentiating inside an integral, like maybe,

∂

∂ϕα

∫
£ d3~r
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Then you think to yourself that you are not really evaluating this, but actually

∂

∂ϕαn

∑

n

£ndV =
∂£n

∂ϕαn
dV

where n indicates the position that you are considering the field at. And you
are going to divide out the volume dV . That then boils down to

∂

∂ϕα

∫
£ d3~r =⇒ ∂£

∂ϕα

even though the left hand side would mathematically be nonsense without dis-
cretization and division by dV .

D.4 Lorentz transformation derivation

This note derives the Lorentz transformation as discussed in chapter 1.2. The
question is what is the relationship between the time and spatial coordinates
tA, xA, yA, zA that an observer A attaches to an arbitrary event versus the coor-
dinates tB, xB, yB, zB that an observer B attaches to them.

Note that since the choices what to define as time zero and as the ori-
gin are quite arbitrary, it can be arranged that xB, yB, zB, tB are all zero when
xA, yA, zA, tA are all zero. That simplifies the mathematics, so it will be as-
sumed. It will also be assumed that the axis systems of the two observers are
taken to be parallel and that the x axes are along the direction of relative motion
between the observers, figure 1.2.

It will further be assumed that the relationship between the coordinates is
linear;

tB = atxxA + atyyA + atzzA + atttA yB = ayxxA + ayyyA + ayzzA + ayttA
xB = axxxA + axyyA + axzzA + axttA zB = azxxA + azyyA + azzzA + azttA

where the a.. are constants still to be found.
The biggest reason to assume that the transformation should be linear is that

if space is populated with observers A and B, rather than just have a single one
sitting at the origin of that coordinate system, then a linear transformation
assures that all pairs of observers A and B see the exact same transformation.
In addition, the transformation from xB, yB, zB, tB back to xA, yA, zA, tA should
be of the same form as the one the other way, since the principle of relativity
asserts that the two coordinate systems are equivalent. A linear transformation
has a back transformation that is also linear.

Another way to look at it is to say that the spatial and temporal scales seen
by normal observers are miniscule compared to the scales of the universe. Based
on that idea you would expect that the relation between their coordinates would
be a linearized Taylor series.
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A lot of additional constraints can be put in because of physical symmetries
that surely still apply even allowing for relativity. For example, the transforma-
tion to xB, tB should not depend on the arbitrarily chosen positive directions of
the y and z axes, so throw out the y and z terms in those equations. Seen in
a mirror along the xy-plane, the y transformation should look the same, even
if z changes sign, so throw out zA from the equation for yB. Similarly, there
goes yA in the equation for zB. Since the choice of y and z axes is arbitrary, the
remaining az. coefficients must equal the corresponding ay. ones. Since the basic
premise of relativity is that the coordinate systems A and B are equivalent, the
y difference between tracks parallel to the direction of motion cannot get longer
for B and shorter for A, nor vice-versa, so ayy = 1. Finally, by the very definition
of the relative velocity v of coordinate system B with respect to system A, xB =
yB = zB = 0 should correspond to xA = vtA. And by the principle of relativity,
xA = yA = zA = 0 should correspond to xB = −vtB.

You might be able to think up some more constraints, but this will do. Put
it all together to get

tB = atxxA + axxtA yB = ayxxA + yA + ayttA
xB = axx(xA − vtA) zB = ayxxA + zA + ayttA

Next the trick is to consider the wave front emitted by some light source
that flashes at time zero at the then coinciding origins. Since according to
the principle of relativity the two coordinate systems are fully equivalent, in
both coordinate systems the wave front forms an expanding spherical shell with
radius ct:

x2A + y2A + z2A = c2t2A x2B + y2B + z2B = c2t2B

Plug the linearized expressions for xB, yB, zB, tB in terms of xA, yA, zA, tA into
the second equation and demand that it is consistent with the first equation,
and you obtain the Lorentz transformation. To get the back transformation
giving xA, yA, zA, tA in terms of xB, yB, zB, tB, solve the Lorentz equations for
xA, yA, zA, and tA.

To derive the given transformations between the velocities seen in the two
systems, take differentials of the Lorentz transformation formulae. Then take ra-
tios of the corresponding infinitesimal position increments over the correspond-
ing time increments.

D.5 Lorentz group property derivation

This note verifies the group property of the Lorentz transformation. It is not
recommended unless you have had a solid course in linear algebra.

Note first that a much more simple argument can be given by defining the
Lorentz transformation more abstractly, {A.4} (A.13). But that is cheating.
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Then you have to prove that these Lorentz transform are always the same as
the physical ones.

For simplicity it will be assumed that the observers still use a common origin
of space and time coordinates.

The group property is easy to verify if the observers B and C are going in
the same direction compared to A. Just multiply two matrices of the form (1.13)
together and apply the condition that γ2 − β2γ2 = 1 for each.

It gets much messier if the observers move in different directions. In that
case the only immediate simplification that can be made is to align the coor-
dinate systems so that both relative velocities are in the x, y planes. Then the
transformations only involve z in a trivial way and the combined transformation
takes the generic form

ΛC←A =




λ00 λ01 λ02 0
λ10 λ11 λ12 0
λ20 λ21 λ22 0
0 0 0 1




It needs to be shown that this is a Lorentz transformation from A directly to
C.

Now the spatial, x, y, coordinate system of observer C can be rotated to
eliminate λ20 and the spatial coordinate system of observer A can be rotated to
eliminate λ02. Next both Lorentz transformations preserve the inner products.
Therefore the dot product between the four-vectors (1, 0, 0, 0) and (0, 0, 1, 0) in
the A system must be the same as the dot product between columns 1 and 3 in
the matrix above. And that means that λ12 must be zero, because λ10 will not
be zero except in the trivial case that systems A and C are at rest compared
to each other. Next since the proper length of the vector (0, 0, 1, 0) equals one
in the A system, it does so in the C system, so λ22 must be one. (Or minus
one, but a 180◦ rotation of the spatial coordinate system around the z-axis can
take care of that.) Next, since the dot product of the vectors (0, 1, 0, 0) and
(0, 0, 1, 0) is zero, so is λ21.

That leaves the four values relating the time and x components. From the
fact that the dot product of the vectors (1, 0, 0, 0) and (0, 1, 0, 0) is zero,

−λ00λ01 + λ10λ
1
1 = 0 =⇒ λ01

λ11
=
λ10
λ00
≡ β

where β is some constant. Also, since the proper lengths of these vectors are
minus one, respectively one,

−λ020 + λ120 = −1 − λ021 + λ11 = 1

or substituting in for λ01 and λ10 from the above

−λ020 + β2λ020 = −1 − β2λ121 + λ11 = 1
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It follows that λ00 and λ11 must be equal, (or opposite, but since both Lorentz
transformations have unit determinant, so must their combination), so call them
γ. The transformation is then a Lorentz transformation of the usual form (1.13).
(Since the spatial coordinate system cannot just flip over from left handed to
right handed at some point, γ will have to be positive.) Examining the transfor-
mation of the origin xA = yA = zA = 0 identifies β as V /c, with V the relative
velocity of system A compared to B, and then the above two equations identify
γ as the Lorentz factor.

Obviously, if any two Lorentz transformations are equivalent to a single one,
then by repeated application any arbitrary number of them are equivalent to a
single one.

D.6 Lorentz force derivation

To derive the given Lorentz force from the given Lagrangian, plug the canonical
momentum and the Lagrangian into the Lagrangian equation of motion. That
gives

dpi
dt

+ q

(
∂Ai
∂t

+
∂Ai
∂xj

vj

)
= −q ∂ϕ

∂xi
+ q

∂Aj
∂xi

vj

This uses the Einstein convention that summation over j is to be understood.
Reorder to get

dpi
dt

= q

(
− ∂ϕ
∂xi
− ∂Ai

∂t

)
+ q

(
∂Aj
∂xi

vj −
∂Ai
∂xj

vj

)

The first parenthetical expression is the electric field as claimed. The quantity
in the second parenthetical expression may be rewritten by expanding out the
sums over j to give

∂Ai
∂xi

vi −
∂Ai
∂xi

vi +
∂Aı
∂xi

vı −
∂Ai
∂xı

vı +
∂Aı
∂xi

vı −
∂Ai
∂xı

vı

where ı follows i in the cyclic sequence . . . , 1, 2, 3, 1, 2, 3, . . . and ı precedes it.
The first two terms drop out and the others can be recognized as component
number i of ~v × (∇× ~A). (For example, just write out the first component of ~v

× (∇× ~A) and compare it the expression above for ı = 2 and ı = 3.) Defining
~B as ∇ × ~A, the Lorentz force law results.

D.7 Derivation of the Euler formula

To verify the Euler formula, write all three functions involved in terms of their
Taylor series, [41, p. 136]
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D.8 Completeness of Fourier modes

The purpose of this note is to show completeness of the “Fourier modes”

. . . ,
e−3ix√
2π
,
e−2ix√
2π
,
e−ix√
2π
,

1√
2π
,
eix√
2π
,
e2ix√
2π
,
e3ix√
2π
, . . .

for describing functions that are periodic of period 2π. It is to be shown that
“all” these functions can be written as combinations of the Fourier modes above.
Assume that f(x) is any reasonable smooth function that repeats itself after a
distance 2π, so that f(x+2π) = f(x). Then you can always write it in the form

f(x) = . . .+ c−2
e−2ix√
2π

+ c−1
e−ix√
2π

+ c0
1√
2π

+ c1
eix√
2π

+ c2
e2ix√
2π

+ c3
e3ix√
2π

+ . . .

or

f(x) =
∞∑

k=−∞
ck
ekix√
2π

for short. Such a representation of a periodic function is called a “Fourier series.”
The coefficients ck are called “Fourier coefficients.” The factors 1/

√
2π can be

absorbed in the definition of the Fourier coefficients, if you want.
Because of the Euler formula, the set of exponential Fourier modes above is

completely equivalent to the set of real Fourier modes

1√
2π
,
cos(x)√

π
,
sin(x)√

π
,
cos(2x)√

π
,
sin(2x)√

π
,
cos(3x)√

π
,
sin(3x)√

π
, . . .

so that 2π-periodic functions may just as well be written as

f(x) = a0
1√
2π

+
∞∑

k=1

ak
cos(kx)√

π
+
∞∑

k=1

bk
sin(kx)√

π
.

The extension to functions that are periodic of some other period than 2π
is a trivial matter of rescaling x. For a period 2ℓ, with ℓ any half period, the
exponential Fourier modes take the more general form

. . . ,
e−k2ix√

2ℓ
,
e−k1ix√

2ℓ
,

1√
2ℓ
,
ek1ix√
2ℓ
,
ek2ix√
2ℓ
, . . . k1 =

1π

ℓ
, k2 =

2π

ℓ
, k3 =

3π

ℓ
, . . .

and similarly the real version of them becomes

1√
2ℓ
,
cos(k1x)√

ℓ
,
sin(k1x)√

ℓ
,
cos(k2x)√

ℓ
,
sin(k2x)√

ℓ
,
cos(k3x)√

ℓ
,
sin(k3x)√

ℓ
, . . .

See [41, p. 141] for detailed formulae.
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Often, the functions of interest are not periodic, but are required to be zero
at the ends of the interval on which they are defined. Those functions can be
handled too, by extending them to a periodic function. For example, if the
functions f(x) relevant to a problem are defined only for 0 6 x 6 ℓ and must
satisfy f(0) = f(ℓ) = 0, then extend them to the range −ℓ 6 x 6 0 by setting
f(x) = −f(−x) and take the range −ℓ 6 x 6 ℓ to be the period of a 2ℓ-periodic
function. It may be noted that for such a function, the cosines disappear in
the real Fourier series representation, leaving only the sines. Similar extensions
can be used for functions that satisfy symmetry or zero-derivative boundary
conditions at the ends of the interval on which they are defined. See again [41,
p. 141] for more detailed formulae.

If the half period ℓ becomes infinite, the spacing between the discrete k
values becomes zero and the sum over discrete k values turns into an integral over
continuous k values. This is exactly what happens in quantum mechanics for the
eigenfunctions of linear momentum. The representation is now no longer called
a Fourier series, but a “Fourier integral.” And the Fourier coefficients ck are now
called the “Fourier transform” F (k). The completeness of the eigenfunctions is
now called Fourier’s integral theorem or inversion theorem. See [41, pp. 190-191]
for more.

The basic completeness proof is a rather messy mathematical derivation, so
read the rest of this note at your own risk. The fact that the Fourier modes
are orthogonal and normalized was the subject of various exercises in chapter
2.6 and will be taken for granted here. See the solution manual for the details.
What this note wants to show is that any arbitrary periodic function f of period
2π that has continuous first and second order derivatives can be written as

f(x) =
k=∞∑

k=−∞
ck
ekix√
2π
,

in other words, as a combination of the set of Fourier modes.

First an expression for the values of the Fourier coefficients ck is needed.
It can be obtained from taking the inner product 〈elix/

√
2π|f(x)〉 between a

generic eigenfunction elix/
√
2π and the representation for function f(x) above.

Noting that all the inner products with the exponentials representing f(x) will
be zero except the one for which k = l, if the Fourier representation is indeed
correct, the coefficients need to have the values

cl =

∫ 2π

x=0

e−lix√
2π
f(x) dx,

a requirement that was already noted by Fourier. Note that l and x are just
names for the eigenfunction number and the integration variable that you can
change at will. Therefore, to avoid name conflicts later, the expression will be
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renotated as

ck =

∫ 2π

x̄=0

e−kix̄√
2π
f(x̄) dx̄,

Now the question is: suppose you compute the Fourier coefficients ck from
this expression, and use them to sum many terms of the infinite sum for f(x),
say from some very large negative value −K for k to the corresponding large
positive value K; in that case, is the result you get, call it fK(x),

fK(x) ≡
k=K∑

k=−K
ck
ekix√
2π
,

a valid approximation to the true function f(x)? More specifically, if you sum
more and more terms (make K bigger and bigger), does fK(x) reproduce the
true value of f(x) to any arbitrary accuracy that you may want? If it does, then
the eigenfunctions are capable of reproducing f(x). If the eigenfunctions are not
complete, a definite difference between fK(x) and f(x) will persist however large
you make K. In mathematical terms, the question is whether limK→∞ fK(x) =
f(x).

To find out, the trick is to substitute the integral for the coefficients ck into
the sum and then reverse the order of integration and summation to get:

fK(x) =
1

2π

∫ 2π

x̄=0

f(x̄)

[
k=K∑

k=−K
eki(x−x̄)

]
dx̄.

The sum in the square brackets can be evaluated, because it is a geometric
series with starting value e−Ki(x−x̄) and ratio of terms ei(x−x̄). Using the formula
from [41, item 21.4], multiplying top and bottom with e−i(x−x̄)/2, and cleaning
up with, what else, the Euler formula, the sum is found to equal

sin
(
(K + 1

2
)(x− x̄)

)

sin
(

1
2
(x− x̄)

) .

This expression is called the “Dirichlet kernel”. You now have

fK(x) =

∫ 2π

x̄=0

f(x̄)
sin
(
(K + 1

2
)(x− x̄)

)

2π sin
(

1
2
(x− x̄)

) dx̄.

The second trick is to split the function f(x̄) being integrated into the two
parts f(x) and f(x̄) − f(x). The sum of the parts is obviously still f(x̄), but
the first part has the advantage that it is constant during the integration over
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x̄ and can be taken out, and the second part has the advantage that it becomes
zero at x̄ = x. You get

fK(x) = f(x)

∫ 2π

x̄=0

sin
(
(K + 1

2
)(x− x̄)

)

2π sin
(

1
2
(x− x̄)

) dx̄

+

∫ 2π

x̄=0

(
f(x̄)− f(x)

)sin
(
(K + 1

2
)(x− x̄)

)

2π sin
(

1
2
(x− x̄)

) dx̄.

Now if you backtrack what happens in the trivial case that f(x) is just a
constant, you find that fK(x) is exactly equal to f(x) in that case, while the
second integral above is zero. That makes the first integral above equal to one.
Returning to the case of general f(x), since the first integral above is still one,
it makes the first term in the right hand side equal to the desired f(x), and the
second integral is then the error in fK(x).

To manipulate this error and show that it is indeed small for large K, it is
convenient to rename the K-independent part of the integrand to

g(x̄) =
f(x̄)− f(x)

2π sin
(

1
2
(x− x̄)

)

Using l’Hôpital’s rule twice, it is seen that since by assumption f has a contin-
uous second derivative, g has a continuous first derivative. So you can use one
integration by parts to get

fK(x) = f(x) +
1

K + 1
2

∫ 2π

x̄=0

g′(x̄) cos
(
(K + 1

2
)(x− x̄)

)
dx̄.

And since the integrand of the final integral is continuous, it is bounded. That
makes the error inversely proportional to K + 1

2
, implying that it does indeed

become arbitrarily small for large K. Completeness has been proved.
It may be noted that under the stated conditions, the convergence is uniform;

there is a guaranteed minimum rate of convergence regardless of the value of
x. This can be verified from Taylor series with remainder. Also, the more
continuous derivatives the 2π-periodic function f(x) has, the faster the rate
of convergence, and the smaller the number 2K + 1 of terms that you need
to sum to get good accuracy is likely to be. For example, if f(x) has three
continuous derivatives, you can do another integration by parts to show that
the convergence is proportional to 1/(K + 1

2
)2 rather than just 1/(K + 1

2
). But

watch the end points: if a derivative has different values at the start and end
of the period, then that derivative is not continuous, it has a jump at the ends.
(Such jumps can be incorporated in the analysis, however, and have less effect
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than it may seem. You get a better practical estimate of the convergence rate
by directly looking at the integral for the Fourier coefficients.)

The condition for f(x) to have a continuous second derivative can be relaxed
with more work. If you are familiar with the Lebesgue form of integration,
it is fairly easy to extend the result above to show that it suffices that the
absolute integral of f 2 exists, something that will be true in quantum mechanics
applications.

D.9 Momentum operators are Hermitian

To check that the linear momentum operators are Hermitian, assume that Ψ1

and Ψ2 are any two proper, reasonably behaved, wave functions. By definition:

〈Ψ1|p̂xΨ2〉 =
∫ ∞

x=−∞

∫ ∞

y=−∞

∫ ∞

z=−∞
Ψ∗1

~

i
Ψ2,x dxdydz

Here the subscript x indicates differentiation with respect to x. This can be
rewritten as

∫ ∞

x=−∞

∫ ∞

y=−∞

∫ ∞

z=−∞

[(
Ψ∗1

~

i
Ψ2

)

x

−Ψ∗1,x
~

i
Ψ2

]
dxdydz (1)

as can be checked by simply differentiating out the product in the first term.
Now the first term in the integral can be integrated with respect to x and

is then seen to produce zero. The reason is that Ψ1 and Ψ2 must become zero
at large distances, otherwise their square integral cannot be zero. That leaves
only the second term. And that equals

〈p̂xΨ1|Ψ2〉 =
∫ ∞

x=−∞

∫ ∞

y=−∞

∫ ∞

z=−∞

(
~

i

∂Ψ1

∂x

)∗
Ψ2 dxdydz

(Recall that the complex conjugate of i is −i, hence the minus sign.)
For the mathematically picky, it is maybe a good idea to examine the claim

that the first term in the integral in (1) integrates to zero a bit more closely. The
integral is definitely zero if the system is not in infinite space, but in a periodic
box. The reason is that in that case the lower and upper limits of integration
are equal and drop out against each other. To be rigorous in infinite space, you
will at first need to limit the region of integration to a distance no more than
some large number R away from the origin. (It will be assumed that the initial
inner product is well defined, in the sense that the integral has a finite limit in
the limit R → ∞. In that case, the integral can be approximated to arbitrary
accuracy by just taking R large enough.) Using the divergence theorem, the
first integral is ∫

S

(
Ψ∗1

~

i
Ψ2

)
nx dS
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where S is the surface of the sphere r = R and nx the x-component of the unit
vector ı̂r normal to the surface. Now since the absolute square integrals of the
wave functions are finite, for large enough R their square integrals outside R
become arbitrarily small. The Cauchy Schwartz inequality then says that the
above integral integrated with respect to r must become vanishingly small. And
that is not possible unless the integral itself becomes vanishingly small at almost
all locations. So you can define a sequence for R where the inner product with
the linear momentum swapped over approaches the original inner product. In
particular, the two inner products are equal to the degree that they are well
defined in the first place.

D.10 The curl is Hermitian

For later reference, it will be shown that the curl operator, ∇× is Hermitian.
In other words, ∫

all

~A∗ · ∇ × ~Bd3~r =

∫

all

∇× ~A∗ · ~Bd3~r

The rules of engagement are as follows:
• The Cartesian axes are numbered using an index i, with i = 1, 2,
and 3 for x, y, and z respectively.
• Also, ri indicates the coordinate in the i direction, x, y, or z.
• Derivatives with respect to a coordinate ri are indicated by a simple
subscript i.
• If the quantity being differentiated is a vector, a comma is used to
separate the vector index from differentiation ones.
• Index ı is the number immediately following i in the cyclic sequence
. . . 123123. . . and ı is the number immediately preceding i.
• A bare

∫
integral sign is assumed to be an integration over all space,

or over the entire box for particles in a box. The d3~r is normally
omitted for brevity and to be understood.
• A superscript ∗ indicates a complex conjugate.
In index notation, the integral in the left hand side above reads:

∑

i

∫
A∗i (Bı,ı − Bı,ı)

which is the same as

∑

i

∫
[(A∗iBı)ı − (A∗iBı)ı − A∗i,ıBı + A∗

i,ı
Bı]

as can be checked by differentiating out the first two terms. Now the third and
fourth terms in the integral are ∇ × ~A∗ · ~B, as you can see from moving all
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indices in the third term one unit forward in the cyclic sequence, and those in
the fourth term one unit back. (Such a shift does not change the sum; the same
terms are simply added in a different order.)

So, if the integral of the first two terms is zero, the fact that curl is Hermitian
has been verified. Note that the terms can be integrated. Then, if the system is
in a periodic box, the integral is indeed zero because the upper and lower limits
of integration are equal. An infinite domain will need to be truncated at some
large distance R from the origin. Then shift indices and apply the divergence
theorem to get

−
∫

S

(~A∗ × ~B) · ı̂r dS

where S is the surface of the sphere r = R and ı̂r the unit vector normal to
the sphere surface. It follows that the integral is zero if ~A and ~B go to zero at
infinity quickly enough. Or at least their cross product has to go to zero quickly
enough.

D.11 Extension to three-dimensional solutions

Maybe you have some doubt whether you really can just multiply one-dimen-
sional eigenfunctions together, and add one-dimensional energy values to get
the three-dimensional ones. Would a book that you find for free on the Internet
lie? OK, let’s look at the details then. First, the three-dimensional Hamiltonian,
(really just the kinetic energy operator), is the sum of the one-dimensional ones:

H = Hx +Hy +Hz

where the one-dimensional Hamiltonians are:

Hx = −
~
2

2m

∂2

∂x2
Hy = −

~
2

2m

∂2

∂y2
Hz = −

~
2

2m

∂2

∂z2

To check that any product ψnx
(x)ψny

(y)ψnz
(z) of one-dimensional eigen-

functions is an eigenfunction of the combined Hamiltonian H, note that the
partial Hamiltonians only act on their own eigenfunction, multiplying it by the
corresponding eigenvalue:

(Hx +Hy +Hz)ψnx
(x)ψny

(y)ψnz
(z)

= Exψnx
(x)ψny

(y)ψnz
(z) + Eyψnx

(x)ψny
(y)ψnz

(z) + Ezψnx
(x)ψny

(y)ψnz
(z)

or
Hψnx

(x)ψny
(y)ψnz

(z) = (Ex + Ey + Ez)ψnx
(x)ψny

(y)ψnz
(z).

Therefore, by definition ψnx
(x)ψny

(y)ψnz
(z) is an eigenfunction of the three-

dimensional Hamiltonian, with an eigenvalue that is the sum of the three one-
dimensional ones. But there is still the question of completeness. Maybe the
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above eigenfunctions are not complete, which would mean a need for additional
eigenfunctions that are not products of one-dimensional ones.

The one-dimensional eigenfunctions ψnx
(x) are complete, see [41, p. 141] and

earlier exercises in this book. So, you can write any wave function Ψ(x, y, z) at
given values of y and z as a combination of x-eigenfunctions:

Ψ(x, y, z) =
∑

nx

cnx
ψnx

(x),

but the coefficients cnx
will be different for different values of y and z; in other

words they will be functions of y and z: cnx
= cnx

(y, z). So, more precisely, you
have

Ψ(x, y, z) =
∑

nx

cnx
(y, z)ψnx

(x),

But since the y-eigenfunctions are also complete, at any given value of z,
you can write each cnx

(y, z) as a sum of y-eigenfunctions:

Ψ(x, y, z) =
∑

nx


∑

ny

cnxny
ψny

(y)


ψnx

(x),

where the coefficients cnxny
will be different for different values of z, cnxny

=
cnxny

(z). So, more precisely,

Ψ(x, y, z) =
∑

nx


∑

ny

cnxny
(z)ψny

(y)


ψnx

(x),

But since the z-eigenfunctions are also complete, you can write cnxny
(z) as

a sum of z-eigenfunctions:

Ψ(x, y, z) =
∑

nx


∑

ny

(∑

nz

cnxnynz
ψnz

(z)

)
ψny

(y)


ψnx

(x).

Since the order of doing the summation does not make a difference,

Ψ(x, y, z) =
∑

nx

∑

ny

∑

nz

cnxnynz
ψnx

(x)ψny
(y)ψnz

(z).

So, any wave function Ψ(x, y, z) can be written as a sum of products of
one-dimensional eigenfunctions; these products are complete.
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D.12 The harmonic oscillator solution

If you really want to know how the harmonic oscillator wave function can be
found, here it is. Read at your own risk.

The ODE (ordinary differential equation) to solve is

− ~
2

2m

∂2ψx
∂x2

+ 1
2
mω2x2ψx = Exψx

where the spring constant c was rewritten as the equivalent expression mω2.
Now the first thing you always want to do with this sort of problems is to

simplify it as much as possible. In particular, get rid of as much dimensional
constants as you can by rescaling the variables: define a new scaled x-coordinate
ξ and a scaled energy ǫ by

x ≡ ℓξ Ex ≡ E0ǫ.

If you make these replacements into the ODE above, you can make the coef-
ficients of the two terms in the left hand side equal by choosing ℓ =

√
~/mω.

In that case both terms will have the same net coefficient 1
2
~ω. Then if you

cleverly choose E0 =
1
2
~ω, the right hand side will have that coefficient too, and

you can divide it away and end up with no coefficients at all:

−∂
2ψx
∂ξ2

+ ξ2ψx = ǫψx

Looks a lot cleaner, not?
Now examine this equation for large values of ξ (i.e. large x). You get

approximately
∂2ψx
∂ξ2

≈ ξ2ψx + . . .

If you write the solution as an exponential, you can ballpark that it must take
the form

ψx = e±
1
2
ξ2+...

where the dots indicate terms that are small compared to 1
2
ξ2 for large ξ. The

form of the solution is important, since e+
1
2
ξ2 becomes infinitely large at large

ξ. That is unacceptable: the probability of finding the particle cannot become
infinitely large at large x: the total probability of finding the particle must be
one, not infinite. The only solutions that are acceptable are those that behave
as e−

1
2
ξ2+... for large ξ.

Now split off the leading exponential part by defining a new unknown h(ξ)
by

ψx ≡ e−
1
2
ξ2h(ξ)
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Substituting this in the ODE and dividing out the exponential, you get:

−∂
2h

∂ξ2
+ 2ξ

∂h

∂ξ
+ h = ǫh

Now try to solve this by writing h as a power series, (say, a Taylor series):

h =
∑

p

cpξ
p

where the values of p run over whatever the appropriate powers are and the cp
are constants. If you plug this into the ODE, you get

∑

p

p(p− 1)cpξ
p−2 =

∑

p

(2p+ 1− ǫ)cpξp

For the two sides to be equal, they must have the same coefficient for every
power of ξ.

There must be a lowest value of p for which there is a nonzero coefficient cp,
for if p took on arbitrarily large negative values, h would blow up strongly at
the origin, and the probability to find the particle near the origin would then be
infinite. Denote the lowest value of p by q. This lowest power produces a power
of ξq−2 in the left hand side of the equation above, but there is no corresponding
power in the right hand side. So, the coefficient q(q − 1)cq of ξ

q−2 will need to
be zero, and that means either q = 0 or q = 1. So the power series for h will
need to start as either c0 + . . . or c1ξ + . . .. The constant c0 or c1 is allowed to
have any nonzero value.

But note that the cqξ
q term normally produces a term (2q+1− ǫ)cqξq in the

right hand side of the equation above. For the left hand side to have a matching
ξq term, there will need to be a further cq+2ξ

q+2 term in the power series for h,

h = cqξ
q + cq+2ξ

q+2 + . . .

where (q + 2)(q + 1)cq+2 will need to equal (2q + 1 − ǫ)cq, so cq+2 = (2q + 1 −
ǫ)cq/(q+2)(q+1). This term in turn will normally produce a term

(
2(q+2)+

1− ǫ
)
cq+2ξ

q+2 in the right hand side which will have to be canceled in the left

hand side by a cq+4ξ
q+4 term in the power series for h. And so on.

So, if the power series starts with q = 0, the solution will take the general
form

h = c0 + c2ξ
2 + c4ξ

4 + c6ξ
6 + . . .

while if it starts with q = 1 you will get

h = c1ξ + c3ξ
3 + c5ξ

5 + c7ξ
7 + . . .
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In the first case, you have a symmetric solution, one which remains the same
when you flip over the sign of ξ, and in the second case you have an antisym-
metric solution, one which changes sign when you flip over the sign of ξ.

You can find a general formula for the coefficients of the series by making
the change in notations p = 2 + p̄ in the left-hand-side sum:

∑

p̄=q

(p̄+ 2)(p̄+ 1)cp̄+2ξ
p̄ =

∑

p=q

(2p+ 1− ǫ)cpξp

Note that you can start summing at p̄ = q rather than q − 2, since the first
term in the sum is zero anyway. Next note that you can again forget about the
difference between p̄ and p, because it is just a symbolic summation variable.
The symbolic sum writes out to the exact same actual sum whether you call the
symbolic summation variable p or p̄.

So for the powers in the two sides to be equal, you must have

cp+2 =
2p+ 1− ǫ

(p+ 2)(p+ 1)
cp

In particular, for large p, by approximation

cp+2 ≈
2

p
cp

Now if you check out the Taylor series of eξ
2
, (i.e. the Taylor series of ex with

x replaced by ξ2,) you find it satisfies the exact same equation. So, normally

the solution h blows up something like eξ
2
at large ξ. And since ψx was e−

1
2
ξ2h,

normally ψx takes on the unacceptable form e+
1
2
ξ2+.... (If you must have rigor

here, estimate h in terms of Ceαξ
2
where α is a number slightly less than one,

plus a polynomial. That is enough to show unacceptability of such solutions.)
What are the options for acceptable solutions? The only possibility is that

the power series terminates. There must be a highest power p, call it p = n,
whose term in the right hand side is zero

0 = (2n+ 1− ǫ)cnξn

In that case, there is no need for a further cn+2ξ
n+2 term, the power series will

remain a polynomial of degree n. But note that all this requires the scaled
energy ǫ to equal 2n + 1, and the actual energy Ex is therefore (2n + 1)~ω/2.
Different choices for the power at which the series terminates produce different
energies and corresponding eigenfunctions. But they are discrete, since n, as
any power p, must be a nonnegative integer.

With ǫ identified as 2n + 1, you can find the ODE for h listed in table
books, like [41, 29.1], under the name “Hermite’s differential equation.” They
then identify the polynomial solutions as the so-called “Hermite polynomials,”
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except for a normalization factor. To find the normalization factor, i.e. c0 or
c1, demand that the total probability of finding the particle anywhere is one,∫∞
−∞ |ψx|2 dx = 1. You should be able to find the value for the appropriate
integral in your table book, like [41, 29.15].

Putting it all together, the generic expression for the eigenfunctions can be
found to be:

hn =
1

(πℓ2)1/4
Hn(ξ)√
2nn!

e−ξ
2/2 n = 0, 1, 2, 3, 4, 5, . . . (D.4)

where the details of the “Hermite polynomials” Hn can be found in table books
like [41, pp. 167-168]. They are readily evaluated on a computer using the
“recurrence relation” you can find there, for as far as computer round-off error
allows (up to n about 70.)

Quantum field theory allows a much neater way to find the eigenfunctions.
It is explained in addendum {A.15.5} or equivalently in {D.64}.

D.13 The harmonic oscillator and uncertainty

The given qualitative explanation of the ground state of the harmonic oscillator
in terms of the uncertainty principle is questionable. In particular, position,
linear momentum, potential energy, and kinetic energy are uncertain for the
ground state. This note gives a solid argument, but it uses some advanced ideas
discussed in chapter 4.4 and 4.5.3.

As explained more fully in chapter 4.4, the “expectation value” of the kinetic
energy is defined as the average value expected for kinetic energy measurements.
Similarly, the expectation value of the potential energy is defined as the average
value expected for potential energy measurements.

From the precise form of expectation values in quantum mechanics, it fol-
lows that total energy must be the sum of the kinetic and potential energy
expectation values. For the harmonic oscillator ground state, that gives

Ex0 =
1
2
~ω =

1

2m

〈
p2x
〉
+
m

2
ω2
〈
x2
〉

Here 〈.〉 stands for the average of the enclosed quantity. Only the motion in the
x-direction will be considered here. The y and z directions go exactly the same
way.

Now any value of px can be written as equal to the average value 〈px〉 plus
a deviation from that average ∆px. Then

〈
p2x
〉
=
〈
(〈px〉+∆px)

2
〉
= 〈px〉2 + 2 〈px〉 〈∆px〉+

〈
(∆px)

2
〉

Note that an average is a constant that is not affected by further averaging.
Next note that the average of ∆px is zero, otherwise the average of px + ∆px
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would not be 〈px〉. So: 〈
p2x
〉
= 〈px〉2 +

〈
(∆px)

2
〉

Of course, a similar expression holds for 〈x2〉, so the ground state energy is

1
2
~ω =

1

2m
〈px〉2 +

m

2
ω2 〈x〉2 + 1

2m

〈
(∆px)

2
〉
+
m

2
ω2
〈
(∆x)2

〉
(1)

Consider the last two terms. Call them a2 and b2 for now. Note that

(a− b)2 > 0 =⇒ a2 + b2 > 2ab = ω
√
〈(∆px)2〉

√
〈(∆x)2〉

as follows from multiplying out the square. The > becomes = when a and b are
equal.

Now the first square root above is a measure of the uncertainty in px. If
∆px is always zero, then px is always its average value, without any uncertainty.
Similarly, the second square root above is a measure of the uncertainty in x. The
Heisenberg uncertainty principle can be made quantitative as, chapter 4.5.3,

√
〈(∆px)2〉

√
〈(∆x)2〉 > 1

2
~

Therefore
a2 + b2 > 1

2
~ω

So the minimum value of the final two terms in the expression (1) for the
ground state energy is the complete ground state energy. Therefore, in order
that the right hand side in (1) does not exceed the left hand side, the first two
terms must be zero. So the average particle momentum and position are both
zero. In addition, for the estimates of the final two terms, equalities are needed,
not inequalities. That means that a must be b. That then means that the
expectation kinetic energy must be the expectation potential energy. And the
two must be the very minimum allowed by the Heisenberg relation; otherwise
there is still that inequality.

D.14 The spherical harmonics

This note derives and lists properties of the spherical harmonics.

D.14.1 Derivation from the eigenvalue problem

This analysis will derive the spherical harmonics from the eigenvalue problem
of square angular momentum of chapter 4.2.3. It will use similar techniques as
for the harmonic oscillator solution, {D.12}.

The imposed additional requirement that the spherical harmonics Y m
l are

eigenfunctions of Lz means that they are of the form Θm
l (θ)e

imφ where function
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Θm
l (θ) is still to be determined. (There is also an arbitrary dependence on the

radius r, but it does not have anything to do with angular momentum, hence
is ignored when people define the spherical harmonics.) Substitution into L̂2ψ

= L2ψ with L̂2 as in (4.22) yields an ODE (ordinary differential equation) for
Θm
l (θ):

− ~
2

sin θ

∂

∂θ

(
sin θ

∂Θm
l

∂θ

)
+

~
2m2

sin2 θ
Θm
l = L2Θm

l

It is convenient define a scaled square angular momentum by L2 = ~
2λ2 so that

you can divide away the ~
2 from the ODE.

More importantly, recognize that the solutions will likely be in terms of
cosines and sines of θ, because they should be periodic if θ changes by 2π. If
you want to use power-series solution procedures again, these transcendental
functions are bad news, so switch to a new variable x = cos θ. At the very least,
that will reduce things to algebraic functions, since sin θ is in terms of x = cos θ
equal to

√
1− x2. Converting the ODE to the new variable x, you get

−(1− x2)d
2Θm

l

dx2
+ 2x

dΘm
l

dx
+

m2

1− x2Θ
m
l = λ2Θm

l

As you may guess from looking at this ODE, the solutions Θm
l are likely to

be problematic near x = ±1, (physically, near the z-axis where sin θ is zero.) If
you examine the solution near those points by defining a local coordinate ξ as
in x = ±(1− ξ), and then deduce the leading term in the power series solutions
with respect to ξ, you find that it is either ξm/2 or ξ−m/2, (in the special case
that m = 0, that second solution turns out to be ln ξ.) Either way, the second
possibility is not acceptable, since it physically would have infinite derivatives
at the z-axis and a resulting expectation value of square momentum, as defined
in chapter 4.4.3, that is infinite. You need to have that Θm

l behaves as ξm/2

at each end, so in terms of x it must have a factor (1 − x)m/2 near x = 1 and
(1+x)m/2 near x = −1. The two factors multiply to (1−x2)m/2 and so Θm

l can
be written as (1 − x2)m/2fml where fml must have finite values at x = 1 and x
= −1.

If you substitute Θm
l = (1−x2)m/2fml into the ODE for Θm

l , you get an ODE
for fml :

−(1− x2)d
2fml
dx2

+ 2(1 +m)x
dfml
dx

+ (m2 +m)fml = λ2fml

Plug in a power series, fml =
∑
cpx

p, to get, after clean up,

∑
p(p− 1)cpx

p−2 =
∑[

(p+m)(p+m+ 1)− λ2
]
cpx

p

Using similar arguments as for the harmonic oscillator, you see that the starting
power will be zero or one, leading to basic solutions that are again odd or even.
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And just like for the harmonic oscillator, you must again have that the power
series terminates; even in the least case that m = 0, the series for fml at |x| =
1 is like that of ln(1 − x2) and will not converge to the finite value stipulated.
(For rigor, use Gauss’s test.)

To get the series to terminate at some final power p = n, you must have
according to the above equation that λ2 = (n+m)(n+m+1), and if you decide
to call n+m the azimuthal quantum number l, you have λ2 = l(l + 1) where l

> m since l = n+m and n, like any power p, is greater or equal to zero.
The rest is just a matter of table books, because with λ2 = l(l + 1), the

ODE for fml is just the m-th derivative of the differential equation for the Ll
Legendre polynomial, [41, 28.1], so the fml must be just the m-th derivative
of those polynomials. In fact, you can now recognize that the ODE for the
Θm
l is just Legendre’s associated differential equation [41, 28.49], and that the

solutions that you need are the associated Legendre functions of the first kind
[41, 28.50].

To normalize the eigenfunctions on the surface area of the unit sphere, find
the corresponding integral in a table book, like [41, 28.63]. As mentioned at
the start of this long and still very condensed story, to include negative values
of m, just replace m by |m|. There is one additional issue, though, the sign
pattern. In order to simplify some more advanced analysis, physicists like the
sign pattern to vary with m according to the so-called “ladder operators.” That
requires, {D.64}, that starting from m = 0, the spherical harmonics for m >
0 have the alternating sign pattern of the “ladder-up operator,” and those for
m < 0 the unvarying sign of the “ladder-down operator.” Physicists will still
allow you to select your own sign for the m = 0 state, bless them.

The final solution is

Y m
l (θ, φ) = (−1)max(m,0)

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimφ (D.5)

where the properties of the associated Legendre functions of the first kind P
|m|
l

can be found in table books like [41, pp. 162-166]. This uses the following
definition of the associated Legendre polynomials:

Pm
l (x) ≡ (1− x2)m/2d

mPl(x)

dxm

where Pl is the normal Legendre polynomial. Needless to say, some other authors
use different definitions, potentially putting in a factor (−1)m.

D.14.2 Parity

One special property of the spherical harmonics is often of interest: their “par-
ity.” The parity of a wave function is 1, or even, if the wave function stays the
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same if you replace ~r by −~r. The parity is −1, or odd, if the wave function stays
the same save for a sign change when you replace ~r by −~r. It turns out that
the parity of the spherical harmonics is (−1)l; so it is −1, odd, if the azimuthal
quantum number l is odd, and 1, even, if l is even.

To see why, note that replacing ~r by −~r means in spherical coordinates that
θ changes into π − θ and φ into φ + π. According to trig, the first changes
cos θ into −cos θ. That leaves Pl(cos θ) unchanged for even l, since Pl is then a
symmetric function, but it changes the sign of Pl for odd l. So the sign change is
(−1)l. The value of m has no effect, since while the factor eimφ in the spherical
harmonics produces a factor (−1)|m| under the change in φ, m also puts |m|
derivatives on Pl, and each derivative produces a compensating change of sign
in P

|m|
l (cos θ).

D.14.3 Solutions of the Laplace equation

The “Laplace equation” is
∇2u = 0

Solutions u to this equation are called “harmonic functions.” In spherical coor-
dinates, the Laplace equation has solutions of the form

rlY m
l (θφ)

This is a complete set of solutions for the Laplace equation inside a sphere.
Any solution u of the Laplace equation inside a sphere is a linear combination
of these solutions.

As you can see in table 4.3, each solution above is a power series in terms of
Cartesian coordinates.

For the Laplace equation outside a sphere, replace rl by 1/rl+1 in the so-
lutions above. Note that these solutions are not acceptable inside the sphere
because they blow up at the origin.

To check that these are indeed solutions of the Laplace equation, plug them
in, using the Laplacian in spherical coordinates given in (N.5). Note here that
the angular derivatives can be simplified using the eigenvalue problem of square
angular momentum, chapter 4.2.3.

D.14.4 Orthogonal integrals

The spherical harmonics are orthonormal on the unit sphere:
∫

all

Y m
l

∗
Y m
l dΩ = δllδmm dΩ ≡ sinθ dθdφ (D.6)

Here δll is defined to be 0 if l and l are different, and 1 if they are equal, and
similar for δmm. In other words, the integral above is 1 if l = l and m = m, and
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0 in every other case. This expresses physically that the spherical harmonics, as
eigenfunctions of the Hermitian z and square angular momentum operators, are
orthonormal. Mathematically, it allows you to integrate each spherical harmonic
separately and quickly when you are finding

∫
|ψ|2 d3~r for a wave function ψ

expressed in terms of spherical harmonics.
Further

∫

all

(
Y m
l

∗

∂θ

Y m
l

∂θ
+

1

sin2 θ

Y m
l

∗

∂φ

Y m
l

∂φ

)
dΩ = l(l + 1)δllδmm (D.7)

This expression simplifies your life when you are finding the
∫
|∇ψ|2 d3~r for a

wave function ψ expressed in terms of spherical harmonics.
See the notations for more on spherical coordinates and ∇.
To verify the above expression, integrate the first term in the integral by

parts with respect to θ and the second term with respect to φ to get

−
∫
Ȳ

(
1

sin θ
(Y sin θ)θ +

1

sin2 θ
Yφφ

)
dΩ

and then apply the eigenvalue problem of chapter 4.2.3.

D.14.5 Another way to find the spherical harmonics

There is a more intuitive way to derive the spherical harmonics: they define the
power series solutions to the Laplace equation. In particular, each rlY m

l is a
different power series solution P of the Laplace equation ∇2P = 0 in Cartesian
coordinates. Each takes the form

∑

α+β+γ=l

cαβγx
αyβzγ

where the coefficients cαβγ are such as to make the Laplacian zero.
Even more specifically, the spherical harmonics are of the form

∑

2a+b=l−m
cabu

a+mvazb a, b,m > 0

∑

2a+b=l−|m|
cabu

ava+|m|zb a, b,−m > 0

where the coordinates u = x+iy and v = x− iy serve to simplify the Laplacian.
That these are the basic power series solutions of the Laplace equation is readily
checked.

To get from those power series solutions back to the equation for the spherical
harmonics, one has to do an inverse separation of variables argument for the
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solution of the Laplace equation in a sphere in spherical coordinates (compare
also the derivation of the hydrogen atom.) Also, one would have to accept on
faith that the solution of the Laplace equation is just a power series, as it is in
2D, with no additional nonpower terms, to settle completeness. In other words,
you must assume that the solution is analytic.

D.14.6 Still another way to find them

The simplest way of getting the spherical harmonics is probably the one given
later in derivation {D.64}.

D.15 The hydrogen radial wave functions

This will be child’s play for harmonic oscillator, {D.12}, and spherical harmon-
ics, {D.14}, veterans. If you replace the angular terms in (4.33) by l(l + 1)~2,
and then divide the entire equation by ~

2, you get

− 1

R

d

dr

(
r2
dR

dr

)
+ l(l + 1)− 2

mee
2

4πǫ0~2
r =

2me

~2
r2E

Since l(l + 1) is nondimensional, all terms in this equation must be. In
particular, the ratio in the third term must be the reciprocal of a constant
with the dimensions of length; so, define the constant to be the Bohr radius
a0. It is convenient to also define a correspondingly nondimensionalized radial
coordinate as ρ = r/a0. The final term in the equation must be nondimensional
too, and that means that the energy E must take the form (~2/2mea

2
0)ǫ, where

ǫ is a nondimensional energy. In terms of these scaled coordinates you get

− 1

R

d

dρ

(
ρ2

dR

dρ

)
+ l(l + 1)− 2ρ = ρ2ǫ

or written out

−ρ2R′′ − 2ρR′ + [l(l + 1)− 2ρ− ǫρ2]R = 0

where the primes denote derivatives with respect to ρ.
Similar to the case of the harmonic oscillator, you must have solutions that

become zero at large distances ρ from the nucleus:
∫
|ψ|2 d3~r gives the prob-

ability of finding the particle integrated over all possible positions, and if ψ
does not become zero sufficiently rapidly at large ρ, this integral would become
infinite, rather than one (certainty) as it should. Now the ODE above becomes
for large ρ approximately R′′ + ǫR = 0, which has solutions of the rough form
cos(
√
ǫρ + α) for positive ǫ that do not have the required decay to zero. Zero

scaled energy ǫ is still too much, as can be checked by solving in terms of Bessel
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functions, so you must have that ǫ is negative. In classical terms, the earth can
only hold onto the moon since the moon’s total energy is less than the potential
energy far from the earth; if it was not, the moon would escape.

Anyway, for bound states, you must have the scaled energy ǫ negative. In
that case, the solution at large ρ takes the approximate form R ≈ e±

√
−ǫρ. Only

the negative sign is acceptable. You can make things a lot easier for yourself if
you peek at the final solution and rewrite ǫ as being −1/n2 (that is not really
cheating, since you are not at this time claiming that n is an integer, just a
positive number.) In that case, the acceptable exponential behavior at large

distance takes the form e−
1
2
ξ where ξ = 2ρ/n. Split off this exponential part by

writing R = e−
1
2
ξR where R(ξ) must remain bounded at large ξ. Substituting

these new variables, the ODE becomes

−ξ2R ′′ + ξ(ξ − 2)R
′
+ [l(l + 1)− (n− 1)ξ]R = 0

where the primes indicate derivatives with respect to ξ.

If you do a power series solution of this ODE, you see that it must start
with either power ξl or with power ξ−l−1. The latter is not acceptable, since
it would correspond to an infinite expectation value of energy. You could now
expand the solution further in powers of ξ, but the problem is that tabulated
polynomials usually do not start with a power l but with power zero or one. So
you would not easily recognize the polynomial you get. Therefore it is best to

split off the leading power by defining R = ξlR, which turns the ODE into

ξR
′′
+ [2(l + 1)− ξ]R ′ + [n− l − 1]R = 0

Substituting in a power series R =
∑
cpξ

p, you get

∑
p[p+ 2l + 1]cpξ

p−1 =
∑

[p+ l + 1− n]cpξp

The acceptable lowest power p of ξ is now zero. Again the series must terminate,
otherwise the solution would behave as eξ at large distance, which is unaccept-
able. Termination at a highest power p = q requires that n equals q + l + 1.
Since q and l are integers, so must be n, and since the final power q is at least
zero, n is at least l + 1. The correct scaled energy ǫ = −1/n2 with n > l has
been obtained.

With n identified, you can identify the ODE as Laguerre’s associated differ-
ential equation, e.g. [41, 30.26], the (2l+1)-th derivative of Laguerre’s differential
equation, e.g. [41, 30.1], and the polynomial solutions as the associated Laguerre
polynomials L2l+1

n+l , e.g. [41, 30.27], the (2l + 1)-th derivatives of the Laguerre’s
polynomials Ln+l, e.g. [41, 30.2]. To normalize the wave function use an integral
from a table book, e.g. [41, 30.46].
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Putting it all together, the generic expression for hydrogen eigenfunctions
are, drums please:

ψnlm = − 2

n2

√
(n− l − 1)!

[(n+ l)!a0]3

(
2ρ

n

)l
L2l+1
n+l

(
2ρ

n

)
e−ρ/nY m

l (θ, φ) (D.8)

The properties of the associated Laguerre polynomials L2l+1
n+l (2ρ/n) are in table

books like [41, pp. 169-172], and the spherical harmonics were given earlier in
chapter 4.2.3 and in derivation {D.14}, (D.5).

Do keep in mind that different references have contradictory definitions of
the associated Laguerre polynomials. This book follows the notations of [41,
pp. 169-172], who define

Ln(x) = ex
dn

dxn
(
xne−x

)
, Lmn =

dm

dxm
Ln(x).

In other words, Lmn is simply the m-th derivative of Ln, which certainly tends to
simplify things. According to [25, p. 152], the “most nearly standard” notation
defines

Lmn = (−1)m dm

dxm
Ln+m(x).

Combine the messy definition of the spherical harmonics (D.5) with the
uncertain definition of the Laguerre polynomials in the formulae (D.8) for the
hydrogen energy eigenfunctions ψnlm above, and there is of course always a
possibility of getting an eigenfunction wrong if you are not careful.

Sometimes the value of the wave functions at the origin is needed. Now from
the above solution (D.8), it is seen that

ψnlm ∝ rl for r → 0 (D.9)

so only the eigenfunctions ψn00 are nonzero at the origin. To find the value
requires L1

n(0) where L
1
n is the derivative of the Laguerre polynomial Ln. Skim-

ming through table books, you can find that Ln(0) = n!, [41, 30.19], while the
differential equation for these function implies that L′n(0) = −nLn(0). There-
fore:

ψn00(0) =
1√
n3πa30

(D.10)

D.16 Constant spherical potentials derivations

This note gives the derivations for constant potentials in spherical coordinates.
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D.16.1 The eigenfunctions

The derivation of the given spherical eigenfunction is almost comically trivial
compared to similar problems in quantum mechanics.

Following the lines of the hydrogen atom derivation, chapter 4.3.2, the radial
functions REl are found to satisfy the equation

d

dr

(
r2
dREl

dr

)
+

[
p2c
~2
r2 − l(l + 1)

]
REl = 0

To clean this up a bit more, define new dependent and independent variables.
In particular, set REl = fl and r = x~/pc. That produces the spherical Bessel
equation

d

dx

(
x2

dfl
dx

)
+
[
x2 − l(l + 1)

]
fl = 0

It is now to be shown that the solutions fl to this equation are the Hankel and
Bessel functions as given earlier.

To do so, make another change of dependent variable by setting fl = xlgl.
That gives for the gl:

x
d2gl
dx2

+ 2(l + 1)
dgl
dx

+ xgl = 0

Check, by simply plugging it in, that eix/x is a solution for l = 0.
Now make a further change in independent variable from x to ξ = 1

2
x2 to

give

2ξ
d2gl
dξ2

+ 2(l + 1)
dgl
dξ

+ gl = 0

Note that the equation for l = 1 is obtained by differentiating the one for l =
0, (taking g′l as the new unknown.). That implies that the ξ-derivative of the
solution for l = 0 above is a solution for l = 1. Keep differentiating to get
solutions for all values of l. That produces the spherical Hankel functions of
the first kind; the remaining constant is just an arbitrarily chosen normalization
factor.

Since the original differential equation is real, the real and imaginary parts
of these Hankel functions, as well as their complex conjugates, must be solutions
too. That gives the spherical Bessel functions and Hankel functions of the second
kind, respectively.

Note that all of them are just finite sums of elementary functions. And that
physicists do not even disagree over their definition, just their names.

D.16.2 The Rayleigh formula

To derive the Rayleigh formula, convert the linear momentum eigenfunction to
spherical coordinates by setting z = r cos θ. Also, for brevity set x = p∞r/~.
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That turns the linear momentum eigenfunction into

eix cos θ =
∞∑

l=0

(ix cos θ)l

l!

the latter from Taylor series expansion of the exponential.
Now this is an energy eigenfunction. It can be written in terms of the

spherical eigenfunctions
ψElm = jl(x)Y

m
l (θ, φ)

with the same energy because the ψElm are complete. In addition, the only
eigenfunctions needed are those with m = 0. The reason is that the spherical
harmonics Y m

l are simply Fourier modes in the φ direction, {D.14} (D.5), and
the linear momentum eigenfunction above does not depend on φ. Therefore

∞∑

l=0

(ix cos θ)l

l!
=
∞∑

l=0

cw,ljl(x)Y
0
l (θ)

for suitable coefficients cw,l.
To find these coefficients, find the lowest power of x in jl by writing the sine

in (A.19) as a Taylor series and then switching to x2 as independent variable.
Similarly, find the highest power of cos θ in Y 0

l , {D.14} (D.5), by looking up the
Rodrigue’s formula for the Legendre polynomial appearing in it. That gives

∞∑

l=0

(ix cos θ)l

l!
=
∞∑

l=0

cw,l

(
2ll!

(2l + 1)!
xl + . . .

)√
2l + 1

4π

(
(2l)!

2l(l!)2
cosl θ + . . .

)

Each coefficient cw,l must be chosen to match the term with l = l in the first
sum, because the terms for the other values for l do not have a low enough
power of x or a high enough power of the cosine. That gives the Rayleigh values
of the coefficients as listed earlier.

D.17 Inner product for the expectation value

To see that 〈Ψ|A〉 works for getting the expectation value, just write Ψ out in
terms of the eigenfunctions αn of A:

〈c1α1 + c2α2 + c3α3 + . . . |A|c1α1 + c2α2 + c3α3 + . . .〉

Now by the definition of eigenfunctions Aαn = anαn for every n, so you get

〈c1α1 + c2α2 + c3α3 + . . . |c1a1α1 + c2a2α2 + c3a3α3 + . . .〉

Since eigenfunctions are orthonormal:

〈α1|α1〉 = 1 〈α2|α2〉 = 1 〈α3|α3〉 = 1 . . .
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〈α1|α2〉 = 〈α2|α1〉 = 〈α1|α3〉 = 〈α3|α1〉 = 〈α2|α3〉 = 〈α3|α2〉 = . . . = 0

So, multiplying out produces the desired result:

〈Ψ|AΨ〉 = |c1|2a1 + |c2|2a2 + |c3|2a3 + . . . ≡ 〈A〉

D.18 Eigenfunctions of commuting operators

Any two operators A and B that commute, AB = BA, have a common set of
eigenfunctions, provided only that each has a complete set of eigenfunctions. (In
other words, the operators do not necessarily have to be Hermitian. Unitary,
anti-Hermitian, etcetera, operators all qualify.)

First note the following:

if αi is an eigenfunction of A with eigenvalue ai, then Bαi is either
also an eigenfunction of A with eigenvalue ai or is zero.

To see that, note that since A and B commute ABαi = BAαi which is aiBαi.
Comparing start and end, the combination Bαi must be an eigenfunction of A
with eigenvalue ai if it is not zero. (Eigenfunctions may not be zero.)

Now assume that there is just a single independent eigenfunction αi for each
distinct eigenvalue ai of A. Then if Bαi is nonzero, it can only be a multiple
of that single eigenfunction. By definition, that makes αi an eigenfunction of
B too, with as eigenvalue the multiple. On the other hand, if Bαi is zero, then
αi is still an eigenfunction of B, now with eigenvalue zero. So under the stated
assumption, A and B have the exact same eigenfunctions, proving the assertion
of this derivation.

However, frequently there is “degeneracy,” i.e. there is more than one eigen-
function αi,1, αi,2, . . . for a single eigenvalue ai. Then the fact that, say, Bαi,1 is
an eigenfunction of A with eigenvalue ai no longer means that Bαi,1 is a multi-
ple of αi,1; it only means that Bαi,1 is some combination of all of αi,1, αi,2, . . ..
Which means that αi,1 is not in general an eigenfunction of B.

To deal with that, it has to be assumed that the problem has been numer-
ically approximated by some finite-dimensional one. Then A and B will be
matrices, and the number of independent eigenfunctions (or rather, eigenvec-
tors now) of A and B will be finite and equal. That allows the problem to be
addressed one eigenfunction at a time.

Assume now that β is an eigenfunction of B, with eigenvalue b, that is not
yet an eigenfunction of A too. By completeness, it can still be written as a
combination of the eigenfunctions of A, and more particularly as β = βai + βo
where βai is a combination of the eigenfunctions of A with eigenvalue ai and βo
a combination of the eigenfunctions of A with other eigenvalues. There must be
such eigenfunctions with βai nonzero, because without using the αi you cannot



D.19. THE GENERALIZED UNCERTAINTY RELATIONSHIP 1251

create an equal number of independent eigenfunctions of B as of A. By definition

B (βai + βo) = b (βai + βo)

but that must mean that

Bβai = bβai

since if it is not, Bβ0 cannot make up the difference; as seen earlier, Bβ0 only
consists of eigenfunctions of A that do not have eigenvalue ai. According to
the above equation, βai , which is already an eigenfunction of A with eigenvalue
ai, is also an eigenfunction of B with eigenvalue b. So replace one of the αi,1,
αi,2 ,. . . with βai . (If you write βai in terms of the αi,1, αi,2 ,. . . , then the
function you replace may not appear with a zero coefficient.) Similarly replace
an eigenfunction of B with eigenvalue b with βai . Then A and B have one more
common eigenfunction. Keep going in this way and eventually all eigenfunctions
of B are also eigenfunctions of A and vice versa.

Similar arguments can be used recursively to show that more generally, a set
of operators A,B,C, . . . that all commute have a single common set of eigen-
functions. The trick is to define an artificial new operator, call it P , that has
the common eigenfunctions of A and B, but whose eigenvalues are distinct for
any two eigenfunctions unless these eigenfunctions have the same eigenvalues
for both A and B. Then the eigenfunctions of P , even if you mess with them,
remain eigenfunctions of A and B. So go find common eigenfunctions for P and
C.

The above derivation assumed that the problem was finite-dimensional, or
discretized some way into a finite-dimensional one like you do in numerical
solutions. The latter is open to some suspicion, because even the most accurate
numerical approximation is never truly exact. Unfortunately, in the infinite-
dimensional case the derivation gets much trickier. However, as the hydrogen
atom and harmonic oscillator eigenfunction examples indicate, typical infinite
systems in nature do obey the theorem anyway.

D.19 The generalized uncertainty relationship

This note derives the generalized uncertainty relationship.
For brevity, defineA′ =A−〈A〉 andB′ =B−〈B〉, then the general expression

for standard deviation says

σ2
Aσ

2
B = 〈A′2〉〈B′2〉 = 〈Ψ|A′2Ψ〉〈Ψ|B′2Ψ〉

Hermitian operators can be taken to the other side of inner products, so

σ2
Aσ

2
B = 〈A′Ψ|A′Ψ〉〈B′Ψ|B′Ψ〉
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Now the Cauchy-Schwartz inequality says that for any f and g,

|〈f |g〉| 6
√
〈f |f〉

√
〈g|g〉

(See the notations for more on this theorem.) Using the Cauchy-Schwartz in-
equality in reversed order, you get

σ2
Aσ

2
B > |〈A′Ψ|B′Ψ〉|2 = |〈A′B′〉|2

Now by the definition of the inner product, the complex conjugate of 〈A′Ψ|B′Ψ〉
is 〈B′Ψ|A′Ψ〉, so the complex conjugate of 〈A′B′〉 is 〈B′A′〉, and averaging a
complex number with minus its complex conjugate reduces its size, since the
real part averages away, so

σ2
Aσ

2
B >

∣∣∣∣
〈A′B′〉 − 〈B′A′〉

2

∣∣∣∣
2

The quantity in the top is the expectation value of the commutator [A′, B′].
Writing it out shows that [A′, B′] = [A,B].

D.20 Derivation of the commutator rules

This note explains where the formulae of chapter 4.5.4 come from.
The general assertions are readily checked by simply writing out both sides

of the equation and comparing. And some are just rewrites of earlier ones.
Position and potential energy operators commute since they are just ordinary

numerical multiplications, and these commute.
The linear momentum operators commute because the order in which dif-

ferentiation is done is irrelevant. Similarly, commutators between angular mo-
mentum in one direction and position in another direction commute since the
other directions are not affected by the differentiation.

The commutator between the position X and linear momentum px in the x-
direction was worked out in the previous subsection to figure out Heisenberg’s
uncertainty principle. Of course, three-dimensional space has no preferred di-
rection, so the result applies the same in any direction, including the y and z
directions.

The angular momentum commutators are simplest obtained by just grinding
out

[L̂x, L̂y] = [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z]
using the linear combination and product manipulation rules and the commuta-
tors for linear angular momentum. To generalize the result you get, you cannot
just arbitrarily swap x, y, and z, since, as every mechanic knows, a right-handed
screw is not the same as a left-handed one, and some axes swaps would turn one
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into the other. But you can swap axes according to the “xyzxyzx . . .” “cyclic
permutation” scheme, as in:

x→ y, y → z, z → x

which produces the other two commutators if you do it twice:

[L̂x, L̂y] = i~L̂z −→ [L̂y, L̂z] = i~L̂x −→ [L̂z, L̂x] = i~L̂y

For the commutators with square angular momentum, work out

[L̂x, L̂
2
x + L̂2

y + L̂2
z]

using the manipulation rules and the commutators between angular momentum
components.

A commutator like [x̂, L̂x] = [x̂, ŷp̂z − ẑp̂y] is zero because everything com-

mutes in it. However, in a commutator like [x̂, L̂y] = [x̂, ẑp̂x − x̂p̂z], x̂ does not
commute with p̂x, so multiplying out and taking the ẑ out of [x̂, ẑp̂x] at its own
side, you get ẑ[x̂, p̂x], and the commutator left is the canonical one, which has
value i~. Plug these results and similar into [x̂2 + ŷ2 + ẑ2, Lx] and you get zero.

For a commutator like [x̂, L̂2] = [x̂, L̂2
x+ L̂

2
y+ L̂

2
z], the L

2
x term produces zero

because L̂x commutes with x̂, and in the remaining term, taking the various
factors out at their own sides of the commutator produces

[x̂, L̂2] = L̂y[x̂, L̂y] + [x̂, L̂y]L̂y + L̂z[x̂, L̂z] + [x̂, L̂z]L̂z

= i~L̂yẑ + i~ẑL̂y − i~L̂zŷ − i~ŷL̂z

the final equality because of the commutators already worked out. Now by the
nature of the commutator, you can swap the order of the terms in L̂yẑ as long

as you add the commutator [L̂y, ẑ] to make up for it, and that commutator was

already found to be i~x̂, The same way the order of L̂zŷ can be swapped to give

[x̂, L̂2] = −2~2x̂− 2i~(ŷL̂z − ẑL̂y)

and the parenthetical expression can be recognized as the x-component of ~̂r ×
~̂L, giving one of the expressions claimed.

Instead you can work out the parenthetical expression further by substituting
in the definitions for L̂z and L̂y:

[x̂, L̂2] = −2~2x̂− 2i~
(
ŷ(x̂p̂y − ŷp̂x)− ẑ(ẑp̂x − x̂p̂z)− x̂(x̂p̂x − x̂p̂x)

)

where the third term added within the big parentheses is self-evidently zero.
This can be reordered to the x-component of the second claimed expression.
And as always, the other components are of course no different.
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The commutators between linear and angular momentum go almost identi-
cally, except for additional swaps in the order between position and momentum
operators using the canonical commutator.

To derive the first commutator in (4.73), consider the z-component as the
example:

[xL̂y − yL̂x, L̂2] = [x, L̂2]L̂y − [y, L̂2]Lx

because L2 commutes with ~̂L, and using (4.68)

[xL̂y − yL̂x, L̂2] = −2~2xL̂y − 2i~(yL̂zL̂y − zL̂2
y) + 2~2yL̂x + 2i~(zL̂2

x − xL̂zL̂x)

Now use the commutator [L̂y, L̂z] to get rid of L̂zL̂y and [L̂z, L̂x] to get rid of

L̂zL̂x and clean up to get

[xL̂y − yL̂x, L̂2] = 2i~
(
−yL̂yL̂z + zL̂2

y + zL̂2
x − xL̂xL̂z

)

Now ~r · ~̂L = ~r · (~r × ~̂p) = 0 so xL̂x + yL̂y = −zL̂z, which gives the claimed
expression. To verify the second equation of (4.73), use (4.68), the first of

(4.73), and the definition of [~r, L̂2].

D.21 Solution of the hydrogen molecular ion

The key to the variational approximation to the hydrogen molecular ion is to
be able to accurately evaluate the expectation energy

〈E〉 = 〈aψl + bψr|H|aψl + bψr〉

This can be multiplied out and simplified by noting that ψl and ψr are eigen-
functions of the partial Hamiltonians. For example,

Hψl = E1ψl −
e2

4πǫ0

1

rr
ψl

where E1 is the -13.6 eV hydrogen atom ground state energy. The expression
can be further simplified by noting that by symmetry

〈ψr|r−1l ψr〉 = 〈ψl|r−1r ψl〉 〈ψl|r−1l ψr〉 = 〈ψr|r−1r ψl〉

and that ψl and ψr are real, so that the left and right sides of the various
inner products can be reversed. Also, a and b are related by the normalization
requirement

a2 + b2 + 2ab〈ψl|ψr〉 = 1
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Cleaning up the expectation energy in this way, the result is

〈E〉 = E1 −

e2

4πǫ0

[
〈
ψl|r−1r ψl

〉
− 1

d
+ 2ab 〈ψl|ψr〉

{〈
ψl|r−1l ψr

〉

〈ψl|ψr〉
−
〈
ψl|r−1r ψl

〉
}]

which includes the proton to proton repulsion energy (the 1/d). The energy E1

is the −13.6 eV amount of energy when the protons are far apart.

Numerical integration is not needed; the inner product integrals in this ex-
pression can be done analytically. To do so, take the origin of a spherical
coordinate system (r, θ, φ) at the left proton, and the axis towards the right
one, so that

rl = |~r −~rlp| = r rr = |~r −~rrp| =
√
d2 + r2 − 2dr cos(θ).

In those terms,

ψl =
1√
πa30

e−r/a0 ψr =
1√
πa30

e−
√
d2+r2−2dr cos(θ)/a0 .

Then integrate angles first using d3~r = r2 sin(θ)dr dθ dφ = −r2dr d cos(θ) dφ.
Do not forget that

√
x2 = |x|, not x, e.g.

√
(−3)2 = 3, not −3. More details

are in [25, pp. 305-307].

The “overlap integral” turns out to be

〈ψl|ψr〉 = e−d/a0

[
1 +

d

a0
+

1

3

(
d

a0

)2
]

and provides a measure of how much the regions of the two wave functions
overlap. The “direct integral” is

〈
ψl|r−1r ψl

〉
=

1

d
−
[
1

a0
+

1

d

]
e−2d/a0

and gives the classical potential of an electron density of strength |ψl|2 in the
field of the right proton, except for the factor−e2/4πǫ0. The “exchange integral”
is

〈
ψl|r−1l ψr

〉
=

[
1

a0
+

d

a20

]
e−d/a0 .

and is somewhat of a twilight term, since ψl suggests that the electron is around
the left proton, but ψr suggests it is around the right one.
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D.22 Unique ground state wave function

This derivation completes {A.8}. In particular, it proves that ground states are
unique, given a real, noninfinite, potential that only depends on position. The
derivation also proves that ground states cannot become zero. So they can be
taken to be positive.

The basic idea is first to assume tentatively that there would be two indepen-
dent ground state wave functions. These could then be taken to be orthonormal
as usual. That means that the inner product of the two wave functions would
be zero. However, it can be shown, see below, that ground state wave functions
cannot cross zero. That means that both wave functions can be taken to be
everywhere positive. (The one exception is at impenetrable boundaries, where
the wave function is forced to be zero, rather than positive. But that exception
does not change the argument here.) Now if you check the definition of the
inner product, you see that the inner product of two positive wave functions
is positive, not zero. But the orthonormality says that it is zero. So there
is a contradiction. That means that the made assumption, that there are two
independent ground states, must be wrong. So the ground state must be unique.

ψ, |ψ|

ψ

|ψ|

x

|ψ| |ψ|

x0−δ δ2
ε

|ψ| |ψ|

x0−δ δ
ε ε2

Figure D.1: Right: the absolute value of the wave function has a kink at a zero
crossing. Middle: the kink has been slightly blunted. Right: an alternate way
of blunting.

To finish the proof then, it must still be shown that ground states that cross
zero are not possible. Tentatively suppose that you had a ground state whose
wave function did cross zero. Near a zero crossing, the wave function ψ will
then look something like the left part of figure D.1. (For a multi-dimensional
wave function, you can take this figure to be some arbitrary one-dimensional
cross section through the zero crossing.) Note from the figure that the absolute
value |ψ| has a kink at the zero crossing.

Next recall from {A.8} that |ψ| has the ground state energy just like ψ. So
it should not be possible to lower the energy below that of |ψ|. But the problem
is now that the wave function shown in the middle in figure D.1 does have less
energy. This wave function looks generally the same as |ψ|, except that the kink
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has been blunted just a little bit. More precisely, this wave function has been
prevented from becoming any smaller than some very small number ε.

To see why this wave function has less energy, compare what happens to
the kinetic and potential energies. The energy is the sum of a kinetic energy
integral IT and a potential energy integral IV . These are given by

IT =
~
2

2m

∫

all

(∇ψ)2 d3~r IV =

∫

all

V ψ2 d3~r

In the region that is blunted, the integrand of the kinetic energy integral is now
zero, instead of whatever positive value it had in the left figure. The constant
ε has zero derivatives. So the kinetic energy has been decreased noticeably.

You might at first think that the potential energy can compensate by increas-
ing more than the kinetic energy decreases. But that does not work, because
the integrand of the potential energy integral is proportional to |ψ|2, and that
is negligibly small in the blunted region. In fact, |ψ|2 is no larger than ε2, and ε
was a very small number. So, if the kinetic energy decreases and the potential
energy stays virtually the same, the conclusion is unavoidable. The energy de-
creases. The wave function in the middle in the figure has less energy than the
ones on the left. So the ones on the left cannot be ground states. So ground
state wave functions cannot cross zero.

That is basically it. Unfortunately, there are a few loose ends in the reasoning
above. That is even if you ignore that “small” is not a valid mathematical
concept. A number is either zero or not zero; that is all in mathematics. The
correct mathematical statement is: “there is a number ε small enough that
the kinetic energy decrease exceeds the potential energy increase.” (Note that
“small enough” does not imply small. All positive numbers less than 1 000 are
small enough to be less than 1 000.) But that is so picky.

More importantly, you might object that after blunting, the wave function
will no longer be normalized. But you can correct for that by dividing the given
expression of the expectation energy by the square norm of the wave function. In
particular, using a prime to indicate a quantity after blunting the wave function,
the correct energy is

〈E〉′ = I ′T + I ′V
〈ψ′|ψ′〉 〈ψ′|ψ′〉 =

∫

all

(ψ′)2 d3~r

Now note that the square norm changes negligibly under the smoothing, because
its integrand involves |ψ|2 just like the potential energy. So dividing by the
square norm should not make a difference.

In fact, there is a trick to avoid the normalization problem completely. Sim-
ply redefine the potential energy by a constant to make the expectation energy
zero. You can always do that; changing the definition of the potential energy by
constant does not make a difference physically. And if the expectation energy
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〈E〉 is zero, then so is IT + IV. Therefore the change in energy due to blunting
becomes

〈E〉′ − 〈E〉 = 〈E〉′ = I ′T + I ′V
〈ψ′|ψ′〉 =

I ′T + I ′V − (IT + IV )

〈ψ′|ψ′〉
Comparing start and end, you see that the sign of the change in energy is the
same as the sign of the change in the kinetic and potential energy integrals.
Regardless of whether ψ′ is normalized. And the sign of the change in energy is
all that counts. If it is negative, you do not have a ground state. So if IT + IV
decreases due to blunting, you do not have a ground state. Because of this trick,
the normalization problem can be ignored in the rest of the derivations.

You might further object that the given arguments do not account for the
possibility that the wave function could cross zero with zero slope. In that
case, the integrand of the original kinetic energy would be vanishingly small
too. True.

But in one dimension, you can use the Cauchy-Schwartz inequality of the
notations section on |ψ| to show that the decrease in kinetic energy will still be
more than the increase in potential energy. For simplicity, the coordinate x will
be taken zero at the original zero crossing, as in the middle graph of figure D.1.
Now consider the part of the blunted region at negative x. Here the original
kinetic energy integral was:

IT =
~
2

2m

∫ 0

−δ
|ψx|2 dx =

~
2

2m

∫ 0

−δ
|ψx|2 dx

1

δ

∫ 0

−δ
1 dx

>
~
2

2mδ

(∫ 0

−δ
|ψx|1 dx

)2

>
~
2

2mδ

(∫ 0

−δ
−ψx dx

)2

=
~
2ε2

2mδ

The first inequality above is the Cauchy-Schwartz inequality. The final equality
applies because the change in ψ is the integral of its derivative. Comparing start
and end above, the kinetic energy decrease is at least ~2ε2/2mδ. On the other
hand for the increase in potential energy

I ′V − IV =

∫ 0

−δ
V (ε2 − |ψ|2) dx 6

∫ 0

−δ
Vmax ε

2 dx = Vmax ε
2δ

where Vmax is the maximum (redefined) potential in the region. (Note that
if ψ is not monotonuous, −δ and δ2 are defined as the points closest to the
origin where ε is reached. So by definition |ψ| does not exceed ε.) It is seen
that the maximum potential energy decrease is proportional to δ. However, the
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minimum kinetic energy decrease is proportional to 1/δ. So for small enough δ,
potential energy increase cannot compete with kinetic energy decrease. More
specifically, taking δ2 small compared to ~

2/2mVmax makes the potential energy
increase small compared to the kinetic energy decrease. So the net energy will
decrease, showing that the original wave function is indeed not a ground state.
(If Vmax is negative, the potential energy will decrease, and net energy decrease
is automatic.)

The same arguments normally apply for the blunted region at positive x.
However, there is a possible exception. If after ψ reaches zero, it stays zero,
there will be no position δ2. At least not one vanishingly close to zero. To deal
with this possibility, a slightly more sophisticated blunting can be used. That
one is shown to the right in figure D.1. Here the blunting region is taken to be
symmetric around the origin. The value of δ is taken as the smallest distance
from the origin where ε is reached. Therefore once again |ψ| does not exceed
ε. Note that the modified wave function now has some kinetic energy left. In
particular it has left

~
2

2m

∫ δ

−δ

∣∣∣∣
ε− ε2
2δ

∣∣∣∣
2

dx =
~
2(ε− ε2)2
4mδ

6
~
2ε2

4mδ

However, as seen above, the negative blunted part has kinetic energy of at least
~
2ε2/2mδ. So the kinetic energy decrease is still at least half of what it was.

That is enough not to change the basic story.
Note that in neither approach, the zero crossing point can be at an impene-

trable boundary. Neither blunted wave function is zero at x = 0 at it should be
at an impenetrable boundary. That explains why ground state wave functions
can indeed become zero at impenetrable boundaries. The ground state of the
particle in a pipe provides an example, chapter 3.5.

Also note the need to assume that the potential does not become positive
infinity. If the potential is positive infinity in a finite region, then the wave
function is in fact zero inside that region. The particle cannot penetrate into
such a region. Its surface acts just like an impenetrable boundary.

How about wave functions in more than one dimension? That is easy, if
you will allow a very minor assumption. The minor assumption is that there
is at least a single crossing point where the gradient of ψ is continuous and
nonzero. It does not have to be true at all the zero crossing points, just at one
of them. And in fact it does not even have to be true for either one of the two
supposed ground states. It is enough if it is true for a single point in some linear
combination of them. So it is very hard to imagine ground states for which the
assumption would not apply.

Accepting that assumption, things are straightforward. Take the blunted
wave function essentially like the middle graph in figure D.1. The x-direction
is now the direction of the gradient at the point. However, rather than limiting
the wave function to stay above ε, demand that it stays above ε(ℓ2 − r2)/ℓ2.
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Here r is the distance from the considered zero crossing point, and ℓ is a number
small enough that the variation in the gradient is no more than say 50% within
a distance ℓ from the zero crossing point. There is then again some kinetic
energy left, but it is negligibly small. The estimates in each cross section of the
blunted region are essentially the same as in the one-dimensional case.

However, all that does require that one minor assumption. You might won-
der about pathological cases. For example, what if one wave function is only
nonzero where the other is zero and vice-versa? With zero gradient at every sin-
gle point of the zero crossings to boot? Of course, you and I know that ground
states are not just stupidly going to be zero in sizable parts of the region. Why
would the electron stay out of some region completely? Would not its uncer-
tainty in position at least produce a very tiny probability for the elecron to be
inside them? But proving it rigorously is another matter. Then there are some-
what more reasonable conjectures, like that a wave function would become zero
at a single point not at the boundary. (That would still give a unique ground
state. But would you not want to know whether it really could happen?) How
about fractal wave functions? Or just discontinuous ones? In one dimension
the wave function must be continuous, period. A discontinuity would produce
a delta function in the derivative, which would produce infinite kinetic energy.
But in multiple dimensions, things become much less obvious. (Note however
that in real life, a noticeably singularity in ψ at a point would require quite a
singular potential at that point.)

You might guess that you could use the approach of the right graph in figure
D.1 in multiple dimensions, taking the x coordinate in the direction normal to
the zero crossing surface. But first of all that requires that the zero crossing
surface is rectifiable. That excludes lone zero crossing points, or fractal crossing
surfaces. And in addition there is a major problem with trying to show that
the derivatives in directions other than x remain small.

There is however a method somewhat similar to the one of the right graph
that continues to work in more than one dimensions. In particular, in three
dimensions this method uses a small sphere of radius δ around the supposed
point of zero wave function. The method can show in, any number of dimensions,
that |ψ| cannot become zero. (Except at impenetrable boundaries as always.)
The method does not make any unjustified a priory assumptions like a nonzero
gradient. However, be warned: it is going to be messy. Only mathematically
inclined students should read the rest of this derivation.

The discussion will use three dimensions as an example. That corresponds,
for example, to the electron of the hydrogen molecular ion. But the same
arguments can be made in any number of dimensions. For example, you might
have a particle confined in a two-dimensional quantum well. In that case, the
sphere around the point of zero wave function becomes a circle. Similarly, in
a one-dimensional quantum wire, the sphere becomes the line segment −δ 6 x

6 δ. If you have two nonconfined electrons instead of just one, you are in six



D.22. UNIQUE GROUND STATE WAVE FUNCTION 1261

dimensions. All these cases can be covered mathematically by generalizing the
three-dimensional sphere to a “hypersphere.” A two-dimensional hypersphere
is physically a circle, and a one-dimensional hypersphere is a line segment. As
discussed in the notations section, a general n-dimensional hypersphere has an
n-dimensional “volume” and surface “area” given by:

Vn = Cnδ
n An = nCnδ

n−1

For example, C3 = 4π/3, so the above expressions give the correct volume
and surface of a sphere in three dimensions. In two dimensions, the “volume” is
physically the area of the circle, and the “area” is its perimeter. The derivations
will need that the n-dimensional infinitesimal integration element is

dn~r = dAndr

Here dAn is an infinitesimal segment of the spherical surface of radius r. You can
relate this to the way that you do integration in polar or spherical coordinates.
However, the above expression does not depend on exactly how the angular
coordinates on hypersphere areas are defined.

To show that points of zero wave function are not possible, once again first
the opposite will be assumed. So it will be assumed that there is some point
where |ψ| becomes zero. Then a contradiction will be established. That means
that the assumption must be incorrect; there are no points of zero wave function.

To find the contradiction, define a radial coordinate r as the distance away
from the supposed point of zero |ψ|. Next at every distance r, define ϕ(r) as
the average value |ψ| on the spherical surface of radius r:

ϕ(r) ≡
∫
|ψ|dAn

An

Function ϕ(r) will need to be continuous for r 6= 0, otherwise the implied jump
in wave function values would produce infinite kinetic energy. For |ψ| to become
zero at r = 0, as assumed, requires that ϕ(r) is also continuous at r = 0 and
that ϕ(0) = 0. (Note that |ψ| must be continuous and zero at r = 0. Otherwise
it would have values that stay a finite amount above zero however close you get
to r = 0. Then |ψ| would not be zero in a meaningful sense. And here we want
to exclude points of zero wave function. Excluding points of indeterminate wave
function will be left as an exercise for the reader. But as already mentioned,
that sort of singular behavior would require quite a singular potential.)

Take now some small sphere, of some small radius δ, around the supposed
point of zero wave function. The value of ϕ on the outer surface of this sphere
will be called ε. It will be assumed that there are no values of ϕ(r) greater than
ǫ inside the sphere. (If there are, you can always reduce the value of δ to get
rid of them.)
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The blunting inside this sphere will now be achieved by replacing the ϕ(r)
part of |ψ| by ε. So the blunted wave function is:

ψ′ ≡ |ψ| − ϕ(r) + ε

Consider now first what the corresponding increase in the potential energy
integral inside the sphere is:

I ′V − IV =

∫ [
V (|ψ| − ϕ(r) + ε)2 − V (|ψ|)2

]
d3~r

Multiplying out the square, that becomes:

I ′V − IV =

∫
2V |ψ|(ε− ϕ(r)) d3~r +

∫
V (ε− ϕ(r))2 d3~r

Since ϕ(r) is nonnegative, it follows that the increase in potential energy is
limited as

I ′V − IV 6 2Vmaxε

∫
|ψ| d3~r + Vmaxε

2

∫
d3~r

∫
d3~r = Cnδ

n

Note that the hypersphere formula for the volume of the sphere has been used.
The purpose is to make the final result valid in any number n of dimensions,
not just three dimensions. The remaining integral in the above expression can
be rewritten as
∫
|ψ| d3~r =

∫∫
|ψ| dAndr =

∫ [∫
|ψ| dAn/An

]
Andr =

∫
ϕAndr 6 εCnδ

n

So finally
I ′V − IV 6 3Vmaxε

2Cnδ
n

The next question is what happens to the kinetic energy. In three-dimen-
sional spherical coordinates, the kinetic energy after blunting is

I ′T =
~
2

2m

∫ [(∂ψ′
∂r

)2
+
(1
r

∂ψ′

∂θ

)2
+
( 1

r sin θ

∂ψ′

∂φ

)2]
d3~r

The initial kinetic energy is given by a similar expression, with |ψ| replacing ψ′.
Now the expression for the angular derivatives in the integrand will be different
in a different number of dimensions. For example, in two-dimensional polar
coordinates, there will be no φ-derivative. But these angular derivatives are
unchanged by the blunting and drop out in the difference in kinetic energy. So
the decrease in kinetic energy becomes, after substituting for ψ′ and simplifying:

IT − I ′T =
~
2

2m

∫∫
2
(∂|ψ|
∂r

)(∂ϕ
∂r

)
dAndr −

~
2

2m

∫∫ (∂ϕ
∂r

)2
dAndr
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Since ϕ does not depend on the angular coordinates, that can be written

IT − I ′T =
~
2

2m

∫
2

[∫ (∂|ψ|
∂r

)dAn
An

](∂ϕ
∂r

)
Andr −

~
2

2m

∫ (∂ϕ
∂r

)2
Andr

The expression between square brackets is just the r-derivative of ϕ. So the
decrease in kinetic energy becomes, substituting in for An,

IT − I ′T =
~
2

2m

∫ (∂ϕ
∂r

)2
nCnr

n−1dr

Note that the kinetic energy does decrease. The right hand side is positive.
And if the maximum potential Vmax in the vicinity of the point is negative, the
potential energy decreases too. So that cannot be a ground state. It follows
that the ground state wave function cannot become zero when Vmax is negative
or zero. (Do recall that the potential V was redefined. In terms of the original
potential, there cannot be a zero if the potential is less than the expectation
value of energy.)

But how about positive Vmax? Here the factor rn−1 in the kinetic energy
integral is a problem in more than one dimension. In particular, if almost all
the changes in ϕ occur at small r, the factor rn−1 will make the kinetic energy
change small. Therefore there is no assurance that the kinetic energy decrease
exceeds the potential energy increase. So a ground state cannot immediately be
dismissed like in one dimension.

The solution is a trick. You might say that only a mathematician would
think up a trick like that. However, the author insists that he is an aerospace
engineer, not a mathematician. The first thing to note that there is a constraint
on how much ϕ can change in the outer half of the sphere, for r > δ/2. There
the factor rn−1 is at least δn−1/2n−1. So the kinetic energy decrease is at least

IT − I ′T >
~
2

2m

nCn
2n−1

δn−1
∫ δ

δ/2

(∂ϕ
∂r

)2
dr

Now the remaining integral can be estimated by the Cauchy-Schwartz inequality
as before. Comparing this with the maximum possible increase in potential
energy will give a limit on the maximum change in ϕ in the outer half of the
sphere. In particular

ε− εmid 6

√
3 2n−1

n

mVmax

~2
δ ε

where εmid denotes the value of ϕ at the midpoint r = δ/2.
If the above inequality is not satisfied, the kinetic energy decrease would

exceed the potential energy increase and it cannot be a ground state. Note
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that if the sphere is chosen small, the relative decrease in ϕ is small too. For
example, suppose you choose a sphere, call it sphere 1, with a radius

δ1 ≤
1

4

√
n

3 2n−1
~2

mVmax

In that case,
ε1 − εmid,1 6

1
4
ε1

That means that ϕ can at most decrease by 25% going from the outside surface
to the midpoint:

εmid,1 >
3
4
ε1

You might say, “Why not?” And indeed, there would be nothing wrong
with the idea that almost all the change would occur in the inner half of the
sphere. But the idea is now to drive the mathematics into a corner from which
eventually there is no escape. Suppose that you now define the inner half of
sphere 1 to be a sphere 2. So the radius δ2 of this sphere is half that of sphere
1, and its value of ε is

ε2 = εmid,1 >
3
4
ε1

(If there are ϕ values in the second sphere that exceed ε2, you need to further
reduce δ2 to get rid of them. But all that does is reduce the possible changes in
ϕ even more.) In this second sphere, the allowed relative decrease in its outer
half is a factor 2 smaller than in sphere 1, because δ is a factor two smaller:

εmid,2 >
7
8
ε2

Now take the midpoint as the radius of a sphere 3. Then

ε3 = εmid,2 >
7
8
ε2 >

3
4
7
8
ε1

Keep doing this and for sphere number i you get

εi =
3
4
7
8
15
16

31
32
. . . 2

i−1
2i
ε1

This must become zero for infinite i, because the sphere radii contract to zero
and ϕ is zero at r = 0. But it does not! The allowed changes are simply too
small to reach zero. Just take the logarithm:

ln εi = ln(1−1
4
) + ln(1−1

8
) + ln(1− 1

16
) + ln(1− 1

32
) + . . .+ ln ε1

If εi becomes zero, its logarithm must become minus infinity. But the infinite
sum does not become infinite. Just use the Taylor series approximation ln(1−x)
≈ −x:

ln(1−1
4
) + ln(1−1

8
) + ln(1− 1

16
) + ln(1− 1

32
) + . . . = −[1

4
+ 1

8
+ 1

16
+ 1

32
+ . . .]
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The sum within square brackets is a geometric series that has a finite limit, not
an infinite one.

So there is a contradiction. At some stage the decrease in kinetic energy
must exceed the increase in potential energy. At that stage, the energy can be
reduced by applying the blunting. So the assumed wave function cannot be a
ground state.

You might still object that a Taylor series approximation is not exact. But
in the region of interest

ln(1− x) > −
ln(1− 1

4
)

−1
4

x

and the additional ratio is just a constant, about 1.15, that does not make a
difference.

Woof.

D.23 Solution of the hydrogen molecule

To find the approximate solution for the hydrogen molecule, the key is to be able
to find the expectation energy of the approximate wave functions aψlψr+ bψrψl.

First, for given a/b, the individual values of a and b can be computed from
the normalization requirement

a2 + b2 + 2ab〈ψl|ψr〉2 = 1 (D.11)

where the value of the overlap integral 〈ψl|ψr〉 was given in derivation {D.21}.
The inner product

〈aψlψr + bψrψl|H|aψlψr + bψrψl〉6

is a six-dimensional integral, but when multiplied out, a lot of it can be fac-
tored into products of three-dimensional integrals whose values were given in
derivation {D.21}. Cleaning up the inner product, and using the normalization
condition, you can get:

〈E〉 = 2E1 −
e2

4πǫ0

[
A1 + 2ab〈ψl|ψr〉2A2

]

using the abbreviations

A1 = 2〈ψl|r−1r ψl〉 −
1

d
− 〈ψlψr|r−112 ψlψr〉

A2 =
2〈ψl|r−1l ψr〉
〈ψl|ψr〉

− 2〈ψl|r−1r ψl〉 −
〈ψlψr|r−112 ψrψl〉
〈ψl|ψr〉2

+ 〈ψlψr|r−112 ψlψr〉
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Values for several of the inner products in these expressions are given in deriva-
tion {D.21}. Unfortunately, these involving the distance r12 = |~r1−~r2| between
the electrons cannot be done analytically. And one of the two cannot even be
reduced to a three-dimensional integral, and needs to be done in six dimensions.
(It can be reduced to five dimensions, but that introduces a nasty singularity
and sticking to six dimensions seems a better idea.) So, it gets really elaborate,
because you have to ensure numerical accuracy for singular, high-dimensional
integrals. Still, it can be done with some perseverance.

In any case, the basic idea is still to print out expectation energies, easy to
obtain or not, and to examine the print-out to see at what values of a/b and d
the energy is minimal. That will be the ground state.

The results are listed in the main text, but here are some more data that
may be of interest. At the 1.62 a0 nuclear spacing of the ground state, the
antisymmetric state a/b = −1 has a positive energy of 7 eV above separate
atoms and is therefore unstable.

The nucleus to electron attraction energies are 82 eV for the symmetric
state, and 83.2 eV for the antisymmetric state, so the antisymmetric state has
the lower potential energy, like in the hydrogen molecular ion case, and unlike
what you read in some books. The symmetric state has the lower energy because
of lower kinetic energy, not potential energy.

Due to electron cloud merging, for the symmetric state the electron to elec-
tron repulsion energy is 3 eV lower than you would get if the electrons were
point charges located at the nuclei. For the antisymmetric state, it is 5.8 eV
lower.

As a consequence, the antisymmetric state also has less potential energy
with respect to these repulsions. Adding it all together, the symmetric state
has quite a lot less kinetic energy than the antisymmetric one.

D.24 Hydrogen molecule ground state and spin

The purpose of this note is to verify that the inclusion of spin does not change
the spatial form of the ground state of the hydrogen molecule. The lowest
expectation energy 〈E〉 = 〈ψgs|Hψgs〉, characterizing the correct ground state,
only occurs if all spatial components ψ±± of the ground state with spin,

ψgs = ψ++↑↑+ ψ+−↑↓+ ψ−+↓↑+ ψ−−↓↓,

are proportional to the no-spin spatial ground state ψgs,0.

The reason is that the assumed Hamiltonian (5.3) does not involve spin at
all, only spatial coordinates, so, for example,

(Hψ++↑↑) ≡ H (ψ++(~r1,~r2)↑(Sz1)↑(Sz2)) = (Hψ++) ↑↑
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and the same for the other three terms in Hψgs. So the expectation value of
energy becomes

〈E〉 = 〈ψ++↑↑+ ψ+−↑↓+ ψ−+↓↑+ ψ−−↓↓
| (Hψ++) ↑↑+ (Hψ+−) ↑↓+ (Hψ−+) ↓↑+ (Hψ−−) ↓↓〉

Because of the orthonormality of the spin states, this multiplies out into inner
products of matching spin states as

〈E〉 = 〈ψ++|Hψ++〉+ 〈ψ+−|Hψ+−〉+ 〈ψ−+|Hψ−+〉+ 〈ψ−−|Hψ−−〉.

In addition, the wave function must be normalized, 〈ψgs|ψgs〉 = 1, or

〈ψ++|ψ++〉+ 〈ψ+−|ψ+−〉+ 〈ψ−+|ψ−+〉+ 〈ψ−−|ψ−−〉 = 1.

Now when ψ++, ψ+−, ψ−+, and ψ−− are each proportional to the no-spin spatial
ground state ψgs,0 with the lowest energy Egs, their individual contributions to
the energy will be given by 〈ψ±±|Hψ±±〉 = Egs 〈ψ±±|ψ±±〉, the lowest possible.
Then the total energy 〈E〉 will be Egs. Anything else will have more energy and
can therefore not be the ground state.

It should be pointed out that to a more accurate approximation, spin causes
the electrons to be somewhat magnetic, and that produces a slight dependence
of the energy on spin; compare addendum {A.39}. This note ignored that, as
do most other derivations in this book.

D.25 Number of boson states

For identical bosons, the number is I + N − 1 choose I. To see that think of
the I bosons as being inside a series of N single particle-state “boxes.” The
idea is as illustrated in figure D.2; the circles are the bosons and the thin lines
separate the boxes. In the picture as shown, each term in the group of states
has one boson in the first single-particle function, three bosons in the second,
three bosons in the third, etcetera.

✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐
Figure D.2: Bosons in single-particle-state boxes.

Each picture of this type corresponds to exactly one system state. To figure
out how many different pictures there are, imagine there are numbers written
from 1 to I on the bosons and from I+1 to I+N−1 on the separators between
the boxes. There are then (I +N − 1)! ways to arrange that total of I +N − 1
objects. (There are I+N−1 choices for which object to put first, times I+N−2
choices for which object to put second, etcetera.) However, the I! different ways
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to order the subset of boson numbers do not produce different pictures if you
erase the numbers again, so divide by I!. The same way, the different ways to
order the subset of box separator numbers do not make a difference, so divide
by (N − 1)!.

For example, if I = 2 and N = 4, you get 5!/2!3! or 10 system states.

D.26 Density of states

This note derives the density of states for particles in a box.
Consider the wave number space, as shown to the left in figure 6.1. Each

point represents one spatial state. The first question is how many points have
a wave number vector whose length k is less than some given value k. Since
the length of the wave number vector is the distance from the origin in wave
number state, the points with k < k form an octant of a sphere with radius k.
In fact, you can think of this problem as finding the number of red points in
figure 6.11.

Now the octant of the sphere has a “volume” (in wave number space, not a
physical volume)

octant volume: 1
8
4
3
πk3

Conversely, every wave number point is the top-left front corner of a little block
of “volume”

single state volume: ∆kx∆ky∆kz

where ∆kx, ∆ky, and ∆kz are the spacings between the points in the x, y, and
z directions respectively. To find the approximate number of points inside the
octant of the sphere, take the ratio of the two “volumes:”

number of spatial states inside:
πk3

6∆kx∆ky∆kz

Now the spacings between the points are given in terms of the sides ℓx, ℓy,
and ℓz of the box containing the particles as, (6.3),

∆kx =
π

ℓx
∆ky =

π

ℓy
∆kz =

π

ℓz

Plug this into the expression for the number of points in the octant to get:

number of spatial states inside:
V
6π2

k3 (D.12)

where V is the (physical) volume of the box ℓxℓyℓz. Each wave number point
corresponds to one spatial state, but if the spin of the particles is s then each
spatial state still has 2s+ 1 different spin values. Therefore multiply by 2s+ 1
to get the number of states.



D.26. DENSITY OF STATES 1269

To get the density of states on a wave number basis, take the derivative with
respect to k. The number of states dN in a small wave number range dk is then:

dN = VDk dk Dk =
2s+ 1

2π2
k2

The factor Dk is the density of states on a wave number basis.
To get the density of states on an energy basis, simply eliminate k in terms

of the single-particle energy Ep using Ep = ~k2/2m. That gives:

dN = VD dE
p D =

2s+ 1

4π2

(
2m

~2

)3/2√
E

p

The used expression for the kinetic energy Ep is only valid for nonrelativistic
speeds.

The above arguments fail in the presence of confinement. Recall that each
state is the top-left front corner of a little block in wave number space of vol-
ume ∆kx∆ky∆kz. The number of states with wave number k less than some
given value k was found by computing how many such little block volumes are
contained within the octant of the sphere of radius k.

The problem is that a wave number k is only inside the sphere octant if all
of its little block is inside. Even if 99% of its block is inside, the state itself will
still be outside, not 99% in. That makes no difference if the states are densely
spaced in wave number space, like in figure 6.11. In that case almost all little
blocks are fully inside the sphere. Only a thin layer of blocks near the surface
of the sphere are partially outside it.

However, confinement in a given direction makes the corresponding spacing
in wave number space large. And that changes things.

In particular, if the y-dimension ℓy of the box containing the particles is
small, then ∆ky = π/ℓy is large. That is illustrated in figure 6.12. In this case,
there are no states inside the sphere at all if k is less than ∆ky. Regardless of
what (D.12) claims. In the range ∆ky < k < 2∆ky, illustrated by the red sphere
in figure 6.12, the red sphere gobbles up a number of states from the plate ky
= ∆ky. This number of states can be estimated as

1
4
π(k2x + k2z)

∆kx∆kz

since the top of this ratio is the area of the quarter circle of states and the
bottom is the rectangular area occupied per state.

This expression can be cleaned up by noting that

k2x + k2z = k2 − k2y = k2 − (ny∆ky)
2

with ny = 1 for the lowest plate. Substituting for ∆kx, ∆ky, and ∆kz in terms
of the box dimensions then gives

spatial states per plate:
A

4π

[
k2 −

(
ny
π

ℓy

)2 ]
if
[
. . .
]
> 0 (D.13)
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Here A = ℓxℓz is the area of the quantum well and ny = 1 is the plate number.
For nonrelativistic speeds k2 is proportional to the energy Ep. Therefore the
density of states, which is the derivative of the number of states with respect to
energy, is constant.

In the range 2π/ℓy < k < 3π/ℓy a second quarter circle of states gets added.
To get the number of additional states in that circle, use ny = 2 for the plate
number in (D.13). For still larger values of k, just keep summing plates as long
as the expression between the square brackets in (D.13) remains positive.

If the z-dimension of the box is also small, like in a quantum wire, the states
in wave number space separate into individual lines, figure 6.13. There are now
no states until the sphere of radius k hits the line that is closest to the origin,
having quantum numbers ny = nz = 1. Beyond that value of k, the number of
states on the line that is within the sphere is

√
k2 − (ny∆ky)2 − (nz∆kz)2

∆kx

since the top is the length of the line inside the sphere and the bottom the
spacing of the states on the line. Cleaning up, that gives

spatial states per line:
ℓ

π

[
k2 −

(
ny
π

ℓy

)2

−
(
nz
π

ℓz

)2 ]1/2
if
[
. . .
]
> 0

(D.14)
with ℓ = ℓx the length of the quantum wire. For still larger values of k sum
over all values of ny and nz for which the argument of the square root remains
positive.

For nonrelativistic speeds, k2 is proportional to the energy. Therefore the
above number of states is proportional to the square root of the amount of
energy above the one at which the line of states is first hit. Differentiating to
get the density of states, the square root becomes an reciprocal square root.

If the box is small in all three directions, figure 6.14, the number of states
simply becomes the number of points inside the sphere:

spatial states per point: 1
[
k2 −

(
nx
π

ℓx

)2

−
(
ny
π

ℓy

)2

−
(
nz
π

ℓz

)2 ]
> 0

(D.15)
In other words, to get the total number of states inside, simply add a 1 for each
set of natural numbers nx, ny, and nz for which the expression in brackets is
positive. The derivative with respect to energy, the density of states, becomes
a series of delta functions at the energies at which the states are hit.

D.27 Radiation from a hole

To find how much blackbody radiation is emitted from a small hole in a box,
first imagine that all photons move in the direction normal to the hole with the
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speed of light c. In that case, in a time interval dt, a cylinder of photons of
volume Acdt would leave through the hole, where A is the hole area. To get the
electromagnetic energy in that cylinder, simply multiply by Planck’s blackbody
spectrum ρ. That gives the surface radiation formula except for an additional
factor 1

4
. Half of that factor is due to the fact that on average only half of

the photons will have a velocity component in the direction normal to the hole
that is towards the hole. The other half will have a velocity component in that
direction that is away from the hole. In addition, because the photons move in
all directions, the average velocity component of the photons that move towards
the hole is only half the speed of light.

More rigorously, assume that the hole is large compared to cdt. The fraction
of photons with velocity directions within in a spherical element sin θdθdφ will
be sin θdθdφ/4π. The amount of these photons that exits will be those in a
skewed cylinder of volume Ac cos θdt. To get the energy involved multiply by
ρ. So the energy leaving in this small range of velocity directions is

ρAcdt cos θ
sin θdθdφ

4π

Integrate over all φ and θ up to 90 degrees to get 1
4
ρAcdt for the total energy

that exits.
Note also from the above expression that the amount of energy leaving per

unit time, unit area, and unit solid angle is

ρc

4π
cos θ

where θ is the angle from the normal to the hole.

D.28 Kirchhoff’s law

Suppose you have a material in thermodynamic equilibrium at a given tempera-
ture that has an emissivity at a given frequency that exceeds the corresponding
absorptivity. Place it in a closed box. Since it emits more radiation at the
given frequency than it absorbs from the surrounding blackbody radiation, the
amount of radiation at that frequency will go up. That violates Plank’s black-
body spectrum, because it remains a closed box. The case that the emissivity
is less than the absorptivity goes similarly.

Note some of the implicit assumptions made in the argument. First, it
assumes linearity, in the sense that emission or absorption at one frequency does
not affect that at another, that absorption does not affect emission, and that the
absorptivity is independent of the amount absorbed. It assumes that the surface
is separable from the object you are interested in. Transparent materials require
special consideration, but the argument that a layer of such material must emit
the same fraction of blackbody radiation as it absorbs remains valid.
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The argument also assumes the validity of Plank’s blackbody spectrum.
However you can make do without. Kirchhoff did. He (at first) assumed that
there are gage materials that absorb and emit only in a narrow range of fre-
quencies, and that have constant absorptivity ag and emissivity eg in that range.
Place a plate of that gage material just above a plate of whatever material is
to be examined. Insulate the plates from the surrounding. Wait for thermal
equilibrium.

Outside the narrow frequency range, the material being examined will have
to absorb the same radiation energy that it emits, since the gage material does
not absorb nor emit outside the range. In the narrow frequency range, the
radiation energy Ė going up to the gage plate must equal the energy coming
down from it again, otherwise the gage plate would continue to heat up. If B is
the blackbody value for the radiation in the narrow frequency range, then the
energy going down from the gage plate consists of the radiation that the gage
plate emits plus the fraction of the incoming radiation that it reflects instead of
absorbs:

Ė = egB + (1− ag)Ė =⇒ Ė/B = eg/ag

Similarly for the radiation going up from the material being examined:

Ė = eB + (1− a)Ė =⇒ Ė/B = e/a

By comparing the two results, e/a = eg/ag. Since you can examine any material
in this way, all materials must have the same ratio of emissivity to absorptivity
in the narrow range. Assuming that gage materials exist for every frequency
range, at any frequency e/a must be the same for all materials. So it must be
the blackbody value 1.

No, this book does not know where to order these gage materials, [38].
And the same argument cannot be used to show that the absorptivity must
equal emissivity in each individual direction of radiation, since direction is not
preserved in reflections.

D.29 The thermionic emission equation

This note derives the thermionic emission equation for a typical metal following
[42, p. 364ff]. The derivation is semi-classical.

To simplify the analysis, it will be assumed that the relevant electrons in
the interior of the metal can be modeled as a free-electron gas. In other words,
it will be assumed that in the interior of the metal the forces from surrounding
particles come from all directions and so tend to average out.

(The free-electron gas assumption is typically qualitatively reasonable for
the valence electrons of interest if you define the zero of the kinetic energy of
the gas to be at the bottom of the conduction band. You can also reduce errors
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by replacing the true mass of the electron by some suitable “effective mass.”
But the zero of the energy drops out in the final expression, and the effective
mass of typical simple metals is not greatly different from the true mass. See
chapter 6.22.3 for more on these issues.)

Assume that the surface through which the electrons escape is normal to the
x-direction. Then the classical expression for the current of escaping electrons
is

j = ρevx

where ρ is the number of electrons per unit volume that is capable of escap-
ing and vx is their velocity in the x-direction. Note that the current above is
supposed to be the current inside the metal of the electrons that will escape.

An electron can only escape if its energy Ep exceeds

E
p
esc = µ+ eϕw

where µ is the Fermi level, because the work function ϕw is defined that way.
The number of electrons per unit volume in an energy range dEp above Ep

esc

can be found as

e−(eϕw+Ep−Ep
esc)/kBT

2

4π2

(
2me

~2

)3/2√
E

p
dE

p

That is because the initial exponential is a rewritten Maxwell-Boltzmann distri-
bution (6.21) that gives the number of electrons per state, while the remainder
is the number of states in the energy range according to the density of states
(6.6).

Normally, the typical thermal energy kBT is very small compared to the
minimum energy eϕw above the Fermi level needed to escape. Then the expo-
nential of the Maxwell-Boltzmann distribution is very small. That makes the
amount of electrons with sufficient energy to escape very small. In addition,
with increasing energy above Ep

esc the amount of electrons very quickly becomes
much smaller still. Therefore only a very small range of energies above the
minimum energy Ep

esc gives a contribution.
Further, even if an electron has in principle sufficient energy to escape, it can

only do so if enough of its momentum is in the x-direction. Only momentum that
is in the x-direction can be used to overcome the nuclei that pull it back towards
the surface when it tries to escape. Momentum in the other two directions only
produces motion parallel to the surface. So only a fraction, call it fesc, of the
electrons that have in principle enough energy to escape can actually do so. A
bit of geometry shows how much. All possible end points of the momentum
vectors with a magnitude p form a spherical surface with area 4πp2. But only
a small circle on that surface around the x-axis, with an approximate radius of√
p2 − p2esc, has enough x-momentum for the electron to escape, so

fesc ≈
π
√
p2 − p2esc

2

4πp2
≈ Ep − Ep

esc

4Ep
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where the final equality applies since the kinetic energy is proportional to the
square momentum.

Since the velocity for the escaping electrons is mostly in the x-direction, Ep

≈ 1
2
mev

2
x, which can be used to express vx in terms of energy.

Putting it all together, the current density becomes

j =

∫ ∞

Ep=Ep
esc

e−(eϕw+Ep−Ep
esc)/kBT

2

4π2

(
2me

~2

)3/2√
E

p E
p − Ep

esc

4Ep

(
2Ep

me

)1/2

dE
p

Rewriting in terms of a new integration variable u = (Ep−Ep
esc)/kBT gives the

thermionic emission equation.
If an external electric field Eext helps the electrons escape, it lowers the energy

that the electrons need to do so. Consider the potential energy in the later stages
of escape, at first still without the additional electric field. When the electron
looks back at the metal surface that it is escaping from, it sees a positron mirror
image of itself inside the metal. Of course, there is not really a positron inside the
metal; rearrangement of the surface electrons of the metal create this illusion.
The surface electrons rearrange themselves to make the total component of the
electric field in the direction parallel to the surface zero. Indeed, they have to
keep moving until they do so, since the metal has negligible electrical resistance
in the direction parallel to the surface. Now it just so happens that a positron
mirror image of the electron has exactly the same effect as this rearrangement.
The escaping electron pushes the surface electrons away from itself; that force
has a repulsive component along the surface. The positron mirror image however
attracts the surface electrons towards itself, exactly cancelling the component
of force along the surface exerted by the escaping electron.

The bottom line is that it seems to the escaping electron that it is pulled
back not by surface charges, but by a positron mirror image of itself. Therefore,
including now an additional external electrical field, the total potential in the
later stages of escape is:

V = − e2

16πǫ0d
− eEextd+ constant

where d is the distance from the surface. The first term is the attracting force
due to the positron image, while the second is due to the external electric
field. The constant depends on where the zero of energy is defined. Note that
only half the energy of attraction between the electron and the positron image
should be assigned to the electron; the other half can be thought of as “work”
on the image. If that is confusing, just write down the force on the electron and
integrate it to find its potential energy.

If there is no external field, the maximum potential energy that the electron
must achieve occurs at infinite distance d from the metal surface. If there is
an electric field, it lowers the maximum potential energy, and it now occurs
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somewhat closer to the surface. Setting the derivative of V with respect to
d to zero to identify the maximum, and then evaluating V at that location
shows that the external field lowers the maximum potential energy that must
be achieved to escape by

√
e3E/4πǫ0.

D.30 Number of conduction band electrons

This note finds the number of electrons in the conduction band of a semicon-
ductor, and the number of holes in the valence band.

By definition, the density of states D is the number of single-particle states
per unit energy range and unit volume. The fraction of electrons in those states
is given by ιe. Therefore the number of electrons in the conduction band per
unit volume is given by

ie =

∫ Ep
top

Ep
c

Dιe dEp

where Ep
c is the energy at the bottom of the conduction band and Ep

top that at
the top of the band.

To compute this integral, for ιe the Maxwell-Boltzmann expression (6.33)
can be used, since the number of electrons per state is invariably small. And for
the density of states the expression (6.6) for the free-electron gas can be used if

you substitute in a suitable effective mass of the electrons and replace
√
Ep by√

Ep − Ep
c .

Also, because ιe decreases extremely rapidly with energy, only a very thin
layer at the bottom of the conduction band makes a contribution to the number
of electrons. The integrand of the integral for ie is essentially zero above this
layer. Therefore you can replace the upper limit of integration with infinity
without changing the value of ie. Now use a change of integration variable to u
=
√
(Ep − Ep

c )/kBT and an integration by parts to reduce the integral to the
one found under “!” in the notations section. The result is as stated in the text.

For holes, the derivation goes the same way if you use ιh from (6.34) and
integrate over the valence band energies.

D.31 Integral Schrödinger equation

In this note, the integral Schrödinger equation is derived from the partial dif-
ferential equation version.

First the time-independent Schrödinger equation is rewritten in the form

(
∇2 + k2

)
ψ = f k =

√
2mE

~
f =

2mV

~2
ψ (D.16)

The left equation is known as the “Helmholtz equation.”
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The Helmholtz equation is not at all specific to quantum mechanics. In
general it describes basic wave propagation at a frequency related to the value
of the constant k. The right hand side f describes the amount of wave motion
that is created at a given location. Quantum mechanics is somewhat weird in
that f involves the unknown wave function ψ that you want to find. In simpler
applications, f is a given function.

The general solution to the Helmholtz equation can be written as

(
∇2 + k2

)
ψ = f =⇒ ψ = ψ0 −

∫

all ~r ′

eik|~r
′−~r|

4π|~r ′ −~r|f(~r
′) d3~r ′ (D.17)

Here ψ0 is any solution of the homogeneous Helmholtz equation, the equation
without f .

To see why this is the solution of the Helmholtz equation requires a bit of
work. First consider the solution of the Helmholtz equation for the special case
that f is a delta function at the origin:

(
∇2 + k2

)
G = δ3(~r)

The solution G to this problem is called the “Green’s function of the Helmholtz
equation.

The Green’s function can be found relatively easily. Away from the origin G
is a solution of the homogeneous Helmholtz equation, because the delta function
is everywhere zero except at the origin. In terms of quantum mechanics, the
homogeneous Helmholtz equation means a particle in free space, V = 0. Possible
solutions for G are then spherical harmonics times spherical Hankel functions of
the first and second kinds, {A.6}. However, Hankel functions of the first kind
are preferred for physical reasons; they describe waves that propagate away from
the region of wave generation to infinity. Hankel functions of the second kind
describe waves that come in from infinity. Incoming waves, if any, are usually
much more conveniently described using the homogeneous solution ψ0.

Further, since the problem forG is spherically symmetric, the solution should
not depend on the angular location. The spherical harmonic must be the con-
stant Y 0

0 . That makes the correct solution a multiple of the spherical Hankel

function h
(1)
0 , which means proportional to eikr/r. You can easily check by direct

substitution that this does indeed satisfy the homogeneous Helmholtz equation
away from the origin in spherical coordinates.

To get the correct constant of proportionality, integrate the Helmholtz equa-
tion for G above over a small sphere around the origin. In the right hand side
use the fact that the integral of a delta function is by definition equal to 1. In
the left hand side, use the divergence theorem to avoid having to try to integrate
the singular second order derivatives of G at the origin. That shows that the
complete Green’s function is

G(~r) = − e
ikr

4πr
r = |~r|
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(You might worry about the mathematical justification for these manipulations.
Singular functions like G are not proper solutions of partial differential equa-
tions. However, the real objective is to find the limiting solution G when a
slightly smoothed delta function becomes truly singular. The described manip-
ulations are justified in this limiting process.)

The next step is to solve the Helmholtz equation for an arbitrary right hand
side f , rather than a delta function. To do so, imagine the region subdivided
into infinitely many infinitesimal volume elements d~r ′. In each volume element,
approximate the function f by a delta function spike δ(~r − ~r ′)f(~r ′) d~r ′. Such
a spike integrates to the same value as f does over the volume element. Each
spike produces a solution given by

G(~r −~r ′)f(~r ′) d~r ′

Integrate over all volume elements to get the solution of the Helmholtz equation
(D.17). Substitute in what f is for the Schrödinger equation to get the integral
Schrödinger equation.

D.32 Integral conservation laws

This section derives the integral conservation laws given in addendum {A.14}.
The rules of engagement are as follows:

• The Cartesian axes are numbered using an index i, with i = 1, 2,
and 3 for x, y, and z respectively.

• Also, ri indicates the coordinate in the i direction, x, y, or z.

• Derivatives with respect to a coordinate ri are indicated by a simple
subscript i.

• Time derivatives are indicated by a subscript t.

• A bare
∫
integral sign is assumed to be an integration over all space,

or over the entire box for particles in a box. The d3~r is normally
omitted for brevity and to be understood.

• A superscript ∗ indicates a complex conjugate.

First it will be shown that according to the Schrödinger equation
∫
|Ψ|2 is

constant. The Schrödinger equation in free space is

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ

Taking the right hand term to the other side and writing it in index notation
gives

i~
∂Ψ

∂t
+
∑

i

~
2

2m
Ψii = 0
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Multiply the left hand side by Ψ∗/i~ and add the complex conjugate of the same
equation to get

Ψ∗
∂Ψ

∂t
+Ψ

∂Ψ∗

∂t
+
∑

i

~

2mi
(Ψ∗Ψii −ΨΨ∗ii) = 0

To show that the integral
∫
|Ψ|2 is constant, it must be shown that its time

derivative is zero. Now the first two terms above are the time derivative of |Ψ|2
= Ψ∗Ψ. So integrated over all space, they give the time derivative that must be
shown to be zero. And the equation above shows that it is indeed zero provided
that the remaining sum in it integrates to zero over all space.

The constant is not important in showing that this is true, so just examine
for any i ∫

(Ψ∗Ψii −ΨΨ∗ii)

This equals ∫
(Ψ∗Ψi −ΨΨ∗i )i

as can be seen by differentiating out the parenthetical expression with respect
to ri. The above integrand can be integrated with respect to ri. It will then
be zero for a periodic box since the expression in parenthesis is the same at the
upper and lower limits of integration. It will also be zero for an impenetrable
container, since Ψ will then be zero on the surface of the container. It will also
be zero in an infinite region provided that Ψ and its derivatives vanish at large
distances.

There is another way to see that
∫
|Ψ|2 is constant. First recall that any

solution of the Schrödinger equation takes the form

Ψ =
∑

n

cne
−iEntψn(~r)

Here the ψn are the energy eigenfunctions. Then

∫
|Ψ|2 =

∫
Ψ∗Ψ =

∫ ∑

n

c∗ne
iEntψn(~r)

∑

n

cne
−iEntψn(~r)

Now because of orthonormality of the eigenfunctions, the integration only pro-
duces a nonzero result when n = n, and then the product of the eigenfunctions
integrates to 1. So ∫

|Ψ|2 =
∑

n

c∗ncn

That does not depend on time, and the normalization requirement makes it 1.
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This also clarifies what goes wrong with the Klein-Gordon equation. For the
Klein-Gordon equation

Ψ =
∑

n

cne
−iEntψn(~r) +

∑

n

dne
iEntψn(~r)

The first sum are the particle states and the second sum the antiparticle states.
That gives:

∫
|Ψ|2 =

∑

n

(
c∗ncn + d∗ndn + c∗ndne

2iEnt + d∗ncne
−2iEnt

)

The final two terms in the sum oscillate in time. So the integral is no longer
constant.

The exception is if there are only particle states (no dn) or only antiparticle
states (no cn). In those two cases, the integral is constant. In general

Ψ = Ψ1 +Ψ2 Ψ1 =
∑

n

cne
−iEntψn(~r) Ψ2 =

∑

n

dne
iEntψn(~r)

where the integrated square magnitudes of Ψ1 and Ψ2 are constant.
Next it will be shown that the rearranged Klein-Gordon equation

1

c2
∂2Ψ

∂t2
−
∑

i

Ψii +

(
mc2

~c

)2

Ψ = 0

preserves the sum of integrals

∫ ∣∣∣∣
1

c

∂Ψ

∂t

∣∣∣∣
2

+

∫ ∑

i

|Ψi|2 +
∫ ∣∣∣∣

mc2

~c
Ψ

∣∣∣∣
2

To do so it suffices to show that the sum of the time derivatives of the three
integrals is zero. That can be done by multiplying the Klein-Gordon equation by
∂Ψ∗/∂t, adding the complex conjugate of the obtained equation, and integrating
over all space. Each of the three terms in the Klein-Gordon equation will then
give one of the three needed time derivatives. So their sum will indeed be zero.

To check that, look at what each term in the Klein-Gordon equation produces
separately. The first term gives

∫
1

c2

(
∂Ψ∗

∂t

∂2Ψ

∂t2
+
∂Ψ

∂t

∂2Ψ∗

∂t2

)

or taking one time derivative outside the integral, that is

1

c2
d

dt

∫
∂Ψ∗

∂t

∂Ψ

∂t
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That is the first needed time derivative, since a number times its complex con-
jugate is the square magnitude of that number.

The second term in the Klein-Gordon equation produces

−
∑

i

∫ (
∂Ψ∗

∂t
Ψii +

∂Ψ

∂t
Ψ∗ii

)

That equals

−
∑

i

∫ (
∂Ψ∗

∂t
Ψi +

∂Ψ

∂t
Ψ∗i

)

i

+
∑

i

d

dt

∫
Ψ∗iΨi

as can be seen by differentiating out the parenthetical expression in the first
integral with respect to ri and bringing the time derivative in the second term
inside the integral. The first integral above is zero for a periodic box, for an
impenetrable container, and for infinite space for the same reasons as given
in the derivation for the Schrödinger equation. The second term above is the
needed second time derivative.

The final of the three terms in the Klein-Gordon equation produces

(
mc2

~c

)2 ∫ (
∂Ψ∗

∂t
Ψ+

∂Ψ

∂t
Ψ∗
)

That equals (
mc2

~c

)2
d

dt

∫
Ψ∗Ψ

as can be seen by bringing the time derivative inside the integral. This is the
last of the three needed time derivatives.

D.33 Quantum field derivations

This derivation will find the properties of a system described by a Hamiltonian
of the form:

H = E
p
(
P̂ 2 + Q̂2

)
+ Eref (1)

Here P̂ and Q̂ are Hermitian operators with commutator
[
P̂ , Q̂

]
= −1

2
i (2)

and Ep and Eref are constants with units of energy.
First note that the commutator (2) directly implies the uncertainty relation-

ship, chapter 4.5.2 (4.46):
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σPσQ >
1
4

(3)

Also note that the evolution equations for the expectation values of P and
Q follow directly from chapter 7.2 (7.4). The commutator appearing in it is
readily worked out using the commutator (2) and the rules of chapter 4.5.4.
Since energy eigenstates are stationary, according to the evolution equations in
such states the expectation values of P and Q will have to be zero.

The equality of the P̂ and Q̂ terms in the Hamiltonian is a simple matter of
symmetry. Nothing changes if you swap P̂ and Q̂, adding a minus sign for one.
Then unavoidably the two terms in the Hamiltonian must be equal; it is shown
below that the eigenfunctions are unique.

The commutator (2) also implies that P̂ , Q̂, and all their combinations, do
not commute with the Hamiltonian. So they are not conserved quantities of the
system. However, there are two combinations,

â ≡ P̂ − iQ̂ â† ≡ P̂ + iQ̂ (4)

whose commutator with the Hamiltonian gives back a multiple of the same
thing:

[H, â] = −Ep
â [H, â†] = E

p
â†

In other words, â and â† are commutator eigenoperators of the Hamiltonian.
The above relations are readily checked using the given commutator (2) and the
rules of chapter 4.5.4.

To see why that is important, multiply both sides of the eigenvalue problems
above with a system energy eigenfunction of energy E:

[H, â]ψE = −Ep
âψE [H, â†]ψE = E

p
â†ψE

After writing out the definitions of the commutators, recognizing HψE as EψE,
and rearranging, that gives

H(âψE) = (E − Ep
)(âψE) H(â†ψE) = (E + E

p
)(â†ψE)

These results can be compared to the definition of an energy eigenfunction.
Then it is seen that âψE is an energy eigenfunction with one unit Ep less energy
than ψE. And â†ψE is an energy eigenfunction with one unit Ep more energy
than ψE. So apparently â and â† act as annihilation and creation operators of
quanta of energy Ep. They act as shown to the left in figure A.6.

There are however two important caveats for these statements. If âψE or
â†ψE is zero, it is not an energy eigenfunction. Eigenfunctions must be nonzero.
Also, even if the states âψE or â†ψE are not zero, they will not normally be
normalized states.

To get a better understanding of these issues, it is helpful to first find the
Hamiltonian in terms of â and â†. There are two equivalent forms,
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H = E
p
ââ† − 1

2
E

p
+ Eref H = E

p
â†â+ 1

2
E

p
+ Eref (5)

These expressions can be verified by plugging in the definitions (4) of â and â†

and using the commutator (2). (Note that subtracting the two expressions gives
the commutator of â and â† to be 1.)

Now look at the first Hamiltonian first. If â†ψE would be zero for some state
ψE, then that state would have energy Eref − 1

2
Ep. But that is not possible.

If you look at the original Hamiltonian (1), the energy must at least be Eref ;
square Hermitian operators are nonnegative.

(To be more precise, if you square a Hermitian operator, you square the
eigenvalues, making them nonnegative. It is said that the square operator is
“positive definite,” or, if there are zero eigenvalues, positive semi-definite. And
such an operator produces nonnegative expectation values. And the expectation
values of the operators in the Hamiltonian do add up to the total energy; just
take an inner product of the Hamiltonian eigenvalue problem with the wave
function. See chapter 4.4 for more information on expectation values.)

It follows that â†ψE is never zero. This operator can be applied indefinitely
to find states of higher and higher energy. So there is no maximum energy.

But there is a possibility that âψE is zero. As the second form of the Hamil-
tonian in (5) shows, that requires that the energy of state ψE equals

E0 =
1
2
E

p
+ Eref

Now if you start from any energy state ψE and apply â sufficiently many times,
you must eventually end up at this energy level. If not, you could go on lowering
the energy forever. That would be inconsistent with the fact that the energy
cannot be lower than Eref . It follows that the above energy is the lowest energy
that a state can have. So it is the ground state energy.

And any other energy must be a whole multiple of Ep higher than the ground
state energy. Otherwise you could not end up at the ground state energy by
applying â. Therefore, the energy eigenstates can be denoted more meaningfully
by |i〉 rather than ψE. Here i is the number of quanta Ep that the energy is
above the ground state level.

Now assume that the ground state is unique. In that case, there is one
unique energy eigenfunction at each energy level. That is a consequence of the
fact that if you go down a unit in energy with â and then up a unit again with
â†, (or vice versa), you must end up not just at the same energy, but at the same
state. Otherwise the state would not be an eigenfunction of the Hamiltonian in
one of the forms given in (5). Repeated application shows that if you go down
any number of steps, and then up the same number of steps, you end up at the
same state. Since every state must end up at the unique ground state, every
state must be the result of applying â† to the ground state sufficiently many
times. There is just one such state for each energy level.
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If there are two independent ground states, applying â† on each gives two
separate sets of energy eigenstates. And similar if there are still more ground
states. Additional symbols will need to be added to the kets to keep the different
families apart.

It was already mentioned that the states produced by the operators â and
â† are usually not normalized. For example, the state â|i〉 will have a square
magnitude given by the inner product

|â|i〉|2 =
〈
â|i〉
∣∣∣â|i〉

〉

Now if you take â or â† to the other side of an inner product, it will change
into the other one; the i in the definitions (4) will change sign. So the square
magnitude of â|i〉 becomes

|â|i〉|2 =
〈
|i〉
∣∣∣â†â|i〉

〉

From the second form of the Hamiltonian in (5), it is seen that â†â gives the
number of energy quanta i. And since the state |i〉 is normalized, the square
magnitude of â|i〉 is therefore i. That means that

â|i〉 = c
√
i|i−1〉

where c is some number of magnitude 1. Similarly

â†|i〉 = d
√
i+ 1|i−1〉

But note that you can always change the definition of an energy eigenfunction
by a constant of magnitude 1. That allows you, while going up from |0〉 using
â†, to redefine each state so that d is 1. And if d is always one, then so is c.
Otherwise â†â would not be i.

In the ground state, the expectation values of P and Q are zero, while the
expectation values of P 2 and Q2 are equal to the minimum 1

4
allowed by the

uncertainty relation (3). The derivations of these statements are the same as
those for the harmonic oscillator ground state in {D.13}.

D.34 The adiabatic theorem

Consider the Schrödinger equation

i~
∂Ψ

∂t
= HΨ

If the Hamiltonian is independent of time, the solution can be written in terms
of the Hamiltonian energy eigenvalues E~n and eigenfunctions ψ~n as

Ψ =
∑

~n

c~n(0)e
iθ~nψ~n θ~n = −1

~
E~nt
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Here ~n stands for the quantum numbers of the eigenfunctions and the c~n(0) are
arbitrary constants.

However, the Hamiltonian varies with time for the systems of interest here.
Still, at any given time its eigenfunctions form a complete set. So it is still
possible to write the wave function as a sum of them, say like

Ψ =
∑

~n

c̄~ne
iθ~nψ~n θ~n = −1

~

∫
E~n dt (D.18)

But the coefficients c̄~n can no longer be assumed to be constant like the c~n(0).
They may be different at different times.

To get an equation for their variation, plug the expression for Ψ in the
Schrödinger equation. That gives:

i~
∑

~n

c̄ ′~ne
iθ~nψ~n − i~

∑

~n

c̄~n
i

~
E~ne

iθ~nψ~n + i~
∑

~n

c̄~ne
iθ~nψ′~n = H

∑

~n

c̄~ne
iθ~nψ~n

where the primes indicate time derivatives. The middle sum in the left hand
side and the right hand side cancel against each other since by definition ψ~n is
an eigenfunction of the Hamiltonian with eigenvalue E~n. For the remaining two
sums, take an inner product with an arbitrary eigenfunction 〈ψ~n|:

i~c̄ ′~ne
iθ~n + i~

∑

~n

c̄~ne
iθ~n〈ψ~n|ψ′~n〉 = 0

In the first sum only the term ~n = ~n survived because of the orthonormality of
the eigenfunctions. Divide by i~eiθ~n and rearrange to get

c̄ ′~n = −
∑

~n

ei(θ~n−θ~n)〈ψ~n|ψ′~n〉c̄~n (D.19)

This is still exact.
However, the purpose of the current derivation is to address the adiabatic

approximation. The adiabatic approximation assumes that the entire evolution
takes place very slowly over a large time interval T . For such an evolution, it
helps to consider all quantities to be functions of the scaled time variable t/T .
Variables change by a finite amount when t changes by a finite fraction of T , so
when t/T changes by a finite amount. This implies that the time derivatives of
the slowly varying quantities are normally small, of order 1/T .

Consider now first the case that there is no degeneracy, in other words,
that there is only one eigenfunction ψ~n for each energy E~n. If the Hamiltonian
changes slowly and regularly in time, then so do the energy eigenvalues and
eigenfunctions. In particular, the time derivatives of the eigenfunctions in (D.19)
are small of order 1/T . It then follows from the entire equation that the time
derivatives of the coefficients are small of order 1/T too.
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(Recall that the square magnitudes of the coefficients give the probability
for the corresponding energy. So the magnitude of the coefficients is bounded
by 1. Also, for simplicity it will be assumed that the number of eigenfunctions
in the system is finite. Otherwise the sums over ~n might explode. This book
routinely assumes that it is “good enough” to approximate an infinite system
by a large-enough finite one. That makes life a lot easier, not just here but also
in other derivations like {D.18}.)

It is convenient to split up the sum in (D.19):

c̄ ′~n = −〈ψ~n|ψ′~n〉c̄~n −
∑

~n 6=~n
ei(θ~n−θ~n)〈ψ~n|ψ′~n〉c̄~n (D.20)

Under the stated conditions, the final sum can be ignored.
However, that is not because it is small due to the time derivative in it, as

one reference claims. While the time derivative of ψ~n is indeed small of order
1/T , it acts over a time that is large of order T . The sum can be ignored because
of the exponential in it. As the definition of θ~n shows, it varies on the normal
time scale, rather than on the long time scale T . Therefore it oscillates many
times on the long time scale; that causes opposite values of the exponential to
largely cancel each other.

To show that more precisely, note that the formal solution of the full equation
(D.20) is, [41, 19.2]:

c̄~n(t) = eiγ~n


c̄~n(0)−

∑

~n6=~n

∫ t

t̄=0

ei(θ~n−θ~n)e−iγ~n〈ψ~n|ψ′~n〉c̄~n dt̄


 γ′~n = i〈ψ~n|ψ′~n〉

(D.21)
To check this solution, you can just plug it in. Note in doing so that the
integrands are taken to be functions of t̄, not t.

All the integrals are negligibly small because of the rapid variation of the
first exponential in them. To verify that, rewrite them a bit and then perform
an integration by parts:

∫ t

t̄=0

− i

~
(E~n − E~n)ei(θ~n−θ~n)

~e−iγ~n〈ψ~n|ψ′~n〉c̄~n
i(E~n − E~n)

dt̄ =

ei(θ~n−θ~n)
~e−iγ~n〈ψ~n|ψ′~n〉c̄~n

i(E~n − E~n)
∣∣∣
t

t̄=0
−
∫ t

t̄=0

ei(θ~n−θ~n)
(
~e−iγ~n〈ψ~n|ψ′~n〉c̄~n

i(E~n − E~n)

)′
dt̄

The first term in the right hand side is small of order 1/T because the time
derivative of the wave function is. The integrand in the second term is small
of order 1/T 2 because of the two time derivatives. So integrated over an order
T time range, it is small of order 1/T like the first term. It follows that the
integrals in (D.21) become zero in the limit T →∞.
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And that means that in the adiabatic approximation

c̄~n = c~n(0)e
iγ~n γ~n = i

∫
〈ψ~n|ψ′~n〉 dt

The underbar used to keep ~n and ~n apart is no longer needed here since only
one set of quantum numbers appears. This expression for the coefficients can
be plugged in (D.18) to find the wave function Ψ. The constants c~n(0) depend
on the initial condition for Ψ. (They also depend on the choice of integration
constants for θ~n and γ~n, but normally you take the phases zero at the initial
time).

Note that γ~n is real. To verify that, differentiate the normalization require-
ment to get

〈ψ~n|ψ~n〉 = 1 =⇒ 〈ψ′~n|ψ~n〉+ 〈ψ~n|ψ′~n〉 = 0

So the sum of the inner product plus its complex conjugate are zero. That
makes it purely imaginary, so γ~n is real.

Since both γ~n and θ~n are real, it follows that the magnitudes of the coeffi-
cients of the eigenfunctions do not change in time. In particular, if the system
starts out in a single eigenfunction, then it stays in that eigenfunction.

So far it has been assumed that there is no degeneracy, at least not for the
considered state. However it is no problem if at a finite number of times, the en-
ergy of the considered state crosses some other energy. For example, consider a
three-dimensional harmonic oscillator with three time varying spring stiffnesses.
Whenever any two stiffnesses become equal, there is significant degeneracy. De-
spite that, the given adiabatic solution still applies. (This does assume that
you have chosen the eigenfunctions to change smoothly through degeneracy, as
perturbation theory says you can, {D.79}.)

To verify that the solution is indeed still valid, cut out a time interval of size
δT around each crossing time. Here δ is some number still to be chosen. The
parts of the integrals in (D.21) outside of these intervals have magnitudes ε(T, δ)
that become zero when T → ∞ for the same reasons as before. The parts of
the integrals corresponding to the intervals can be estimated as no more than
some finite multiple of δ. The reason is that the integrands are of order 1/T
and they are integrated over ranges of size δT . All together, that is enough to
show that the complete integrals are less than say 1%; just take δ small enough
that the intervals contribute no more than 0.5% and then take T large enough
that the remaining integration range contributes no more than 0.5% too. Since
you can play the same game for 0.1%, 0.01% or any arbitrarily small amount,
the conclusion is that for infinite T , the contribution of the integrals becomes
zero. So in the limit T →∞, the adiabatic solution applies.

Things change if some energy levels are permanently degenerate. Consider
an harmonic oscillator for which at least two spring stiffnesses are permanently
equal. In that case, you need to solve for all coefficients at a given energy
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level E~n together. To figure out how to do that, you will need to consult a
book on mathematics that covers systems of ordinary differential equations. In
particular, the coefficient c̄~n in (D.21) gets replaced by a vector of coefficients
with the same energy. The scalar γ~n becomes a matrix with indices ranging over
the set of coefficients in the vector. Also, eiγ~n gets replaced by a “fundamental
solution matrix,” a matrix consisting of independent solution vectors. And e−iγ~n

is the inverse matrix. The sum no longer includes any of the coefficients of the
considered energy.

More recent derivations allow the spectrum to be continuous, in which case
the nonzero energy gaps E~n−E~n can no longer be assumed to be larger than some
nonzero amount. And unfortunately, assuming the system to be approximated
by a finite one helps only partially here; an accurate approximation will produce
very closely spaced energies. Such problems are well outside the scope of this
book.

D.35 The evolution of expectation values

To verify the stated formulae for the evolution of expectation values, just write
the definition of expectation value, 〈Ψ|AΨ〉, differentiate to get

〈Ψt|AΨ〉+ 〈Ψ|AΨt〉+ 〈Ψ|AtΨ〉
and replace Ψt by HΨ/i~ on account of the Schrödinger equation. Note that
in the first inner product, the i appears in the left part, hence comes out as its
complex conjugate −i.

D.36 Photon wave function derivations

The rules of engagement are as follows:
• The Cartesian axes are numbered using an index i, with i = 1, 2,
and 3 for x, y, and z respectively.
• Also, ri indicates the coordinate in the i direction, x, y, or z.
• Derivatives with respect to a coordinate ri are indicated by a simple
subscript i.
• If the quantity being differentiated is a vector, a comma is used to
separate the vector index from differentiation ones.
• Index ı is the number immediately following i in the cyclic sequence
. . . 123123. . . and ı is the number immediately preceding i.
• Time derivatives are indicated by a subscript t.
• A bare

∫
integral sign is assumed to be an integration over all space,

or over the entire box for particles in a box. The d3~r is normally
omitted for brevity and to be understood.
• A superscript ∗ indicates a complex conjugate.
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D.36.1 Rewriting the energy integral

As given in the text, the energy in an electromagnetic field in free space that
satisfies the Coulomb-Lorenz gauge is, writing out the square magnitudes and
individual components,

E = 1
2
ǫ0

∫ ( ∣∣∣∣∣
∂ ~A

∂t

∣∣∣∣∣

2

+ c2
∣∣∣∇~A

∣∣∣
2
)

= 1
2
ǫ0
∑

i

∫ (
A∗i,tAi,t + c2

3∑

j=1

A∗i,jAi,j

)

However, a bit more general expression is desirable. If only the Lorenz condition
is satisfied, there may also be an electrostatic potential ϕ. In that case, a more
general expression for the energy is:

E = 1
2
ǫ0

[ 3∑

i=1

∫ (
A∗i,tAi,t + c2

3∑

j=1

A∗i,jAi,j

)
−
∫ ( 1

c2
ϕ∗tϕt +

3∑

j=1

ϕ∗jϕj

)]
(1)

The minus sign for the ϕ terms appears because this is really a dot product of
relativistic four-vectors. The zeroth components in such a dot product acquire
a minus sign, chapter 1.2.4 and 1.3.2. In derivation {D.32} it was shown that
each of the four integrals is constant. That is because each component satisfies
the Klein-Gordon equation. So their sum is constant too.

The claim to verify now is that the same energy can be obtained from inte-
grating the electric and magnetic fields as

E = 1
2
ǫ0

∫ (
|~E|2 + c2|~B|2

)
= 1

2
ǫ0
∑

i

∫ (
E∗i Ei + c2B∗iBi

)
(2)

Since ~E = −∂ ~A/∂t−∇ϕ and ~B = ∇ × ~A:

Ei = −Ai,t − ϕi Bi = Aı,ı − Aı,ı
From now on, it will be understood that there is a summation over i and j

and that everything has a 1
2
ǫ0. Therefore these will no longer be shown.

Start with the electric field integral. It is, using the above expressions and
multiplying out, ∫

A∗i,tAi,t + A∗i,tϕi + ϕ∗iAi,t + ϕ∗iϕi

The first term already gives the vector-potential time derivatives in (1). That
leaves the final three terms. Perform an integration by parts on the first two. It
will always be assumed that the potentials vanish at infinity or that the system
is in a periodic box. In that case there are no boundary terms in an integration
by parts. So the three terms become

∫
− A∗i,itϕ− ϕ∗Ai,it + ϕ∗iϕi
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However, the divergence Ai,i is according to the Lorenz condition equal to
−ϕt/c2, so ∫

1

c2
ϕ∗ttϕ+

1

c2
ϕ∗ϕtt + ϕ∗iϕi

Using the Klein-Gordon equation, ϕtt/c
2 = ϕii, and then another integration by

parts on the first two terms and renotating i by j gives the ϕ∗jϕj terms in (1).

Now consider the integral of |~B|2 in (2). You get, multiplying out,

c2
∫ (

A∗
ı,ı
− A∗

ı,ı

)(
Aı,ı − Aı,ı

)
= c2

∫ (
A∗
ı,ı
Aı,ı − A∗ı,ıAı,ı − A∗ı,ıAı,ı + A∗

ı,ı
Aı,ı

)

Now the first and last terms in the right hand side summed over i produce all
terms A∗i,jAi,j in (1) in which i and j are different. That leaves the middle terms.
An integration by parts yields

c2
∫ (

A∗
ı,ıı
Aı + A∗

ı,ıı
Aı

)

Renotate the indices cyclically to get

c2
∫ (

A∗ı,ıiAi + A∗
ı,ıi
Ai

)

(If you want, you can check that this is the same by writing out all three terms
in the sum.) This is equivalent to

c2
∫ (

A∗i,i + A∗ı,ı + A∗
ı,ı

)
i
Ai − A∗i,iiAi

as you can see from differentiating and multiplying out. The final term gives
after integration by parts the A∗i,jAi,j terms in (1) in which i and j are equal.
That leaves the first part. The term in parentheses is the divergence −ϕt/c2, so
the first part is ∫

−ϕ∗itAi

Perform an integration by parts

∫
ϕ∗tAi,i

Recognizing once more the divergence, this gives the final −ϕ∗tϕt/c2 term in (1)

D.36.2 Angular momentum states

The rules of engagement listed at the start of this section apply. In addition:
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• The quantum numbers ℓ and mℓ will be renotated by l and m, while
k stays k. That is easier to type.
• The quantum numbers are not shown unless needed. For example,
j stands for jl.
• A bar on a quantity, like in Ȳ Y , means the complex conjugate. In
addition, the (unlisted) quantum numbers of spherical harmonic Ȳ
may in general be different from those of Y and are indicated by
bars too.
• The symbols f and g are used as generic scalar functions. They
often stand in particular for the jY scalar modes.
• An integral in spherical coordinates takes the form

∫
. . . r2 drdΩ

where dΩ = sin θ dθdφ.

D.36.2.1 About the scalar modes

The scalar modes are the jY .
It will be assumed that the j are zero at the large radius rmax at which

the domain is assumed to terminate. That makes the scalar modes a complete
set; any scalar function f can be written as a combination of them. (That is
because they are the eigenfunctions of the Laplacian inside the sphere, and the
zero boundary condition on the sphere surface r = rmax makes the Laplacian
Hermitian. This will not be explicitly proved since it is very standard.)

The Bessel function j of the scalar modes satisfy the ordinary differential
equation, {A.6}

r2j′′ + 2rj′ = l(l + 1)j − k2r2j (3)

The following integral is needed (note that j is real):

∫ rmax

0

j2r2 dr ∼ rmax

2k2
(4)

This is valid for large krmax, which applies since rmax is large and the k values of
interest are finite. The above result comes from the integral of the square two-
dimensional Bessel functions J , and a recurrence relation, [41, 27.18,88], using
jl(kr) = Jl+ 1

2
(kr)

√
π/2kr, [1, p 437, 10.1.1], and the asymptotic behavior of the

Bessel function you get from {A.6} (A.19). To get the leading asymptotic term,
each time you have to differentiate the trigonometric function. And where the
trigonometric function in jl is zero at rmax because of the boundary condition,
the one in jl+1 has magnitude 1.

The spherical harmonics are orthonormal on the unit sphere, {D.14.4}
∫
Ȳ Y dΩ = δl̄lδm̄m (5)



D.36. PHOTON WAVE FUNCTION DERIVATIONS 1291

In other words, the integral is only 1 if l = l̄ and m = m̄ and otherwise it is
zero. Further

∫ (
ȲθYθ +

1

sin2 θ
ȲφYφ

)
dΩ = l(l + 1)δl̄lδm̄m (6)

D.36.2.2 Basic observations and eigenvalue problem

For any function f

~r ×∇f = −∇× (~rf) (7)

This follows from writing out the right hand side

−(rıf)ı + (rıf)ı = −rıfı + rıfı

the latter since ı and ı are different indices.
The electric modes

∇×~r ×∇f
are solenoidal because ∇ · ∇ × . . . gives zero. The magnetic modes

~r ×∇f

are solenoidal for the same reason, after noting (7) above.
The Laplacian commutes with the operators in front of the scalar functions

in the electric and magnetic modes. That can be seen for the magnetic ones
from

(rıfı − rıfı)jj = rıfjjı − rıfjjı + 2rı,jfjı − 2rı,jfjı = rıfjjı − rıfjjı + 2fıı − 2fıı

and the final two terms cancel. And the Laplacian also commutes with the
additional ∇× in the electric modes since differentiations commute.

From this it follows that the energy eigenvalue problem is satisfied because
by definition of the scalar modes −∇2jY = k2jY . In addition,

∇×∇×~r ×∇f = k2~r ×∇f (8)

because ∇ × ∇× = −∇2 for a solenoidal function, (D.1).

D.36.2.3 Spherical form and net angular momentum

In spherical coordinates, the magnetic mode is

~AM = ~r ×∇jY = j

[
ı̂φYθ − ı̂θ

1

sin θ
Yφ

]
(9)

and then the electric mode is
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~AE = ∇×~r ×∇jY = −ı̂rl(l + 1)
j

r
Y − (rj)′

r

[
ı̂θYθ + ı̂φ

1

sin θ
Yφ

]
(10)

from [41, 20.74,76,82] and for the r component of ~AE the eigenvalue problem of
chapter 4.2.3.

Now note that the φ dependence of Y is through a simple factor eimφ, chapter
4.2.3. Therefore it is seen that if the coordinate system is rotated over an angle
γ around the z-axis, it produces a factor eimγ in the vectors. First of all that
means that the azimuthal quantum number of net angular momentum is m,
{A.19}. But it also means that, {A.19},

Ĵz~r ×∇f = ~r ×∇Lzf Ĵz∇×~r ×∇f = ∇×~r ×∇Lzf

because either way the vector gets multiplied by m~ for the modes. And if it is
true for all the modes, then it is true for any function f . Since the z-axis is not
special for general f , the same must hold for the x and y angular momentum
operators. From that it follows that the modes are also eigenfunctions of net
square angular momentum, with azimuthal quantum number l.

At the cut-off r = rmax, j = 0, which gives:

At rmax: ~AM = 0 ~AE = −j′
[
ı̂θYθ + ı̂φ

1

sin θ
Yφ

]
(11)

Also needed is, differentiating (10):

At rmax:
∂ ~AE

∂r
= −ı̂rl(l + 1)

j′

r
Y +

j′

r

[
ı̂θYθ + ı̂φ

1

sin θ
Yφ

]
(12)

which used (3) to get rid of the second order derivative of j.

D.36.2.4 Orthogonality and normalization

Whether the modes are orthogonal, and whether the Laplacian is Hermitian, is
not obvious because of the weird boundary conditions at rmax.

In general the important relations here

∫
(k̄2 − k2)AiAi

=

∫
Āi,jjAi − ĀiAi,jj

=

∫
(Āi,jAi − ĀiAi,j)j

=

∫

S

(Āi,jAi − ĀiAi,j)
∂rj
∂r

dS

(13)
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where S is the surface of the sphere r = rmax. The second last line can be
verified by differentiating out and the last line is the divergence theorem.

The first and second line in (13) show that the Laplacian is Hermitian if
all unequal modes are orthogonal (or have equal k values, but orthogonality
should be shown anyway.). For unequal k values orthogonality may be shown
by showing that the final surface integral is zero.

It is convenient to show right away that the electric and magnetic modes are
always mutually orthogonal:

∫
(rıf̄ı − rıf̄ı)AE

i =

∫
(rıf̄A

E
i )ı − (rıf̄A

E
i )ı − rıf̄AE

i,ı
+ rıf̄A

E
i,ı

The first two terms in the right hand side can be integrated in the ı, respectively
ı direction and are then zero because f̄ is zero on the spherical surface r = rmax.
The final two terms summed over i can be renotated by shifting the summation
index one unit down, respectively up in the cyclic sequence to give

∑

i

−
∫
f̄ ri(A

E
ı,ı
− AE

ı,ı
) =

∑

i

−
∫
f̄~r · ∇ × ~AE = −k2

∫
f̄~r ·~r ×∇f

the latter because of the form of ~AE, the fact that ∇ × ∇× = −∇2 for a
solenoidal vector, and the energy eigenvalue problem established for ~AM. The
final term is zero because ~r ·~r× is.

Next consider the orthogonality of the magnetic modes for different quantum
numbers. For l̄ 6= l or m̄ 6= m, the orthogonality follows from (9) and (6). For
k̄ 6= k, the orthogonality follows from the final line in (13) since the magnetic
modes are zero at rmax, (11).

Finally the electric modes. For l̄ 6= l or m̄ 6= m, the orthogonality follows
from (10), (5), and (6). For k̄ 6= k, the orthogonality follows from the final line

in (13). To see that, recognize that Ai,j∂rj/∂r is the radial derivative of ~A;
therefore using (11) and (12), the integrand vanishes.

The integral of the absolute square integral of a magnetic mode is, using (9),
(6), and (4), ∫

~AM∗ · ~AM = l(l + 1)
rmax

2k2

The integral of the absolute square integral of an electric mode is, using (10),
(5), and (6),

l2(l + 1)2
∫ rmax

0

j2 dr + l(l + 1)

∫ rmax

0

(rj)′(rj)′ dr

Apply an integration by parts on the second integral,

l2(l + 1)2
∫ rmax

0

j2 dr − l(l + 1)

∫ rmax

0

jr(rj)′′ dr
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and then use (3) to get
∫

~AM∗ · ~AM = k2l(l + 1)
rmax

2k2

The normalizations given in the text follow.

D.36.2.5 Completeness

Because of the condition ∇ · ~A = 0, you would generally speaking expect two
different types of modes described by scalar functions. The electric and magnetic
modes seem to fit that bill. But that does not mean that there could not be
say a few more special modes. What is needed is to show completeness. That
means to show that any smooth vector field satisfying ∇ · ~A = 0 can be written
as a sum of the electric and magnetic modes, and nothing else.

This author does not know any simple way to do that. It would be automatic
without the solenoidal condition; you would just take each Cartesian compo-
nent to be a combination of the scalar modes jY satisfying a zero boundary
condition at rmax. Then completeness would follow from the fact that they are
eigenfunctions of the Hermitian Laplacian. Or from more rigorous arguments
that you can find in mathematical books on partial differential equations. But
how to do something similar here is not obvious, at least not to this author.

What will be done is show that any reasonable solenoidal vector can be
written in the form

~A = ~r ×∇f +∇×~r ×∇g
where f and g are scalar functions. Completeness then follows since the modes
jY provide a complete description of any arbitrary function f and g.

But to show the above does not seem easy either, so what will be actually
shown is that any vector without radial component can be written in the form

~v = ~r ×∇f + ı̂r ×~r ×∇g
That is sufficient because the Fourier transform of ~A does not have a radial
component, so it will be of this form. And the inverse Fourier transform of ~v is
of the form ~A, compare any book on Fourier transforms and (7).

The proof that ~v must be of the stated form is by construction. Note that
automatically, the radial component of the two terms is zero. Writing out
the gradients in spherical coordinates, [41, 20.74,82], multiplying out the cross
products and equating components gives at any arbitrary radius r

−∂f
∂φ
− sin θ

∂g

∂θ
= vθ sin θ sin θ

∂f

∂θ
− ∂g

∂φ
= vφ sin θ

Now decompose this in Fourier modes eimφ in the φ direction:

−imfm − sin θ
∂gm
∂θ

= vθm sin θ sin θ
∂fm
∂θ
− imgm = vφm sin θ
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For m = 0, f0 and g0 follow by integration. Note that the integrands are
periodic of period 2π and antisymmetric about the z-axis. That makes f and g
periodic of period 2π too,

For m 6= 0 make a coordinate transform from θ to

t =

∫
dθ/ sin θ = ln tan 1

2
θ

Note that −∞ < t <∞. If anybody is actually reading this, send me an email.
The system becomes after cleaning up

−imfm −
∂gm
∂t

= vθm/ cosh t
∂fm
∂t
− imgm = vφm/ cosh t

It is now easiest to solve the above equations for each of the two right hand
sides separately. Here the first right hand side will be done, the second right
hand side goes similarly.

From the two equations it is seen that fm must satisfy

∂2fm
∂t2

−m2fm =
−2mivθm
et + e−t

and imgm must the derivative of fm. The solution satisfying the required regu-
larity at ±∞ is, [41, 19.8],

fm =

∫ ∞

t

ivθm
e−m(τ−t)

eτ + e−τ
dτ +

∫ t

−∞
ivθm

em(τ−t)

eτ + e−τ
dτ

That finishes the construction, but you may wonder about potential non-
exponential terms in the first integral at −∞ and the second integral at ∞.
Those would produce weak logarithmic singularities in the physical f and g.
You could simply guess that the two right hand sides will combine so that these
terms drop out. After all, there is nothing special about the chosen direction of
the z-axis. If you choose a different axis, it will show no singularities at the old
z-axis, and the solution is unique.

For more confidence, you can check the cancellation explicitly for the leading
order, m = 1 terms. But there is a better way. If the right hand sides are zero
within a nonzero angular distance ∆θ1 from the z-axis, there are no singularities.
And it is easy to split off a part of ~v that is zero within ∆θ1 of the axis and
then changes smoothly to the correct ~v in an angular range from ∆θ1 to ∆θ2
from the axis. The remainder of ~v can than be handled by using say the x-axis
as the axis of the spherical coordinate system.

D.36.2.6 Density of states

The spherical Bessel function is for large arguments proportional to sin(kr)/r
or cos(kr)/r. Either way, the zeros are spaced ∆k rmax = π apart. So there is
one state ∆N = 1 in an interval ∆E = ~∆kc = ~πc/rmax. The ratio gives the
stated density of states.
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D.36.2.7 Parity

Parity is what happens to the sign of the wave function under a parity trans-
formation. A parity transformation inverts the positive direction of all three
Cartesian axes, replacing any position vector ~r by −~r. The parity of something
is 1 or even if it does not change, and −1 or odd if it changes sign. Under a
parity transformation, the operators ~r× and ∇× flip over the parity of what
they act on. On the other hand, ∇jjY mj

j has the same parity as jjY
mj

j ; the
spatial components flip over, but so do the unit vectors that multiply them.
And the parity of jjY

mj

j is even if j is even and odd if j is odd. The stated
parities follow.

D.36.2.8 Orbital angular momentum of the states

In principle a state of definite net angular momentum j and definite spin 1 may
involve orbital angular momentum l = j− 1, l = j and l = j− 1, chapter 7.4.2.
But states of definite parity restrict that to either only odd values or only even
values, {A.20}. To get the stated parities, l = j for magnetic states and l =
j − 1 or l = j + 1 for electric ones.

woof.

D.37 Forces by particle exchange derivations

D.37.1 Classical energy minimization

The energy minimization including a selecton is essentially the same as the one
for only spoton and foton field. That one has been discussed in chapter A.22.1
and in detail in {A.2}. So only the key differences will be listed here.

The energy to minimize is now

ǫ1
2

∫
(∇ϕ)2 d3~r −

∫
ϕ(~r)

(
spδ

3
ε(~r −~rp) + s2δ

3
ε(~r −~re)

)
d3~r

So the only real difference in the variational analysis is

spδ
3
ε(~r −~rp) → spδ

3
ε(~r −~rp) + seδ

3
ε(~r −~rp)

That means that the Poisson equation now becomes

−∇2ϕ(~r) =
sp
ǫ1
δ3ε(~r −~rp) +

se
ǫ1
δ3ε(~r −~re)

Since the Poisson equation is linear, the solution is ϕ = ϕp + ϕe. Here ϕp is
the foton field (A.107) produced by the spoton as before, and ϕe is a similar
expression, but using the selecton sarge and distance from the selecton:

ϕp =
sp

4πǫ1|~r −~rp|
ϕe =

se
4πǫ1|~r −~re|
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The energy lowering is now

−1
2

∫ (
ϕp(~r) + ϕe(~r)

)(
spδ

3
ε(~r −~rp) + seδ

3
ε(~r −~re)

)
d3~r

Multiplying out, you get, of course, the energy lowerings for the spoton and
selecton in isolation. But you also get two additional interaction terms between
these sarges. These two terms are equal; the selecton field ϕe evaluated at the
position of the spoton times spoton sarge is the same as the spoton field ϕp at
the selecton times selecton sarge. So it is seen that each term contributes half
to the Koulomb energy as claimed in the text.

The foton field energy is still half of the particle-field interaction energies
and of opposite sign. That is why the energy change is half of what you would
expect from the interaction of the particles with each other’s field: the other
half is offset by changes in field energy.

D.37.2 Quantum energy minimization

This derivation includes the selecton in the spoton-fotons system analyzed in
{A.22.3}. Since the analysis is essentially unchanged, only the key differences
will be highlighted.

If an selecton is added to the system, the system wave function becomes

ψϕpe = C0ψpψe|0〉+ C1ψpψe|1〉+ . . . |C0|2 + |C1|2 + . . . = 1

The demon can hold the selecton in its other hand. The Hamiltonian will now of
course include a term for the selecton in isolation, as well as an interaction with
the foton field. These are completely analogous to the corresponding spoton
terms.

So the energy to be minimized for the ground state becomes

E = Ep +Ee + |C1|2~ω − 2
εk√
2k

∣∣∣sp〈ψp|ei~k·~rpψp〉+ se〈ψe|ei~k·~reψe〉
∣∣∣|C1| cos(α+ β)

If this is minimized as in {A.22.3}, the energy is

E = Ep + Ee −
1

2ǫ1Vk2
|sp〈ψp|ei~k·~rp |ψp〉+ se〈ψe|ei~k·~re |ψe〉|2

The square absolute value of a quantity can be found as the product of that
quantity times its complex conjugate. That gives the same energy lowering as
for the lone spoton, and a similar term for a lone selecton. However, there is an
additional term

− spse
2ǫ1Vk2

(
〈ψp|e−i~k·~rp |ψp〉〈ψe|ei~k·~re |ψe〉+ 〈ψe|e−i~k·~re|ψe〉〈ψp|ei~k·~rp |ψp〉

)
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If you write out the inner product integrals over the selecton coordinates explic-
itly, this becomes

−
∫
seψ

∗
e (~re)

sp
2ǫ1Vk2

[
〈ψp|e−i~k·~rp |ψp〉ei~k·~re + 〈ψp|ei~k·~rp |ψp〉e−i~k·~re

]
ψe(~re) d

3~re

Summed over all ~k, the second term inside the square brackets gives the same
answer as the first; that is because opposite ~k values appear equally in the
summation. Looking at the first term, the summation over ~k produces again
the spoton potential ϕp

cl, but now evaluated at the position of the selecton. That
then shows the additional energy lowering to be

−
∫
seψ

∗
e (~re)ϕ

p
cl(~re)ψe(~re) d

3~r

Except for the differences in notation, that is the same selecton-spoton interac-
tion energy as found in {A.22.1}.

D.37.3 Rewriting the Lagrangian

The rules of engagement are as follows:
• The Cartesian axes are numbered using an index i, with i = 1, 2,
and 3 for x, y, and z respectively.
• Also, ri indicates the coordinate in the i direction, x, y, or z.
• Derivatives with respect to a coordinate ri are indicated by a simple
subscript i.
• If the quantity being differentiated is a vector, a comma is used to
separate the vector index from differentiation ones.
• Index ı is the number immediately following i in the cyclic sequence
. . . 123123. . . and ı is the number immediately preceding i.
• If i is already been used for something else, j can be used the same
way.
• Time derivatives are indicated by a subscript t.
Consider first the square magnetic field:

B2 =
∑

i

(Aı,ı − Aı,ı)2

Expanding out the square, that is equivalent to

B2 =
∑

i

(A2
ı,ı
+ A2

ı,ı
+ A2

i,i − Ai,iAi,i − Aı,ıAı,ı − Aı,ıAı,ı)

The summation indices can now be cyclically redefined to give an equivalent
sum over i equal to

B2 =
∑

i

(A2
i,ı
+ A2

i,ı + A2
i,i − Ai,iAi,i − Ai,ıAı,i − Ai,ıAı,i)
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The terms can be combined in sets of three as

B2 = A2
i,j − Ai,jAj,i

Here summation over i and j is now understood.
The square electric field is

E2 = (−ϕi − Ai,t)2 = A2
i,t + 2Ai,tϕi + ϕ2

i

All together, that gives

E2 − c2B2 = A2
i,t − c2A2

i,j −
1

c2
ϕ2
t + ϕ2

i

+
1

c2
(ϕt + c2Ai,i)(ϕt + c2Aj,j)

+2Ai,tϕi − 2Ai,iϕt + c2Ai,jAj,i − c2Ai,iAj,j
as can be verified by multiplying out and simplifying. The right hand side in
the first line is the self-evident electromagnetic Lagrangian density, except for
the factor ǫ0/2. The second line is the square of the Lorentz condition quantity.
The final line can be written as a sum of pure derivatives:

2(Aiϕi)t − 2(Aiϕt)i + c2(AiAj,i)j − c2(AiAj,j)i
Pure derivatives do not produce changes in the action, as the changes in the
potentials disappear on the boundaries of integration.

D.37.4 Coulomb potential energy

The Coulomb potential energy between charged particles is typically derived in
basic physics. But it can also easily be verified from the conventional electro-
magnetic energy (A.143). In the steady case, there is only the electric field, due
to the Coulomb potential. The energy may then be written as

ǫ0
2

∫
E2C d3~r =

ǫ0
2

∫
(∇ϕC)

2 d3~r = −ǫ0
2

∫
ϕC∇2ϕC d3~r =

1

2

∫
ϕC(~r; t)ρ(~r; t) d

3~r

where the first equality comes from the definition of the electric field, the second
from integration by parts and the third one from the first Maxwell equation.
Substitution of the Coulomb potential in terms of the charge distribution as
given in {A.22.8},

ϕC(~r; t) =

∫

all ~r

ρ(~r; t)

4πǫ0|~r −~r|
d3~r

now gives the Koulomb potential energy VC for a continuous charge distribution:

VC = 1
2

∫

all ~r

∫

all ~r

ρ(~r; t)ρ(~r; t)

4πǫ0|~r −~r|
d3~rd3~r
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For point charges, the charge distribution is by definition

ρ(~r; t) =
I∑

i=1

qiδ
3(~r −~ri)

Here δ3 is the three-dimensional delta function, ~ri = ~ri(t) the position of point
charge i, and qi its charge.

Recall that the delta function picks out the value at ~ri from whatever it is
integrated against. Using this twice on the Coulomb potential energy above,

VC = 1
2

I∑

i=1

∫

all ~r

qiρ(~r; t)

4πǫ0|~ri −~r|
d3~r = 1

2

I∑

i=1

I∑

i=1
i 6=i

qiqi
4πǫ0|~ri −~ri|

That is the Coulomb potential energy VC for point charges.
Note again that physically all the energy is inside the electromagnetic field.

There is no energy of interaction of the charged particles with the field. If equal
charges move closer together, they increase the energy in the electromagnetic
field. That requires work.

D.38 Time-dependent perturbation theory

The equations to be solved are

i~ċ1 = 〈E1〉c1 +H12c2 i~ċ2 = H21c1 + 〈E2〉c2

To simplify the use of perturbation theory, it is convenient to use a trick
that gets rid of half the terms in these equations. The trick is to define new
coefficients c̄1 and c̄2 by

c̄1 = c1e
i
∫
〈E1〉 dt/~ c̄2 = c2e

i
∫
〈E2〉 dt/~ (D.22)

The new coefficients c̄1 and c̄2 are physically just as good as c1 and c2. For one,
the probabilities are given by the square magnitudes of the coefficients, and the
square magnitudes of c̄1 and c̄2 are exactly the same as those of c1 and c2. That
is because the exponentials have magnitude one. Also, the initial conditions
are unchanged, assuming that you choose the integration constants so that the
integrals are initially zero.

The evolution equations for c̄1 and c̄2 are

i~ ˙̄c1 = H12e
−i

∫
E21 dt/~c̄2 i~ ˙̄c2 = H21e

i
∫
E21 dt/~c̄1 (D.23)

with E21 = 〈E2〉 − 〈E1〉. Effectively, the two energy expectation values have
been turned into zero. However, the matrix element is now time-dependent, if
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it was not already. To check the above evolution equations, just plug in the
definition of the coefficients.

It will from now on be assumed that the original Hamiltonian coefficients
are independent of time. That makes the difference in expectation energies E21

constant too.
Now the formal way to perform time-dependent perturbation theory is to

assume that the matrix element H21 is small. Write H21 as εH0
21 where ε is

a scale factor. Then you can find the behavior of the solution in the limiting
process ε → 0 by expanding the solution in powers of ε. The definition of the
scale factor ε is not important. You might identify it with a small physical
parameter in the matrix element. But in fact you can take H0

21 the same as
H21 and ε as an additional mathematical parameter with no meaning for the
physical problem. In that approach, ε disappears when you take it to be 1 in
the final answer.

But because the problem here is so trivial, there is really no need for a
formal time-dependent perturbation expansion. In particular, by assumption
the system stays close to state ψ1, so the coefficient c̄2 must remain small. Then
the evolution equations above show that c̄1 will hardly change. That allows it
to be treated as a constant in the evolution equation for c̄2. That then allows
c̄2 to be found by simple integration. The integration constant follows from the
condition that c2 is zero at the initial time. That then gives the result cited in
the text.

It may be noted that for the analysis to be valid, H21t/~must be small. That
ensures that c̄2 is correspondingly small according to its evolution equation. And
then the change in c̄1 from its original value is small of order (H21t/~)

2 according
to its evolution equation. So the assumption that it is about constant in the
equation for c̄2 is verified. The error will be of order (H21t/~)

3.
To be sure, this does not verify that this error in c̄2 decays to zero when

E21t/2~ tends to infinity. But it does, as can be seen from the exact solution,

|c2|2 =
( |H21|t

~

)2
sin2(Ẽ21t/2~)

(Ẽ21t/2~)2
Ẽ21 ≡

√
E2

21 + |H21|2

By splitting it up into ranges |E21|t/~ no larger than |H21|t/~ and |E21|t/~ no
larger than 1, you can see that the error is never larger than order (H21t/~)

2 for
|E21|t/~ no larger than 1. And it is of order (H21t/~)

2/(|E21|t/~)2 outside that
range.

Finally, consider the case that the state cannot just transition to one state
ψ2 but to a large number N of them, each with its own coefficient c̄2. In that
case, the individual contributions of all these states add up to change c̄1. And
c̄1 must definitely stay approximately constant for the above analysis to be
valid. Fortunately, if you plug the approximate expressions for the c̄2 into the
evolution equation for c̄1, you can see that c̄1 stays approximately constant as
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long as the sum of all the transition probabilities does. So as long as there
is little probability of any transition at time t, time-dependent perturbation
theory should be OK.

D.39 Selection rules

This note derives the selection rules for electric dipole transitions between two
hydrogen states ψL and ψH. Some selection rules for forbidden transitions are
also derived. The derivations for forbidden transitions use some more advanced
results from later chapters. It may be noted that in any case, the Hamiltonian
assumes that the velocity of the electrons is small compared to the speed of
light.

According to chapter 4.3, the hydrogen states take the form ψL = ψnLlLmL
l

and ψH = ψnHlHmH
l. Here 1 6 n, 0 6 l 6 n and |m| 6 l are integer quantum

numbers. The final l represents the electron spin state, up or down.
As noted in the text, allowed electric dipole transitions must respond to at

least one component of a constant ambient electric field. That means that they
must have a nonzero value for at least one electrical dipole moment,

〈ψL|ri|ψH〉 6= 0

where ri can be one of r1 = x, r2 = y, or r3 = z for the three different components
of the electric field.

The trick in identifying when these inner products are zero is based on taking
inner products with cleverly chosen commutators. Since the hydrogen states are
eigenfunctions of L̂z, the following commutator is useful

〈ψL|[ri, L̂z]|ψH〉 = 〈ψL|riL̂z − L̂zri|ψH〉

For the riL̂z term in the right hand side, the operator L̂z acts on ψH and produces
a factor mH~, while for the L̂zri term, L̂z can be taken to the other side of the
inner product and then acts on ψL, producing a factor mL~. So:

〈ψL|[ri, L̂z]|ψH〉 = (mH −mL)~〈ψL|ri|ψH〉 (D.24)

The final inner product is the dipole moment of interest. Therefore, if a suitable
expression for the commutator in the left hand side can be found, it will fix the
dipole moment.

In particular, according to chapter 4.5.4 [z, L̂z] is zero. That means according
to equation (D.24) above that the dipole moment 〈ψL|z|ψH〉 in the right hand
side will have to be zero too, unless mH = mL. So the first conclusion is that the
z-component of the electric field does not do anything unless mH = mL. One
down, two to go.
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For the x and y components, from chapter 4.5.4

[x, L̂z] = −i~y [y, L̂z] = i~x

Plugging that into (D.24) produces

−i~〈ψL|y|ψH〉 = (mH −mL)~〈ψL|x|ψH〉 i~〈ψL|x|ψH〉 = (mH −mL)~〈ψL|y|ψH〉

From these equations it is seen that the y dipole moment is zero if the x one is,
and vice-versa. Further, plugging the y dipole moment from the first equation
into the second produces

i~〈ψL|x|ψH〉 =
(mH −mL)

2
~
2

−i~ 〈ψL|x|ψH〉

and if the x dipole moment is nonzero, that requires that (mH −mL)
2 is one,

so mH = mL ± 1. It follows that dipole transitions can only occur if mH = mL,
through the z component of the electric field, or if mH = mL ± 1, through the
x and y components.

To derive selection rules involving the azimuthal quantum numbers lH and lL,
the obvious approach would be to try the commutator [ri, L̂

2] since L̂2 produces
l(l + 1)~2. However, according to chapter 4.5.4, (4.68), this commutator will

bring in the ~̂r × ~̂L operator, which cannot be handled. The commutator that
works is the second of (4.73):

[[ri, L̂
2], L̂2] = 2~2(riL̂

2 + L̂2ri)

where by the definition of the commutator

[[ri, L̂
2], L̂2] = (riL̂

2 − L̂2ri)L̂
2 − L̂2(riL̂

2 − L̂2ri) = riL̂
2L̂2 − 2L̂2riL̂

2 + L̂2L̂2ri

Evaluating 〈ψL|[[ri, L̂2], L̂2]|ψH〉 according to each of the two equations above
and equating the results gives

2~2[lH(lH + 1) + lL(lL + 1)]〈ψL|ri|ψH〉 = ~
2[lH(lH + 1)− lL(lL + 1)]2〈ψL|ri|ψH〉

For 〈ψL|ri|ψH〉 to be nonzero, the numerical factors in the left and right hand
sides must be equal,

2[lH(lH + 1) + lL(lL + 1)] = [lH(lH + 1)− lL(lL + 1)]2

The right hand side is obviously zero for lH = lL, so lH − lL can be factored out
of it as

[lH(lH + 1)− lL(lL + 1)]2 = (lH − lL)2(lH + lL + 1)2

and the left hand side can be written in terms of these same factors as

2[lH(lH + 1) + lL(lL + 1)] = (lH − lL)2 + (lH + lL + 1)2 − 1
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Equating the two results and simplifying gives

[(lH − lL)2 − 1][(lH + lL + 1)2 − 1] = 0

The second factor is only zero if lH = lL = 0, but then 〈ψL|ri|ψH〉 is still zero
because both states are spherically symmetric. It follows that the first factor
will have to be zero for dipole transitions to be possible, and that means that
lH = lL ± 1.

The spin is not affected by the perturbation Hamiltonian, so the dipole
moment inner products are still zero unless the spin magnetic quantum numbers
ms are the same, both spin-up or both spin-down. Indeed, if the electron spin
is not affected by the electric field to the approximations made, then obviously
it cannot change. That completes the selection rules as given in chapter 7.4.4
for electric dipole transitions.

Now consider the effect of the magnetic field on transitions. For such transi-
tions to be possible, the matrix element formed with the magnetic field must be
nonzero. Like the electric field, the magnetic field can be approximated as spa-
tially constant and quasi-steady. The perturbation Hamiltonian of a constant
magnetic field is according to chapter 13.4

H1 =
e

2me

~B ·
(
~̂L+ 2 ~̂S

)

Note that now electron spin must be included in the discussion.
According to this perturbation Hamiltonian, the perturbation coefficient

HHL for the z-component of the magnetic field is proportional to

〈ψL|L̂z + 2Ŝz|ψH〉

and that is zero because ψHl is an eigenfunction of both operators and or-
thogonal to ψLl. So the z-component of the magnetic field does not produce
transitions to different states.

However, the x-component (and similarly the y-component) produces a per-
turbation coefficient proportional to

〈ψL|L̂x|ψH〉+ 2〈ψL|Ŝx|ψH〉

According to chapter 12.11, the effect of L̂x on a state with magnetic quantum
number mH is to turn it into a linear combination of two similar states with
magnetic quantum numbers mH + 1 and mH − 1. Therefore, for the first inner
product above to be nonzero, mL will have to be either mH + 1 or mH − 1.
Also the orbital azimuthal momentum numbers l will need to be the same, and
so will the spin magnetic quantum numbers ms. And the principal quantum
numbers n, for that matter; otherwise the radial parts of the wave fuctions are
orthogonal.
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The magnetic field simply wants to rotate the orbital angular momentum
vector in the hydrogen atom. That does not change the energy, in the absence
of an average ambient magnetic field. For the second inner product, the spin
magnetic quantum numbers have to be different by one unit, while the orbital
magnetic quantum numbers must now be equal. So, all together

lH = lL mH = mL or mL ± 1 ms,H = ms,L or ms,L ± 1

and either the orbital or the spin magnetic quantum numbers must be unequal.
That are the selection rules as given in chapter 7.4.4 for magnetic dipole tran-
sitions. Since the energy does not change in these transitions, Fermi’s golden
rule would have the decay rate zero. Fermi’s analysis is not exact, but such
transitions should be very rare.

The logical way to proceed to electric quadrupole transitions would be to
expand the electric field in a Taylor series in terms of y:

~E = k̂Ef cos
(
ω(t− y/c)− α

)
≈ k̂Ef cos(ωt− α) + k̂

ω

c
Ef sin(ωt− α)y

The first term is the constant electric field of the electric dipole approximation,
and the second would then give the electric quadrupole approximation. How-
ever, an electric field in which Ez is a multiple of y is not conservative, so the
electrostatic potential does no longer exist.

It is necessary to retreat to the so-called vector potential ~A. It is then
simplest to chose this potential to get rid of the electrostatic potential altogether.
In that case the typical electromagnetic wave is described by the vector potential

~A = −k̂ 1
ω
Ef sin

(
ω(t− y/c)− α

)
~E = −∂

~A

∂t
~B = ∇× ~A

In terms of the vector potential, the perturbation Hamiltonian is, chapter
13.1 and 13.4, and assuming a weak field,

H1 =
e

2me

(~A · ~̂p+ ~̂p ~A) + e

me

~̂S · ~B

Ignoring the spatial variation of ~A, this expression produces an Hamiltonian
coefficient

HHL = − e

meω
Ef sin(ωt− α)〈ψL|p̂z|ψH〉

That should be same as for the electric dipole approximation, since the field
is now completely described by ~A, but it is not quite. The earlier derivation
assumed that the electric field is quasi-steady. However, p̂z is equal to the com-
mutator ime[H0, z]/~ where H0 is the unperturbed hydrogen atom Hamiltonian.
If that is plugged in and expanded, it is found that the expressions are equiva-
lent, provided that the perturbation frequency is close to the frequency of the



1306 APPENDIX D. DERIVATIONS

photon released in the transition, and that that frequency is sufficiently rapid
that the phase shift from sine to cosine can be ignored. Those are in fact the
normal conditions.

Now consider the second term in the Taylor series of ~A with respect to y. It
produces a perturbation Hamiltonian

e

me

1

c
Ef cos(ωt− α)yp̂z

The factor yp̂z can be trivially rewritten to give

e

2me

1

c
Ef cos(ωt− α)(yp̂z − zp̂y) +

e

2me

1

c
Ef cos(ωt− α)(yp̂z + zp̂y)

The first term has already been accounted for in the magnetic dipole transitions
discussed above, because the factor within parentheses is L̂x. The second term
is the electric quadrupole Hamiltonian for the considered wave.

As second terms in the Taylor series, both Hamiltonians will be much smaller
than the electric dipole one. The factor that they are smaller can be estimated
from comparing the first and second term in the Taylor series. Note that c/ω
is proportional to the wave length λ of the electromagnetic wave. Also, the
additional position coordinate in the operator scales with the atom size, call it R.
So the factor that the magnetic dipole and electric quadrupole matrix elements
are smaller than the electric dipole one is R/λ. Since transition probabilities
are proportional to the square of the corresponding matrix element, it follows
that, all else being the same, magnetic dipole and electric quadrupole transitions
are slower than electric dipole ones by a factor (R/λ)2. (But note the earlier
remark on the problem for the hydrogen atom that the energy does not change
in magnetic dipole transitions.)

The selection rules for the electric quadrupole Hamiltonian can be narrowed
down with a bit of simple reasoning. First, since the hydrogen eigenfunctions
are complete, applying any operator on an eigenfunction will always produce
a linear combination of eigenfunctions. Now reconsider the derivation of the
electric dipole selection rules above from that point of view. It is then seen
that z only produces eigenfunctions with the same values of m and the values
of l exactly one unit different. The operators x and y change both m and l by
exactly one unit. And the components of linear momentum do the same as the
corresponding components of position, since p̂i = ime[H0, ri]/~ and H0 does not
change the eigenfunctions, just their coefficients. Therefore yp̂z + zp̂y produces
only eigenfunctions with azimuthal quantum number l either equal to lH or to
lH ± 2, depending on whether the two unit changes reinforce or cancel each
other. Furthermore, it produces only eigenfunctions with m equal to mH ± 1.
However, xp̂y + yp̂x, corresponding to a wave along another axis, will produce
values of m equal to mH or to mH ± 2. Therefore the selection rules become:

lH = lL or lL ± 2 mH = mL or mL ± 1 or mL ± 2 ms,H = ms,L
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That are the selection rules as given in chapter 7.4.4 for electric quadrupole
transitions. These arguments apply equally well to the magnetic dipole tran-
sition, but there the possibilities are narrowed down much further because the
angular momentum operators only produce a couple of eigenfunctions. It may
be noted that in addition, electric quadrupole transitions from lH = 0 to lL = 0
are not possible because of spherical symmetry.

D.40 Quantization of radiation derivations

This gives various derivations for the addendum of the same name.
It is to be shown first that

∫

all

c2(~Bn
γ)

2 d3~r = −
∫

all

(~Enγ)2 d3~r (1)

To see that, note from (A.157) that

c~Bn
γ =

1

ik
∇× ~Enγ

so the left-hand integral becomes

∫

all

c2(~Bn
γ)

2 d3~r = − 1

k2

∫

all

(∇× ~Enγ) · (∇× ~Enγ) d3~r

Now the curl, ∇×, is Hermitian, {D.10}, so the second curl can be pushed in

front of the first curl. Then curl curl acts as −∇2 because ~Enγ is solenoidal and
the standard vector identity (D.1). And the eigenvalue problem turns −∇2 into
k2.

Note incidentally that the additional surface integral in {D.10} is zero even
for the photon modes of definite angular momentum, {A.21.7}, because for

them either ~Enγ is zero on the surface or ∇ × ~Enγ is. Also note that the integrals
become equal instead of opposite if you push complex conjugates on the first
factors in the integrands.

Now the Hamiltonian can be worked out. Using Using (A.152) and (A.162),
it is

H = 1
4
ǫ0

∫

all

[
(â~Enγ + â~En∗γ )2 + (âc~Bn

γ + â†c~Bn∗
γ )2
]
d3~r

When that is multiplied out and integrated, the (â)2 and (â†)2 terms drop out
because of (1). The remaining multiplied-out terms in the Hamiltonian produce
the stated Hamiltonian after noting the wave function normalization (A.158).

The final issue is to identify the relationships between the coefficients D0,
D1 and C as given in the text. The most important question is here under what
circumstances 2|D1| and 4|C|2 can get very close to the larger value 2D0.
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The coefficient D1 was defined as

2D1 =
∑

i

c∗i−1ci+1

√
i
√
i+ 1

To estimate this, consider the infinite-dimensional vectors ~a and ~b with coeffi-
cients

ai ≡ ci−1
√
i bi ≡ ci+1

√
i+ 1

Note that 2D1 above is the inner product of these two vectors. And an inner
product is less in magnitude than the product of the lengths of the vectors
involved.

|2D1| = |〈~a
∣∣∣~b
〉
| 6 |~a||~b| =

√√√√
[∑

i

|ci−1|2i
][∑

i

|ci+1|2(i+ 1)

]

By changing the notations for the summation indices, (letting i − 1 → i and
i+ 1→ i), the sums become the expectation values of i+ 1, respectively i. So

|2D1| 6
√
(〈i〉+ 1)(〈i〉) =

√
〈i〉2 + 〈i〉 <

√
〈i〉2 + 〈i〉+ 1

4
=
√
(〈i〉+ 1

2
)2 = 2D0

The final equality is by the definition of D0. The second inequality already
implies that |D1| is always smaller than D0. However, if the expectation value
of i is large, it does not make much of a difference.

In that case, the bigger problem is the inner product between the vectors ~a
and ~b. Normally it is smaller than the product of the lengths of the vectors. For
it to become equal, the two vectors have to be proportional. The coefficients of
~b must be some multiple, call it B2e2iβ, of those of ~a:

ci+1

√
i+ 1 ≈ B2e2iβci−1

√
i

For larger values of i the square roots are about the same. Then the above
relationship requires an exponential decay of the coefficients. For small values
of i, obviously the above relation cannot be satisfied. The needed values of ci
for negative i do not exist. To reduce the effect of this “start-up” problem,
significant coefficients will have to exist for a considerable range of i values.

In addition to the above conditions, the coefficient 4|C|2 has to be close to
2D0. Here the coefficient C was defined as

√
2C =

∑

i

c∗i−1ci
√
i

Using the same manipulations as for D1, but with

ai ≡ ci−1

√√
i bi ≡ ci+1

√√
i
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gives

2|C|2 6
[∑

i

|ci−1|2
√
i

][∑

i

|ci|2
√
i

]
=
〈√

i+ 1
〉 〈√

i
〉

To bound this further, define

f(x) =
〈√

i+ 1
2
+ x
〉

By expanding the square root in a Taylor series,

f(−1
2
) < f(0)−∆f f(1

2
) < f(0) + ∆f

where ∆f is the expectation value of the linear term in the Taylor series; the
inequalities express that a square root function has a negative second order
derivative. Multiplying these two expressions shows that

f(−1
2
)f(1

2
) < f 2(0) =⇒

〈√
i+ 1

〉 〈√
i
〉
<
〈√

i+ 1
2

〉2

Since it has already been shown that the expectation value of i must be large,
this inequality will be almost an equality, anyway.

In any case,

2|C|2 <
〈√

i+ 1
2

〉2

This is less than 〈√
i+ 1

2

2
〉

= 2D0

The big question is now how much it is smaller. To answer that, use the short-
hand √

i+ 1
2
≡ xi = x+ x′i

where x is the expectation value of the square root and x′i is the deviation from
the average. Then, noting that the expectation value of x′i is zero,

2D0 =
〈
(x+ x′i)

2
〉
= 〈x〉2 +

〈
(x′i)

2
〉

The second-last term is the bound for 2|C|2 as obtained above. So, the only
way that 2|C|2 can be close to 2D0 is if the final term is relatively small. That
means that the deviation from the expectation square root must be relatively
small. So the coefficients ci can only be significant in some limited range around
an average value of i. In addition, for the vectors ~a and ~b in the earlier estimate
for C to be almost proportional,

ci−1

√√
i ≈ Aeiαci

√√
i

where Aeiα is some constant. That again means an exponential dependence, like
for the condition on D1. And Ae

iα will have to be approximately Beiβ. And A
will have to be about 1, because otherwise start and end effects will dominate
the exponential part. That gives the situation as described in the text.
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D.41 Derivation of the Einstein B coefficients

The purpose of this note is to derive the Einstein B coefficients of chapter 7.8.
They determine the transition rates between the energy states of atoms. For
simplicity it will be assumed that there are just two atomic energy eigenstates
involved, a lower energy one ψL and an higher energy one ψH. It is further
assumed that the atoms are subject to incoherent ambient electromagnetic ra-
diation. The energy in the ambient radiation is ρ(ω) per unit volume and unit
frequency range. Finally it is assumed that the atoms suffer frequent collisions
with other atoms. The typical time between collisions will be indicated by tc.
It is small compared to the typical decay time of the states, but large compared
to the frequency of the relevant electromagnetic field.

Unlike what you may find elsewhere, it will not be assumed that the atoms
are either fully in the high or fully in the low energy state. That is a highly
unsatisfactory assumption for many reasons. For one thing it assumes that the
atoms know what you have selected as z-axis. In the derivation below, the
atoms are allowed to be in a linear combination of the states ψL and ψH, with
coefficients cL and cH.

Since both the electromagnetic field and the collisions are random, a sta-
tistical rather than a determinate treatment is needed. In it, the probability
that a randomly chosen atom can be found in the lower energy state ψL will
be indicated by PL. Similarly, the probability that an atom can be found in
the higher energy state ψH will be indicated by PH. For a single atom, these
probabilities are given by the square magnitudes of the coefficients cL and cH of
the energy states. Therefore, PL and PH will be defined as the averages of |cL|2
respectively |cH|2 over all atoms.

It is assumed that the collisions are globally elastic in the sense that they
do not change the average energy picture of the atoms. In other words, they do
not affect the average probabilities of the eigenfunctions ψL and ψH. However,
they are assumed to leave the wave function of an individual atom immediately
after a collision in some state cL,0ψL + cH,0ψH in which cL,0 and cH,0 are quite
random, especially with respect to their phase. What is now to be determined
in this note is how, until the next collision, the wave function of the atom will
develop under the influence of the electromagnetic field and how that changes
the average probabilities |cL|2 and |cH|2.

The evolution equations of the coefficients c̄L and c̄H, in between collisions,
were given in chapter 7.7.2 (7.42). They are in terms of modified variables c̄L
and c̄H. However, these variables have the same square magnitudes and initial
conditions as cL and cH. So it really does not make a difference.

Further, because the equations are linear, the solution for the coefficients c̄L
and c̄H can be written as a sum of two contributions, one proportional to the
initial value c̄L,0 and the other to c̄H,0:

c̄L = c̄L,0c̄
L
L + c̄H,0c̄

H
L c̄H = c̄L,0c̄

L
H + c̄H,0c̄

H
H
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Here (c̄LL, c̄
L
H) is the solution that starts out from the lower energy state (c̄LL, c̄

L
H)

= (1, 0) while (c̄HL , c̄
H
H) is the solution that starts out from the higher energy

state (c̄HL , c̄
H
H) = (0, 1).

Now consider what happens to the probability of an atom to be in the excited
state in the time interval between collisions:

|c̄H|2− |c̄H,0|2 = (c̄H,0 + c̄L,0∆c̄
L
H + c̄H,0∆c̄

H
H)
∗(c̄H,0 + c̄L,0∆c̄

L
H + c̄H,0∆c̄

H
H)− c̄∗H,0c̄H,0

Here ∆c̄LH indicates the change in c̄LH in the time interval between collisions; in
particular ∆c̄LH = c̄LH since this solution starts from the ground state with c̄LH =
0. Similarly, the change ∆c̄HH equals c̄HH − 1 since this solution starts out from
the excited state with c̄HH = 1.

Because the typical time between collisions tc is assumed small, so will be
the changes ∆c̄LH and ∆c̄HH as given by the evolution equations (7.42). Note also
that ∆c̄HH will be quadratically small, since the corresponding solution starts out
from c̄HL = 0, so c̄HL is an additional small factor in the equation (7.42) for c̄HH.

Therefore, if the change in probability |c̄H|2 above is multiplied out, ignoring
terms that are cubically small or less, the result is, (remember that for a complex
number c, c+ c∗ is twice its real part):

|c̄H|2 − |c̄H,0|2 = 2ℜ
(
c̄∗H,0c̄L,0∆c̄

L
H

)
+ |c̄L,0|2|∆c̄LH|2 + |c̄H,0|22ℜ

(
∆c̄HH

)

Now if this is averaged over all atoms and time intervals between collisions, the
first term in the right hand side will average away. The reason is that it has
a random phase angle, for one since those of c̄L,0 and c̄H,0 are assumed to be
random after a collision. For a number with a random phase angle, the real
part is just as likely to be positive as negative, so it averages away. Also, for
the final term, 2ℜ(∆c̄HH) is the approximate change in |c̄HH|2 in the time interval,
and that equals −|∆c̄HL |2 because of the normalization condition |c̄HL |2 + |c̄HH|2 =
1. So the relevant expression for the average change in probability becomes

|c̄H|2 − |c̄H,0|2 = |c̄L,0|2|∆c̄LH|2 − |c̄H,0|2|∆c̄HL |2

Summing the changes in the probabilities therefore means summing the changes
in the square magnitudes of ∆c̄LH and ∆c̄HL .

If the above expression for the average change in the probability of the high
energy state is compared to (7.46), it is seen that the Einstein coefficient BL→H

is the average change |∆c̄LH|2 per unit time. This is admittedly the same answer
you would get if you assumed that the atoms are either in the low energy state
or in the high energy state immediately after each collision. But as noted, that
assumption is simply not reasonable.

Now the needed ∆c̄LH = c̄LH may be found from the second evolution equation
(7.42). To do so, you can consider c̄LL to be 1. The reason is that it starts out
as 1, and it never changes much because of the assumed short evolution time tc
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compared to the typical transition time between states. That allows c̄LH to be
found from a simple integration. And the second term in the modified Hamilto-
nian coefficient (7.44) can be ignored because of the additional assumption that
tc is still large compared to the frequency of the electromagnetic wave. That
causes the exponential in the second term to oscillate rapidly and it does not
integrate to a sizable contribution.

What is left is

∆c̄LH =
Ef
~
〈ψL|ez|ψH〉eiα

e−i(ω−ω0)t − 1

2(ω − ω0)
(D.25)

and ∆c̄HL is given by a virtually identical expression. However, since it is as-
sumed that the atoms are subject to incoherent radiation of all wave numbers
~k and polarizations p, the complete ∆c̄LH will consist of the sum of all their
contributions:

∆c̄LH =
∑

~k,p

∆c̄LH(
~k, p)

(This really assumes that the particles are in a very large periodic box so that
the electromagnetic field is given by a Fourier series; in free space you would
need to integrate over the wave numbers instead of sum over them.) The square
magnitude is then

|∆c̄LH|2 =
∑

~k,p

∑

~k,p

∆c̄L,∗H (~k, p)∆c̄LH(
~k, p) =

∑

~k,p

|∆c̄LH(~k, p)|2

where the final equality comes from the assumption that the radiation is incoher-
ent, so that the phases of different waves are uncorrelated and the corresponding
products average to zero.

The bottom line is that square magnitudes must be summed together to find
the total contribution of all waves. And the square magnitude of the contribu-
tion of a single wave is, according to (D.25) above,

|∆c̄LH(~k, p)|2 =
∣∣∣∣
Ef
2~
〈ψL|ez|ψH〉

∣∣∣∣
2

t2

(
sin
(
1
2
(ω − ω0)t

)
1
2
(ω − ω0)t

)2

Now broadband radiation is described in terms of an electromagnetic en-
ergy density ρ(ω); in particular ρ(ω) dω gives the energy per unit volume due
to the electromagnetic waves in an infinitesimal frequency range dω around a
frequency ω. For a single wave, this energy equals 1

2
ǫ0E2f , chapter 13.2 (13.11).

And the square amplitudes of different waves simply add up to the total en-
ergy; that is the so-called Parseval equality of Fourier analysis. So to sum the
expression above over all the frequencies ω of the broadband radiation, make
the substitution E2f = 2ρ(ω) dω/ǫ0 and integrate:

|∆c̄LH|2 =
|〈ψL|ez|ψH〉|2

2~2ǫ0
t2c

∫ ∞

ω=0

ρ(ω)

(
sin
(
1
2
(ω − ω0)tc

)
1
2
(ω − ω0)tc

)2

dω
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If a change of integration variable is made to u = 1
2
(ω − ω0)tc, the integral

becomes

|∆c̄LH|2 =
|〈ψL|ez|ψH〉|2

~2ǫ0
t

∫ ∞

u=− 1
2
ω0tc

ρ(ω0 + 2(u/tc))

(
sin u

u

)2

du

Recall that a starting assumption underlying these derivations was that ω0tc
was large. So the lower limit of integration can be approximated as −∞.

Note that this is essentially the same analysis as the one for Fermi’s golden
rule, except for the presence of the given field strength ρ. However, here the
mathematics can be performed more straightforwardly, using integration rather
than summation.

Consider for a second the limiting process that the field strength ρ goes to
zero, and that the atom is kept isolated enough that the collision time tc can
increase correspondingly. Then the term 2u/tc in the argument of ρ will tend
to zero. So only waves with the exact frequency ω = ω0 will produce transitions
in the limit of zero field strength. That confirms the basic claim of quantum
mechanics that only the energy eigenvalues are measurable. In the absence of an
electromagnetic field and other disturbances, the energy eigenvalues are purely
the atomic ones. (Also recall that relativistic quantum mechanics adds that in
reality, the electric field is never zero.)

In any case, while the term 2u/tc may not be exactly zero, it is certainly
small compared to ω0 because of the assumption that ω0tc is large. So the term
may be ignored anyway. Then ρ(ω0) is a constant in the integration and can be
taken out. The remaining integral is in table books, [41, 18.36], and the result
is

|∆c̄LH|2 =
π|〈ψL|ez|ψH〉|2

~2ǫ0
ρ(ω0)t

This must still be averaged over all directions of wave propagation and po-
larization. That gives:

|∆c̄LH|2 =
π|〈ψL|e~r|ψH〉|2

3~2ǫ0
ρ(ω0)tc

where

|〈ψL|e~r|ψH〉|2 = |〈ψL|ex|ψH〉|2 + |〈ψL|ey|ψH〉|2 + |〈ψL|ez|ψH〉|2.

To see why, consider the electromagnetic waves propagating along any axis,
not just the y-axis, and polarized in either of the other two axial directions.
These waves will include ex and ey as well as ez in the transition probability,
making the average as shown above. And of course, waves propagating in an
oblique rather than axial direction are simply axial waves when seen in a rotated
coordinate system and produce the same average.
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The Einstein coefficient BL→H is the average change per unit time, so the
claimed (7.47) results from dividing by the time tc between collisions. There
is no need to do BH→L separately from ∆c̄LL; it follows immediately from the
symmetry property mentioned at the end of chapter 7.7.2 that it is the same.

D.42 Derivation of the Einstein A coefficients

Einstein did not really derive the spontaneous emission rate from relativistic
quantum mechanics. That did not exist at the time. Instead Einstein used a
dirty trick; he peeked at the solution.

To see how, consider a system of identical atoms that can be in a low energy
state ψL or in an excited energy state ψH. The fraction of atoms in the low
energy state is PL and the fraction in the excited energy state is PH. Einstein
assumed that the fraction PH of excited atoms would evolve according to the
equation

dPH

dt
= BL→Hρ(ω0) PL − BH→Lρ(ω0) PH − AH→L PH

where ρ(ω) is the ambient electromagnetic field energy density, ω0 the frequency
of the photon emitted in a transition from the high to the low energy state, and
the A and B values are constants. This assumption agrees with the expression
(7.46) given in chapter 7.8.

Then Einstein demanded that in an equilibrium situation, in which PH is
independent of time, the formula must agree with Planck’s formula for the
blackbody electromagnetic radiation energy. The equilibrium version of the
formula above gives the energy density as

ρ(ω0) =
AH→L/BH→L

(BL→HPL/BH→LPH)− 1

Equating this to Planck’s blackbody spectrum as derived in chapter 6.8 (6.11)
gives

AH→L/BH→L

(BL→HPL/BH→LPH)− 1
=

~

π2c3
ω3
0

e~ω0/kBT − 1

The atoms can be modeled as distinguishable particles. Therefore the ratio
PH/PL can be found from the Maxwell-Boltzmann formula of chapter 6.14; that
gives the ratio as e−(EH−EL)/kBT , or e−~ω0/kBT in terms of the photon frequency.
It then follows that for the two expressions for ρ(ω0) to be equal,

BL→H = BH→L
AH→L

BH→L

=
~ω3

0

π2c3

That BL→H must equal BH→L is a consequence of the symmetry property
mentioned at the end of chapter 7.7.2. But it was not self-evident when Einstein
wrote the paper; Einstein really invented stimulated emission here.
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The valuable result for this book is the formula for the spontaneous emission
rate AH→L. With BH→L given by (7.47), it determines the spontaneous emission
rate. So it has been obtained without using relativistic quantum mechanics.
(Or at least not explicitly; there simply are no nonrelativistic photons.)

D.43 Multipole derivations

This derives the multipole matrix elements corresponding to a single particle
in an atom or nucleus. These will normally still need to be summed over all
particles.

Both a basis of linear momentum photon wave functions and of angular
momentum ones are covered. For the angular momentum wave functions, the
long wave length approximation will be made that kR is small. Here k is the
photon wave number and R the typical size of atom or nucleus.

The derivations include a term due to an effect that was mentioned in the
initial 1952 derivation by B. Stech, [44]. This effect is not mentioned in any
textbook that the author is aware off. That seems to be unjustified. The term
does not appear to be small for nuclei, but at the very least comparable to the
usual electric multipole element given.

The rules of engagement are as follows:

• The considered particle will be indicated by a subscript i.

• The Cartesian axes are numbered using an index j, with j = 1, 2,
and 3 for xi, yi, and zi respectively.

• Also, ri,j indicates the coordinate in the j direction, xi, yi, or zi.

• Derivatives with respect to a coordinate ri,j are indicated by a simple
subscript j.

• If the quantity being differentiated is a vector, a comma is used to
separate the vector index from differentiation ones.

• A bare
∫
integral sign is assumed to be an integration over all nuclear

coordinates.

• A superscript ∗ indicates a complex conjugate.

The convoluted derivations in this note make use of a trick. Since “trick”
sounds too tricky, it will be referred to as:

Lemma 1: This lemma allows you to get rid of derivatives on the wave func-
tion. The lemma assumes nonrelativistic particles. It is a generalization of a
derivation of [16].

The lemma says that if i is the number of a particle in the atom or nucleus,
and if Fi is any function of the position of that particle i, then

〈
ψL

∣∣∣(∇iFi) · ∇i

∣∣∣ψH

〉
=
mi

~2

〈
ψL

∣∣∣(EH − EL)Fi + [V, Fi]
∣∣∣ψH

〉
− 1

2

〈
ψL

∣∣∣∇2
iFi

∣∣∣ψH

〉

(D.26)
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Here ∇i represents the vector of derivatives with respect to the coordinates of
particle i, V is the potential, and ψL and ψH are the final and initial atomic or
nuclear wave functions.

The energy difference can be expressed in terms of the energy ~ω0 of the
nominal photon emitted in the transition,

〈
ψL

∣∣∣(∇iFi) · ∇i

∣∣∣ψH

〉
=
miω0

~

〈
ψL

∣∣∣±Fi + [V/~ω0, Fi]
∣∣∣ψH

〉
− 1

2

〈
ψL

∣∣∣∇2
iFi

∣∣∣ψH

〉

(D.27)
The ± allows for the possibility (in absorption) that ψL is actually the high
energy state. The nominal photon frequency ω0 is normally taken equal to the
actual photon frequency ω.

Note that none of my sources includes the commutator in the first term,
not even [16]. (The original 1952 derivation by [44] used a relativistic Dirac
formulation, in which the term appears in a different place than here. The
part in which it appears there is small without the term and is not worked out
with it included.) The commutator is zero if the potential V only depends on
the position coordinates of the particles. However, nuclear potentials include
substantial momentum terms.

To prove the lemma, start with the left hand side

〈ψL|(∇iFi) · ∇i|ψH〉 ≡
∫
ψ∗LFi,jψH,j

where subscripts j = 1, 2, and 3 indicates the derivatives with respect to the
three coordinates of particle i. Summation over j is to be understood. Average
the above expression with what you get from doing an integration by parts:

〈ψL|(∇iFi) · ∇i|ψH〉 = 1
2

∫
ψ∗LFi,jψH,j − 1

2

∫
(ψ∗LFi,j)jψH

or differentiating out

〈ψL|(∇iFi) · ∇i|ψH〉 = 1
2

∫
ψ∗LFi,jψH,j − 1

2

∫
ψ∗L,jFi,jψH − 1

2

∫
ψ∗LFi,jjψH

Combine the first two integrals

〈ψL|(∇iFi) · ∇i|ψH〉 = 1
2

∫
(ψ∗LψH,j − ψ∗L,jψH)Fi,j − 1

2

∫
ψ∗LFi,jjψH

and do another integration by parts (I got this from [16], thanks):

〈ψL|(∇iFi) · ∇i|ψH〉 = −1
2

∫
(ψ∗LψH,jj − ψ∗L,jjψH)Fi − 1

2

∫
ψ∗LFi,jjψH
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Now note the nonrelativistic eigenvalue problems for the two states

− ~
2

2mi

∇2
iψL −

∑

i 6=i

~
2

2mi

∇2
iψL + V ψL = ELψL

− ~
2

2mi

∇2
iψH −

∑

i 6=i

~
2

2mi

∇2
iψH + V ψH = EHψH

Here the sum is over the other particles in the nucleus. These two eigenvalue
problems are used to eliminate the second order derivatives in the integral above.
The terms involving the Laplacians with respect to the coordinates of the other
particles then drop out. The reason is that Fi is just a constant with respect
to those coordinates, and that Laplacians are Hermitian. Assuming that V is
at least Hermitian, as it should, the V terms produce the commutator in the
lemma. And the right hand sides give the energy-difference term. The result is
the lemma as stated.

D.43.1 Matrix element for linear momentum modes

This requires in addition:
Lemma 2: This lemma allows you to express a certain combination of derivatives
in terms of the angular momentum operator. It will be assumed that vector ~A0

is normal to vector ~k.
In that case:

(~k ·~ri)(~A0 · ∇i)− (~A0 ·~ri)(~k · ∇i) = (~k × ~A0) · (~ri ×∇i) =
i

~
(~k × ~A0) · ~̂Li

The quickest way to prove this is to take the x-axis in the direction of ~k, and
the y-axis in the direction of ~A0. (The expression above is also true if the two
vectors are nor orthogonal. You can see that using index notation. However,
that will not be needed.) The final equality is just the definition of the angular
momentum operator.

The objective is now to use these lemmas to work out the matrix element

H21,i = −
qi
mi

〈ψL|~A0e
−i~k·~ri · ~̂pi|ψH〉

where ~k is the constant wave number vector and ~A0 is some other constant
vector normal to ~k. Also ~ri is the position of the considered particle, and ~̂pi is
the momentum operator ~∇i/i based on these coordinates.

To reduce this, take the factor ~/i out of ~̂pi and write the exponential in a
Taylor series:

H21,i =
∞∑

n=0

iqi~

mi

〈ψL|
(−i~k ·~ri)n

n!
~A0 · ∇i|ψH〉
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Take another messy factor out of the inner product:

H21,i =
∞∑

n=0

i(−i)nqi~
mi(n+ 1)!

〈ψL|(n+ 1)(~k ·~ri)n ~A0 · ∇i|ψH〉

For brevity, just consider the inner product by itself for now. It can trivially be
rewritten as a sum of two terms, ([16], not me):

〈ψL|(~k ·~ri)n−1[(~k ·~ri)~A0 · ∇i + n(~A0 ·~ri)~k · ∇i]|ψH〉 (1)

+ 〈ψL|(~k ·~ri)n−1n[(~k ·~ri)~A0 · ∇i − (~A0 ·~ri)~k · ∇i]|ψH〉 (2)

Now on the first inner product (1), lemma 1 can be applied with

Fi = (~k ·~ri)n(~A0 ·~ri) =⇒ ∇2
iFi = n(n− 1)k2(~k ·~ri)n−2(~A0 ·~ri)

(Recall that ~A0 and ~k are orthogonal. Also note that the Laplacian of Fi is of
essentially the same form as Fi, just for a different value of n.) On the second
inner product (2), lemma 2 can be applied.

Plugging these results back into the expression for the matrix element, reno-
tating n into ℓ− 1 for the first part of (1), into ℓ+ 1 for the second part, which
can then be combined with the first part, and into ℓ for (2), and cleaning up
gives the final result:

H21,i = −
qi
mi

〈ψL|~A0e
−i~k·~ri · ~̂pi|ψH〉 ≡

∞∑

ℓ=1

HEℓ
21,i +HMℓ1

21,i

where

HEℓ
21,i = iqikcA0

(−ik)ℓ−1
ℓ!

〈ψL|frℓ−1i,k ri,E + [V/~ω, rℓ−1i,k ri,E ]|ψH〉

and

HMℓ1
21,i = i

qi
mic

kcA0
ℓ(−ik)ℓ−1
(ℓ+ 1)!

〈ψL|rℓ−1i,k L̂i,B|ψH〉

Here A0 is the magnitude of ~A0. Also ri,k is the component of the position ~ri of
particle i in the direction of motion of the electromagnetic wave. The direction
of motion is the direction of ~k. Similarly ri,E is the component of ~ri in the

direction of the electric field. The electric field has the same direction as ~A0.
Further, Li,B is the component of the orbital angular momentum operator of
particle i in the direction of the magnetic field. The magnetic field is in the
same direction as ~k × ~A0. Finally, the factor f is

f = ±1 + ~ω

2mic2
ℓ

ℓ+ 2
≈ ±1
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The approximation applies because normally the energy release in a transition
is small compared to the rest mass energy of the particle. (And if it was not, the
nonrelativistic electromagnetic interaction used here would not be valid in the
first place.) For the emission process covered in {A.25}, the plus sign applies,
f = 1.

The commutator is zero if the potential depends only on position. That is a
valid approximation for electrons in atoms, but surely not for nuclei. For these
it is a real problem, {N.14}.

For addendum {A.25}, the constant A0 should be taken equal to −E0/
√
2ikc.

Note also that the interaction of the particle spin with the magnetic field still
needs to be added to HMℓ1

21,i . This interaction is unchanged from the naive ap-
proximation.

D.43.2 Matrix element for angular momentum modes

This subsection works out the details of the matrix element when angular mo-
mentum modes are used for the photon wave function.

The first matrix element to find is

HEℓ1
21,i = −

qi
mi

〈ψL|A0
~AE∗
γi · ~̂pi|ψH〉

where, {A.21.7},
~AE
γi = ∇i ×~ri ×∇ijℓiY

m
ℓi

is the electric multipole vector potential at the location of particle i. This uses
the short hand

jℓi ≡ jℓ(kri) Y m
ℓi ≡ Y m

ℓ (θi, φi)

where ℓ is the multipole order or photon angular momentum, k the photon wave
number, jℓ a spherical Bessel function, and Y m

ℓ a spherical harmonic.
Note that the electric multipole vector potential is closely related to the

magnetic one:

~AE
γi = ∇i × ~AM

γi
~AM
γi = ~ri ×∇ijℓiY

m
ℓi = −∇i × jℓiY m

ℓi ~ri

The expression for the electric potential can be simplified for long photon
wave lengths. Note first that

∇i × ~AE
γi = ∇i ×∇i × ~AM

γi = −∇2
i
~AM
γi = k2 ~AM

γi = −k2∇i × jℓiY m
ℓi ~ri

where the second equality applied because the vector potentials are solenoidal
and the standard vector identity (D.1), while the third equality is the energy
eigenvalue problem, {A.21}. It follows that the electric vector potential is of
the form

~AE
γi = −k2jℓiY m

ℓi ~ri +∇iFi
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because vector calculus says that if the curl of something is zero, it is the gradient
of some scalar function Fi. Here

Fi =

∫ ~ri

~ri=0

[~AE
γi + k2jℓiY

m
ℓi ~ri] · d~ri

The direction of integration in the expression for Fi does not make a difference,
so the simplest is to integrate radially outwards. The expression for ~AE

γi was
given in {D.36.2}. That gives

Fi =

∫ ri

ri=0

[−l(l + 1) + k2r2]jℓi
dr

r
Y m
ℓi

Long photon wave length corresponds to small photon wave number k. All
k2 terms above can then be ignored and in addition the following approximation
for the Bessel function applies, {A.6},

jℓi ≈
(kri)

ℓ

(2ℓ+ 1)!!

This is readily integrated to find

Fi ≈ −(ℓ+ 1)
(kri)

ℓ

(2ℓ+ 1)!!
Y m
ℓi

and ~AE
γi is the gradient.

That allows lemma 1 to be used to find the electric matrix element.

HEℓ1
21,i = − qi

mi

〈ψL|A0
~AE∗
γi · ~̂pi|ψH〉

≈ −iqikcA0
(ℓ+ 1)kℓ

(2ℓ+ 1)!!
〈ψL|rℓiY m∗

ℓi + [V/~ω, rℓiY
m∗
ℓi ]|ψH〉

This assumes ψL is indeed the lower-energy state. The value of A0 (as defined
here) to use in addendum {A.25} is −εEk /

√
2ikc.

The commutator is again negligible for atoms, but a big problem for nuclei,
{N.14}.

There is also a term due to the interaction of the spin with the magnetic
field, given by the curl of ~AE

γi as already found above,

HEℓ2
21,i = −

qi
mi

gi
2
〈ψL|k2A0

~AM∗
γi · ~̂Si|ψH〉 = −

qi
mi

gi
2
〈ψL|k2A0(~ri×∇ijℓiY

m∗
ℓi ) · ~̂Si|ψH〉

Using the property of the scalar triple product that the factors can be inter-
changed if a minus sign is added, the matrix element becomes

HEℓ2
21,i =

qi
mi

gi
2
k2A0〈ψL|(∇ijℓiY

m∗
ℓi ) · (~ri × ~̂Si)|ψH〉
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(Note that ∇i only acts on the jℓiY
m∗
ℓi ; ~AM∗

γi is a function, not a differential
operator.) In the long wave length approximation of the Bessel function, that
becomes

HEℓ2
21,i ≈ qikcA0

(ℓ+ 1)kℓ

(2ℓ+ 1)!!

~ω

2(ℓ+ 1)mic2
gi
2
〈ψL|(∇ir

ℓ
iY

m∗
ℓi ) · (~ri ×

2

~

~̂Si)|ψH〉

The inner product should normally be of the same order as the one of HEℓ1
21,i .

However, the second fraction above is normally small; usually the photon energy
is small compared to the rest mass energy of the particles. (And if it was not,
the nonrelativistic electromagnetic interaction used here would not be valid in
the first place.) So this second term will be ignored in addendum {A.25}.

The third matrix element to find is the magnetic multipole one

HMℓ1
21,i = − qi

mi

〈ψL|A0
~AM∗
γi · ~̂pi|ψH〉

Note that in index notation

~AM
γi · ~̂pi =

∑

j

ri,(jℓiY
m
ℓi )p̂i,j − ri,(jℓiY m

ℓi )p̂i,j

where  follows j in the cyclic sequence . . . 123123 . . . and  precedes j. By a
trivial renotation of the summation indices,

~AM∗
γi · ~̂pi =

∑

j

(jℓiY
m∗
ℓi )jri,p̂i, − (jℓiY

m∗
ℓi )jri,p̂i, = −(∇ijℓiY

m∗
ℓi ) · ~̂Li

where ~̂L is the orbital angular momentum operator. Note that the parenthetical
term commutes with this operator, something not mentioned in [33, p. 874].

It follows that

HMℓ1
21,i = − qi

mi

〈ψL|A0
~AM∗
γi · ~̂pi|ψH〉 =

qi
mi

A0〈ψL|(∇ijℓiY
m∗
ℓi ) · ~̂Li|ψH〉

or in the long wave length approximation

HMℓ1
21,i = − qi

mi

〈ψL|A0
~AM∗
γi · ~̂pi|ψH〉 ≈

qi
mi

A0
kℓ

(2ℓ+ 1)!!
〈ψL|(∇ir

ℓ
iY

m∗
ℓi ) · ~̂Li|ψH〉

There is also a term due to the interaction of the spin with the magnetic
field, given by the curl of ~AB

γi, which equals ~AE
γi,

HMℓ2
21,i = − qi

mi

gi
2
〈ψL|A0

~AE∗
γi · ~̂Si|ψH〉

Using the same long wave length approximation for ~AE
γi as before, that becomes

HMℓ2
21,i ≈

qi
mi

A0
(ℓ+ 1)kℓ

(2ℓ+ 1)!!

gi
2
〈ψL|(∇ir

ℓ
iY

m∗
ℓi ) · ~̂Si|ψH〉
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The orbital and spin matrix elements may be combined into one as

HMℓ
21,i ≈

qi
2mi

A0
(ℓ+ 1)kℓ

(2ℓ+ 1)!!
〈ψL|(∇ir

ℓ
iY

m∗
ℓi ) ·

(
2

ℓ+ 1
~̂Li + gi ~̂Si

)
|ψH〉

The value of A0 to use in addendum {A.25} is −εEk /
√
2ic.

D.43.3 Weisskopf and Moszkowski estimates

This subsection explains where the radial, angular, and momentum factors in
the Weisskopf and Moszkowski estimates come from. These factors represent
the nondimensionalized matrix elements.

The electric matrix element is simplest. It is, written out in spherical coor-
dinates using the assumed wave functions,

|hEℓ21 | ≈
∫
RL(ri)

∗(ri/R)
ℓRH(ri)r

2
i dri

√
4π

∫
Θ
mjL∗
lLjLi

Y m∗
ℓi Θ

mjH

lHjHi
sin2 θidθidφi

The Weisskopf and Moszkowski estimates assume that the radial parts of
wave functions equal a constant C until the nuclear edge R and are zero outside
the nucleus. To perform the radial integral is then straightforward:

∫
RL(ri)

∗(ri/R)
ℓRH(ri)r

2
i dri =

∫ R
0
C2(ri/R)

ℓr2i dri∫ R
0
C2r2i dri

=
3

ℓ+ 3

The first equality is true because the integral in the denominator is 1 on account
of the normalization condition of wave functions. The second inequality follows
from integrating.

The angular integral above is more tricky to ballpark. First of all, it will
be assumed that the matrix element of interest is the lowest multipole order
allowed by angular momentum conservation. That seems reasonable, given that
normally higher multipole transitions will be very much slower. It follows that
ℓ = |jH − jL|. (The possibility that the initial and final angular momenta are
equal will be ignored.)

The change in orbital angular momenta could in principle be up to one unit
different from the change in net angular momenta because of the spins. But
parity conservation allows only |lH − lL| = ℓ.

To simplify even further, assume the following specific angular states:

Θ
mjL

lLjLi
= Y 0

0i↑ Θ
mjH

lHjHi
= Y ℓ

ℓi↑

which have

lL = 0 jL = 1
2

mjL = 1
2

lH = ℓ jH = ℓ+ 1
2

mjH = ℓ+ 1
2
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If these states are substituted into the angular integral, the product of the spin
states is 1 because spin states are orthonormal. What is left is

√
4π

∫
Y 0∗
0i Y

m∗
ℓi Y ℓ

ℓi sin
2 θidθidφi

Now Y 0
0 = 1/

√
4π which is just a constant that can be taken out of the integral.

There it cancels the corresponding square root in the definition of the matrix
element. Then it is seen that the transition can only create a photon for whichm
= ℓ. The reason is that spherical harmonics are orthonormal; the inner product
is only nonzero if the two spherical harmonics are equal, and then it is 1. So
the conclusion is that for the given states

√
4π

∫
Θ
mjL∗
lLjLi

Y m∗
ℓi Θ

mjH

lHjHi
sin2 θidθidφi = 1

The angular integral is 1. That makes the decay rate exactly 1 Weisskopf unit.
One glaring deficiency in the above analysis was the assumption that the

initial proton state was a Y ℓ
ℓ ↑ one. It would certainly be reasonable to have

an initial nuclear state that has orbital angular momentum lH = ℓ and total
angular momentum jH = ℓ+ 1

2
. But a bunch of these nuclei would surely each

be oriented in its own random direction. So they would have different magnetic
quantum numbers mjH. They would not all have mjH = ℓ+ 1

2
.

Fortunately, it turns out that this makes no difference. For example, by
symmetry the state Y −ℓℓ ↓ decays just as happily to Y 0

0 ↓ as Y ℓ
ℓ ↑ does to Y 0

0 ↑. For
other values of mjH it is a bit more nuanced. They produce an initial state of
the form:

Θ
mjH

lHjHi
= Θ

mj

ℓ ℓ+ 1
2
i
= c1Y

mjH− 1
2

ℓ ↑+ c2Y
mjH+ 1

2
ℓ ↓

Now the first term produces decays to Y 0
0 ↑ by the emission of a photon with

mℓ = ℓ− 1
2
. However, because of the factor c1 the number of such decays that

occur per second is a factor c21 less than the Weisskopf unit. But the second
term produces decays to Y 0

0 ↓ by the emission of a photon with mℓ = ℓ+ 1
2
. This

decay rate is a factor c22 less than the Weisskopf unit. Since c21 + c22 = 1, (the
normalization condition of the state), the total decay rate is still 1 Weisskopf
unit.

So as long as the final state ψL has zero orbital angular momentum, the
decay is at 1 Weisskopf unit. The orientation of the initial state makes no
difference. That is reflected in table A.3. This table lists the angular factors
to be applied to the Weisskopf unit to get the actual decay rate. The first
row shows that, indeed, when the final angular momentum is 1/2, as occurs for
zero angular momentum, and the initial angular momentum is ℓ + 1

2
, then no

correction is needed. The correction factor is 1.
More interesting is the possibility that the two states are swapped. Then the

initial state is the one with zero orbital angular momentum. It might at first
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seem that that will not make a difference either. After all, decay rates between
specific states are exactly the same.

But there is in fact a difference. Previously, each initial nucleus had only
two states to decay to: the spin-up and the spin-down version of the final state.
Now however, each initial nucleus has 2jL+1, i.e. 2ℓ+2 final states it can decay
to, corresponding to the possible values of the final magnetic quantum number
mL. That will increase the total decay rate correspondingly. In fact, suppose
that the initial nuclei come in spin-up and spin-down pairs. Then each pair
will decay at a rate of one Weisskopf unit to each possible final state. That
is because this picture is the exact reverse of the decay of the final state. So
the pairs would decay at a rate 2ℓ + 2 faster than the Weisskopf unit. So by
symmetry each nucleus of the pair decays ℓ+1 times faster than the Weisskopf
unit. That is reflected in the first column of table A.3. (Recall that ℓ is the
difference in the j values.)

If neither the initial nor final state has zero orbital angular momentum, it
gets more messy. Figuring out the correction factor in that case is something
for those who love abstract mathematics.

Next consider magnetic multipole transitions. They are much messier to
ballpark. It will again be assumed that the multipole order is the smallest
possible. Unfortunately, now the final orbital angular momentum cannot be
zero. Because of parity, that would require that the initial orbital angular
momentum would be ℓ+1. But that is too large because of the limitation (A.175)
on the orbital angular momentum change in magnetic transitions. Therefore the
simplest possible initial and final states have

lL = 1 jL = 1
2

mjL = 1
2

lH = ℓ jH = ℓ+ 1
2

mjH = ℓ+ 1
2

For these quantum numbers, the initial and final states are

ψL = RL,iΘ
mjL

lLjLi
= RL,i

(√
2
3
Y 1
1i↓ −

√
1
3
Y 0
1i↑
)

ψH = RH,iΘ
mjH

lHjHi
= RH,iY

ℓ
ℓi↑

where the square roots come from figure 12.5 in the ja, jb = 1, 1
2
tabulation.

Now consider the form of the magnetic matrix element (A.181). First note,
{D.43.2}, that the angular momentum and gradient factors commute. That
helps because then the angular momentum operators, being Hermitian, can be
applied on the easier state ψL.

The z-component part of the dot product in the matrix element is then the
easiest. The z components of the angular momentum operators leave the state
ψL essentially unchanged. They merely multiply the two terms by the eigenvalue
ml~ respectively ms~.

Next, this gets multiplied by the z-component of the gradient. But multi-
plying by the gradient cannot change the spin. So the spin-down first term in
ψL stays spin-down. That cannot match the spin-up of ψH. So the first term
does not produce a contribution.
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The second term in ψL has the right spin. Since spin states are orthonor-
mal, their inner product produces 1. But now there is a problem of matching
the magnetic quantum number of ψH. In particular, consider the harmonic
polynomial rℓY ml

ℓ in the gradient. The gradient reduces it to a combination of
harmonic polynomials of one degree less, in other words, to rℓ−1Y ml

ℓ−1 polynomi-
als. That limits ml to a value no larger than ℓ− 1, and since the second term in
ψL has magnetic quantum number 0, the value ℓ in ψH cannot be matched. The
bottom line is that the z-component terms in the inner product of the matrix
element do not produce a contribution.

However, the x- and y-component terms are another story. The angular
momentum operators in these directions change the corresponding magnetic
quantum numbers, chapter 12.11. In general, their application produces a mix-
ture ofm+1 andm−1 states. In particular, the x and y components of spin will
produce a spin-up version of the first term in ψL. That now matches the spin in
ψH and a nonzero contribution results. Similarly, the orbital angular momentum
operators will produce an mL = 1 version of the second term in ψL. Combined
with the ℓ − 1 units from the gradient, that is enough to match the magnetic
quantum number of ψH. So there is a total of four nonzero contributions to the
matrix element.

Now it is just a matter of working out the details to get the complete matrix
element. The information in chapter 12.11 can be used to find the exact states
produced from Θ

mjH

lHjHi
by the x and y angular momentum operators. Each state

is a multiple of the Y 1
1 ↑ state. As far as the gradient term is concerned, the

harmonic polynomials are of the general form

rℓY ℓ
ℓ = C(x+ iy)ℓ rℓY ℓ−1

ℓ = Dz(x+ iy)ℓ−1 . . .

as seen in table 4.3 or {D.64}. The constants C,D, . . . are of no importance here.
The x and y derivatives of the first harmonic polynomial will give the needed
Y ℓ−1
ℓ−1 harmonic. (For values of ℓ greater than 1, the third harmonic could also

make a contribution. However, it turns out that here the x and y contributions
cancel each other.) The effect of the x-derivative on the first harmonic is simply
to add a factor ℓ/(x+ iy) to it. Similarly, the y-derivative simply adds a factor
iℓ/(x+iy). Now if you look up Y 1

1 in table 4.3, you see it is a multiple of x+iy.
So the product with the gradient term produces a simple multiple of Y ℓ

ℓ ↑. The
inner product with ψH then produces that multiple (which still depends on ri
of course.) Identifying and adding the four multiples produces

hMℓ21 = −
(
giℓ−

2ℓ

ℓ+ 1

)∫
RL(ri)

∗(ri/R)
ℓ−1RH(ri)r

2
i dri

The remaining radial integral may be ballparked exactly the same as for the
electric case. The only difference is that the power of ri is one unit smaller.

A similar analysis shows that the given initial state cannot decay to the
version of the final state with negative magnetic quantum number mjL = −1

2
.



1326 APPENDIX D. DERIVATIONS

And of course, if the initial and final states are swapped, there is again a
factor ℓ+ 1 increase in decay rate.

More interestingly, the same expression turns out to hold if neither the initial
nor the final angular momentum equals 1/2, using the correction factor of table
A.3. But the obtained magnetic multipole decay rate is more limited than the
electric one. It does require that |jH − jL| = ℓ and that |lH − lL| = ℓ− 1

The momentum factors (A.189) were identified using a computer program.
This program crunched out the complete matrix elements using procedures ex-
actly like the ones above. This program was also used to create table A.3 of
angular factors. This guards against typos and provides an independent check
on the Clebsch-Gordan values.

D.44 Derivation of group velocity

The objective of this note is to derive the wave function for a wave packet if
time is large.

To shorten the writing, the Fourier integral (7.64) for Ψ will be abbreviated
as:

Ψ =

∫ k2

k1

f(k)eiϕt dk ϕ = k
x

t
− ω ϕ′ =

x

t
− vg ϕ′′ = −v′g

where it will be assumed that ϕ is a well behaved functions of k and f at least
twice continuously differentiable. Note that the wave number k0 at which the
group velocity equals x/t is a stationary point for ϕ. That is the key to the
mathematical analysis.

The so-called “method of stationary phase” says that the integral is neg-
ligibly small as long as there are no stationary points ϕ′ = 0 in the range of
integration. Physically that means that the wave function is zero at large time
positions that cannot be reached with any group velocity within the range of
the packet. It therefore implies that the wave packet propagates with the group
velocity, within the variation that it has.

To see why the integral is negligible if there are no stationary points, just
integrate by parts:

Ψ =
f(k)

iϕ′t
eiϕt
∣∣∣
k2

k1
−
∫ k2

k1

(
f(k)

iϕ′t

)′
eiϕt dk

This is small of order 1/t for large times. And if Φ0(p) is chosen to smoothly
become zero at the edges of the wave packet, rather than abruptly, you can
keep integrating by parts to show that the wave function is much smaller still.
That is important if you have to plot a wave packet for some book on quantum
mechanics and want to have its surroundings free of visible perturbations.
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For large time positions with x/t values within the range of packet group
velocities, there will be a stationary point to ϕ. The wave number at the station-
ary point will be indicated by k0, and the value of ϕ and its second derivative by
ϕ0 and ϕ′′0. (Note that the second derivative is minus the first derivative of the
group velocity, and will be assumed to be nonzero in the analysis. If it would
be zero, nontrivial modifications would be needed.)

Now split the exponential in the integral into two,

Ψ = eiϕ0t

∫ k2

k1

f(k)ei(ϕ−ϕ0)t dk

It is convenient to write the difference in ϕ in terms of a new variable k:

ϕ− ϕ0 =
1
2
ϕ′′0k

2
k ∼ k − k0 for k → k0

By Taylor series expansion it can be seen that k is a well behaved monotonous
function of k. The integral becomes in terms k:

Ψ = eiϕ0t

∫ k2

k1

g(k)ei
1
2
ϕ′′
0k

2
t dk g(k) = f(k)

dk

dk

Now split function g apart as in

g(k) = g(0) + [g(k)− g(0)]

The part within brackets produces an integral

eiϕ0t

∫ k2

k1

g(k)− g(0)
iϕ′′0kt

iϕ′′0kte
i 1
2
ϕ′′
0k

2
t dk

and integration by parts shows that to be small of order 1/t.
That leaves the first part, g(0) = f(k0), which produces

Ψ = eiϕ0tf(k0)

∫ k2

k1

ei
1
2
ϕ′′
0k

2
t dk

Change to a new integration variable

u ≡
√
|ϕ′′0|t
2

k

Note that since time is large, the limits of integration will be approximately u1
= −∞ and u2 = ∞ unless the stationary point is right at an edge of the wave
packet. The integral becomes

Ψ = eiϕ0tf(k0)

√
2

|ϕ′′0|t

∫ u2

u1

e±iu
2

du
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where ± is the sign of ϕ′′0. The remaining integral is a “Fresnel integral” that
can be looked up in a table book. Away from the edges of the wave packet, the
integration range can be taken as all u, and then

Ψ = eiϕ0te±iπ/4f(k0)

√
2π

|ϕ′′0|t
Convert back to the original variables and there you have the claimed expression
for the large time wave function.

Right at the edges of the wave packet, modified integration limits for u must
be used, and the result above is not valid. In particular it can be seen that the
wave packet spreads out a distance of order

√
t beyond the stated wave packet

range; however, for large times
√
t is small compared to the size of the wave

packet, which is proportional to t.
For the mathematically picky: the treatment above assumes that the wave

packet momentum range is not small in an asymptotic sense, (i.e. it does not
go to zero when t becomes infinite.) It is just small in the sense that the group
velocity must be monotonous. However, Kaplun’s extension theorem implies
that the packet size can be allowed to become zero at least slowly. And the
analysis is readily adjusted for faster convergence towards zero in any case.

D.45 Motion through crystals

This note derives the semi-classical motion of noninteracting electrons in crys-
tals. The derivations will be one-dimensional, but the generalization to three
dimensions is straightforward.

D.45.1 Propagation speed

The first question is the speed with which a more or less localized electron
moves. An electron in free space moves with a speed found by dividing its
linear momentum by its mass. However, in a solid, the energy eigenfunctions
are Bloch waves and these do not have definite momentum.

Fortunately, the analysis for the wave packet of a free particle is virtually
unchanged for a particle whose energy eigenfunctions are Bloch waves instead
of simple exponentials. In the Fourier integral (7.64), simply add the periodic
factor ψp

p,k(x). Since this factor is periodic, it is bounded, and it plays no part
in limit process of infinite time. (You can restrict the times in the limit process
to those at which x is always at the same position in the period.)

As a result the group velocity is again dω/dk. Since the energy is Ep = ~ω
and the crystal momentum pcm = ~k, the velocity of a localized electron can be
written as

v =
dEp

dpcm
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In the absence of external forces, the electron will keep moving with the
same velocity for all time. The large time wave function is

Ψ(x, t) ∼ e∓iπ/4√
|v′g0|t

Φ0(k0)ψ
p
p,k0

(x)ei(k0x−ω0t) vg0 =
x

t

where k0 is the wave number at which the group speed equals x/t. Note that
the wave function looks locally just like a single Bloch wave for large time.

D.45.2 Motion under an external force

The acceleration due to an external force on an electrons is not that straight-
forward. First of all note that you cannot just add a constant external force.
A constant force Fext would produce an external potential of the form Vext =
−Fextx and that becomes infinite at infinite x. However, it can be assumed that
the force is constant over the nonzero range of the wave packet.

Next there is a trick. Consider the expectation value 〈Td〉 of the translation
operator Td that translates the wave function over one atomic cell size d. If the
wave packet consisted of just a single Bloch wave with wave number k0, the
expectation value of Td would be eik0d. A wave packet must however include a
small range of k values. Then 〈Td〉 will be an average of eikd values over the k
values of the wave packet. Still, if the range of k values is small enough, you
can write

〈Td〉 = Aeik0d

where k0 is a k value somewhere in the middle of the wave packet and A is a real
number close to one. So 〈Td〉 still gives the typical k value in the wave packet.

Moreover, its magnitude |〈Td〉| = A is always less than one and the closer it
is to one, the more compact the wave packet. That is because 〈Td〉 is an average
of eikd values. These are all located on the unit circle in the complex plane, the
plane with cos(kd) as the horizontal axis and sin(kd) as the vertical axis. If the
wave packet would consist of just a single k value k0, then the average of eikd

would be exactly eik0d, and be on the unit circle. If however the wave numbers
spread out a bit around k0, then the average moves inside the unit circle: if
you average positions on a circle, the average is always inside the circle. In the
extreme case that the k values get uniformly distributed over the entire circle,
the average position is at the origin. That would make |〈Td〉| zero. Conversely,
as long as |〈Td〉| stays very close to one, the wave packet must be very compact
in terms of k.

The time evolution of 〈Td〉 can be found using chapter 7.2:

d〈Td〉
dt

=
i

~
〈[H0 + Vext, Td]〉 (D.28)
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where H0 is the Hamiltonian for the electron in the crystal, and Vext the addi-
tional external potential. Now the commutator of H0 and Td is zero; the crystal
Hamiltonian acts exactly the same on the wave function whether it is shifted
one cell over or not. The remainder of the commutator gives, when applied on
an arbitrary wave function,

[Vext, Td]Ψ ≡ VextTdΨ− TdVextΨ

Writing this out with the arguments of the functions explicitly shown gives:

Vext(x)Ψ(x+ d)− Vext(x+ d)Ψ(x+ d) = (Vext(x)− Vext(x+ d))TdΨ(x)

Now assume that the external force Fext is constant over the extent of the
wave packet. In that case the difference in the potentials is just Fextd, and that
is a constant that can be taken out of the expectation value of the commutator.
So:

d〈Td〉
dt

=
i

~
Fextd〈Td〉 (D.29)

The solution to this equation is:

〈Td〉 = 〈Td〉0eiFextdt/~

where 〈Td〉0 is the value of 〈Td〉 at the starting time t = 0.
It follows that the magnitude of the 〈Td〉 does not change with time. In

view of the earlier discussion, this means that the wave packet maintains its
compactness in terms of k. (In physical space the wave packet will gradually
spread out, as can be seen from the form of the large-time wave function given
earlier.)

It further follows that the average wave number k0 in the wave packet evolves
as:

dhk0
dt

= Fext

Since the packet remains compact, all wave numbers in the wave packet change
the same way. This is Newton’s second law in terms of crystal momentum.

D.45.3 Free-electron gas with constant electric field

This book discussed the effect of an applied electric field on free electrons in a
periodic box in chapter 6.20. The effect was described as a change of the velocity
of the electrons. Since the velocity is proportional to the wave number for free
electrons, the velocity change corresponds to a change in the wave number. In
this subsection the effect of the electric field will be examined in more detail.
The solution will again be taken to be one-dimensional, but the extension to
three dimensions is trivial.
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Assume that a constant electric field is applied, so that the electrons expe-
rience a constant force Fext. The time-dependent Schrödinger equation is

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
− FextxΨ

Assume the initial condition to be

Ψ0 =
∑

k0

ck0e
ik0x

in which a subscript 0 indicates the initial time.
The exact solution to this problem is

Ψ =
∑

k0

c(k0, t)e
ik(t)x d~k

dt
= Fext

where the magnitude of the coefficients |c(k0, t)| = |ck0 | is independent of time.
This exact solution is in terms of states eik(t)x that change in time. The proba-
bility of the particle being in those states does not change.

Unfortunately, this solution is only periodic with period equal to the length
of the box ℓ for times at which Fextt/~ happens to be a whole multiple of the
wave number spacing. At those times the Fermi sphere of occupied states has
shifted the same whole multiple of wave number spacings to the right.

At intermediate times, the solution is not periodic, so it cannot be correctly
described using the periodic box modes. The magnitude of the wave function is
still periodic. However, the momentum has values inconsistent with the periodic
box. The problem is that even though a constant force is periodic, the corre-
sponding potential is not. Since quantum mechanics uses the potential instead
of the force, the quantum solution is no longer periodic.

The problem goes away by letting the periodic box size become infinite.
But that brings back the ugly normalization problems. For a periodic box, the
periodic boundary conditions will need to be relaxed during the application of
the electric field. In particular, a factor eiFextℓt/~ difference in wave function and
its x-derivative must be allowed between the ends of the box. Since the periodic
boundary conditions are artificial anyway for modeling a piece of electrical wire,
this may not be a big concern. In any case, for a big-enough periodic box, the
times at which the solution returns to its original periodicity become spaced
very close together.

D.46 Derivation of the WKB approximation

The purpose in this note is to derive an approximate solution to the Hamiltonian
eigenvalue problem

d2ψ

dx2
= −p

2
c

~2
ψ
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where the classical momentum pc =
√

2m(E − V ) is a known function for given
energy. The approximation is to be valid when the values of pc/~ are large. In
quantum terms, you can think of that as due to an energy that is macroscopically
large. But to do the mathematics, it is easier to take a macroscopic point of
view; in macroscopic terms, pc/~ is large because Planck’s constant ~ is so small.

Since either way pc/~ is a large quantity, for the left hand side of the Hamilto-
nian eigenvalue problem above to balance the right hand side, the wave function
must vary rapidly with position. Something that varies rapidly and nontrivially
with position tends to be hard to analyze, so it turns out to be a good idea to
write the wave function as an exponential,

ψ = eiθ̃

and then approximate the argument θ̃ of that exponential.
To do so, first the equation for θ̃ will be needed. Taking derivatives of ψ

using the chain rule gives in terms of θ̃

dψ

dx
= eiθ̃ i

dθ̃

dx

d2ψ

dx2
= −eiθ̃

(
dθ̃

dx

)2

+ eiθ̃ i
d2θ̃

dx2

Then plugging ψ and its second derivative above into the Hamiltonian eigenvalue
problem and cleaning up gives:

(
dθ̃

dx

)2

=
p2c
~2

+ i
d2θ̃

dx2
(D.30)

For a given energy, θ̃ will depend on both what x is and what ~ is. Now,
since ~ is small, mathematically it simplifies things if you expand θ̃ in a power
series with respect to ~:

θ̃ =
1

~

(
f0 + ~f1 +

1
2
~
2f2 + . . .

)

You can think of this as writing ~θ as a Taylor series in ~. The coefficients
f0, f1, f2, . . . will depend on x. Since ~ is small, the contribution of f2 and
further terms to ψ is small and can be ignored; only f0 and f1 will need to be
figured out.

Plugging the power series into the equation for θ̃ produces

1

~2
f ′20 +

1

~
2f ′0f

′
1 + . . . =

1

~2
p2c +

1

~
if ′′0 + . . .

where primes denote x-derivatives and the dots stand for powers of ~ greater
than ~

−1 that will not be needed. Now for two power series to be equal, the



D.47. BORN DIFFERENTIAL CROSS SECTION 1333

coefficients of each individual power must be equal. In particular, the coefficients
of 1/~2 must be equal, f ′20 = p2c , so there are two possible solutions

f ′0 = ±pc

For the coefficients of 1/~ to be equal, 2f ′0f
′
1 = if ′′0 , or plugging in the solution

for f ′0,

f ′1 = i
p′c
2pc

It follows that the x-derivative of θ̃ is given by

θ̃′ =
1

~

(
±pc + ~i

p′c
2pc

+ . . .

)

and integrating gives θ̃ as

θ̃ = ±1

~

∫
pc dx+ i1

2
ln pc + C̃ . . .

where C̃ is an integration constant. Finally, eiθ̃ now gives the two terms in the
WKB solution, one for each possible sign, with eiC̃ equal to the constant Cf or
Cb.

D.47 Born differential cross section

This note derives the Born differential cross section of addendum {A.30}.
The general idea is to approximate (A.228) for large distances r. Then the

asymptotic constant Cf in (A.216) can be identified, which gives the differential
cross section according to (A.218). Note that the Born approximation took the
asymptotic constant C l

f equal to one for simplicity.
The main difficulty in approximating (A.228) for large distances r is the

argument of the exponential in the fraction. It is not accurate enough to just
say that |~r − ~r ′| is approximately equal to r. You need the more accurate
approximation

|~r −~r ′| =
√
(~r −~r ′) · (~r −~r ′) =

√
r2 − 2~r ·~r ′ +~r ′ ·~r ′ ∼ r − ~r

r
·~r ′

The final approximation is from taking a factor r2 out of the square root and
then approximating the rest by a Taylor series. Note that the fraction in the
final term is the unit vector ı̂r in the r-direction.

It follows that

eip∞|~r−~r
′|/~

|~r −~r ′| ∼
eip∞r/~

r
e−i~p∞·~r

′/~ ~p∞ = p∞ı̂r
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Also, in the second exponential, since z′ ≡ k̂ ·~r ′,

eip∞z′/~ = ei~p
l
∞·~r ′/~ ~p l

∞ = p∞k̂

Writing out the complete expression (A.228) and comparing with (A.216) gives
the constant Cf and hence the differential cross section.

D.48 About Lagrangian multipliers

This note will derive the Lagrangian multipliers for an example problem. Only
calculus will be used. The example problem will be to find a stationary point
of a function f of four variables if there are two constraints. Different numbers
of variables and constraints would work out in similar ways as this example.

The four variables that example function f depends on will be denoted by
x1, x2, x3, and x4. The two constraints will be taken to be equations of the
form g(x1, x2, x3, x4) = 0 and h(x1, x2, x3, x4) = 0, for suitable functions g and
h. Constraints can always be brought in such a form by taking everything in
the constraint’s equation to the left-hand side of the equals sign.

So the example problem is:

stationarize: f(x1, x2, x3, x4)

subject to: g(x1, x2, x3, x4) = 0, h(x1, x2, x3, x4) = 0

Stationarize means to find locations where the function has a minimum or a
maximum, or any other point where it does not change under small changes of
the variables x1, x2, x3, x4 as long as these satisfy the constraints.

The first thing to note is that rather than considering f to be a function of
x1, x2, x3, x4, you can consider it instead to be to be a function of g and h and
only two additional variables from x1, x2, x3, x4, say x3 and x4:

f(x1, x2, x3, x4) = f̃(g, h, x3, x4)

The reason you can do that is that you should in principle be able to reconstruct
the two missing variables x1 and x2 given g, h, x3, and x4.

As a result, any small change in the function f , regardless of constraints,
can be written using the expression for a total differential as:

df =
∂f̃

∂g
dg +

∂f̃

∂h
dh+

∂f̃

∂x3
dx3 +

∂f̃

∂x4
dx4.

At the desired stationary point, acceptable changes in variables are those
that keep g and h constant at zero; they have dg = 0 and dh = 0. So for f
to be stationary under all acceptable changes of variables, you must have that
the final two terms are zero for any changes in variables. This means that the
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partial derivatives in the final two terms must be zero since the changes dx3 and
dx4 can be arbitrary.

For changes in variables that do go out of bounds, the change in f will not
be zero; that change will be given by the first two terms in the right-hand side.
So, the erroneous changes in f due to going out of bounds are these first two
terms, and if we subtract them, we get zero net change for any arbitrary change
in variables:

df − ∂f̃

∂g
dg − ∂f̃

∂h
dh = 0 always.

In other words, if we “penalize” the change in f for going out of bounds by
amounts dg and dh at the rate above, any change in variables will produce a
penalized change of zero, whether it stays within bounds or not.

The two derivatives at the stationary point in the expression above are the
Lagrangian multipliers or penalty factors, call them ǫ1 = ∂f̃/∂g and ǫ2 = ∂f̃/∂h.
In those terms

df − ǫ1dg − ǫ2dh = 0

for whatever is the change in the variables g, h, x3, x4, and that means for what-
ever is the change in the original variables x1, x2, x3, x4. Therefore, the change
in the penalized function

f − ǫ1g − ǫ2h
is zero whatever is the change in the variables x1, x2, x3, x4.

In practical application, explicitly computing the Lagrangian multipliers ǫ1
and ǫ2 as the derivatives of function f̃ is not needed. You get four equations by
putting the derivatives of the penalized f with respect to x1 through x4 equal
to zero, and the two constraints provide two more equations. Six equations is
enough to find the six unknowns x1 through x4, ǫ1 and ǫ2.

D.49 The generalized variational principle

The purpose of this note is to verify directly that the variation of the expectation
energy is zero at any energy eigenstate, not just the ground state.

Suppose that you are trying to find some energy eigenstate ψn with eigen-
value En, and that you are close to it, but no cigar. Then the wave function
can be written as

ψ = ε1ψ1 + ε2ψ2 + . . .+ εn−1ψn−1 + (1 + εn)ψn + εn+1ψn+1 + . . .

where ψn is the one you want and the remaining terms together are the small
error in wave function, written in terms of the eigenfunctions. Their coefficients
ε1, ε2, . . . are small.

The normalization condition 〈ψ|ψ〉 = 1 is, using orthonormality:

1 = ε21 + ε22 + . . .+ ε2n−1 + (1 + εn)
2 + ε2n+1 + . . .
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The expectation energy is

〈E〉 = ε21E1 + ε22E2 + . . .+ ε2n−1En−1 + (1 + εn)
2En + ε2n+1En+1 + . . .

or plugging in the normalization condition to eliminate (1 + εn)
2

〈E〉 = ε21(E1 − En) + ε22(E2 − En) + . . .+

ε2n−1(En−1 − En) + En + ε2n+1(En+1 − En) + . . .

Assuming that the energy eigenvalues are arranged in increasing order, the terms
before En in this sum are negative and the ones behind En positive. So En is
neither a maximum nor a minimum; depending on conditions 〈E〉 can be greater
or smaller than En.

Now, if you make small changes in the wave function, the values of ε1, ε2, . . .
will slightly change, by small amounts that will be indicated by δε1, δε2, . . ., and
you get

δ 〈E〉 = 2ε1(E1 − En)δε1 + 2ε2(E2 − En)δε2 + . . .

+ 2εn−1(En−1 − En)δεn−1 + 2εn+1(En+1 − En)δεn+1 + . . .

This is zero when ε1 = ε2 = . . . = 0, so when ψ is the exact eigenfunction
ψn. And it is nonzero as soon as any of ε1, ε2, . . . is nonzero; a change in
that coefficient will produce a nonzero change in expectation energy. So the
variational condition δ〈E〉 = 0 is satisfied at the exact eigenfunction ψn, but
not at any nearby different wave functions.

The bottom line is that if you locate the nearest wave function for which δ〈E〉
= 0 for all acceptable small changes in that wave function, well, if you are in the
vicinity of an energy eigenfunction, you are going to find that eigenfunction.

One final note. If you look at the expression above, it seems like none of the
other eigenfunctions are eigenfunctions. For example, the ground state would
be the case that ε1 is one, and all the other coefficients zero. So a small change
in ε1 would seem to produce a change δ〈E〉 in expectation energy, and the
expectation energy is supposed to be constant at eigenstates.

The problem is the normalization condition, whose differential form says
that

0 = 2ε1δε1 + 2ε2δε2 + . . .+ 2εn−1δεn−1 + 2(1 + εn)δεn + 2εn+1δεn+1 + . . .

At ε1 = 1 and ε2 = . . . = εn−1 = 1 + εn = εn+1 = . . . = 0, this implies that
the change δε1 must be zero. And that means that the change in expectation
energy is in fact zero. You see that you really need to eliminate ε1 from the
list of coefficients near ψ1, rather than εn as the analysis for ψn did, for the
mathematics not to blow up. A coefficient that is not allowed to change at a
point in the vicinity of interest is a confusing coefficient to work with.
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D.50 Spin degeneracy

To see that generally speaking the basic form of the Hamiltonian produces
energy degeneracy with respect to spin, but that it is not important for using
the Born-Oppenheimer approximation, consider the example of three electrons.

Any three-electron energy eigenfunction ψE with HψE = EEψE can be split
into separate spatial functions for the distinct combinations of electron spin
values as

ψE = ψE
+++↑↑↑+ ψE

+−−↑↓↓+ ψE
−+−↓↑↓+ ψE

−−+↓↓↑+

ψE
−−−↓↓↓+ ψE

−++↓↑↑+ ψE
+−+↑↓↑+ ψE

++−↑↑↓.

Since the assumed Hamiltonian H does not involve spin, each of the eight
spatial functions ψ±±± above will separately have to be an eigenfunction of the
Hamiltonian with eigenvalue EE if nonzero. In addition, since the first four
functions have an odd number of spin up states and the second four an even
number, the antisymmetry requirements apply only within the two sets, not
between them. The exchanges only affect the order of the spin states, not their
number. So the two sets satisfy the antisymmetry requirements individually.

It is now seen that given a solution for the first four wave functions, there is
an equally good solution for the second four wave functions that is obtained by
inverting all the spins. Since the spins are not in the Hamiltonian, inverting the
spins does not change the energy. They have the same energy, but are different
because they have different spins.

However, they are orthogonal because their spins are, and the spatial op-
erations in the derivation of the Born-Oppenheimer approximation in the next
note do not change that fact. So they turn out to lead to nuclear wave functions
that do not affect each other. More precisely, the inner products appearing in
the coefficients ann are zero because the spins are orthogonal.

D.51 Born-Oppenheimer nuclear motion

This note gives a derivation of the Born-Oppenheimer Hamiltonian eigenvalue
problems (9.14) for the wave functions of the nuclei.

First consider an exact eigenfunction ψ of the complete system, including
both the electrons and the nuclei fully. Can it be related somehow to the simpler
electron eigenfunctions ψE

1 , ψ
E
2 , . . . that ignored nuclear kinetic energy? Yes it

can. For any given set of nuclear coordinates, the electron eigenfunctions are
complete; they are the eigenfunctions of an Hermitian electron Hamiltonian.
And that means that you can for any given set of nuclear coordinates write the
exact wave function as

ψ =
∑

n

cnψ
E
n
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You can do this for any set of nuclear coordinates that you like, but the coeffi-
cients cn will be different for different sets of nuclear coordinates. That is just
another way of saying that the cn are functions of the nuclear coordinates.

So, to be really precise, the wave function of I electrons and J nuclei can be
written as:

ψ(~r1, Sz1, . . . ,~rI , SzI ,~r
n
1 , S

n
z1, . . . ,~r

n
J , S

n
zJ) =

∑

n

cn(~r
n
1 , S

n
z1, . . . ,~r

n
J , S

n
zJ)ψ

E
n (~r1, Sz1, . . . ,~rI , SzI ; ~r

n
1 , S

n
z1, . . . ,~r

n
J , S

n
zJ)

where superscripts n indicate nuclear coordinates. (The nuclear spins are really
irrelevant, but it cannot hurt to keep them in.)

Consider what this means physically. By construction, the square electron
eigenfunctions |ψE

n |2 give the probability of finding the electrons assuming that
they are in eigenstate n and that the nuclei are at the positions listed in the
final arguments of the electron eigenfunction. But then the probability that
the nuclei are actually at those positions, and that the electrons are actually in
eigenstate ψE

n , will have to be |cn|2. After all, the full wave function ψ must
describe the probability for the entire system to actually be in a specific state.
That means that cn must be the nuclear wave function ψN

n for when the electrons

are in energy eigenstate ψE
n . So from now on, just call it ψN

n instead of cn. The
full wave function is then

ψ =
∑

ψN
nψ

E
n (D.31)

In the unsteady case, the cn, hence the ψN
n , will also be functions of time.

The ψE
n will remain time independent as long as no explicitly time-dependent

terms are added. The derivation then goes exactly the same way as the time-
independent Schrödinger equation (Hamiltonian eigenvalue problem) derived
below, with i~∂/∂t replacing E.

So far, no approximations have been made; the only thing that has been
done is to define the nuclear wave functions ψN

n . But the objective is still to
derive the claimed equation (9.14) for them. To do so plug the expression ψ =∑
ψN
nψ

E
n into the exact Hamiltonian eigenvalue problem:

[
T̂N + T̂E + V NE + V EE + V NN

]∑

n

ψN
nψ

E
n = E

∑

n

ψN
nψ

E
n

Note first that the eigenfunctions can be taken to be real since the Hamilto-
nian is real. If the eigenfunctions were complex, then their real and imaginary
parts separately would be eigenfunctions, and both of these are real. This ar-
gument applies to both the electron eigenfunctions separately as well as to the
full eigenfunction. The trick is now to take an inner product of the equation
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above with a chosen electron eigenfunction ψE
n . More precisely, multiply the en-

tire equation by ψE
n , and integrate/sum over the electron coordinates and spins

only, keeping the nuclear positions and spins at fixed values.

What do you get? Consider the terms in reverse order, from right to left. In
the right hand side, the electron-coordinate inner product 〈ψE

n |ψE
n 〉e is zero unless

n = n, and then it is one, since the electron wave functions are orthonormal
for given nuclear coordinates. So all we have left in the right-hand side is
EψN

n , Check, Eψ
N
n is the correct right hand side in the nuclear-wave-function

Hamiltonian eigenvalue problem (9.14).

Turning to the latter four terms in the left-hand side, remember that by
definition the electron eigenfunctions satisfy

[
T̂E + V NE + V EE + V NN

]
ψE
n = (EE

n + V NN)ψE
n

and if you then take an inner product of
∑
ψN
n (E

E
n +V

NN)ψE
n with ψE

n , it is just

like the earlier term, and you get (EE
n + V NN)ψN

n . Check, that are two of the
terms in the left-hand side of (9.14) that you need.

That leaves only the nuclear kinetic term, and that one is a bit tricky. Re-
calling the definition (9.5) of the kinetic energy operator T̂N in terms of the
nuclear coordinate Laplacians, you have

−
J∑

j=1

3∑

α=1

∑

n

~
2

2mn
j

∂2

∂rnαj
2ψ

N
nψ

E
n

Remember that not just the nuclear wave functions, but also the electron
wave functions depend on the nuclear coordinates. So, if you differentiate out
the product, you get

−
J∑

j=1

3∑

α=1

∑

n

[
~
2

2mn
j

∂2ψN
n

∂rnαj
2ψ

E
n +

~
2

mn
j

∂ψN
n

∂rnαj

∂ψE
n

∂rnαj
+

~
2

2mn
j

ψN
n

∂2ψE
n

∂rnαj
2

]

Now if you take the inner product with electron eigenfunction ψE
n , the first

term in the brackets gives you what you need, the expression for the kinetic
energy of the nuclei. But you do not want the other two terms; these terms
have the nuclear kinetic energy differentiations at least in part on the electron
wave function instead of on the nuclear wave function.

Well, whether you like it or not, the exact equation is, collecting all terms
and rearranging,

[
T̂N + V NN + EE

n

]
ψN
n = EψN

n +
∑

n

annψ
N
n (D.32)
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where

T̂N = −
J∑

j=1

3∑

α=1

~
2

2mn
j

∂2

∂rnαj
2 (D.33)

ann =
J∑

j=1

3∑

α=1

~
2

2mn
j

(
2
〈
ψE
n

∣∣∣
∂ψE

n

∂rnαj

〉 ∂

∂rnαj
+
〈
ψE
n

∣∣∣
∂2ψE

n

∂rnαj
2

〉)
(D.34)

The first thing to note is the final sum in (D.32). Unless you can talk away
this sum as negligible, (9.14) is not valid. The “off-diagonal” coefficients, the ann
for n 6= n, are particularly bad news, because they produce interactions between
the different potential energy surfaces, shifting energy from one value of n to
another. These off-diagonal terms are called “vibronic coupling terms.” (The
word is a contraction of “vibration” and “electronic,” if you are wondering.)

Let’s have a closer look at (D.33) and (D.34) to see how big the various terms
really are. At first appearance it might seem that both the nuclear kinetic
energy T̂N and the coefficients ann can be ignored, since both are inversely
proportional to the nuclear masses, hence apparently thousands of times smaller
than the electronic kinetic energy included in EE

n . But do not go too quick here.
First ballpark the typical derivative, ∂/∂rnαj when applied to the nuclear wave
function. You can estimate such a derivative as 1/ℓN, where ℓN is the typical
length over which there are significant changes in a nuclear wave function ψN

n .
Well, there are significant changes in nuclear wave functions if you go from the
middle of a nucleus to its outside, and that is a very small distance compared to
the typical size of the electron blob ℓE. It means that the distance ℓN is small.
So the relative importance of the nuclear kinetic energy increases by a factor
(ℓE/ℓN)2 relative to the electron kinetic energy, compensating quite a lot for the
much higher nuclear mass. So keeping the nuclear kinetic energy is definitely a
good idea.

How about the coefficients ann? Well, normally the electron eigenfunctions
only change appreciable when you vary the nuclear positions over a length com-
parable to the electron blob scale ℓE. Think back of the example of the hydrogen
molecule. The ground state separation between the nuclei was found as 0.87Å.
But you would not see a dramatic change in electron wave functions if you made
it a few percent more or less. To see a dramatic change, you would have to make
the nuclear distance 1.5Å, for example. So the derivatives ∂/∂rnαj applied to the
electron wave functions are normally not by far as large as those applied to the
nuclear wave functions, hence the ann terms are relatively small compared to
the nuclear kinetic energy, and ignoring them is usually justified. So the final
conclusion is that equation (9.14) is usually justified.

But there are exceptions. If different energy levels get close together, the
electron wave functions become very sensitive to small effects, including small
changes in the nuclear positions. When the wave functions have become sensitive
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enough that they vary significantly under nuclear position changes comparable
in size to the nuclear wave function blobs, you can no longer ignore the ann
terms and (9.14) becomes invalid.

You can be a bit more precise about that claim with a few tricks. Consider
the factors 〈

ψE
n

∣∣∣
∂ψE

n

∂rnαj

〉

appearing in the ann, (D.34). First of all, these factors are zero when n =
n. The reason is that because of orthonormality, 〈ψE

n |ψE
n 〉 = 1, and taking the

∂/∂rnαj derivative of that, noting that the eigenfunctions are real, you see that
the factor is zero.

For n 6= n, the following trick works:

〈
ψE
n

∣∣∣ ∂

∂rnαj
HE −HE ∂

∂rnαj

∣∣∣ψE
n

〉
= (EE

n − EE
n )
〈
ψE
n

∣∣∣
∂ψE

n

∂rnαj

〉

=
Zje

2

4πǫ0

I∑

i=1

〈
ψE
n

∣∣∣
rnαj − rαi

r3ij

∣∣∣ψE
n

〉

The first equality is just a matter of the definition of the electron eigenfunc-
tions and taking the second HE to the other side, which you can do since it is
Hermitian. The second equality is a matter of looking up the Hamiltonian in
chapter 9.2.1 and then working out the commutator in the leftmost inner prod-
uct. (V NN does not commute with the derivative, but you can use orthogonality
on the cleaned up expression.) The bottom line is that the final inner product
is finite, with no reason for it to become zero when energy levels approach.
So, looking at the second equality, the first term in ann, (D.34), blows up like
1/(EE

n − EE
n ) when those energy levels become equal.

As far as the final term in ann is concerned, like the second term, you would
expect it to become important when the scale of nontrivial changes in electron
wave functions with nuclear positions becomes comparable to the size of the
nuclear wave functions. You can be a little bit more precise by taking one more
derivative of the inner product expression derived above,

〈∂ψE
n

∂rnαj

∣∣∣
∂ψE

n

∂rnαj

〉
+
〈
ψE
n

∣∣∣
∂2ψE

n

∂rnαj
2

〉
=

∂

∂rnαj

1

EE
n − EE

n

Zje
2

4πǫ0

I∑

i=1

〈
ψE
n

∣∣∣
rnαj − rαi

rij

∣∣∣ψE
n

〉

The first term should not be large: while the left hand side of the inner product
has a large component along ψE

n , the other side has zero component and vice-

versa. The final term should be of order 1/(EE
n − EE

n )
2, as you can see if you

first change the origin of the integration variable in the inner product to be at
the nuclear position, to avoid having to differentiate the potential derivative. So
you conclude that the second term of coefficient ann is of order 1/(EE

n − EE
n )

2.
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In view of the fact that this term has one less derivative on the nuclear wave
function, that is just enough to allow it to become significant at about the same
time that the first term does.

The diagonal part of matrix ann, i.e. the ann terms, is somewhat interesting
since it produces a change in effective energy without involving interactions with
the other potential energy surfaces, i.e. without interaction with the ψN

n for n
6= n. The diagonal part is called the “Born-Oppenheimer diagonal correction.”
Since as noted above, the first term in the expression (D.34) for the ann does
not have a diagonal part, the diagonal correction is given by the second term.

Note that in a transient case that starts out as a single nuclear wave function
ψN
n , the diagonal term ann multiplies the predominant nuclear wave function

ψN
n , while the off-diagonal terms only multiply the small other nuclear wave

functions. So despite not involving any derivative of the nuclear wave function,
the diagonal term will initially be the main correction to the Born-Oppenheimer
approximation. It will remain important at later times.

D.52 Simplification of the Hartree-Fock energy

This note derives the expectation energy for a wave function given by a single
Slater determinant.

First note that if you multiply out a Slater determinant

Ψ = |det ψs
1l1, ψs

2l2, ψs
3l3, . . .〉

you are going to get terms, or Hartree products if you want, of the form

±√
I!
ψs
n1
(~r1)ln1

(Sz1) ψ
s
n2
(~r2)ln2

(Sz2) ψ
s
n3
(~r3)ln3

(Sz3) . . .

where the numbers n1, n2, n3, . . . of the single-electron states can have values
from 1 to I, but they must be all different. So there are I! such terms: there
are I possibilities among 1, 2, 3, . . . , I for the number n1 of the single-electron
state for electron 1, which leaves I − 1 remaining possibilities for the number
n2 of the single-electron state for electron 2, I − 2 remaining possibilities for
n3, etcetera. That means a total of I(I − 1)(I − 2) . . . 2 1 = I! terms. As far as
the sign of the term is concerned, just don’t worry about it. The only thing to
remember is that whenever you exchange two n values, it changes the sign of
the term. It has to be, because exchanging n values is equivalent to exchanging
electrons, and the complete wave function must change sign under that.

To make the above more concrete, consider the example of a Slater determi-
nant of three single-electron functions. It writes out to, taking

√
I! to the other

side for convenience,

|det ψs
1l1, ψs

2l2, ψs
3l3〉
√
I! =
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+ψs
1(~r1)l1(Sz1)ψs

2(~r2)l2(Sz2)ψs
3(~r3)l3(Sz3)

−ψs
1(~r1)l1(Sz1)ψs

3(~r2)l3(Sz2)ψs
2(~r3)l2(Sz3)

−ψs
2(~r1)l2(Sz1)ψs

1(~r2)l1(Sz2)ψs
3(~r3)l3(Sz3)

+ψs
2(~r1)l2(Sz1)ψs

3(~r2)l3(Sz2)ψs
1(~r3)l1(Sz3)

+ψs
3(~r1)l3(Sz1)ψs

1(~r2)l1(Sz2)ψs
2(~r3)l2(Sz3)

−ψs
3(~r1)l3(Sz1)ψs

2(~r2)l2(Sz2)ψs
1(~r3)l1(Sz3)

The first two rows in the expansion cover the possibility that n1 = 1, with the
first one the possibility that n2 = 2 and the second one the possibility that n2

= 3; note that then there are no choices left for n3. Similarly the second two
rows cover the two possibilities that n1 = 2, and the third that n1 = 3. You see
that there are 3! = 6 Hartree product terms total.

Next, recall that the Hamiltonian consists of single-electron Hamiltonians
hei and electron-pair repulsion potentials veeii . The expectation value of a sin-
gle electron Hamiltonian hei will be done first. In forming the inner product
〈Ψ|hei |Ψ〉, and taking Ψ apart into its Hartree product terms as above, you are
going to end up with a large number of individual terms that all look like
〈 ±√

I!
ψs
n1
(~r1)ln1

(Sz1)ψ
s
n2
(~r2)ln2

(Sz2) . . . ψ
s
ni
(~ri)lni

(Szi) . . . ψ
s
nI
(~rI)lnI

(SzI)
∣∣∣

hei

∣∣∣ ±√
I!
ψs
n1
(~r1)ln1

(Sz1)ψ
s
n2
(~r2)ln2

(Sz2) . . . ψ
s
ni
(~ri)lni

(Szi) . . . ψ
s
nI
(~rI)lnI

(SzI)
〉

Note that overlines will be used to distinguish the wave function in the right
hand side of the inner product from the one in the left hand side. Also note
that to take this inner product, you have to integrate over 3I scalar position
coordinates, and sum over I spin values.

But multiple integrals, and sums, can be factored into single integrals, and
sums, as long as the integrands and limits only involve single variables. So you
can factor out the inner product as

±√
I!

±√
I!

〈
ψs
n1
(~r1)ln1

(Sz1)
∣∣∣ψs

n1
(~r1)ln1

(Sz1)
〉

×
〈
ψs
n2
(~r2)ln2

(Sz2)
∣∣∣ψs

n2
(~r2)ln2

(Sz2)
〉

× . . .
×
〈
ψs
ni
(~ri)lni

(Szi)
∣∣∣hei
∣∣∣ψs

ni
(~ri)lni

(Szi)
〉

× . . .
×
〈
ψs
nI
(~rI)lnI

(SzI)
∣∣∣ψs

nI
(~rI)lnI

(SzI)
〉

Now you can start the weeding-out process, because the single-electron func-
tions are orthonormal. So factors in this product are zero unless all of the
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following requirements are met:

n1 = n1, n2 = n2, . . . , ni−1 = ni−1, ni+1 = ni+1, . . . , nI = nI

Note that 〈ψs
ni
(~ri)lni

(Szi)|hei |ψs
ni
(~ri)lni

(Szi)〉 does not require ni = ni for a
nonzero value, since the single-electron functions are most definitely not eigen-
functions of the single-electron Hamiltonians, (you would wish things were that
easy!) But now remember that the numbers n1, n2, n3, . . . in an individual term
are all different. So the numbers n1, n2, . . . , ni−1, ni+1, . . . include all the num-
bers that are not equal to ni. Then so do n1, n2, . . . , ni−1, ni+1 ,. . . , because
they are the same. And since ni must be different from all of those, it can only
be equal to ni anyway.

So what is left? Well, with all the n values equal to the corresponding n
values, all the plain inner products are one on account of orthonormality, and
the only thing left is:

±√
I!

±√
I!

〈
ψs
ni
(~ri)lni

(Szi)
∣∣∣hei
∣∣∣ψs

ni
(~ri)lni

(Szi)
〉

Also, the two signs are equal, because with all the n values equal to the
corresponding n values, the wave function term in the right side of the inner
product is the exact same one as in the left side. So the signs multiply to 1, and
you can further factor out the spin inner product, which is one since the spin
states are normalized:

1

I!

〈
ψs
ni
(~ri)
∣∣∣hei
∣∣∣ψs

ni
(~ri)
〉〈
lni

(Szi)
∣∣∣lni

(Szi)
〉
=

1

I!

〈
ψs
ni
(~ri)
∣∣∣hei
∣∣∣ψs

ni
(~ri)
〉
≡ 1

I!
Ee
n

where for brevity the remaining inner product was called Ee
n. Normally you

would call it Ee
nii
, but an inner product integral does not care what the inte-

gration variable is called, so the thing has the same value regardless what the
electron i is. Only the value of the single-electron function number ni = n makes
a difference.

Next, how many such terms are there for a given electron i and single-
electron function number n? Well, for a given n value for electron i, there are
I−1 possible values left among 1, 2, 3, . . . for the n value of the first of the other
electrons, then I−2 left for the second of the other electrons, etcetera. So there
are a total of (I−1)(I−2) . . . 1 = (I−1)! such terms. Since (I−1)!/I! = 1/I,
if you sum them all together you get a total contribution from terms in which
electron i is in state n equal to Ee

n/I. Summing over the I electrons kills off
the factor 1/I and so you finally get the total energy due to the single-electron
Hamiltonians as

I∑

n=1

Ee
n Ee

n =
〈
ψs
n(~r)

∣∣∣he
∣∣∣ψs

n(~r)
〉

You might have guessed that answer from the start. Since the inner product
integral is the same for all electrons, the subscripts i have been omitted.
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The good news is that the reasoning to get the Coulomb and exchange
contributions is pretty much the same. A single electron to electron repulsion
term veeii between an electron numbered i and another numbered i makes a
contribution to the expectation energy equal to 〈Ψ|veeii |Ψ〉, and if you multiply
out Ψ, you get terms of the general form:

1

I!

〈
ψs
n1
(~r1)ln1

(Sz1)ψ
s
n2
(~r2)ln2

(Sz2) . . . ψ
s
ni
(~ri)lni

(Szi) . . . ψ
s
ni
(~ri)lni

(Szi) . . .
∣∣∣

veeii

∣∣∣ψs
n1
(~r1)ln1

(Sz1)ψ
s
n2
(~r2)ln2

(Sz2) . . . ψ
s
ni
(~ri)lni

(Szi) . . . ψ
s
ni
(~ri)lni

(Szi) . . .
〉

You can again split into a product of individual inner products, except that
you cannot split between electrons i and i since veeii involves both electrons in
a nontrivial way. Still, you get again that all the other n values must be the
same as the corresponding n values, eliminating those inner products from the
expression:

1

I!

〈
ψs
ni
(~ri)lni

(Szi)ψ
s
ni
(~ri)lni

(Szi)
∣∣∣veeii
∣∣∣ψs

ni
(~ri)lni

(Szi)ψ
s
ni
(~ri)lni

(Szi)
〉

For given values of ni and ni, there are (I − 2)! equivalent terms, since that is
the number of possibilities left for the n = n-values of the other I − 2 electrons.

Next, ni and ni must together be the same pair of numbers as ni and ni,
since they must be the two numbers left by the set of numbers not equal to ni
and ni. But that still leaves two possibilities, they can be in the same order or
in reversed order:

ni = ni, ni = ni or ni = ni, ni = ni.

The first possibility gives rise to the Coulomb terms, the second to the exchange
ones. Note that the former case represents an inner product involving a Hartree
product with itself, and the latter case an inner product of a Hartree product
with the Hartree product that is the same save for the fact that it has ni and
ni reversed, or equivalently, electrons i and i exchanged.

Consider the Coulomb terms first. For those the two Hartree products in the
inner product are the same, so their signs multiply to one. Also, their spin states
will be the same, so that inner product will be one too. And as noted there are
(I − 2)! equivalent terms for given ni and ni, so for each pair of electrons i and
i 6= i, and each pair of states n = ni and n = ni, you get one term

1

I(I − 1)
Jnn

with

Jnn ≡
〈
ψs
n(~r)ψ

s
n(~r)

∣∣∣vee
∣∣∣ψs

n(~r)ψ
s
n(~r)

〉
.
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Again, the Jnn are the same regardless of what i and i are; they depend only
on what n = ni and n = ni are. So the subscripts i and i were left out, after
setting ~r = ~ri and ~r = ~ri.

You now need to sum over all pairs of electrons with i 6= i and pairs of
single-electron function numbers n 6= n. Since there are a total of I(I − 1)
electron pairs, it takes out the factor 1/I(I − 1), and you get a contribution to
the energy

1
2

I∑

n=1

I∑

n=1
n 6=n

Jnn

The factor 1
2
was added since for every electron pair, you are summing both veeii

and veeii , and that counts the same energy twice.
The exchange integrals go exactly the same way; the only differences are

that the Hartree product in the right hand side of the inner product has the
values of ni and ni reversed, producing a change of sign, and that the inner
product of the spins is not trivial. Define

Knn ≡
〈
ψs
n(~r)ψ

s
n(~r)

∣∣∣vee
∣∣∣ψs

n(~r)ψ
s
n(~r)

〉
.

and then the total contribution is

−1
2

I∑

n=1

I∑

n=1
n 6=n

Knn〈ln|ln〉2

Finally, you can leave the constraint n 6= n on the sums away since Knn =
Jnn, so they cancel each other.

D.53 Integral constraints

This note verifies the mentioned constraints on the Coulomb and exchange in-
tegrals.

To verify that Jnn = Knn, just check their definitions.
The fact that

Jnn = 〈ψs
n(~ri)ψ

s
n(~ri)|veeii |ψs

n(~ri)ψ
s
n(~ri)〉

=

∫

all ~ri

∫

all ~ri

|ψs
n(~ri)ψ

s
n(~ri)|2

e2

4πǫ0

1

rii
d3~ri d

3~ri.

is real and positive is self-evident, since it is an integral of a real and positive
function.
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The fact that

Knn = 〈ψs
n(~ri)ψ

s
n(~ri)|veeii |ψs

n(~ri)ψ
s
n(~ri)〉

=

∫

all ~ri

∫

all ~ri

ψs
n(~ri)

∗ψs
n(~ri)

∗ e2

4πǫ0

1

rii
ψs
n(~ri)ψ

s
n(~ri) d

3~ri d
3~ri

is real can be seen by taking complex conjugate, and then noting that the names
of the integration variables do not make a difference, so you can swap them.

The same name swap shows that Jnn and Knn are symmetric matrices; Jnn
= Jnn and Knn = Knn.

That Knn is positive is a bit trickier; write it as

∫

all ~ri

−ef ∗(~ri)
(∫

all ~ri

−ef(~ri)
4πǫ0

1

rii
d3~ri

)
d3~ri

with f = ψs
n
∗
ψs
n. The part within parentheses is just the potential V (~ri) of a

distribution of charges with density −ef . Sure, f may be complex but that
merely means that the potential is too. The electric field is minus the gradient
of the potential, ~E = −∇V , and according to Maxwell’s equation, the divergence
of the electric field is the charge density divided by ǫ0: div ~E = −∇2V = −ef/ǫ0.
So −ef ∗ = −ǫ0∇2V ∗ and the integral is

−ǫ0
∫

all ~ri

V∇2V ∗ d3~ri

and integration by parts shows it is positive. Or zero, if ψs
n is zero wherever ψs

n

is not, and vice versa.
To show that Jnn > Knn, note that

〈ψs
n(~ri)ψ

s
n(~ri)− ψs

n(~ri)ψ
s
n(~ri)|vee|ψs

n(~ri)ψ
s
n(~ri)− ψs

n(~ri)ψ
s
n(~ri)〉

is nonnegative, for the same reasons as Jnn but with ψs
nψ

s
n − ψs

nψ
s
n replacing

ψs
nψ

s
n. If you multiply out the inner product, you get that 2Jnn − 2Knn is

nonnegative, so Jnn > Knn.

D.54 Derivation of the Hartree-Fock equations

This note derives the canonical Hartree-Fock equations. It will use some linear
algebra; see the Notations section under “matrix” for some basic concepts. The
derivation will be performed under the normally stated rules of engagement that
the orbitals are of the form ψs

n↑ or ψs
n↓. So the spins are chosen, and only the

spatial orbitals ψs
n are to be found.

The derivations must allow for the fact that in restricted Hartree-Fock, it
is required that pairs of spin-up and spin-down orbitals have the same spatial
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orbital. So there are three possible kinds of spatial orbitals. A spatial orbital
may produce a single unpaired spin orbital that is spin-up, or a single unpaired
spin orbital that is spin-down, or a pair of spin-up and spin-down orbitals with
the same spatial orbital. These three types of spatial orbitals will be referred
to as unpaired spin-up, unpaired spin-down, and restricted. Note that these
names do not refer to properties of the spatial orbits themselves, of course, but
to the properties of the spin orbits that these spatial orbitals produce.

Assume that there are Nu spin-up spatial orbitals, Nd spin-down ones, and
Nr restricted ones. The total number of spatial orbitals, call it N, is then

N = Nu +Nd +Nr

and that is the total number of unknown spatial orbitals to find. A correspond-
ing number of N equations will be needed for them.

However, the total number of spin orbitals, I, is larger than N by an addi-
tional amount Nr, because the restricted spatial orbitals appear in both spin-up
and spin-down versions. That makes the mathematics messy.

Things become a bit easier if the ordering of the orbitals is specified a priori.
The ordering makes no difference physically. So it will be assumed that the
spatial orbitals are ordered with the unpaired spin-up ones first, the unpaired
spin-down ones second, and the restricted ones last. The ordering of the spin
orbitals will be the same as that of the spatial orbitals, but with the restricted
orbitals at the end appearing twice; first in the spin-up versions and then in the
spin-down versions.

To find the spatial orbitals, the variational method as discussed in chapter
9.1.3 says that the expectation energy 〈E〉 must be unchanged under small
changes in the orbitals, provided that the orbitals remain orthonormal. To
easily enforce that orthonormality constraint requires that terms are added to
the change in orbitals that penalize for any going out of bounds.

To do so, first note that 〈E〉 can be considered to be a real function from
the real and imaginary parts of the spatial orbitals, and both these parts are
real functions. The condition that any spatial orbital ψs

n must be normalized
means that the inner product of the orbital with itself must be 1,

〈ψs
n|ψs

n〉 = 1

This condition is real too. However, the condition that any spatial mode ψs
n

must be orthogonal to any other spatial mode ψs
n means that the inner product

of the two modes must be zero,

〈ψs
n|ψs

n〉 = 0

In general this condition has both a real and an imaginary component. But it
can be written as two real conditions;

1
2

(
〈ψs

n|ψs
n〉+ 〈ψs

n|ψs
n〉
)
= 0, 1

2
i
(
〈ψs

n|ψs
n〉 − 〈ψs

n|ψs
n〉
)
= 0.
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The reason is that if you swap the sides in an inner product, you get the complex
conjugate; therefore the first equation above is the real part of the inner product
and the second the imaginary part.

Since we now have a completely real problem in real independent variables,
the penalty factors (the Lagrangian multipliers) in the problem will be real
too. For reasons evident in a second, the penalty factor for the normalization
condition above will be called ǫnn, while the ones for the two real orthogonality
conditions will be called 2ǫnn,r and 2ǫnn,i, respectively. To avoid enforcing the
same orthogonality condition twice, it is here assumed that n > n.

The reason for these notations is that in terms of them, the penalized vari-
ational condition that the spatial orbitals must satisfy, chapter 9.1.3, takes the
simple form

δ 〈E〉 −
N∑

n=1

N∑

n=1

ǫnnδ〈ψs
n|ψs

n〉 = 0

where δ denotes a small change in the following quantity, n is now allowed to
be both smaller or larger than n, and ǫnn is a Hermitian matrix, meaning that
ǫnn = ǫ∗nn

Note however that two spatial orbitals do not have to be orthogonal if one is
a unpaired spin-up one and the other an unpaired spin-down one. In that case
the spins take care of orthogonality. This can be accomodated by stipulating
that the penalty factors of the corresponding constraints are zero,

ǫnn = 0 if ψs
n is spin-up and ψs

n is spin-down, or vice versa

Next the variational condition is to be evaluated for a small change δψs
m

in a sample spatial wave function ψs
m where m is no larger than N . This

is straightforward for the inner products in the penalty terms. However, the
expectation value of energy 〈E〉 was obtained in chapter 9.3.3 in terms of the
spin, rather than spatial orbitals:

〈E〉 =
I∑

n=1

〈ψs
n|he|ψs

n〉

+1
2

I∑

n=1

I∑

n=1

〈ψs
nψ

s
n|vee|ψs

nψ
s
n〉 − 1

2

I∑

n=1

I∑

n=1

〈ψs
nψ

s
n|vee|ψs

nψ
s
n〉〈ln|ln〉2

(From here on, the argument of the first orbital of a pair in either side of an
inner product is taken to be the first inner product integration variable ~r and
the argument of the second orbital is the second integration variable ~r)

Taking that into account, the variational condition for the δψs
m takes the

messy form

[2?]
(
〈δψs

m|he|ψs
m〉+ 〈ψs

m|he|δψs
m〉
)
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+[2?]1
2

I∑

n=1

(
〈δψs

mψ
s
n|vee|ψs

mψ
s
n〉+ 〈ψs

mψ
s
n|vee|δψs

mψ
s
n〉
)

+[2?]1
2

I∑

n=1

(
〈ψs

nδψ
s
m|vee|ψs

nψ
s
m〉+ 〈ψs

nψ
s
m|vee|ψs

nδψ
s
m〉
)

−1
2

I∑

n=1

(
〈δψs

mψ
s
n|vee|ψs

nψ
s
m〉+ 〈ψs

mψ
s
n|vee|ψs

nδψ
s
m〉
)
[〈lm|ln〉2?]

−1
2

I∑

n=1

(
〈ψs

nδψ
s
m|vee|ψs

mψ
s
n〉+ 〈ψs

nψ
s
m|vee|δψs

mψ
s
n〉
)
[〈ln|lm〉2?]

−
N∑

n=1

ǫmn〈δψs
m|ψs

n〉 −
N∑

n=1

ǫnm〈ψs
n|δψs

m〉 = 0

Here [2?] means to insert a factor 2 there if m is one of the restricted spatial
orbitals, because each of the two corresponding spin orbitals produces a term
like that. And [〈l.|l.〉2?] means leave away this inner product if m is one of the
restricted spatial orbitals, because exactly one of the two corresponding spin
orbitals has that inner product equal to one, and the other has it zero.

Note that the difference between n and n can from now on be ignored; the
name of a summation variable makes no difference for the result, and there are
no longer name conflicts in the individual terms. Note also that the sums over
n (or n) with upper limit I include the restricted spatial orbitals twice, once for
each spin direction.

The second term in each row in the expression above is just the complex
conjugate of the first. These second terms can be thrown out using the same
trick as in chapter 9.1.3. (In other words, average with the same equation with
δψs

m replaced by −iδψs
m and divided by i.) And the integrals with the factors 1

2

are pairwise the same; the difference is just a name swap of the inner product
integration variables. So all there is really left is

[2?]〈δψs
m|he|ψs

m〉+

+[2?]
I∑

n=1

〈δψs
mψ

s
n|vee|ψs

mψ
s
n〉

−
I∑

n=1

〈δψs
mψ

s
n|vee|ψs

nψ
s
m〉[〈ln|lm〉2?]

−
N∑

n=1

ǫmn〈δψs
m|ψs

n〉
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Now write out the inner product over the first position coordinate ~r, being
the argument of δψs

m, for all terms:

∫

all ~r

δψs
m
∗
(

[2?]heψs
m

+[2?]
I∑

n=1

〈ψs
n|vee|ψs

n〉ψs
m

−
I∑

n=1

〈ψs
n|vee|ψs

m〉ψs
n[〈ln|lm〉2?]

−
N∑

n=1

ǫmnψ
s
n

)
d3~r = 0

If this integral is to be zero for whatever is δψs
m, then the terms within the

parentheses must be zero. (Otherwise just take δψs
m proportional to the paren-

thetical expression; you would get the norm of the expression, and that is only
zero if the expression is.)

Unavoidably then, the following equations, one for each value of m, must be
satisfied:

[2?]heψs
m + [2?]

I∑

n=1

〈ψs
n|vee|ψs

n〉ψs
m −

I∑

n=1

[〈ln|lm〉2?]〈ψs
n|vee|ψs

m〉ψs
n =

N∑

n=1

ǫmnψ
s
n

This can be cleaned up a bit by dividing by [2?]:

heψs
m +

I∑

n=1

〈ψs
n|vee|ψs

n〉ψs
m −

I∑

n=1

{
〈ln|lm〉2

1
2

}
〈ψs

n|vee|ψs
m〉ψs

n =

{
1
1
2

} N∑

n=1

ǫmnψ
s
n

(D.35)
These are the general Hartree-Fock equations, one for each m 6 N . The

upper value between braces applies if the spatial orbital ψs
m is not a restricted

one; otherwise the lower value applies. Recall that the sums with upper limit
I include the restricted spatial orbitals twice. And that ǫmn is zero if spatial
orbital ψs

m is unpaired spin-up and ψs
n unpaired spin-down or vice-versa. For

such index values, 〈lm|ln〉 is zero too.
Note that the general Hartree-Fock equation above includes N “eigenvalues”

ǫmn. The canonical equations include just a single eigenvalue ǫm. So to get the
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canonical Hartree-Fock equations, the sum in the right hand side must be further
simplified to the form ǫmψ

s
m.

The restricted closed-shell Hartree-Fock case will be done first, since it is
the easiest one. Every spatial orbital is restricted, so the lower choice in the
curly brackets always applies. The summation upper limits I, being the number
of spin orbitals, can be reduced to the number of spatial orbitals N by adding
a factor 2. We can also get rid of the factor 1

2
in front of the ǫmn by simply

redefining them by that factor. So for restricted closed-shell Hartree-Fock

heψs
m + 2

N∑

n=1

〈ψs
n|vee|ψs

n〉ψs
m −

N∑

n=1

〈ψs
n|vee|ψs

m〉ψs
n =

N∑

n=1

ǫmnψ
s
n

Now the reason why all these ǫmn are there is because the set of N spatial
orbitals that gives the lowest energy state are not unique. The equation above
applies to a typical set. Only a special set will get rid of the ǫmn for n not equal
to m, leaving only ǫmm, which can then be defined to be ǫm.

Each orbital in the special set will be some combination of the orbitals in
the typical set above. In particular, any orbital in the special set, call it ψ

s

ν ,
will be a linear combination of the orbitals ψs

n in the typical set as follows:

ψ
s

ν ≡
N∑

n=1

cn,νψ
s
n for any ν = 1, 2, . . . , N

where the numbers c1,ν , c2,ν , . . . are the multiples of the typical orbitals ψs
1, ψ

s
2,

. . . . The complete set of numbers cn.ν for all possible values of both n and ν
can be written as a “matrix,” a table of numbers. This matrix will be indicated
by C. The first index in cn,ν , n, says what row in C that coefficient is in, and
the second index, ν, what column.

The multiples cn,ν cannot be arbitrary, because the special orbitals must
still be orthonormal. As noted earlier, they will be if they are normalized (so
the inner product of any orbital with itself is 1), and mutually orthogonal (so
the inner product of any orbital with any other one is zero). In short, the
requirement is that

〈ψs

µ|ψ
s

ν〉 = δµν

where δµν is one if µ = ν, and zero otherwise. The set of numbers δµν is called
the “Kronecker delta” or “unit matrix” or “identity matrix.” (The identity
matrix is for matrices what the number 1 is for normal numbers; multiplying an
arbitrary matrix or vector by the identity matrix does not change that matrix
or vector.)

Substituting in the expression for the special orbitals above, making sure
not to use the same name ν for two different indices, the requirement becomes

N∑

m=1

N∑

n=1

〈cm,µψs
m|cn,νψs

n〉 = δµν



D.54. DERIVATION OF THE HARTREE-FOCK EQUATIONS 1353

or noting that numbers come out of the left side of an inner product as complex
conjugates,

N∑

m=1

N∑

n=1

c∗m,µcn,ν〈ψs
m|ψs

n〉 = δµν

Now since the set of typical orbitals ψs
n are already orthonormal, the inner

product in the requirement above is only nonzero when m is n, and then it
is one. So dropping the zero terms that have m 6= n, the requirement on the
coefficients simplifies to

N∑

n=1

c∗n,µcn,ν = δµν

What does that mean? Well, for given values of µ and ν, consider the coefficients
cn,µ to form a vector ~uµ, where n indicates the component number of that
vector. Similarly, consider the coefficients cn,ν to form a vector ~uν . Then the
left hand side in the requirement above is the inner (or dot, if real) product
of these two vectors. So the set of vectors must be orthonormal, just like the
special orbitals must be orthonormal. So the matrix of coefficients C must
consist of orthonormal vectors. Mathematicians call such matrices “unitary,”
rather than orthonormal, since it is easily confused with “unit,” and that keeps
mathematicians in business explaining all the confusion.

The Hermitian adjoint matrix C† of C is defined as the matrix you get by
swapping the order of the indices of the elements of C and adding a complex
conjugate. So by definition the factor c∗n,µ in the requirement above equals the
coefficient c†µ,n of C†. And matrix multiplication is defined such that then the
sum over n in the requirement gives exactly the coefficients of the product C†C.
So the requirement above can be written as

C†C = I

where I is the unit matrix. That means C† is the inverse matrix to C, C† =
C−1. Then you also have that C is the inverse of C†, CC† = I, which writes
out to

N∑

ν=1

cn,νc
∗
m,ν = δmn.

This can be used to find the typical orbitals in terms of the special ones. To
do so, premultiply the expression for the special orbitals as given earlier by c∗m,ν
and sum over ν:

N∑

ν=1

c∗m,νψ
s

ν =
N∑

ν=1

c∗m,ν

N∑

n=1

cnνψ
s
n
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As seen above, the sum over ν in the right hand side is just δmn, so in the sum
over n, only the term with n equal to m is nonzero:

N∑

ν=1

c∗m,νψ
s

ν = ψs
m

That then gives any typical orbital ψs
m in terms of a sum of the special orbitals

ψ
s

ν .
Now plug that into the non canonical restricted closed-shell Hartree-Fock

equations given earlier. Be careful not to use the same summation index name
twice in the same term; this derivation will use

ψs
m =

N∑

ν=1

c∗m,νψ
s

ν ψs
n =

N∑

λ=1

c∗n,λψ
s

λ ψs
n =

N∑

κ=1

c∗n,κψ
s

κ

for ψs
m, the first occurrence of ψs

n in the terms, and the second occurrence,
respectively. Premultiply it all by C, i.e. put

∑N
m=1 cm,µ in front of each term.

That cleans up to

heψ
s

µ + 2
N∑

λ=1

〈ψs

λ|vee|ψ
s

λ〉ψ
s

µ −
N∑

λ=1

〈ψs

λ|vee|ψ
s

µ〉ψ
s

λ =
N∑

m=1

N∑

n=1

N∑

λ=1

cm,µǫmnc
∗
n,λψ

s

λ

Note that the only thing that has changed more than just by symbol names
is the matrix in the right hand side. Now for each separate value of λ, take
c∗nλ as the λ-th orthonormal eigenvector of Hermitian matrix ǫmn, calling the
eigenvalue ǫλ. Then by the definition of eigenvector,

N∑

n=1

ǫmnc
∗
n,λ = ǫλc

∗
m,λ

So the right hand side becomes

I∑

m=1

N∑

λ=1

cm,µǫλc
∗
m,λψ

s

λ =
N∑

λ=1

δµλǫλψ
s

λ = ǫµψ
s

µ

So, in terms of the special orbitals defined by the requirement that c∗m,µ gives
the µ-th eigenvector of ǫmn, the right hand side simplifies to the canonical one.

Since the old typical orbitals are no longer of interest, the overlines on the
special orbitals can be dropped to save typing, and the Greek index names µ and
λ can be renamed n and n. That then finally produces the canonical closed-shell
restricted Hartree-Fock equations:

heψs
n + 2

N∑

n=1

〈ψs
n|vee|ψs

n〉ψs
n −

N∑

n=1

〈ψs
n|vee|ψs

n〉ψs
n = ǫnψ

s
n (D.36)
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Note that the left-hand side directly provides a Hermitian Fock operator if you
identify it as Fψs

n; there is no need to involve spin in the closed-shell restricted
case. This also provides a much simpler explanation than all the algebra above
why all the earlier ǫmn with m 6= n were not needed; existence of a set of
orthonormal eigenfunctions of a Hermitian operator is automatic. So there is
no fundamental need to enforce that separately through Lagrangian multipliers.

Turning now to the case of (fully) unrestricted Hartree-Fock (UHF), you
might make the same simple argument as above and be done. But it is worth-
while to go through the full mathematics anyway, to better understand open-
shell restricted Hartree-Fock later. In the unrestricted case, the non canonical
equations are

heψs
m +

N∑

n=1

〈ψs
n|vee|ψs

n〉ψs
m −

N∑

n=1

〈ln|lm〉2〈ψs
n|vee|ψs

m〉ψs
n =

N∑

n=1

ǫmnψ
s
n

In this case, there are two different types of spatial orbitals; those appearing
in spin-up spin orbitals, and those appearing in spin-down spin orbitals. You
cannot just make arbitrary combinations of all these orbitals. If you combine
spin-up and spin-down orbitals, they correspond to spin orbitals of uncertain
spin. That would make the assumptions used to derive the Hartree-Fock equa-
tions invalid.

However, combinations of purely spin-up orbitals can still be made without
problems, and so can combinations of purely spin down orbitals. To do the
mathematics, the spatial orbitals can be separated into two sets. The set of
orbital numbers n corresponding to spin-up spin orbitals will be indicated by
U, and the set of numbers n corresponding to spin-down spin orbitals by D. So
you can partition (separate) the non canonical equations above into equations
for m ∈ U (meaning m is one of the values in set U),

heψs
m +

∑

n∈U
〈ψs

n|vee|ψs
n〉ψs

m +
∑

n∈D
〈ψs

n|vee|ψs
n〉ψs

m −
∑

n∈U
〈ψs

n|vee|ψs
m〉ψs

n =
∑

n∈U
ǫmnψ

s
n

and equations for m ∈ D,

heψs
m +

∑

n∈U
〈ψs

n|vee|ψs
n〉ψs

m +
∑

n∈D
〈ψs

n|vee|ψs
n〉ψs

m −
∑

n∈D
〈ψs

n|vee|ψs
m〉ψs

n =
∑

n∈D
ǫmnψ

s
n

In these two types of equations, the fact that the up and down spin states
are orthogonal was used to get rid of one pair of sums, and another pair was
eliminated by the fact that there are no Lagrangian variables ǫmn linking the
sets, since the spatial orbitals in the two sets are allowed to be mutually non
orthogonal.

Now separately replace the orbitals of the up and down states by a modified
set just like for the restricted closed-shell case above, for each using the unitary
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matrix of eigenvectors of the ǫmn coefficients appearing in the right hand side
of the equations for that set. It leaves the equations intact except for changes
in names, but gets rid of the ǫmn for m 6= n, leaving only ǫmm values, call them
ǫm. Then combine the spin-up and spin-down equations again into a single
expression. You get, in terms of revised symbol names,

heψs
n +

N∑

n=1

〈ψs
n|vee|ψs

n〉ψs
n −

N∑

n=1

〈ln|ln〉2〈ψs
n|vee|ψs

n〉ψs
n = ǫnψ

s
n (D.37)

That leaves only the restricted open-shell Hartree-Fock method. Here, the
partitioning also needs to include the set R of of restricted orbitals besides U and
D. There is now a problem, because you cannot make combinations of restricted
orbitals with spin-up or spin-down orbitals. That means that the ǫmn values
where either m or n is restricted and the other is not, cannot be eliminated.
Solutions range from just ignoring the whole thing to properly accounting for
these ǫmn values by enforcing that restricted and non restricted orbitals must
stay orthogonal as additional equations. This (even more) elaborate case will
be left to the references that you can find in [46], in particular [28, pp. 242-253].

Woof.

D.55 Why the Fock operator is Hermitian

To verify that the Fock operator is Hermitian, first note that he is Hermitian
since it is an Hamiltonian. Next if you form the inner product 〈ψel|vHFψsl〉,
the first term in vHF, the Coulomb term, can be taken to the other side since it
is just a real function. The second term, the exchange one, produces the inner
product,

−
I∑

n=1

〈
ψe(~r)l(Sz)

∣∣∣〈ψs
n(~r)ln(Sz1)|vee|ψs(~r)l(Sz1)〉ψs

n(~r)ln(Sz)
〉

and if you take the operator to the other side, you get

−
I∑

n=1

〈
〈ψs

n(~r)ln(Sz)|vee|ψe(~r)l(Sz)〉ψs
n(~r)ln(Sz1)

∣∣∣ψs(~r)l(Sz1)
〉

and writing out these inner products as six-dimensional spatial integrals and
sums over spin, you see that they are the same.

D.56 Number of system eigenfunctions

This note derives the number of energy eigenfunctions Q~I for a given set ~I =
(I1, I2, I3, . . .) of shelf occupation numbers, Is being the number of particles on
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shelf number s. The number of single-particle eigenfunctions on shelf number s
is indicated by Ns.

Consider first the case of distinguishable particles, referring to figure 11.1 for
an example. The question is how many different eigenfunctions can be created
with the given shelf numbers. What are the ways to create different ones? Well,
the first choice that can be made is what are the I1 particles that go on shelf
1. If you pick out I1 particles from the I total particles, you have I choices for
particle 1, next there are I − 1 choices left for particle 2, then I − 2 for particle
3. The total number of possible ways of choosing the I1 particles is then

I × (I−1)× (I−2)× . . .× (I−I1+1)

However, this overestimates the number of variations in eigenfunctions that you
can create by selecting the I1 particles: the only thing that makes a difference for
the eigenfunctions is what particles you pick to go on shelf 1; the order in which
you chose to pick them out of the total set of I makes no difference. If you chose
a set of I1 particles in an arbitrary order, you get no difference in eigenfunction
compared to the case that you pick out the same particles sorted by number. To
correct for this, the number of eigenfunction variations above must be divided
by the number of different orderings in which a set of I1 particles can come out
of the total collection. That will give the number of different sets of particles,
sorted by number, that can be selected. The number of ways that a set of I1
particles can be ordered is

I1! = I1 × (I1 − 1)× (I1 − 2)× . . .× 3× 2× 1;

there are I1 possibilities for the particle that comes first in the sorted set, then
I1−1 possibilities left for the particle that comes second, etcetera. Dividing the
earlier expression by I1!, the number of different sets of I1 particles that can be
selected for shelf 1 becomes

I × (I − 1)× (I − 2)× . . .× (I − I1 + 1)

I1 × (I1 − 1)× (I1 − 2)× . . .× 3× 2× 1
.

But further variations in eigenfunctions are still possible in the way these I1
particles are distributed over the N1 single-particle states on shelf 1. There are
N1 possible single-particle states for the first particle of the sorted set, times N1

possible single-particle states for the second particle, etcetera, making a total
of N I1

1 variations. That number of variations exists for each of the individual
sorted sets of particles, so the total number of variations in eigenfunctions is
the product:

N I1
1

I × (I − 1)× (I − 2)× . . .× (I − I1 + 1)

I1 × (I1 − 1)× (I1 − 2)× . . .× 3× 2× 1
.

This can be written more concisely by noting that the bottom of the fraction is
per definition I1! while the top equals I!/(I − I1)!: note that the terms missing



1358 APPENDIX D. DERIVATIONS

from I! in the top are exactly (I − I1)!. (In the special case that I = I1, all
particles on shelf 1, this still works since mathematics defines 0! = 1.) So, the
number of variations in eigenfunctions so far is:

N I1
1

I!

I1!(I − I1)!
.

The fraction is known in mathematics as “I choose I1.”
Further variations in eigenfunctions are possible in the way that the I2 par-

ticles on shelf 2 are chosen and distributed over the single-particle states on
that shelf. The analysis is just like the one for shelf 1, except that shelf 1 has
left only I − I1 particles for shelf 2 to chose from. So the number of additional
variations related to shelf 2 becomes

N I2
2

(I − I1)!
I2!(I − I1 − I2)!

.

The same way the number of eigenfunction variations for shelves 3, 4, . . . can
be found, and the grand total of different eigenfunctions is

N I1
1

I!

I1!(I − I1)!
×N I2

2

(I − I1)!
I2!(I − I1 − I2)!

×N I3
3

(I − I1 − I2)!
I3!(I − I1 − I2 − I3)!

× . . .

This terminates at the shelf number S beyond which there are no more particles
left, when I−I1−I2−I3−. . .−IB = 0. All further shelves will be empty. Empty
shelves might just as well not exist, they do not change the eigenfunction count.
Fortunately, there is no need to exclude empty shelves from the mathematical
expression above, it can be used either way. For example, if shelf 2 would be
empty, e.g. I2 = 0, then N I2

2 = 1 and I2! = 1, and the factors (I − I1)! and
(I − I1 − I2)! cancel each other. So the factor due to empty shelf 2 becomes
multiplying by one, it does not change the eigenfunction count.

Note that various factors cancel in the eigenfunction count above, it simplifies
to the final expression

Qd
~I
= I!

N I1
1

I1!
× N I2

2

I2!
× N I3

3

I3!
× . . .

Mathematicians like to symbolically write a product of indexed factors like this
using the product symbol Π:

Qd
~I
= I!

∏

all s

N Is
s

Is!
.

It means exactly the same as the written-out product.
Next the eigenfunction count for fermions. Refer now to figure 11.3. For

any shelf s, it is given that there are Is particles on that shelf, and the only
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variations in eigenfunctions that can be achieved are in the way that these
particles are distributed over the Ns single-particle eigenfunctions on that shelf.
The fermions are identical, but to simplify the reasoning, for now assume that
you stamp numbers on them from 1 to Is. Then fermion 1 can go into Ns single-
particle states, leaving Ns − 1 states that fermion 2 can go into, then Ns − 2
states that fermion 3 can go into, etcetera. That produces a total of

Ns × (Ns − 1)× (Ns − 2)× . . .× (Ns − Is + 1) =
Ns!

(Ns − Is)!

variations. But most of these differ only in the order of the numbers stamped
on the fermions; differences in the numbers stamped on the electrons do not
constitute a difference in eigenfunction. The only difference is in whether a
state is occupied by a fermion or not, not what number is stamped on it. Since,
as explained under distinguishable particles, the number of ways Is particles
can be ordered is Is!, it follows that the formula above over-counts the number
of variations in eigenfunctions by that factor. To correct, divide by Is!, giving
the number of variations as Ns!/(Ns− Is)!Is!, or “Ns choose Is.” The combined
number of variations in eigenfunctions for all shelves then becomes

Qf
~I
=

N1!

(N1 − I1)!I1!
× N2!

(N2 − I2)!I2!
× N3!

(N3 − I3)!I3!
× . . . =

∏

all s

Ns!

(Ns − Is)!Is!
.

If a shelf is empty, it makes again no difference; the corresponding factor is
again one. But another restriction applies for fermions: there should not be
any eigenfunctions if any shelf number Is is greater than the number of states
Ns on that shelf. There can be at most one particle in each state. Fortunately,
mathematics defines factorials of negative integer numbers to be infinite, and
the infinite factor (Ns−Is)! in the bottom will turn the eigenfunction count into
zero as it should. The formula can be used whatever the shelf numbers are.

✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐
Figure D.3: Schematic of an example boson distribution on a shelf.

Last but not least, the eigenfunction count for bosons. Refer now to figure
11.2. This one is tricky, but a trick solves it. To illustrate the idea, take shelf
2 in figure 11.2 as an example. It is reproduced in condensed form in figure
D.3. The figure merely shows the particles and the lines separating the single-
particle states. Like for the fermions, the question is, how many ways can the
Is bosons be arranged inside the Ns single-particle states? In other words, how
many variations are there on a schematic like the one shown in figure D.3?
To figure it out, stamp identifying numbers on all the elements, particles and
single-state separating lines alike, ranging from 1 to Is + Ns − 1. Following
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the same reasoning as before, there are (Is + Ns − 1)! different ways to order
these numbered objects. As before, now back off. All the different orderings
of the numbers stamped on the bosons, Is! of them, produce no difference in
eigenfunction, so divide by Is! to fix it up. Similarly, all the different orderings
of the single-particle state boundaries produce no difference in eigenfunction,
so divide by (Ns − 1)!. The number of variations in eigenfunctions possible by
rearranging the particles on a single shelf s is then (Is +Ns − 1)!/Is!(Ns − 1)!.
The total for all shelves is

Qb
~I

=
(I1 +N1 − 1)!

I1!(N1 − 1)!
× (I2 +N2 − 1)!

I2!(N2 − 1)!
× (I3 +N3 − 1)!

I3!(N3 − 1)!
× . . .

=
∏

all s

(Is +Ns − 1)!

Is!(Ns − 1)!
.

D.57 The particle energy distributions

This note derives the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein en-
ergy distributions of weakly interacting particles for a system for which the net
energy is precisely known.

The objective is to find the shelf numbers ~I = (I1, I2, I3, . . .) for which the
number of eigenfunctions Q~I is maximal. Actually, it is mathematically easier
to find the maximum of ln(Q~I), and that is the same thing: if Q~I is as big as
it can be, then so is ln(Q~I). The advantage of working with ln(Q~I) is that it
simplifies all the products in the expressions for the Q~I derived in derivation
{D.56} into sums: mathematics says that ln(ab) equals ln(a) plus ln(b) for any
(positive) a and b.

It will be assumed, following derivation {N.24}, that if the maximum value
is found among all shelf occupation numbers, whole numbers or not, it suffices.
More daringly, errors less than a particle are not going to be taken seriously.

In finding the maximum of ln(Q~I), the shelf numbers cannot be completely
arbitrary; they are constrained by the conditions that the sum of the shelf num-
bers must equal the total number of particles I, and that the particle energies
must sum together to the given total energy E:

∑

s

Is = I
∑

s

IsE
p
s = E.

Mathematicians call this a constrained maximization problem.

According to calculus, without the constraints, you can just put the deriva-
tives of ln(Q~I) with respect to all the shelf numbers Is to zero to find the
maximum. With the constraints, you have to add “penalty terms” that correct
for any going out of bounds, {D.48}, and the correct function whose derivatives
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must be zero is

F = ln(Q~I)− ǫ1
(∑

s

Is − I
)
− ǫ2

(∑

s

IsE
p
s − E

)

where the constants ǫ1 and ǫ2 are unknown penalty factors called the Lagrangian
multipliers.

At the shelf numbers for which the number of eigenfunctions is largest, the
derivatives ∂F/∂Is must be zero. However, that condition is difficult to apply
exactly, because the expressions for Q~I as given in the text involve the factorial
function, or rather, the gamma function. The gamma function does not have a
simple derivative. Here typical textbooks will flip out the Stirling approximation
of the factorial, but this approximation is simply incorrect in parts of the range
of interest, and where it applies, the error is unknown.

It is a much better idea to approximate the differential quotient by a differ-
ence quotient, as in

0 =
∂F

∂Is
≈ ∆F

∆Is
≡

F (I1, I2, . . . , Is−1, Is + 1, Is+1, . . .)− F (I1, I2, . . . , Is−1, Is, Is+1, . . .)

Is + 1− Is
.

This approximation is very minor, since according to the so-called mean value
theorem of mathematics, the location where ∆F/∆Is is zero is at most one
particle away from the desired location where ∂F/∂Is is zero. Better still, Is+

1
2

≡ Is,best will be no more that half a particle off, and the analysis already had
to commit itself to ignoring fractional parts of particles anyway. The difference
quotient leads to simple formulae because the gamma function satisfies the
condition (n+1)! = (n+1)n! for any value of n, compare the notations section
under “!”.

Now consider first distinguishable particles. The function F to differentiate
is defined above, and plugging in the expression for Qd

~I
as found in derivation

{D.56} produces

F = ln(I!) +
∑

s

[Is ln(Ns)− ln(Is!)]− ǫ1
(∑

s

Is − I
)
− ǫ2

(∑

s

IsE
p
s − E

)

For any value of the shelf number s, in the limit Is ↓ −1, F tends to negative
infinity because Is! tends to positive infinity in that limit and its logarithm
appears with a minus sign. In the limit Is ↑ +∞, F tends once more to negative
infinity, since ln(Is!) for large values of Is is according to the so-called Stirling
formula approximately equal to Is ln(Is) − Is, so the − ln(Is!) term in F goes
to minus infinity more strongly than the terms proportional to Is might go to
plus infinity. If F tends to minus infinity at both ends of the range −1 < Is <
∞, there must be a maximum value of F somewhere within that range where
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the derivative with respect to Is is zero. More specifically, working out the
difference quotient:

∆F

∆Is
= ln(Ns)− ln(Is + 1)− ǫ1 − ǫ2Ep

s = 0

and − ln(Is+1) is infinity at Is = −1 and minus infinity at Is =∞. Somewhere
in between, ∆F/∆Is will cross zero. In particular, combining the logarithms and
then taking an exponential, the best estimate for the shelf occupation number
is

Is,best = Is +
1
2
=

Ns

eǫ2E
p
s+ǫ1
− 1

2

The correctness of the final half particle is clearly doubtful within the made
approximations. In fact, it is best ignored since it only makes a difference at
high energies where the number of particles per shelf becomes small, and surely,
the correct probability of finding a particle must go to zero at infinite energies,
not to minus half a particle! Therefore, the best estimate ιd ≡ Is,best/Ns for
the number of particles per single-particle energy state becomes the Maxwell-
Boltzmann distribution. Note that the derivation might be off by a particle
for the lower energy shelves. But there are a lot of particles in a macroscopic
system, so it is no big deal.

The case of identical fermions is next. The function to differentiate is now

F =
∑

s

[ln(Ns!)− ln(Is!)− ln((Ns − Is)!)]

− ǫ1
(∑

s

Is − I
)
− ǫ2

(∑

s

IsE
p
s − E

)

This time F is minus infinity when a shelf number reaches Is = −1 or Is =
Ns+1. So there must be a maximum to F when Is varies between those limits.
The difference quotient approximation produces

∆F

∆Is
= − ln(Is + 1) + ln(Ns − Is)− ǫ1 − ǫ2Ep

s = 0

which can be solved to give

Is,best = Is +
1
2
=

Ns

eǫ2E
p
s+ǫ1 + 1

+ 1
2

1− eǫ2Ep
s+ǫ1

1 + eǫ2E
p
s+ǫ1

The final term, less than half a particle, is again best left away, to ensure that
0 6 Is,best 6 Ns as it should. That gives the Fermi-Dirac distribution.

Finally, the case of identical bosons, is, once more, the tricky one. The
function to differentiate is now

F =
∑

s

[ln((Is +Ns − 1)!)− ln(Is!)− ln((Ns − 1)!)]

−ǫ1
(∑

s

Is − I
)
− ǫ2

(∑

s

IsE
p
s − E

)
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For now, assume that Ns > 1 for all shelves. Then F is again minus infinity
for Is = −1. For Is ↑ ∞, however, F will behave like −(ǫ1 + ǫ2E

p
s)Is. This

tends to minus infinity if ǫ1 + ǫ2E
p
s is positive, so for now assume it is. Then

the difference quotient approximation produces

∆F

∆Is
= ln(Is +Ns)− ln(Is + 1)− ǫ1 − ǫ2Ep

s = 0

which can be solved to give

Is,best = Is +
1
2
=

Ns − 1

eǫ2E
p
s+ǫ1 − 1

− 1
2
.

The final half particle is again best ignored to get the number of particles to
become zero at large energies. Then, if it is assumed that the number Ns of
single-particle states on the shelves is large, the Bose-Einstein distribution is
obtained. If Ns is not large, the number of particles could be less than the
predicted one by up to a factor 2, and if Ns is one, the entire story comes part.
And so it does if ǫ1 + ǫ2E

p
s is not positive.

Before addressing these nasty problems, first the physical meaning of the La-
grangian multiplier ǫ2 needs to be established. It can be inferred from examining
the case that two different systems, call them A and B, are in thermal contact.
Since the interactions are assumed weak, the eigenfunctions of the combined
system are the products of those of the separate systems. That means that the
number of eigenfunctions of the combined system Q~IA~IB

is the product of those
of the individual systems. Therefore the function to differentiate becomes

F = ln(Q~IA
Q~IB

)

−ǫ1,A
(∑

sA

IsA − IA
)
− ǫ1,B

(∑

sB

IsB − IB
)

−ǫ2
(∑

sA

IsAE
p
sA

+
∑

sB

IsBE
p
sB
− E

)

Note the constraints: the number of particles in system A must be the correct
number IA of particles in that system, and similar for system B. However, since
the systems are in thermal contact, they can exchange energy through the weak
interactions and there is no longer a constraint on the energy of the individual
systems. Only the combined energy must equal the given total. That means the
two systems share the same Lagrangian variable ǫ2. For the rest, the equations
for the two systems are just like if they were not in thermal contact, because
the logarithm in F separates, and then the differentiations with respect to the
shelf numbers IsA and IsB give the same results as before.

It follows that two systems that have the same value of ǫ2 can be brought
into thermal contact and nothing happens, macroscopically. However, if two
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systems with different values of ǫ2 are brought into contact, the systems will
adjust, and energy will transfer between them, until the two ǫ2 values have
become equal. That means that ǫ2 is a temperature variable. From here on,
the temperature will be defined as T = 1/ǫ2kB, so that ǫ2 = 1/kBT , with kB
the Boltzmann constant. The same way, for now the chemical potential µ will
simply be defined to be the constant −ǫ1/ǫ2. Chapter 11.14.4 will eventually
establish that the temperature defined here is the ideal gas temperature, while
derivation {D.61} will establish that µ is the Gibbs free energy per atom that
is normally defined as the chemical potential.

Returning now to the nasty problems of the distribution for bosons, first
assume that every shelf has at least two states, and that (Ep

s − µ)/kBT is
positive even for the ground state. In that case there is no problem with the
derived solution. However, Bose-Einstein condensation will occur when either
the number density is increased by putting more particles in the system, or
the temperature is decreased. Increasing particle density is associated with
increasing chemical potential µ because

Is =
Ns − 1

e(E
p
s−µ)/kBT − 1

implies that every shelf particle number increases when µ increases. Decreasing
temperature by itself decreases the number of particles, and to compensate and
keep the number of particles the same, µmust then once again increase. When µ
gets very close to the ground state energy, the exponential in the expression for
the number of particles on the ground state shelf s= 1 becomes very close to one,
making the total denominator very close to zero, so the number of particles I1 in
the ground state blows up. When it becomes a finite fraction of the total number
of particles I even when I is macroscopically large, Bose-Einstein condensation
is said to have occurred.

Note that under reasonable assumptions, it will only be the ground state shelf
that ever acquires a finite fraction of the particles. For, assume the contrary, that
shelf 2 also holds a finite fraction of the particles. Using Taylor series expansion
of the exponential for small values of its argument, the shelf occupation numbers
are

I1 =
(N1 − 1)kBT

Ep
1 − µ

I2 =
(N2 − 1)kBT

Ep
1 − µ+ (Ep

2 − Ep
1)

I3 =
(N3 − 1)kBT

Ep
1 − µ+ (Ep

2 − Ep
1) + (Ep

3 − Ep
2)

...



D.57. THE PARTICLE ENERGY DISTRIBUTIONS 1365

For I2 to also be a finite fraction of the total number of particles, Ep
2−Ep

1 must
be similarly small as Ep

1 − µ. But then, reasonably assuming that the energy
levels are at least roughly equally spaced, and that the number of states will
not decrease with energy, so must I3 be a finite fraction of the total, and so on.
You cannot have a large number of shelves each having a finite fraction of the
particles, because there are not so many particles. More precisely, a sum roughly
like

∑∞
s=2 const/s∆E, (or worse), sums to an amount that is much larger than

the term for s = 2 alone. So if I2 would be a finite fraction of I, then the sum
would be much larger than I.

What happens during condensation is that µ becomes much closer to Ep
1

than Ep
1 is to the next energy level Ep

2, and only the ground state shelf ends up
with a finite fraction of the particles. The remainder is spread out so much that
the shelf numbers immediately above the ground state only contain a negligible
fraction of the particles. It also follows that for all shelves except the ground
state one, µ may be approximated as being Ep

1. (Specific data for particles in
a box is given in chapter 11.14.1. The entire story may of course need to be
modified in the presence of confinement, compare chapter 6.12.)

The other problem with the analysis of the occupation numbers for bosons
is that the number of single-particle states on the shelves had to be at least two.
There is no reason why a system of weakly-interacting spinless bosons could not
have a unique single-particle ground state. And combining the ground state with
the next one on a single shelf is surely not an acceptable approximation in the
presence of potential Bose-Einstein condensation. Fortunately, the mathematics
still partly works:

∆F

∆I1
= ln(I1 + 1)− ln(I1 + 1)− ǫ1 − ǫ2Ep

1 = 0

implies that ǫ1−ǫ2Ep
1 = 0. In other words, µ is equal to the ground state energy

Ep
1 exactly, rather than just extremely closely as above.

That then is the condensed state. Without a chemical potential that can be
adjusted, for any given temperature the states above the ground state contain
a number of particles that is completely unrelated to the actual number of
particles that is present. Whatever is left can be dumped into the ground state,
since there is no constraint on I1.

Condensation stops when the number of particles in the states above the
ground state wants to become larger than the actual number of particles present.
Now the mathematics changes, because nature says “Wait a minute, there is no
such thing as a negative number of particles in the ground state!” Nature now
adds the constraint that I1 = 0 rather than negative. That adds another penalty
term, ǫ3I1 to F and ǫ3 takes care of satisfying the equation for the ground state
shelf number. It is a sad story, really: below the condensation temperature, the
ground state was awash in particles, above it, it has zero. None.
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A system of weakly interacting helium atoms, spinless bosons, would have
a unique single-particle ground state like this. Since below the condensation
temperature, the elevated energy states have no clue about an impending lack
of particles actually present, physical properties such as the specific heat stay
analytical until condensation ends.

It may be noted that above the condensation temperature it is only the most
probable set of the occupation numbers that have exactly zero particles in the
unique ground state. The expectation value of the number in the ground state
will include neighboring sets of occupation numbers to the most probable one,
and the number has nowhere to go but up, compare {D.61}.

D.58 The canonical probability distribution

This note deduces the canonical probability distribution. Since the derivations
in typical textbooks seem crazily convoluted and the made assumptions not at
all as self-evident as the authors suggest, a more mathematical approach will
be followed here.

Consider a big system consisting of many smaller subsystems A,B, . . . with
a given total energy E. Call the combined system the collective. Following
the same reasoning as in derivation {D.57} for two systems, the thermodynam-
ically stable equilibrium state has shelf occupation numbers of the subsystems
satisfying

∂ lnQ~IA

∂IsA
− ǫ1,A − ǫ2Ep

sA
= 0

∂ lnQ~IB

∂IsB
− ǫ1,B − ǫ2Ep

sB
= 0

. . .

where ǫ2 is a shorthand for 1/kBT .
An individual system, take A as the example, no longer has an individual

energy that is for certain. Only the collective has that. That means that when
A is taken out of the collective, its shelf occupation numbers will have to be
described in terms of probabilities. There will still be an expectation value for
the energy of the system, but system energy eigenfunctions ψS

qA
with somewhat

different energy ES
qA

can no longer be excluded with certainty. However, still
assume, following the fundamental assumption of quantum statistics, {N.23},
that the physical differences between the system energy eigenfunctions do not
make (enough of) a difference to affect which ones are likely or not. So, the
probability PqA of a system eigenfunction ψS

qA
will be assumed to depend only

on its energy ES
qA
:

PqA = P (E
S
qA
).
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where P is some as yet unknown function.
For the isolated example system A, the question is now no longer “What

shelf numbers have the most eigenfunctions?” but “What shelf numbers have
the highest probability?” Note that all system eigenfunctions ψS

qA
for a given set

of shelf numbers ~IA have the same system energy ES
~IA

=
∑

sA
IsAE

p
sA
. There-

fore, the probability of a given set of shelf numbers P~IA will be the number of
eigenfunctions with those shelf numbers times the probability of each individual
eigenfunction:

P~IA = Q~IA
P (E

S
~IA
).

Mathematically, the function whose partial derivatives must be zero to find
the most probable shelf numbers is

F = ln
(
P~IA
)
− ǫ1,A

(∑

sA

IsA − IA
)
.

The maximum is now to be found for the shelf number probabilities, not their
eigenfunction counts, and there is no longer a constraint on energy.

Substituting P~IA = Q~IA
P (ES

~IA
), taking apart the logarithm, and differenti-

ating, produces
∂ lnQ~IA

∂IsA
+

d ln(P )

dES
~IA

E
p
sA
− ǫ1,A = 0

That is exactly like the equation for the shelf numbers of system A when it was
part of the collective, except that the derivative of the as yet unknown function
ln(PA) takes the place of −ǫ2, i.e. −1/kBT . It follows that the two must be
the same, because the shelf numbers cannot change when the system A is taken
out of the collective it is in thermal equilibrium with. For one, the net energy
would change if that happened, and energy is conserved.

It follows that d lnP/dES
~IA

= −1/kBT at least in the vicinity of the most

probable energy ES
~IA
. Hence in the vicinity of that energy

P (E
S
A) =

1

ZA
e−E

S
A/kBT

which is the canonical probability. Note that the given derivation only ensures
it to be true in the vicinity of the most probable energy. Nothing says it gives
the correct probability for, say, the ground state energy. But then the question
becomes “What difference does it make?” Suppose the ground state has a
probability of 0. followed by only 100 zeros instead of the predicted 200 zeros?
What would change in the price of eggs?

Note that the canonical probability is self-consistent: if two systems at the
same temperature are combined, the probabilities of the combined eigenfunc-
tions multiply, as in

PAB =
1

ZAZB
e−(E

S
A+ES

B)/kBT .
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That is still the correct expression for the combined system, since its energy is
the sum of those of the two separate systems. Also for the partition functions

ZAZB =
∑

qA

∑

qB

e−(E
S
qA

+ES
qB

)/kBT = ZAB.

D.59 Analysis of the ideal gas Carnot cycle

Refer to figure D.4 for the physical device to be analyzed. The refrigerant
circulating through the device is an ideal gas with constant specific heats, like
a thin gas of helium atoms. Chapter 11.14 will examine ideal gases in detail,
but for now some reminders from introductory classical physics classes about
ideal gasses must do. The internal energy of the gas is E = mICV T where mI
is its mass and Cv is a constant for a gas like helium whose atoms only have
translational kinetic energy. Also, the ideal gas law says that PV = mIRT ,
where P is the pressure, V the volume, and the constant R is the gas constant,
equal to the universal gas constant divided by the molar mass.

The differential version of the first law, energy conservation, (11.11), says
that

dE = δQ− P dV

or getting rid of internal energy and pressure using the given expressions,

mICv dT = δQ−mIRT dV

V
.

Low temperature side TL. (Fridge.)

✻ ✻ ✻ ✻ ✻QL

High temperature side TH. (Kitchen.)

✻ ✻ ✻ ✻ ✻QH

heat exchanger✲

heat exchanger ✛✬
✫

✩
✪turbine

❄

⇐=
WT

✬
✫

✩
✪compressor

✻

⇐=
WC

♠1 ♠2

♠3♠4

Figure D.4: Schematic of the Carnot refrigeration cycle.

Now for the transitions through the heat exchangers, from 1 to 2 or from 3
to 4 in figure D.4, the temperature is approximated to be constant. The first
law above can then be integrated to give the heat added to the substance as:

QL = mIRTL (lnV2 − lnV1) QH = −mIRTH (lnV4 − lnV3) .
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Remember that unlike QL, QH is taken positive if it comes out of the substance.
On the other hand, for the transitions through the adiabatic turbine and

compressor, the heat δQ added is zero. Then the first law can be divided
through by T and integrated to give

mICv (lnTH − lnTL) = −mIR (lnV3 − lnV2)

mICv (lnTL − lnTH) = −mIR (lnV1 − lnV4)

Adding these two expressions shows that

lnV3 − lnV2 + lnV1 − lnV4 = 0 =⇒ lnV3 − lnV4 = lnV2 − lnV1

and plugging that into the expressions for the exchanged heats shows that
QH/TH = QL/TL.

D.60 Checks on the expression for entropy

According to the microscopic definition, the differential of the entropy S should
be

dS = −kBd
[∑

q

Pq lnPq

]

where the sum is over all system energy eigenfunctions ψS
q and Pq is their prob-

ability. The differential can be simplified to

dS = −kB
∑

q

[lnPq + 1] dPq = −kB
∑

q

lnPq dPq,

the latter equality since the sum of the probabilities is always one, so
∑

q dPq
= 0.

This is to be compared with the macroscopic differential for the entropy.
Since the macroscopic expression requires thermal equilibrium, Pq in the mi-

croscopic expression above can be equated to the canonical value e−E
S
q/kBT/Z

where ES
q is the energy of system eigenfunction ψS

q . It simplifies the microscopic
differential of the entropy to

dS = −kB
∑

q

[
− ES

q

kBT
− lnZ

]
dPq = −kB

∑

q

[
− ES

q

kBT

]
dPq =

1

T

∑

q

E
S
q dPq,

(D.38)
the second inequality since Z is a constant in the summation and

∑
q dPq = 0.

The macroscopic expression for the differential of entropy is given by (11.18),

dS =
δQ

T
.
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Substituting in the differential first law (11.11),

dS =
1

T
dE +

1

T
P dV

and plugging into that the definitions of E and P ,

dS =
1

T
d

[∑

q

PqE
S
q

]
− 1

T

[∑

q

Pq
dES

q

dV

]
dV

and differentiating out the product in the first term, one part drops out versus
the second term and what is left is the differential for S according to the micro-
scopic definition (D.38). So, the macroscopic and microscopic definitions agree
to within a constant on the entropy. That means that they agree completely,
because the macroscopic definition has no clue about the constant.

Now consider the case of a system with zero indeterminacy in energy. Ac-
cording to the fundamental assumption, all the eigenfunctions with the correct
energy should have the same probability in thermal equilibrium. From the en-
tropy’s point of view, thermal equilibrium should be the stable most messy state,
having the maximum entropy. For the two views to agree, the maximum of the
microscopic expression for the entropy should occur when all eigenfunctions of
the given energy have the same probability. Restricting attention to only the
energy eigenfunctions ψS

q with the correct energy, the maximum entropy occurs
when the derivatives of

F = −kB
∑

q

Pq lnPq − ǫ
(∑

q

Pq − 1

)

with respect to the Pq are zero. Note that the constraint that the sum of the
probabilities must be one has been added as a penalty term with a Lagrangian
multiplier, {D.48}. Taking derivatives produces

−kB ln(Pq)− kB − ǫ = 0

showing that, yes, all the Pq have the same value at the maximum entropy.
(Note that the minima in entropy, all Pq zero except one, do not show up in the
derivation; Pq lnPq is zero when Pq = 0, but its derivative does not exist there.
In fact, the infinite derivative can be used to verify that no maxima exist with
any of the Pq equal to zero if you are worried about that.)

If the energy is uncertain, and only the expectation energy is known, the
penalized function becomes

F = −kB
∑

q

Pq lnPq − ǫ1
(∑

Pq − 1
)
− ǫ2

(∑
E

S
qPq − E

)
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and the derivatives become

−kB ln(Pq)− kB − ǫ1 − ǫ2ES
q = 0

which can be solved to show that

Pq = C1e
−ES

q/C2

with C1 and C2 constants. The requirement to conform with the given definition
of temperature identifies C2 as kBT and the fact that the probabilities must sum
to one identifies C1 as 1/Z.

For two systems A and B in thermal contact, the probabilities of the com-
bined system energy eigenfunctions are found as the products of the probabili-
ties of those of the individual systems. The maximum of the combined entropy,
constrained by the given total energy E, is then found by differentiating

F = −kB
∑

qA

∑

qB

PqAPqB ln(PqAPqB)

−ǫ1,A(
∑

qA

PqA − 1)− ǫ1,B(
∑

qB

PqB − 1)

−ǫ2(
∑

qA

PqAE
S
qA

+
∑

qB

PqBE
S
qB
− E)

F can be simplified by taking apart the logarithm and noting that the proba-
bilities PqA and PqB sum to one to give

F = −kB
∑

qA

PqA ln(PqA)− kB
∑

qB

PqB ln(PqB)

−ǫ1,A(
∑

qA

PqA − 1)− ǫ1,B(
∑

qB

PqB − 1)

−ǫ2(
∑

qA

PqAE
S
qA

+
∑

qB

PqBE
S
qB
− E)

Differentiation now produces

−kB ln(PqA)− kB − ǫ1,A − ǫ2E
S
qA

= 0

−kB ln(PqB)− kB − ǫ1,B − ǫ2E
S
qB

= 0

which produces PqA = C1,Ae
−ES

qA
/C2 and PqB = C1,Be

−ES
qB
/C2 and the common

constant C2 then implies that the two systems have the same temperature.
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D.61 Chemical potential in the distributions

The following convoluted derivation of the distribution functions comes fairly
straightly from Baierlein [4, pp. 170-]. Let it not deter you from reading the
rest of this otherwise very clearly written and engaging little book. Even a
nonengineering author should be allowed one mistake.

The derivations of the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein
distributions given previously, {D.57} and {D.58}, were based on finding the
most numerous or most probable distribution. That implicitly assumes that
significant deviations from the most numerous/probable distributions will be so
rare that they can be ignored. This note will bypass the need for such an as-
sumption since it will directly derive the actual expectation values of the single-
particle state occupation numbers ι. In particular for fermions, the derivation
will be solid as a rock.

The mission is to derive the expectation number ιn of particles in an arbitrary
single-particle state ψp

n. This expectation value, as any expectation value, is
given by the possible values times their probability:

ιn =
∑

q

inPq

where in is the number of particles that system energy eigenfunction ψS
q has

in single-particle state ψp
n, and Pq the probability of the eigenfunction. Since

thermal equilibrium is assumed, the canonical probability value e−E
S
q/kBT/Z can

be substituted for Pq. Then, if the energy ES
q is written as the sum of the ones

of the single particle states times the number of particles in that state, it gives:

ιn =
1

Z

∑

q

ine
−(i1Ep

1+i2E
p
2+...+in−1E

p
n−1+inE

p
n+in+1E

p
n+1+...)/kBT .

Note that in is the occupation number of single-particle state ψp
n, just like

Is was the occupation number of shelf s. Dealing with single-particle state
occupation numbers has an advantage over dealing with shelf numbers: you
do not have to figure out how many system eigenfunctions there are. For a
given set of single-particle state occupation numbers ~ı = |i1, i2, . . .〉, there is
exactly one system energy eigenfunction. Compare figures 11.2 and 11.3: if
you know how many particles there are in each single-particle state, you know
everything there is to know about the eigenfunction depicted. (This does not
apply to distinguishable particles, figure 11.1, because for them the numbers on
the particles can still vary for given occupation numbers, but as noted in chapter
11.11, there is no such thing as identical distinguishable particles anyway.)

It has the big consequence that the sum over the eigenfunctions can be
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replaced by sums over all sets of occupation numbers:

ιn =
1

Z

∑

i1

∑

i2

. . .
∑

in−1

∑

in

∑

in+1

. . .

︸ ︷︷ ︸
i1+i2+...+in−1+in+in+1+...=I

ine
−(i1Ep

1+i2E
p
2+...+in−1E

p
n−1+inE

p
n+in+1E

p
n+1+...)/kBT

Each set of single-particle state occupation numbers corresponds to exactly one
eigenfunction, so each eigenfunction is still counted exactly once. Of course, the
occupation numbers do have to add up to the correct number of particles in the
system.

Now consider first the case of I identical bosons. For them the occupation
numbers may have values up to a maximum of I:

ιn =
1

Z

I∑

i1=0

I∑

i2=0

. . .

I∑

in−1=0

I∑

in=0

I∑

in+1=0

. . .

︸ ︷︷ ︸
i1+i2+...+in−1+in+in+1+...=I

ine
−(i1Ep

1+i2E
p
2+...+in−1E

p
n−1+inE

p
n+in+1E

p
n+1+...)/kBT

One simplification that is immediately evident is that all the terms that have in
= 0 are zero and can be ignored. Now apply a trick that only a mathematician
would think of: define a new summation index i′n by setting in = 1 + i′n. Then
the summation over i′n can start at 0 and will run up to I − 1. Plugging in =
1 + i′n into the sum above gives

ιn =
1

Z

I∑

i1=0

. . .
I∑

in−1=0

I−1∑

i′n=0

I∑

in+1=0

. . .

︸ ︷︷ ︸
i1+...+in−1+i′n+in+1+...=I−1

(1 + i′n)e
−(i1Ep

1+...+in−1E
p
n−1+E

p
n+i

′
nE

p
n+in+1E

p
n+1+...)/kBT

This can be simplified by taking the constant part of the exponential out of
the summation. Also, the constraint in the bottom shows that the occupation
numbers can no longer be any larger than I − 1 (since the original in is at least
one), so the upper limits can be reduced to I − 1. Finally, the prime on i′n may
as well be dropped, since it is just a summation index and it does not make a
difference what name you give it. So, altogether,

ιn =
1

Z
e−E

p
n/kBT

I−1∑

i1=0

. . .
I−1∑

in−1=0

I−1∑

in=0

I−1∑

in+1=0

. . .

︸ ︷︷ ︸
i1+...+in−1+in+in+1+...=I−1

(1 + in)e
−(i1Ep

1+...+in−1E
p
n−1+inE

p
n+in+1E

p
n+1+...)/kBT
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The right hand side falls apart into two sums: one for the 1 in 1 + in and
one for the in in 1 + in. The first sum is essentially the partition function Z−

for a system with I − 1 particles instead of I. The second sum is essentially Z−

times the expectation value ι−n for such a system. To be precise

ιn =
1

Z
e−E

p
n/kBTZ−

[
1 + ι−n

]

This equation is exact, no approximations have been made yet.
The system with I − 1 particles is the same in all respects to the one for I

particles, except that it has one less particle. In particular, the single-particle
energy eigenfunctions are the same, which means the volume of the box is the
same, and the expression for the canonical probability is the same, meaning
that the temperature is the same.

But when the system is macroscopic, the occupation counts for I−1 particles
must be virtually identical to those for I particles. Clearly the physics should
not change noticeably depending on whether 1020 or 1020 + 1 particles are
present. If ι−n = ιn, then the above equation can be solved to give:

ιn = 1

/[
Z

Z−
eE

p
n/kBT − 1

]

The final formula is the Bose-Einstein distribution with

e−µ/kBT =
Z

Z−

Solve for µ:

µ = −kBT ln

(
Z

Z−

)
=
−kBT ln(Z) + kBT ln(Z−)

I − (I − 1)

The final fraction is a difference quotient approximation for the derivative of
the Helmholtz free energy with respect to the number of particles. Now a single
particle change is an extremely small change in the number of particles, so the
difference quotient will be to very great accuracy be equal to the derivative of
the Helmholtz free energy with respect to the number of particles. And as noted
earlier, in the obtained expressions, volume and temperature are held constant.
So, µ = (∂F/∂I)T,V , and (11.39) identified that as the chemical potential. Do
note that µ is on a single-particle basis, while µ̄ was taken to be on a molar basis.
The Avogadro number IA = 6.022 1 1026 particles per kmol converts between
the two.

Now consider the case of I identical fermions. Then, according to the ex-
clusion principle, there are only two allowed possibilities for the occupation
numbers: they can be zero or one:

ιn =
1

Z

1∑

i1=0

. . .

1∑

in−1=0

1∑

in=0

1∑

in+1=0

. . .

︸ ︷︷ ︸
i1+...+in−1+in+in+1+...=I

ine
−(i1Ep

1+...+in−1E
p
n−1+inE

p
n+in+1E

p
n+1+...)/kBT
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Again, all terms with in = 0 are zero, so you can set in = 1 + i′n and get

ιn =
1

Z

1∑

i1=0

. . .

1∑

in−1=0

0∑

i′n=0

1∑

in+1=0

. . .

︸ ︷︷ ︸
i1+...+in−1+i′n+in+1+...=I−1

(1 + i′n)e
−(i1Ep

1+...+in−1E
p
n−1+E

p
n+i

′
nE

p
n+in+1E

p
n+1+...)/kBT

But now there is a difference: even for a system with I − 1 particles i′n can still
have the value 1 but the upper limit is zero. Fortunately, since the above sum
only sums over the single value i′n = 0, the factor (1 + i′n) can be replaced by
(1− i′n) without changing the answer. And then the summation can include i′n
= 1 again, because (1− i′n) is zero when i′n = 1. This sign change produces the
sign change in the Fermi-Dirac distribution compared to the Bose-Einstein one;
the rest of the analysis is the same.

Here are some additional remarks about the only approximation made, that
the systems with I and I − 1 particles have the same expectation occupation
numbers. For fermions, this approximation is justified to the gills, because it
can be easily be seen that the obtained value for the occupation number is in
between those of the systems with I − 1 and I particles. Since nobody is going
to count whether a macroscopic system has 1020 particles or 1020 + 1, this is
truly as good as any theoretical prediction can possibly get.

But for bosons, it is a bit trickier because of the possibility of condensation.
Assume, reasonably, that when a particle is added, the occupation numbers
will not go down. Then the derived expression overestimates both expectation
occupation numbers ιn and ι−n . However, it could at most be wrong, (i.e. have
a finite relative error) for a finite number of states, and the number of single-
particle states will be large. (In the earlier derivation using shelf numbers,
the actual ιn was found to be lower than the Bose-Einstein value by a factor
(Ns − 1)/Ns with Ns the number of states on the shelf.)

If the factor ZeE
p
1/kBT/Z− is one exactly, which definitely means Bose-Ein-

stein condensation, then i1 = 1 + i−1 . In that case, the additional particle that
the system with I particles has goes with certainty into the ground state. So
the ground state better be unique then; the particle cannot go into two ground
states.

D.62 Fermi-Dirac integrals at low temperature

This note finds the basic Fermi-Dirac integrals for the free-electron gas at low
temperature. To summarize the main text, the number of particles and total
energy per unit volume are to be found from

I

V =

∫ ∞

0

ιfD dE
p E

V =

∫ ∞

0

E
p
ιfD dE

p
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where the Fermi-Dirac distribution and the density of states are:

ιf =
1

e(E
p−µ)/kBT + 1

D =
ns
4π2

(
2m

~2

)3/2√
E

p

and the number of spin states ns = 2s + 1 = 2 for systems of electrons. This
may be rewritten in terms of the scaled energies

u =
Ep

kBT
u0 =

µ

kBT

to give

I

V =
ns
4π2

(
2m

~2

)3/2

µ3/2

∫ ∞

u=0

(u/u0)
1/2

eu−u0 + 1
d(u/u0)

E

V =
ns
4π2

(
2m

~2

)3/2

µ5/2

∫ ∞

u=0

(u/u0)
3/2

eu−u0 + 1
d(u/u0)

To find the number of particles per unit volume for small but nonzero tem-
perature, in the final integral change integration variable to v = (u/u0) − 1,
then take the integral apart as

∫ 0

−1

√
1 + v dv −

∫ 0

−1

√
1 + veu0v dv

eu0v + 1
+

∫ ∞

0

√
1 + v dv

eu0v + 1

and clean it up, by dividing top and bottom of the center integral by the expo-
nential and then inverting the sign of v in the integral, to give

∫ 0

−1

√
1 + v dv +

∫ 1

0

(
√
1 + v −

√
1− v) dv

eu0v + 1
+

∫ ∞

1

√
1 + v dv

eu0v + 1

In the second integral, the range that is not killed off by the exponential
in the bottom is very small for large u0 and you can therefore approximate√
1 + v −

√
1− v as v, or using a Taylor series if still higher precision is re-

quired. (Note that the Taylor series only includes odd terms. That makes the
final expansions proceed in powers of 1/u20.) The range of integration can be
extended to infinity, since the exponential in the bottom is exponentially large
beyond v = 1. For the same reason, the third integral can be ignored com-
pletely. Note that

∫∞
0
x dx/(ex + 1) = π2/12, see [41, 18.81-82, p. 132] for this

and additional integrals.
Finding the number of particles per unit volume I/V this way and then

solving the expression for the Fermi level µ gives

µ = E
p
F −

π2

12

(
kBT

Ep
F

)2

E
p
F + . . . E

p
F =

(
6π2

ns

)2/3
~
2

2m

(
I

V

)2/3

(D.39)
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This used the approximations that µ ≈ Ep
F and u−20 is small, so

u−20 =

(
kBT

µ

)2

≈
(
kBT

Ep
F

)2 (
1 +

π2

8
u−20

)−2/3
≈ 1− 2

3

π2

8
u−20

The integral in the expression for the total energy per unit volume goes
exactly the same way. That gives the average energy per particle as

E

I
= E

p
ave =

3

5
E

p
F +

π2

4

(
kBT

Ep
F

)2

E
p
F + . . . (D.40)

To get the specific heat at constant volume, divide by m and differentiate with
respect to temperature:

Cv =
π2

2

kBT

Ep
F

kB
m

+ . . .

D.63 Angular momentum uncertainty

Suppose that an eigenstate, call it |m〉, of Ĵz is also an eigenstate of Ĵx. Then

[Ĵz, Ĵx]|m〉 must be zero, and the commutator relations say that this is equiv-

alent to Ĵy|m〉 = 0, which makes |m〉 also an eigenvector of Ĵy, and with the
eigenvalue zero to boot. So the angular momentum in the y-direction must be
zero. Repeating the same argument using the [Ĵx, Ĵy] and [Ĵy, Ĵz] commutator
pairs shows that the angular momentum in the other two directions is zero too.
So there is no angular momentum at all, |m〉 is an |0 0〉 state.

D.64 Spherical harmonics by ladder operators

One application of ladder operators is to find the spherical harmonics, which as
noted in chapter 4.2.3 is not an easy problem. To do it with ladder operators,
show that

L̂x =
~

i

(
− sinφ

∂

∂θ
− cos θ cosφ

sin θ

∂

∂φ

)
L̂y =

~

i

(
cosφ

∂

∂θ
− cos θ sinφ

sin θ

∂

∂φ

)

(D.41)
then that

L+ = ~eiφ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
L− = ~e−iφ

(
− ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
(D.42)

Note that the spherical harmonics are of the form Y m
l = eimφΘm

l (θ), so

L+Y m
l = ~ei(m+1)φ sinm θ

d(Θm
l / sin

m θ)

dθ
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L−Y m
l = −~ei(m−1)φ 1

sinm θ

d(Θm
l sinm θ)

dθ

Find the Y l
l harmonic from L̂+Y l

l = 0. That gives

Y l
l =

√
1

4π

(2l + 1)!

(2l l!)2
eilφ sinl θ =

√
1

4π

1 3 5 . . . (2l + 1)

2 4 6 . . . 2l
(x+ iy)l (D.43)

Now apply L̂− to find the rest of the ladder.
Interestingly enough, the solution of the one-dimensional harmonic oscillator

problem can also be found using ladder operators. It turns out that, in the
notation of that problem,

H+ = −ip̂+mωx̂ H− = ip̂+mωx̂

are commutator eigenoperators of the harmonic oscillator Hamiltonian, with
eigenvalues ±~ω. So, you can play the same games of constructing ladders.
Easier, really, since there is no equivalent to square angular momentum to worry
about in that problem: there is only one ladder. See [25, pp. 42-47] for details.
An equivalent derivation is given in addendum {A.15.5} based on quantum field
theory.

D.65 How to make Clebsch-Gordan tables

The procedure of finding the Clebsch-Gordan coefficients for the combination
of any two spin ladders is exactly the same as for electron ones, so it is simple
enough to program.

To further simplify things, it turns out that the coefficients are all square
roots of rational numbers (i.e. ratios of integers such as 102/38.) The step-
up and step-down operators by themselves produce square roots of rational
numbers, so at first glance it would appear that the individual Clebsch-Gordan
coefficients would be sums of square roots. But the square roots of a given
coefficient are all compatible and can be summed into one. To see why, consider
the coefficients that result from applying the combined step down ladder Ĵ−ab
a few times on the top of the ladder |j j〉a|j j〉b. Every contribution to the

coefficient of a state |j m〉a|j m〉b comes from applying Ĵ−a for ja−ma times and

Ĵ−b for jb − mb times, so all contributions have compatible square roots. Ĵ−ab
merely adds an mab dependent normalization factor.

You might think this pattern would be broken when you start defining the
tops of lower ladders, since that process uses the step up operators. But be-
cause Ĵ+Ĵ− and Ĵ−Ĵ+ are rational numbers (not square roots), applying the
up operators is within a rational number the same as applying the down ones,
and the pattern turns out to remain.
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Additional note: There is also a direct expression for the Clebsch-Gordan
coefficients:

〈j m|j1m1〉|j2m2〉 =

δm1+m2 m

√
(2j + 1)(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!/(j1 + j2 + j + 1)!

√
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!

zh∑

z=zl

(−1)z∏3
i=1(z − zli)!(zhi − z)!

where δ is the Kronecker delta and

zl1 = 0 zl2 = j1 +m2 − j zl3 = j2 −m1 − j zl = min(zl1, zl2, zl3)

zh1 = j1 + j2 − j zh2 = j1 −m1 zh2 = j2 +m2 zh = min(zh1, zh2, zh3)

Carefully coded, this one seems to be numerically superior at larger angular
momenta. Either way, these coefficients will overflow pretty quickly.

There are also resources on the web to compute these coefficients. See {N.13}
for additional information.

D.66 The triangle inequality

The normal triangle inequality continues to apply for expectation values in
quantum mechanics.

The way to show that is, like other triangle inequality proofs, rather curious:

examine the combination of ~̂Ja, not with ~̂J b, but with an arbitrary multiple λ

of ~̂J b:〈(
~Ja + λ~Jb

)2〉
=
〈
(Jx,a + λJx,b)

2〉+
〈
(Jy,a + λJy,b)

2〉+
〈
(Jz,a + λJz,b)

2〉

For λ = 1 this produces the expectation value of
(
~Ja + ~Jb

)2
, for λ = −1, the

one for
(
~Ja − ~Jb

)2
. In addition, it is positive for all values of λ, since it consists

of expectation values of square Hermitian operators. (Just examine each term
in terms of its own eigenstates.)

If you multiply out, you get
〈(

~Ja + λ~Jb

)2〉
= J2

a + 2Mλ+ J2
b λ

2
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where Ja ≡
√〈

J2
xa + J2

ya + J2
za

〉
, Jb ≡

√〈
J2
xb + J2

yb + J2
zb

〉
, and M represents

mixed terms that do not need to be written out. In order for this quadratic
form in λ to always be positive, the discriminant must be negative:

M2 − J2
aJ

2
b 6 0

which means, taking square roots,

−JaJb 6M 6 JaJb

and so

J2
a − 2JaJb + J2

b 6

〈(
~Ja + ~Jb

)2〉
6 J2

a + 2JaJb + J2
b

or

|Ja − Jb|2 6
〈(

~Ja + ~Jb

)〉2
6 |Ja + Jb|2

and taking square roots gives the triangle inequality.
Note that this derivation does not use any properties specific to angular

momentum and does not require the simultaneous existence of the components.
With a bit of messing around, the azimuthal quantum number relation |ja− jb|
6 jab 6 ja+jb can be derived from it if a unique value for jab exists; the key is to
recognize that J = j + δ where δ is an increasing function of j that stays below
1/2, and the j values must be half integers. This derivation is not as elegant as
using the ladder operators, but the result is the same.

D.67 Momentum of shells

Table 12.1 was originally taken from [36], who in turn took it from the book of
Mayer and Jensen. However, the final table contains three typos, as can be seen
from the fact that in three cases the numbers of states do not add up to the
correct total. (The errors are: for 3 particles with spin 9/2, the 13/2 combined
state is omitted, for 4 particles with spin 9/2, the spin 8 state should be double,
and for 4 particles with spin 11/2, a spin 7 (double) state is missing. Similarly,
[5, p. 140] has the same missing 13/2 combined state, and in addition for 3
particles with spin 7/2, there is a 1/2 state that should not be there.)

So table 12.1 was instead computer-generated, and should therefore be free
of typos. Since the program had to be written anyway, some more values were
generated and are in table D.1.

Deducing the table using Clebsch-Gordan coefficients would be a messy ex-
ercise indeed. A simpler procedure, [31], will here be illustrated for the example
that the number of fermions is I = 3 and the angular momentum of the single-
particle states is jp = 5/2. Then the possibilities for the single-particle angular
momentum in the z-direction are mp = 5/2,

3/2,
1/2, −1/2, −3/2, and −5/2. So there
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possible combined angular momentum j

jp I 1/2
3/2

5/2
7/2

9/2
11/2

13/2
15/2

17/2
19/2

21/2
23/2

25/2
27/2

29/2
31/2

33/2
35/2

37/2
39/2

41/2
43/2

45/2
47/2

49/2
51/2

53/2
55/2

57/2
59/2

61/2
63/2

13/2 1 1
3 1 1 1 2 2 2 2 2 1 2 1 1 1 1 1
5 1 3 5 5 7 7 8 8 8 7 8 6 6 5 5 3 3 2

2 1 1 1
7 3 4 7 9 10 11 13 12 13 12 12 10 11 8 8 6 5 4

4 2 2 1 1 1
15/2 1 1

3 1 1 1 2 2 2 3 2 2 2 2 1 2 1 1 1 1
1

5 2 4 6 8 9 11 11 13 12 13 12 12 11 11 9 9 7 7
5 5 3 3 2 2 1 1 1

7 4 10 13 17 21 24 25 29 28 29 29 29 26 27 23 22 19 18
14 14 10 9 7 6 4 4 2 2 1 1 1

possible combined angular momentum j

jp I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32

13/2 2 1 1 1 1 1 1 1
4 2 4 1 5 3 5 3 6 3 5 3 4 2 3 1 2 1 1

1
6 4 1 7 5 11 7 13 9 13 10 12 8 11 7 8 5 6 3 4

2 2 1 1 1
15/2 2 1 1 1 1 1 1 1 1

4 3 4 2 6 3 7 4 7 5 7 4 7 4 5 3 4 2 3
1 2 1 1 1

6 6 2 11 9 17 13 22 17 23 19 24 18 23 17 19 15 16 11 13
8 9 6 6 3 4 2 2 1 1 1

8 7 4 16 13 25 21 31 26 35 29 35 29 34 27 30 23 25 19 20
14 15 10 10 6 7 4 4 2 2 1 1 1

Table D.1: Additional combined angular momentum values.
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are 6 different one particle states, and these will give rise to 6!/3!(6-3)! = 20
different antisymmetric states for 3 particles, chapter 5.7.

The combination states can be chosen to have definite values of the com-
bined angular momentum j and momentum in the z-directionm. In the absence
of any antisymmetrization requirements, that can be seen from the way that
states combine using Clebsch-Gordan coefficients. And these states of definite
combined angular momentum must either be antisymmetric and allowable, or
symmetric and not allowed. The reason is that exchanging fermions does not
do anything physically, since the fermions are identical. So the angular mo-
mentum and particle exchange operators commute. Therefore, the eigenstates
of the angular momentum operators can also be taken to be eigenstates of the
particle exchange operators, which means either symmetric (eigenvalue 1) or
antisymmetric (eigenvalue −1).

Let m be the total magnetic quantum number of the 3 fermions in any
combination of jp = 5/2 single-particle states. First note that m is the sum
of the three mp values of the individual particles. Next, the highest that mp

can be is 5/2, but the fermions cannot all three be in the same mp = 5/2 state,
only one can. Three fermions need three different states, so the highest the
combined m can be is 5/2 +

3/2 +
1/2. This triplet of values of mp gives exactly

one antisymmetric combination of states with m = 9/2. (There is only one Slater
determinant for three different given states, chapter 5.7). Since the combined
angular momentum of this state in any arbitrary direction can never be observed
to be more than 9/2, because that would violate the above argument in a rotated
coordinate system, it must be a j = 9/2 state. The first conclusion is therefore
that the angular momenta cannot combine into a total greater than j = 9/2.
And since j cannot be less than m, there must be states with j = 9/2.

But note that if j = m = 9/2 is a valid combination of single-particle states,
then so should be the states with j = 9/2 for the other values of m; these can
be thought of as fully equivalent states simply oriented under a different angle.
That means that there are a total of 10 combination states with j = 9/2, in which
m is any one of 9/2,

7/2, . . . , −9/2.
Next consider what combinations have m = 7/2. The only combination of

three different mp values that adds up to 7/2 is 5/2 +
3/2 − 1/2. So there is only

one combined state with m = 7/2. Since it was already inferred above that there
must be one such state with j = 9/2, that must be the only one. So apparently
there is no state with j = 7/2: such a state would show up as a second m = 7/2
state under the right orientation.

There are two independent possibilities to create a triplet of different states
with m = 5/2:

5/2 +
3/2 − 3/2 or 5/2 +

1/2 − 1/2. One combination of such a type is
already identified as being a j = 9/2 state, so the second must correspond to a
j = 5/2 state. Since the orientation should again not make a difference, there
must be a total of 6 such states, one for each of the different values of m in the
range from 5/2 to −5/2.
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There are three ways to create a triplet of states with m = 3/2:
5/2 +

3/2 − 5/2,
5/2 +

1/2 − 3/2, and
3/2 +

1/2 − 1/2. Two of these are already identified as being j =
9/2 and j = 5/2, so there must be one set of 4 states with j = 3/2.

That makes a total of 20 states, so there must not be any states with j = 1/2.
Indeed, there are only three ways to produce m = 1/2:

5/2 +
1/2− 5/2,

5/2− 1/2− 3/2,
and 3/2 +

1/2− 3/2, and each of these three states is already assigned to a value of
j.

It is tricky, but it works. And it is easily put on a computer.
For bosons, the idea is the same, except that states with equal values of mp

can no longer be excluded.

D.68 Awkward questions about spin

Now of course you ask: how do you know how the mathematical expressions
for spin states change when the coordinate system is rotated around some axis?
Darn.

If you did a basic course in linear algebra, they will have told you how the
components of normal vectors change when the coordinate system is rotated,
but not spin vectors, or spinors, which are two-dimensional vectors in three-di-
mensional space.

You need to go back to the fundamental meaning of angular momentum.
The effect of rotations of the coordinate system around the z-axis was discussed
in addendum {A.19}. The expressions given there can be straightforwardly gen-
eralized to rotations around a line in the direction of an arbitrary unit vector
(nx, ny, nz). Rotation by an angle ϕ multiplies the n-direction angular momen-
tum eigenstates by eimϕ if m~ is the angular momentum in the n-direction. For
electron spin, the values for m are ±1

2
, so, using the Euler formula (2.5) for the

exponential, the eigenstates change by a factor

cos
(
1
2
ϕ
)
± i sin

(
1
2
ϕ
)

For arbitrary combinations of the eigenstates, the first of the two terms above
still represents multiplication by the number cos

(
1
2
ϕ
)
.

The second term may be compared to the effect of the n-direction angular
momentum operator Ĵn, which multiplies the angular momentum eigenstates by
±1

2
~; it is seen to be 2i sin

(
1
2
ϕ
)
Ĵn/~. So the operator that describes rotation

of the coordinate system over an angle ϕ around the n-axis is

Rn,ϕ = cos
(
1
2
ϕ
)
+ i sin

(
1
2
ϕ
) 2
~
Ĵn (D.44)

Further, in terms of the x, y, and z angular momentum operators, the an-
gular momentum in the n-direction is

Ĵn = nxĴx + nyĴy + nzĴz
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If you put it in terms of the Pauli spin matrices, ~ drops out:

Rn,ϕ = cos
(
1
2
ϕ
)
+ i sin

(
1
2
ϕ
)
(nxσx + nyσy + nzσz)

Using this operator, you can find out how the spin-up and spin-down states
are described in terms of correspondingly defined basis states along the x- or y-
axis, and then deduce these correspondingly defined basis states in terms of the
z ones.

Note however that the very idea of defining the positive x and y angular
momentum states from the z ones by rotating the coordinate system over 90◦

is somewhat specious. If you rotate the coordinate system over 450◦ instead,
you get a different answer! Off by a factor −1, to be precise. But that is as bad
as the indeterminacy gets; whatever way you rotate the axis system to the new
position, the basis vectors you get will either be the same or only a factor −1
different {D.69}.

More awkwardly, the negative momentum states obtained by rotation do not
lead to real positive numerical factors for the corresponding ladder operators.
Presumably, this reflects the fact that at the wave function level, nature does
not have the rotational symmetry that it has for observable quantities. Anyway,
if nature does not bother to obey such symmetry, then there seems no point in
pretending it does. Especially since the nonpositive ladder factors would mess
up various formulae. The negative spin states found by rotation go out of the
window. Bye, bye.

D.69 More awkwardness about spin

How about that? A note on a note.
The previous note brought up the question: why can you only change the

spin states you find in a given direction by a factor −1 by rotating your point
of view? Why not by i, say?

With a bit of knowledge of linear algebra and some thought, you can see
that this question is really: how can you change the spin states if you perform
an arbitrary number of coordinate system rotations that end up in the same
orientation as they started?

One way to answer this is to show that the effect of any two rotations of the
coordinate system can be achieved by a single rotation over a suitably chosen
net angle around a suitably chosen net axis. (Mathematicians call this showing
the “group” nature of the rotations.) Applied repeatedly, any set of rotations of
the starting axis system back to where it was becomes a single rotation around a
single axis, and then it is easy to check that at most a change of sign is possible.

(To show that any two rotations are equivalent to one, just crunch out the
multiplication of two rotations, which shows that it takes the algebraic form of
a single rotation, though with a unit vector ~n not immediately evident to be of



D.70. EMERGENCE OF SPIN FROM RELATIVITY 1385

length one. By noting that the determinant of the rotation matrix must be one,
it follows that the length is in fact one.)

D.70 Emergence of spin from relativity

This note will give a (relatively) simple derivation of the Dirac equation to show
how relativity naturally gives rise to spin. The equation will be derived without
ever mentioning the word spin while doing it, just to prove it can be done. Only
Dirac’s assumption that Einstein’s square root disappears,

√√√√(mc2)2 +
3∑

i=1

(p̂ic)
2 = α0mc

2 +
3∑

i=1

αip̂ic,

will be used and a few other assumptions that have nothing to do with spin.
The conditions on the coefficient matrices αi for the linear combination to

equal the square root can be found by squaring both sides in the equation above
and then comparing sides. They turn out to be:

α2
i = 1 for every i αiαj + αjαi = 0 for i 6= j (D.45)

Now assume that the matrices αi are Hermitian, as appropriate for measur-
able energies, and choose to describe the wave function vector in terms of the
eigenvectors of matrix α0. Under those conditions α0 will be a diagonal matrix,
and its diagonal elements must be ±1 for its square to be the unit matrix. So,
choosing the order of the eigenvectors suitably,

α0 =

(
1 0
0 −1

)

where the sizes of the positive and negative unit matrices in α0 are still unde-
cided; one of the two could in principle be of zero size.

However, since α0αi + αiα0 must be zero for the three other Hermitian αi
matrices, it is seen from multiplying that out that they must be of the form

α1 =

(
0 σ†1
σ1 0

)
α2 =

(
0 σ†2
σ2 0

)
α3 =

(
0 σ†3
σ3 0

)
.

The σi matrices, whatever they are, must be square in size or the αi matrices
would be singular and could not square to one. This then implies that the
positive and negative unit matrices in α0 must be the same size.

Now try to satisfy the remaining conditions on α1, α2, and α3 using just
complex numbers, rather than matrices, for the σi. By multiplying out the
conditions (D.45), you see that

αiαi = 1 =⇒ σ†iσi = σiσ
†
i = 1
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αiαj + αjαi = 0 =⇒ σ†iσj + σ†jσi = σiσ
†
j + σjσ

†
i = 0.

The first condition above would require each σi to be a number of magnitude
one, in other words, a number that can be written as eiφi for some real angle φi.
The second condition is then according to the Euler formula (2.5) equivalent to
the requirement that

cos (φi − φj) = 0 for i 6= j;

this implies that all three angles would have to be 90 degrees apart. That is
impossible: if φ2 and φ3 are each 90 degrees apart from φ1, then φ2 and φ3 are
either the same or apart by 180 degrees; not by 90 degrees.

It follows that the components σi cannot be numbers, and must be matrices
too. Assume, reasonably, that they correspond to some measurable quantity
and are Hermitian. In that case the conditions above on the σi are the same as
those on the αi, with one critical difference: there are only three σi matrices,
not four. And so the analysis repeats.

Choose to describe the wave function in terms of the eigenvectors of the σ3
matrix; this does not conflict with the earlier choice since all half wave function
vectors are eigenvectors of the positive and negative unit matrices in α0. So you
have

σ3 =

(
1 0
0 −1

)

and the other two matrices must then be of the form

σ1 =

(
0 τ †1
τ1 0

)
σ2 =

(
0 τ †2
τ2 0

)

But now the components τ1 and τ2 can indeed be just complex numbers, since
there are only two, and two angles can be apart by 90 degrees. You can take τ1
= eiφ1 and then τ2 = ei(φ1+π/2) or ei(φ1−π/2). The existence of two possibilities
for τ2 implies that on the wave function level, nature is not mirror symmetric;
momentum in the positive y-direction interacts differently with the x and z
momenta than in the opposite direction. Since the observable effects are mirror
symmetric, do not worry about it and just take the first possibility.

So, the goal of finding a formulation in which Einstein’s square root falls
apart has been achieved. However, you can clean up some more, by redefining
the value of τ1 away. If the four-dimensional wave function vector takes the
form (a1, a2, a3, a4), define ā1 = eiφ1/2a1, ā2 = e−iφ1/2a2 and similar for ā3 and
ā4.

In that case, the final cleaned-up σ matrices are

σ3 =

(
1 0
0 −1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
(D.46)

The “s” word has not been mentioned even once in this derivation. So, now
please express audible surprise that the σi matrices turn out to be the Pauli (it
can now be said) spin matrices of chapter 12.10.
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But there is more. Suppose you define a new coordinate system rotated 90
degrees around the z-axis. This turns the old y-axis into a new x-axis. Since
τ2 has an additional factor eiπ/2, to get the normalized coefficients, you must
include an additional factor eiπ/4 in ā1, which by the fundamental definition of
angular momentum discussed in addendum {A.19} means that it describes a
state with angular momentum 1/2~. Similarly a3 corresponds to a state with
angular momentum 1/2~ and a2 and a4 to ones with −1/2~.

For nonzero momentum, the relativistic evolution of spin and momentum
becomes coupled. But still, if you look at the eigenstates of positive energy,
they take the form: (

~a
ε(~p · ~σ)~a

)

where ε is a small number in the nonrelativistic limit and ~a is the two-component
vector (a1, a2). The operator corresponding to rotation of the coordinate system
around the momentum vector commutes with ~p ·~σ, hence the entire four-dimen-
sional vector transforms as a combination of a spin 1

2
~ state and a spin −1

2
~

state for rotation around the momentum vector.

D.71 Electromagnetic commutators

The purpose of this note is to identify the two commutators of chapter 13.1;
the one that produces the velocity (or rather, the rate of change in expectation
position), and the one that produces the force (or rather the rate of change in
expectation linear momentum). All basic properties of commutators used in the
derivations below are described in chapter 4.5.4.

The Hamiltonian is

H =
1

2m

(
~̂p− q ~A

)
·
(
~̂p− q ~A

)
+ qϕ =

1

2m

3∑

j=1

(p̂j − qAj)2 + qϕ

when the dot product is written out in index notation.

The rate of change in the expectation value of a position vector component
ri is according to chapter 7.2 given by

d〈ri〉
dt

=

〈
i

~
[H, ri]

〉

so you need the commutator

[H, ri] =

[
1

2m

3∑

j=1

(p̂j − qAj)2 + qϕ, ri

]
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Now the term qϕ can be dropped, since functions of position commute with
each other. On the remainder, use the fact that each of the two factors p̂j− qAj
comes out at its own side of the commutator, to give

[H, ri] =
1

2m

3∑

j=1

{
(p̂j − qAj)[p̂j − qAj, ri] + [p̂j − qAj, ri](p̂j − qAj)

}

and then again, since the vector potential is just a function of position too, the
qAj can be dropped from the commutators. What is left is zero unless j is the
same as i, since different components of position and momentum commute, and
when j = i, it is minus the canonical commutator, (minus since the order of ri
and p̂i is inverted), and the canonical commutator has value i~, so

[H, ri] = −
1

m
i~(p̂i − qAi)

Plugging this in the time derivative of the expectation value of position, you get

d〈ri〉
dt

=
1

m
〈p̂i − qAi〉

so the normal momentum mvi is indeed given by the operator p̂i − qAi.
On to the other commutator! The i-th component of Newton’s second law

in expectation form,

m
d〈vi〉
dt

=

〈
i

~
[H, p̂i − qAi]

〉
− q

〈
∂Ai
∂t

〉

requires the commutator

[H, p̂i − qAi] =
[

1

2m

3∑

j=1

(p̂j − qAj)2 + qϕ, pi − qAi
]

The easiest is the term qϕ, since both ϕ and Ai are functions of position and
commute. And the commutator with p̂i is the generalized fundamental operator
of chapter 4.5.4,

[qϕ, pi] = i~q
∂ϕ

∂ri

and plugging that into Newton’s equation, you can verify that the electric field
term of the Lorentz law has already been obtained.

In what is left of the desired commutator, again take each factor p̂j − qAj
to its own side of the commutator:

1

2m

3∑

j=1

{
(p̂j − qAj)[p̂j − qAj, pi − qAi] + [p̂j − qAj, pi − qAi](p̂j − qAj)

}
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Work out the simpler commutator appearing here first:

[p̂j − qAj, pi − qAi] = −q[pj, Ai]− q[Aj, pi] = i~q
∂Ai
∂rj
− i~q

∂Aj
∂ri

the first equality because momentum operators and functions commute, and the
second equality is again the generalized fundamental commutator.

Note that by assumption the derivatives of ~A are constants, so the side
of p̂j − qAj that this result appears is not relevant and what is left of the
Hamiltonian becomes

qi~

m

3∑

j=1

{
∂Ai
∂rj
− ∂Aj

∂ri

}
(p̂j − qAj)

Now let ı be the index following i in the sequence 123123 . . . and ı the one
preceding it (or the second following). Then the sum above will have a term
where j = i, but that term is seen to be zero, a term where j = ı, and a term
where j = ı. The total is then:

qi~

m

{
(p̂ı − qAı)

(
∂Ai
∂rı
− ∂Aı
∂ri

)
− (p̂ı − qAı)

(
∂Aı
∂ri
− ∂Ai
∂rı

)}

and that is

−qi~
m

{
(p̂ı − qAı)

(
∇× ~A

)
ı
− (p̂ı − qAı)

(
∇× ~A

)
ı

}

and the expression in brackets is the i-th component of (~̂p − q ~A) ×
(
∇× ~A

)

and produces the q~v × ~B term in Newton’s equation provided that ~B = ∇ × ~A.

D.72 Various electrostatic derivations.

This section gives various derivations for the electromagnetostatic solutions of
chapter 13.3.

D.72.1 Existence of a potential

This subsection shows that if the curl of the electric field ~E (or of any other
vector field, like the magnetic one or a force field), is zero, it is minus the
gradient of some potential.

That potential can be defined to be

ϕ(~r) = −
∫ ~r

~r0

~E(~r) d~r (D.47)
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where ~r0 is some arbitrarily chosen reference point. You might think that the
value of ϕ(~r) would depend on what integration path you took from the reference
point to ~r, but the Stokes’ theorem of calculus says that the difference between
integrals leading to the same path must be zero since ∇ × ~E is zero.

Now if you evaluate ϕ at a neighboring point ~r + ı̂∂x by a path first going
to ~r and from there straight to ~r + ı̂∂x, the difference in integrals is just the
integral over the final segment:

ϕ(~r + ı̂∂x)− ϕ(~r) = −
∫ ~r+ı̂∂x

~r

~E(~r) d~r (D.48)

Dividing by ∂x and then taking the limit ∂x → 0 shows that minus the x-
derivative of ϕ gives the x-component of the electric field. The same of course
for the other components, since the x-direction is arbitrary.

Note that if regions are multiply connected, the potential may not be quite
unique. The most important example of that is the magnetic potential of an
infinite straight electric wire. Since the curl of the magnetic field is nonzero
inside the wire, the path of integration must stay clear of the wire. It then
turns out that the value of the potential depends on how many times the chosen
integration path wraps around the wire. Indeed, the magnetic potential is ϕm
= −Iθ/2πǫ0c2. and as you know, an angle like θ is indeterminate by any integer
multiple of 2π.

D.72.2 The Laplace equation

The homogeneous Poisson equation,

∇2ϕ = 0 (D.49)

for some unknown function ϕ is called the Laplace equation. It is very important
in many areas of physics and engineering. This note derives some of its generic
properties.

The so-called mean-value property says that the average of ϕ over the surface
of any sphere in which the Laplace equation holds is the value of ϕ at the center
of the sphere. To see why, for convenience take the center of the sphere as the
origin of a spherical coordinate system. Now

0 =

∫

sphere

∇2ϕ d3~r

=

∫∫∫
∂ϕ

∂r
r2 sin θ dθdφ

=
1

4π

∫∫
∂ϕ

∂r
sin θ dθdφ

=
∂

∂r

1

4π

∫∫
ϕ sin θ dθdφ
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the first equality since ϕ satisfies the Laplace equation, the second because of the
divergence theorem, the third because the integral is zero, so a constant factor
does not make a difference, and the fourth by changing the order of integration
and differentiation. It follows that the average of ϕ is the same on all spherical
surfaces centered around the origin. Since this includes as a limiting case the
origin and the average of ϕ over the single point at the origin is just ϕ at the
origin, the mean value property follows.

The so called maximum-minimum principle says that either ϕ is constant
everywhere or its maximum and minimum are on a boundary or at infinity.
The reason is the mean-value property above. Suppose there is an absolute
maximum in the interior of the region in which the Laplace equation applies.
Enclose the maximum by a small sphere. Since the values of ϕ would be less
than the maximum on the surface of the sphere, the average value on the surface
must be less than the maximum too. But the mean value theorem says it must
be the same. The only way around that is if ϕ is completely constant in the
sphere, but then the “maximum” is not a true maximum. And then you can
start “sphere-hopping” to show that ϕ is constant everywhere. Minima go the
same way.

The only solution of the Laplace equation in all of space that is zero at
infinity is zero everywhere. In more general regions, as long as the solution is
zero on all boundaries, including infinity where relevant, then the solution is
zero everywhere. The reason is the maximum-minimum principle: if there was
a point where the solution was positive/negative, then there would have to be
an interior maximum/minimum somewhere.

The solution of the Laplace equation for given boundary values is unique.
The reason is that the difference between any two solutions must satisfy the
Laplace equation with zero boundary values, hence must be zero.

D.72.3 Egg-shaped dipole field lines

The egg shape of the ideal dipole field lines can be found by assuming that the
dipole is directed along the z-axis. Then the field lines in the xz-plane satisfy

dz

dx
=
Ez
Ex

=
2z2 − x2

3zx

Change to a new variable u by replacing z by xu to get:

x
du

dx
= −1 + u2

3u
=⇒

∫
3u du

1 + u2
= −

∫
dx

x

Integrating and replacing u again by z/x gives

(x2 + z2)3/2 = Cx2
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where C represents the integration constant from the integration. Near the
origin, x ∼ z3/2/C; therefore the field line has infinite curvature at the origin,
explaining the pronounced egg shape. Rewritten in spherical coordinates, the
field lines are given by r = C sin2 θ and φ constant, and that is also valid outside
the xz-plane.

D.72.4 Ideal charge dipole delta function

Next is the delta function in the electric field generated by a charge distribution
that is contracted to an ideal dipole. To find the precise delta function, the
electric field can be integrated over a small sphere, but still large enough that
on its surface the ideal dipole potential is valid. The integral will give the
strength of the delta function. Since the electric field is minus the gradient of
the potential, an arbitrary component Ei integrates to

∫

sphere

Ei d3~r = −
∫

sphere

∇ · (ϕı̂i) d3~r = −
∫

sphere surface

ϕni dA

where ı̂i is the unit vector in the i-direction and the divergence theorem of
calculus was used to convert the integral to an integral over the surface area
A of the sphere. Noting that the vector ~n normal to the surface of the sphere
equals ~r/r, and that the potential is the ideal dipole one, you get

∫

sphere

Ei d3~r = − 1

4πǫ0

∫

sphere surface

~℘ ·~r
r3

ri
r
dA

For simplicity, take the z-axis along the dipole moment; then ~℘ · ~r = ℘z. For
the x-component Ex, ri = x so that the integrand is proportional to xz, and
that integrates to zero over the surface of the sphere because the negative x-
values cancel the positive ones at the same z. The same for the y-component
of the field, so only the z-component, or more generally, the component in the
same direction as ~℘, has a delta function. For Ez, you are integrating z2, and by
symmetry that is the same as integrating x2 or y2, so it is the same as integrating
1
3
r2. Since the surface of the sphere equals 4πr2, the delta function included in

the expression for the field of a dipole as listed in table 13.2 is obtained.

D.72.5 Integrals of the current density

In subsequent derivations, various integrals of the current density ~ are needed.
In all cases it is assumed that the current density vanishes strongly outside some
region. Of course, normally an electric motor or electromagnet has electrical
leads going towards and away from of it; it is assumed that these are stranded
so tightly together that their net effect can be ignored.

Consider an integral like
∫
ri
mrnı ji d

3~r where ji is any component j1, j2, or
j3 of the current density, ı is the index following i in the sequence . . . 123123 . . .,
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m and n are nonnegative integers, and the integration is over all of space.
By integration by parts in the i-direction, and using the fact that the current
densities vanish at infinity,

∫
rmi r

n
ı ji d

3~r = −
∫

rm+1
i

m+ 1
rnı
∂ji
∂ri

d3~r

Now use the fact that the divergence of the current density is zero since the
charge density is constant for electromagnetostatic solutions:

∫
rmi r

n
ı ji d

3~r =

∫
rm+1
i

m+ 1
rnı
∂jı
∂rı

d3~r +

∫
rm+1
i

m+ 1
rnı
∂jı
∂rı

d3~r

where ı is the index preceding i in the sequence . . . 123123 . . .. The final integral
can be integrated in the ı-direction and is then seen to be zero because ~ vanishes
at infinity.

The first integral in the right hand side can be integrated by parts in the ı-
direction to give the final result:

∫
rmi r

n
ı ji d

3~r = −
∫

rm+1
i

m+ 1
nrn−1ı jı d

3~r (D.50)

It follows from this equation with m = 0, n = 1 that
∫
rijı d

3~r = −
∫
rıji d

3~r = µı ~µ ≡ 1
2

∫
~r × ~ d3~r (D.51)

with ~µ the current distribution’s dipole moment. In these expressions, you can
swap indices as

(i, ı, ı)→ (ı, ı, i) or (i, ı, ı)→ (ı, i, ı)

because only the relative ordering of the indices in the sequence . . . 123123 . . .
is relevant.

In quantum applications, it is often necessary to relate the dipole moment to
the angular momentum of the current carriers. Since the current density is the
charge per unit volume times its velocity, you get the linear momentum per unit
volume by multiplying by the ratio mc/qc of current carrier mass over charge.
Then the angular momentum is

~L =

∫
~r × mc

qc
~ d3~r =

2mc

qc
~µ

D.72.6 Lorentz forces on a current distribution

Next is the derivation of the Lorentz forces on a given current distribution ~
in a constant external magnetic field ~Bext. The Lorentz force law says that the
force ~F on a charge q moving with speed ~v equals

~F = q~v × ~Bext
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In terms of a current distribution, the moving charge per unit volume times
its velocity is the current density, so the force on a volume element d3~r is:

d~F = ~× ~Bext d
3~r

The net force on the current distribution is therefore zero, because according
to (D.50) with m = n = 0, the integrals of the components of the current
distribution are zero.

The moment is not zero, however. It is given by

~M =

∫
~r ×

(
~× ~Bext

)
d3~r

According to the vectorial triple product rule, that is

~M =

∫ (
~r · ~Bext

)
~ d3~r −

∫
(~r · ~) ~Bext d

3~r

The second integral is zero because of (D.50) with m = 1, n = 0. What is left
is can be written in index notation as

Mi =

∫
riBext,iji d3~r +

∫
rıBext,ıji d3~r +

∫
rıBext,ıji d3~r

The first of the three integrals is zero because of (D.50) with m = 1, n = 0.
The other two can be rewritten using (D.51):

Mi = −µıBext,ı + µıBext,ı

and in vector notation that reads

~M = ~µ× ~Bext

When the (frozen) current distribution is slowly rotated around the axis
aligned with the moment vector, the work done is

−M dα = −µBext sinα dα = d(µBext cosα)

where α is the angle between ~µ and ~Bext. By integration, it follows that the
work done corresponds to a change in energy for an energy given by

Eext = −~µ · ~Bext
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D.72.7 Field of a current dipole

A current density ~ creates a magnetic field because of Maxwell’s second and
fourth equations for the divergence and curl of the magnetic field:

∇ · ~B = 0 ∇× ~B =
1

ǫ0c2
~

where ~B vanishes at infinity assuming there is no additional ambient magnetic
field.

A magnetic vector potential ~A will now be defined as the solution of the
Poisson equation

∇2 ~A = − 1

ǫ0c2
~

that vanishes at infinity. Taking the divergence of this equation shows that
the divergence of the vector potential satisfies a homogeneous Poisson equation,
because the divergence of the current density is zero, with zero boundary con-
ditions at infinity. Therefore the divergence of the vector potential is zero. It
then follows that

~B = ∇× ~A

because it satisfies the equations for ~B: the divergence of any curl is zero, and
the curl of the curl of the vector potential is according to the vectorial triple
product its Laplacian, hence the correct curl of the magnetic field.

You might of course wonder whether there might not be more than one
magnetic field that has the given divergence and curl and is zero at infinity.
The answer is no. The difference between any two such fields must have zero
divergence and curl. Therefore the curl of the curl of the difference is zero too,
and the vectorial triple product shows that equal to minus the Laplacian of the
difference. If the Laplacian of the difference is zero, then the difference is zero,
since the difference is zero at infinity (subsection 2). So the solutions must be
the same.

Since the integrals of the current density are zero, (D.50) with m = n = 0,
the asymptotic expansion (13.31) of the Green’s function integral shows that at

large distances, the components of ~A behave as a dipole potential. Specifically,

Ai ∼
1

4πǫ0c2r3

3∑

i=1

ri

∫
riji d

3~r

Now the term i = i in the sum does not give a contribution, because of (D.50)
with m = 1, n = 0. The other two terms are

Ai ∼
1

4πǫ0c2r3

[
rı

∫
rıji d

3~r + rı

∫
rıji d

3~r

]
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with ı following i in the sequence . . . 123123 . . . and ı preceding it. These two
integrals can be rewritten using (D.51) to give

Ai ∼ −
1

4πǫ0c2r3
[rıµı − rıµı]

Note that the expression between brackets is just the i-th component of ~r × ~µ.

The magnetic field is the curl of ~A, so

Bi =
∂Aı
∂rı
− ∂Aı
∂rı

and substituting in for the vector potential from above, differentiating, and
cleaning up produces

Bi =
3(~µ ·~r)~r − ~µr2

4πǫ0c2r5

This is the same asymptotic field as a charge dipole with strength ~µ would have.

However, for an ideal current dipole, the delta function at the origin will be
different than that derived for a charge dipole in the first subsection. Integrate
the magnetic field over a sphere large enough that on its surface, the asymptotic
field is accurate: ∫

Bi d3~r =

∫
∂Aı
∂rı

d3~r −
∫
∂Aı
∂rı

d3~r

Using the divergence theorem, the right hand side becomes an integral over the
surface of the sphere:

∫
Bi d3~r =

∫
Aı
rı
r
dA−

∫
Aı
rı
r
dA

Substituting in the asymptotic expression for Ai above,

∫
Bi d3~r = − 1

4πǫ0c2r4

[∫
(riµı − rıµi)rı dA−

∫
(rıµi − riµı)rı dA

]

The integrals of rirı and rirı are zero, for one because the integrand is odd in
ri. The integrals of rırı and rırı are each one third of the integral of r2 because
of symmetry. So, noting that the surface area A of the spherical surface is 4πr2,

∫
Bi d3~r =

2

3ǫ0c2
µi

That gives the strength of the delta function for an ideal current dipole.
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D.72.8 Biot-Savart law

In the previous section, it was noted that the magnetic field of a current dis-
tribution is the curl of a vector potential ~A. This vector potential satisfies the
Poisson equation

∇2 ~A = − 1

ǫ0c2
~

The solution for the vector potential can be written explicitly in terms of the
current density using the Green’s function integral (13.29):

Ai =
1

4πǫ0c2

∫
1

|~r −~r|ji(~r) d
3~r

The magnetic field is the curl of ~A,

Bi =
∂Aı
∂rı
− ∂Aı
∂rı

or substituting in and differentiating under the integral

Bi = −
1

4πǫ0c2

∫
rı − rı
|~r −~r|3 jı(~r)−

rı − rı
|~r −~r|3 jı(~r) d

3~r

In vector notation that gives the Biot-Savart law

~B = − 1

4πǫ0c2

∫
~r −~r
|~r −~r|3 × ~ d

3~r

Now assume that the current distribution is limited to one or more thin wires,
as it usually is. In that case, a volume element of nonzero current distribution
can be written as

~ d3~r = I d~r

where in the right hand side ~r describes the position of the centerline of the wire
and I is the current through the wire. More specifically, I is the integral of the
current density over the cross section of the wire. The Biot-Savart law becomes

~B = − 1

4πǫ0c2

∫
~r −~r
|~r −~r|3 × I(~r) d~r

where the integration is over all infinitesimal segments d~r of the wires.

D.73 Orbital motion in a magnetic field

This note derives the energy of a charged particle in an external magnetic field.
The field is assumed constant.



1398 APPENDIX D. DERIVATIONS

According to chapter 13.1, the Hamiltonian is

H =
1

2m

(
~̂p− q ~A

)2
+ V

where m and q are the mass and charge of the particle and the vector potential
~A is related to the magnetic field ~B by ~B = ∇ × ~A. The potential energy V is
of no particular interest in this note. The first term is, and it can be multiplied
out as:

H =
1

2m
~̂p

2 − q

2m

(
~̂p · ~A+ ~A · ~̂p

)
+

q2

2m

(
~A
)2

+ V

The middle two terms in the right hand side are the changes in the Hamiltonian
due to the magnetic field; they will be denoted as:

HBL ≡ −
q

2m

(
~̂p · ~A+ ~A · ~̂p

)
HBD ≡

q2

2m

(
~A
)2

Now to simplify the analysis, align the z-axis with ~B so that ~B = k̂Bz. Then
an appropriate vector potential ~A is

~A = −ı̂1
2
yBz + ̂1

2
xBz.

The vector potential is not unique, but a check shows that indeed ∇ × ~A =
k̂Bz = ~B for the one above. Also, the canonical momentum is

~̂p =
~

i
∇ = ı̂

~

i

∂

∂x
+ ̂

~

i

∂

∂y
+ k̂

~

i

∂

∂z

Therefore, in the term HBL above,

HBL = − q

2m
(~̂p · ~A+ ~A · ~̂p) = − q

2m
Bz
(
x
~

i

∂

∂y
− y~

i

∂

∂x

)
= − q

2m
BzL̂z

the latter equality being true because of the definition of angular momentum as

~r × ~̂p. Because the z-axis was aligned with ~B, BzL̂z = ~B · ~̂L, so, finally,

HBL = − q

2m
~B · ~̂L.

Similarly, in the part HBD of the Hamiltonian, substitution of the expression
for ~A produces

q2

2m

(
~A
)2

=
q2

8m
B2
z

(
x2 + y2

)
,

or writing it so that it is independent of how the z-axis is aligned,

HBD =
q2

8m

(
~B ×~r

)2
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D.74 Electron spin in a magnetic field

If you are curious how the magnetic dipole strength of the electron can just pop
out of the relativistic Dirac equation, this note gives a quick derivation.

First, a problem must be addressed. Dirac’s equation, chapter 12.12, as-
sumes that Einstein’s energy square root falls apart in a linear combination of
terms:

H =

√√√√(mc2)2 +
3∑

i=1

(p̂ic)
2 = α0mc

2 +
3∑

i=1

αip̂ic

which works for the 4 × 4 α matrices given in that section. For an electron in
a magnetic field, according to chapter 13.1 you want to replace ~̂p with ~̂p − q ~A
where ~A is the magnetic vector potential. But where should you do that, in the
square root or in the linear combination? It turns out that the answer you get
for the electron energy is not the same.

If you believe that the Dirac linear combination is the way physics really
works, and its description of spin leaves little doubt about that, then the answer
is clear: you need to put ~̂p − q ~A in the linear combination, not in the square
root.

So, what are now the energy levels? That would be hard to say directly from
the linear form, so square it down to H2, using the properties of the α matrices,
as given in chapter 12.12 and its note. You get, in index notation,

H2 =
(
mc2

)2
I +

3∑

i=1

(
(p̂i − qAi)c

)2
I +

3∑

i=1

[p̂ı − qAı, p̂ı − qAı]c2αıαı

where I is the four by four unit matrix, ı is the index following i in the sequence
123123. . . , and ı is the one preceding i. The final sum represents the additional
squared energy that you get by substituting ~̂p − q ~A in the linear combination
instead of the square root. The commutator arises because αıαı + αıαı = 0,
giving the terms with the indices reversed the opposite sign. Working out the
commutator using the formulae of chapter 4.5.4, and the definition of the vector
potential ~A,

H2 =
(
mc2

)2
I +

3∑

i=1

(
(p̂i − qAi)c

)2
I + q~c2i

3∑

i=1

Biαıαı.

By multiplying out the expressions for the αi of chapter 12.12, using the
fundamental commutation relation for the Pauli spin matrices that σıσı = iσi,

H2 =
(
mc2

)2
I +

3∑

i=1

(
(p̂i − qAi)c

)2
I − q~c2

3∑

i=1

Bi
(
σi 0
0 σi

)
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It it seen that due to the interaction of the spin with the magnetic field, the
square energy changes by an amount −qhc2σiBi. Since 1

2
~ times the Pauli spin

matrices gives the spin ~̂S, the square energy due to the magnetic field acting on

the spin is −2qc2 ~̂S · ~B.
In the nonrelativistic case, the rest mass energy mc2 is much larger than the

other terms, and in that case, if the change in square energy is −2qc2 ~̂S · ~B, the
change in energy itself is smaller by a factor 2mc2, so the energy due to the
magnetic field is

HBS = − q

m
~̂S · ~B (D.52)

which is what was to be proved.

D.75 Solving the NMR equations

To solve the two coupled ordinary differential equations for the spin up and
down probabilities, first get rid of the time dependence of the right-hand-side
matrix by defining new variables A and B by

a = Aeiωt/2, b = Be−iωt/2.

Then find the eigenvalues and eigenvectors of the now constant matrix. The
eigenvalues can be written as ±iω1/f , where f is the resonance factor given in
the main text. The solution is then

(
A
B

)
= C1~v1e

iω1t/f + C2~v2e
−iω1t/f

where ~v1 and ~v2 are the eigenvectors. To find the constants C1 and C2, apply
the initial conditions A(0) = a(0) = a0 and B(0) = b(0) = b0 and clean up
as well as possible, using the definition of the resonance factor and the Euler
formula.

It’s a mess.

D.76 Harmonic oscillator revisited

This note rederives the harmonic oscillator solution, but in spherical coordi-
nates. The reason to do so is to obtain energy eigenfunctions that are also
eigenfunctions of square angular momentum and of angular momentum in the
z-direction. The derivation is very similar to the one for the hydrogen atom
given in derivation {D.15}, so the discussion will mainly focus on the differ-
ences.
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The solutions are again in the form R(r)Y m
l (θ, φ) with the Y m

l the spherical
harmonics. However, the radial functions R are different; the equation for them
is now

− 1

R

d

dr

(
r2
dR

dr

)
+ l(l + 1) +

2me

~2
1
2
meω

2r4 =
2me

~2
r2E

The difference from {D.15} is that a harmonic oscillator potential 1
2
meω

2r2 has

replaced the Coulomb potential. A suitable rescaling is now r = ρ
√
~/meω,

which produces

− 1

R

d

dρ

(
ρ2

dR

dρ

)
+ l(l + 1) + ρ4 = ρ2ǫ

where ǫ = E/1
2
~ω is the energy in half quanta.

Split off the expected asymptotic behavior for large ρ by defining

R = e−ρ
2/2f

Then f satisfies

ρ2f ′′ + 2ρf ′ − l(l + 1)f = 2ρ3f ′ + (3− ǫ)ρ2f

Plug in a power series f =
∑

p cpρ
p, then the coefficients must satisfy:

[p(p+ 1)− l(l + l)]cp = [2(p− 2) + 3− ǫ]cp−2
From that it is seen that the lowest power in the series is pmin = l, pmin = −l−1
not being acceptable. Also the series must terminate, or blow up will occur.
That requires that ǫ = 2pmax+3. So the energy must be (pmax+

3
2
)~ω with pmax

an integer no smaller than l, so at least zero.
Therefore, numbering the energy levels from n = 1 like for the hydrogen

level gives the energy levels as

En = (n+
1

2
)~ω

That are the same energy levels as derived in Cartesian coordinates, as they
should be. However, the eigenfunctions are different. They are of the form

ψnlm = e−ρ
2/2Pnl(ρ)Y

m
l (θ, φ)

where Pnl is some polynomial of degree n − 1, whose lowest power of ρ is ρl.
The value of the azimuthal quantum number l must run up to n − 1 like for
the hydrogen atom. However, in this case l must be odd or even depending on
whether n− 1 is odd or even, or the power series will not terminate.

Note that for even l, the power series proceed in even powers of r. These
eigenfunctions are said to have even parity: if you replace r by −r, they are
unchanged. Similarly, the eigenfunctions for odd l expand in odd powers of r.
They are said to have odd parity; if you replace r by −r, they change sign.



1402 APPENDIX D. DERIVATIONS

D.77 Impenetrable spherical shell

To solve the problem of particles stuck inside an impenetrable shell of radius a,
refer to addendum {A.6}. According to that addendum, the solutions without
unacceptable singularities at the center are of the form

ψElm(r, θ, φ) ∝ jl(prmcr/~)Y
m
l (θ, φ) prmc ≡

√
2m(E − V ) (D.53)

where the jl are the spherical Bessel functions of the first kind, the Y m
l the

spherical harmonics, and prmc is the classical momentum of a particle with
energy E. V0 is the constant potential inside the shell, which can be taken to
be zero without fundamentally changing the solution.

Because the wave function must be zero at the shell r = a, prmca/~ must
be one of the zero-crossings of the spherical Bessel functions. Therefore the
allowable energy levels are

En̄l =
hbar2

2ma2
β2
n̄l + V0 (D.54)

where βn̄l is the n̄-th zero-crossing of spherical Bessel function jl (not counting
the origin). Those crossings can be found tabulated in for example [1], (under
the guise of the Bessel functions of half-integer order.)

In terms of the count n of the energy levels of the harmonic oscillator, n̄ =
1 corresponds to energy level n = l + 1, and each next value of n̄ increases the
energy levels by two, so

n = l − 1 + 2n̄

D.78 Shell model quadrupole moment

The result for one proton is readily available in literature and messy to derive
yourself. If you want to give it a try anyway, one way is the following. Note
that in spherical coordinates

3z2 − r2 = 2r2 − 3r2 sin2 θ

and the first term produces 2〈r2〉 simply by the definition of expectation value.
The problem is to get rid of the sin2 θ in the second expectation value.

To do so, use chapter 12.8, 2. That shows that the second term is essentially
3〈r2〉 modified by factors of the form

〈Y l
l |sin2θY l

l 〉 and 〈Y l−1
l |sin2θY l−1

l 〉
where the integration is over the unit sphere. If you use the representation of
the spherical harmonics as given in {D.64}, you can relate these inner products
to the unit inner products

〈Y l+1
l+1 |Y l+1

l+1 〉 and 〈Y l
l+1|Y l

l+1〉
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Have fun.
The expression for the quadrupole moment if there are an odd number i >

3 of protons in the shell would seem to be a very messy exercise. Some text
books suggest that the odd-particle shell model implies that the one-proton
value applies for any odd number of protons in the shell. However, it is clear
from the state with a single hole that this is untrue. The cited result that the
quadrupole moment varies linearly with the odd number of protons in the shell
comes directly from Krane, [31, p. 129]. No derivation or reference is given. In
fact, the restriction to an odd number of protons is not even stated. If you have
a reference or a simple derivation, let me know and I will add it here.

D.79 Derivation of perturbation theory

This note derives the perturbation theory results for the solution of the eigen-
value problem (H0 + H1)ψ = Eψ where H1 is small. The considerations for
degenerate problems use linear algebra.

First, “small” is not a valid mathematical term. There are no small num-
bers in mathematics, just numbers that become zero in some limit. Therefore,
to mathematically analyze the problem, the perturbation Hamiltonian will be
written as

H1 ≡ εHε

where ε is some chosen number that physically indicates the magnitude of the
perturbation potential. For example, if the perturbation is an external elec-
tric field, ε could be taken as the reference magnitude of the electric field. In
perturbation analysis, ε is assumed to be vanishingly small.

The idea is now to start with a good eigenfunction ψ~n,0 of H0, (where “good”
is still to be defined), and correct it so that it becomes an eigenfunction of H
= H0 + H1. To do so, both the desired energy eigenfunction and its energy
eigenvalue are expanded in a power series in terms of ε:

ψ~n = ψ~n,0 + εψ~n,ε + ε2ψ~n,ε2 + . . .

E~n = E~n,0 + εE~n,ε + ε2E~n,ε2 + . . .

If ε is a small quantity, then ε2 will be much smaller still, and can probably be
ignored. If not, then surely ε3 will be so small that it can be ignored. A result
that forgets about powers of ε higher than one is called first order perturbation
theory. A result that also includes the quadratic powers, but forgets about
powers higher than two is called second order perturbation theory, etcetera.

Before proceeding with the practical application, a disclaimer is needed.
While it is relatively easy to see that the eigenvalues expand in whole powers
of ε, (note that they must be real whether ε is positive or negative), it is much
more messy to show that the eigenfunctions must expand in whole powers. In
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fact, for degenerate energies E~n,0 they only do if you choose good states ψ~n,0.
See Rellich’s lecture notes on Perturbation Theory [Gordon & Breach, 1969]
for a proof. As a result the problem with degeneracy becomes that the good
unperturbed eigenfunction ψ~n,0 is initially unknown. It leads to lots of messiness
in the procedures for degenerate eigenvalues described below.

When the above power series are substituted into the eigenvalue problem to
be solved,

(H0 + εHε)ψ~n = E~nψ~n

the net coefficient of every power of ε must be equal in the left and right hand
sides. Collecting these coefficients and rearranging them appropriately pro-
duces:

ε0 : (H0 − E~n,0)ψ~n,0 = 0

ε1 : (H0 − E~n,0)ψ~n,ε = −Hεψ~n,0 + E~n,εψ~n,0

ε2 : (H0 − E~n,0)ψ~n,ε2 = −Hεψ~n,ε + E~n,εψ~n,ε + E~n,ε2ψ~n,0

ε3 : (H0 − E~n,0)ψ~n,ε3 = −Hεψ~n,ε2 + E~n,εψ~n,ε2 + E~n,ε2ψ~n,ε + E~n,ε3ψ~n,0

... · · ·

These are the equations to be solved in succession to give the various terms in
the expansion for the wave function ψ~n and the energy E~n. The further you go
down the list, the better your combined result should be.

Note that all it takes is to solve problems of the form

(H0 − E~n,0)ψ~n,... = . . .

The equations for the unknown functions are in terms of the unperturbed Hamil-
tonian H0, with some additional but in principle knowable terms.

For difficult perturbation problems like you find in engineering, the use of a
small parameter ε is essential to get the mathematics right. But in the simple
applications in quantum mechanics, it is usually overkill. So most of the time
the expansions are written without, like

ψ~n = ψ~n,0 + ψ~n,1 + ψ~n,2 + . . .

E~n = E~n,0 + E~n,1 + E~n,2 + . . .

where you are assumed to just imagine that ψ~n,1 and E~n,1 are “first order small,”
ψ~n,2 and E~n,2 are “second order small,” etcetera. In those terms, the successive
equations to solve are:

(H0 − E~n,0)ψ~n,0 = 0 (D.55)
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(H0 − E~n,0)ψ~n,1 = −H1ψ~n,0 + E~n,1ψ~n,0 (D.56)

(H0 − E~n,0)ψ~n,2 = −H1ψ~n,1 + E~n,1ψ~n,1 + E~n,2ψ~n,0 (D.57)

(H0 − E~n,0)ψ~n,3 = −H1ψ~n,2 + E~n,1ψ~n,2 + E~n,2ψ~n,1 + E~n,3ψ~n,0 (D.58)

· · ·

Now consider each of these equations in turn. First, (D.55) is just the
Hamiltonian eigenvalue problem for H0 and is already satisfied by the chosen
unperturbed solution ψ~n,0 and its eigenvalue E~n,0. However, the remaining equa-
tions are not trivial. To solve them, write their solutions in terms of the other
eigenfunctions ψ~n,0 of the unperturbed Hamiltonian H0. In particular, to solve
(D.56), write

ψ~n,1 =
∑

~n 6=~n
c~n,1ψ~n,0

where the coefficients c~n,1 are still to be determined. The coefficient of ψ~n,0 is
zero on account of the normalization requirement. (And in fact, it is easiest to
take the coefficient of ψ~n,0 also zero for ψ~n,2, ψ~n,3, . . . , even if it means that the
resulting wave function will no longer be normalized.)

The problem (D.56) becomes

∑

~n 6=~n
c~n,1(E~n,0 − E~n,0)ψ~n,0 = −H1ψ~n,0 + E~n,1ψ~n,0

where the left hand side was cleaned up using the fact that the ψ~n,0 are eigen-
functions of H0. To get the first order energy correction E~n,1, the trick is now to
take an inner product of the entire equation with 〈ψ~n,0|. Because of the fact that
the energy eigenfunctions of H0 are orthonormal, this inner product produces
zero in the left hand side, and in the right hand side it produces:

0 = −H~n~n,1 + E~n,1 H~n~n,1 = 〈ψ~n,0|H1ψ~n,0〉

And that is exactly the first order correction to the energy claimed in {A.38.1};
E~n,1 equals the Hamiltonian perturbation coefficient H~n~n,1. If the problem is
not degenerate or ψ~n,0 is good, that is.

To get the coefficients c~n,1, so that you know what is the first order correction
ψ~n,1 to the wave function, just take an inner product with each of the other
eigenfunctions 〈ψ~n,0| of H0 in turn. In the left hand side it only leaves the
coefficient of the selected eigenfunction because of orthonormality, and for the
same reason, in the right hand side the final term drops out. The result is

c~n,1(E~n,0 − E~n,0) = −H~n~n,1 for ~n 6= ~n H~n~n,1 = −〈ψ~n,0|H1ψ~n,0〉

The coefficients c~n,1 can normally be computed from this.
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Note however that if the problem is degenerate, there will be eigenfunctions
ψ~n,0 that have the same energy E~n,0 as the eigenfunction ψ~n,0 being corrected.
For these the left hand side in the equation above is zero, and the equation
cannot in general be satisfied. If so, it means that the assumption that an
eigenfunction ψ~n of the full Hamiltonian expands in a power series in ε starting
from ψ~n,0 is untrue. Eigenfunction ψ~n,0 is bad. And that means that the first
order energy correction derived above is simply wrong. To fix the problem, what
needs to be done is to identify the submatrix of all Hamiltonian perturbation
coefficients in which both unperturbed eigenfunctions have the energy E~n,0, i.e.
the submatrix

all H~ni~nj ,1 with E~ni,0 = E~nj ,0 = E~n,0

The eigenvalues of this submatrix are the correct first order energy changes.
So, if all you want is the first order energy changes, you can stop here. Oth-
erwise, you need to replace the unperturbed eigenfunctions that have energy
E~n,0. For each orthonormal eigenvector (c1, c2, . . .) of the submatrix, there is a
corresponding replacement unperturbed eigenfunction

c1ψ~n1,0,old + c2ψ~n2,0,old + . . .

You will need to rewrite the Hamiltonian perturbation coefficients in terms
of these new eigenfunctions. (Since the replacement eigenfunctions are linear
combinations of the old ones, no new integrations are needed.) You then need
to reselect the eigenfunction ψ~n,0 whose energy to correct from among these
replacement eigenfunctions. Choose the first order energy change (eigenvalue
of the submatrix) E~n,1 that is of interest to you and then choose ψ~n,0 as the
replacement eigenfunction corresponding to a corresponding eigenvector. If the
first order energy change E~n,1 is not degenerate, the eigenvector is unique, so
ψ~n,0 is now good. If not, the good eigenfunction will be some combination of
the replacement eigenfunctions that have that first order energy change, and
the good combination will have to be figured out later in the analysis. In any
case, the problem with the equation above for the c~n,1 will be fixed, because the
new submatrix will be a diagonal one: H~n~n,1 will be zero when E~n,0 = E~n,0 and
~n 6= ~n. The coefficients c~n,1 for which E~n,0 = E~n,0 remain indeterminate at this
stage. They will normally be found at a later stage in the expansion.

With the coefficients c~n,1 as found, or not found, the sum for the first order
perturbation ψ~n,1 in the wave function becomes

ψ~n,1 = −
∑

E~n,0 6=E~n,0

H~n~n,1

E~n,0 − E~n,0
ψ~n,0 +

∑

E~n,0=E~n,0

~n 6=~n

c~n,1ψ~n,0

The entire process repeats for higher order. In particular, to second order
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(D.57) gives, writing ψ~n,2 also in terms of the unperturbed eigenfunctions,

∑

~n

c~n,2(E~n,0 − E~n,0)ψ~n,0 =
∑

E~n,0 6=E~n,0

H~n~n,1

E~n,0 − E~n,0
(H1 − E~n,1)ψ~n,0

−
∑

E~n,0=E~n,0

~n 6=~n

c~n,1 (H1 − E~n,1)ψ~n,0 + E~n,2ψ~n,0

To get the second order contribution to the energy, take again an inner product
with 〈ψ~n,0|. That produces, again using orthonormality, (and diagonality of the
submatrix discussed above if degenerate),

0 =
∑

E~n,0 6=E~n,0

H~n~n,1H~n~n,1

E~n,0 − E~n,0
+ E~n,2

This gives the second order change in the energy stated in {A.38.1}, if ψ~n,0
is good. Note that since H1 is Hermitian, the product of the two Hamiltonian
perturbation coefficients in the expression is just the square magnitude of either.

In the degenerate case, when taking an inner product with a 〈ψ~n,0| for which
E~n,0 = E~n,0, the equation can be satisfied through the still indeterminate c~n,1
provided that the corresponding diagonal coefficient H~n~n,1 of the diagonalized
submatrix is unequal to E~n,1 = H~n~n,1. In other words, provided that the first
order energy change is not degenerate. If that is untrue, the higher order sub-
matrix

all
∑

E~n,0 6=E~n,0

H~ni~n,1H~n~nj ,1

E~n,0 − E~n,0
with E~ni,0 = E~nj ,0 = E~n,0 E~ni,1 = E~nj ,1 = E~n,1

will need to be diagonalized, (the rest of the equation needs to be zero). Its
eigenvalues give the correct second order energy changes. To proceed to still
higher energy, reselect the eigenfunctions following the same general lines as
before. Obviously, in the degenerate case the entire process can become very
messy. And you may never become sure about the good eigenfunction.

This problem can often be eliminated or greatly reduced if the eigenfunctions
of H0 are also eigenfunctions of another operator A, and H1 commutes with A.
Then you can arrange the eigenfunctions ψ~n,0 into sets that have the same
value for the “good” quantum number a of A. You can analyze the perturbed
eigenfunctions in each of these sets while completely ignoring the existence of
eigenfunctions with different values for quantum number a.

To see why, consider two example eigenfunctions ψ1 and ψ2 of A that have
different eigenvalues a1 and a2. Since H0 and H1 both commute with A, their
sum H does, so

0 = 〈ψ2|(HA− AH)ψ1〉 = 〈ψ2|HAψ1〉+ 〈Aψ2|Hψ1〉 = (a1 − a2)〈ψ2|H|ψ1〉
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and since a1− a2 is not zero, 〈ψ2|H|ψ1〉 must be. Now 〈ψ2|H|ψ1〉 is the amount
of eigenfunction ψ2 produced by applying H on ψ1. It follows that applying H
on an eigenfunction with an eigenvalue a1 does not produce any eigenfunctions
with different eigenvalues a. Thus an eigenfunction of H satisfying

H

(∑

a=a1

c~nψ~n,0 +
∑

a 6=a1

c~nψ~n,0

)
= E~n

(∑

a=a1

c~nψ~n,0 +
∑

a 6=a1

c~nψ~n,0

)

can be replaced by just
∑

a=a1
c~nψ~n,0, since this by itself must satisfy the eigen-

value problem: the Hamiltonian of the second sum does not produce any amount
of eigenfunctions in the first sum and vice-versa. (There must always be at least
one value of a1 for which the first sum at ε = 0 is independent of the other eigen-
functions of H.) Reduce every eigenfunction of H to an eigenfunction of A in
this way. Now the existence of eigenfunctions with different values of a than
the one being analyzed can be ignored since the Hamiltonian does not produce
them. In terms of linear algebra, the Hamiltonian has been reduced to block
diagonal form, with each block corresponding to a set of eigenfunctions with a
single value of a. If the Hamiltonian also commutes with another operator B
that the ψ~n,0 are eigenfunctions of, the argument repeats for the subsets with a
single value for b.

The Hamiltonian perturbation coefficient 〈ψ2|H1|ψ1〉 is zero whenever two
good quantum numbers a1 and a2 are unequal. The reason is the same as for
〈ψ2|H|ψ1〉 above. Only perturbation coefficients for which all good quantum
numbers are the same can be nonzero.

D.80 Hydrogen ground state Stark effect

This note derives the Stark effect on the hydrogen ground state. Since spin is
irrelevant for the Stark effect, it will be ignored.

The unperturbed ground state of hydrogen was derived in chapter 4.3. Fol-
lowing the convention in perturbation theory to append a subscript zero to the
unperturbed state, it can be summarized as:

H0ψ100,0 = E100,0ψ100,0 H0 = −
~
2

2me

∇2 + V ψ100,0 =
1√
πa30

e−r/a0

where H0 is the unperturbed hydrogen atom Hamiltonian, ψ100,0 the unper-
turbed ground state wave function, E100,0 the unperturbed ground state energy,
13.6 eV, and a0 is the Bohr radius, 0.53 Å.

The Stark perturbation produces a change ψ100,1 in this wave function that
satisfies, from (A.243),

(H0 − E100,0)ψ100,1 = −(H1 − E100,1)ψ100,0 H1 = eEextz
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The first order energy change E100,1 is zero and can be dropped. The solution
for ψ100,1 will now simply be guessed to be ψ100,0 times some spatial function f
still to be found:

(H0 − E100,0) (fψ100,0) = −eEextzψ100,0 H0 = −
~
2

2me

∇2 + V

Differentiating out the Laplacian∇2 of the product fψ100,0 into individual terms
using Cartesian coordinates, the equation becomes

f (H0 − E100,0)ψ100,0 −
~
2

me

(∇f) · (∇ψ100,0)−
~
2

2me

(∇2f)ψ100,0 = −eEextzψ100,0

The first term in this equation is zero since H0ψ100,0 = E100,0ψ100,0. Also, now
using spherical coordinates, the gradients are, e.g. [41, 20.74, 20.82],

∇f =
∂f

∂r
ı̂r +

1

r

∂f

∂θ
ı̂θ +

1

r sin θ

∂f

∂φ
ı̂φ ∇ψ100,0 = −ψ100,0

1

a0
ı̂r

Substituting that into the equation, it reduces to

~
2

me

(
1

a0

∂f

∂r
− 1

2
∇2f

)
ψ100,0 = −eEextzψ100,0

Now z = r cos θ in polar coordinates, and for the r-derivative of f to pro-
duce something that is proportional to r, f must be proportional to r2. (The
Laplacian in the second term always produces lower powers of r than the r-
derivative and can for now be ignored.) So, to balance the right hand side, f
should contain a highest power of r equal to:

f = −meeEexta0
2~2

r2 cos θ + . . .

but then, using [41, 20.83], the ∇2f term in the left hand side produces an
eEexta0 cos θ term. So add another term to f for its r-derivative to eliminate it:

f = −meeEexta0
2~2

r2 cos θ − meeEexta20
~2

r cos θ

The Laplacian of r cos θ = z is zero so no further terms need to be added. The
change fψ100,0 in wave function is therefore

ψ100,1 = −
meeEexta0
2~2
√
πa30

(
r2 + 2a0r

)
e−r/a0 cos θ

(This “small perturbation” becomes larger than the unperturbed wave function
far from the atom because of the growing value of r2. It is implicitly assumed
that the electric field terminates before a real problem arises. This is related
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to the possibility of the electron tunneling out of the atom if the potential far
from the atom is less than its energy in the atom: if the electron can tunnel
out, there is strictly speaking no bound state.)

Now according to (A.243), the second order energy change can be found as

E100,2 = 〈ψ100,0|H1ψ100,1〉 H1 = eEextr cos θ

Doing the inner product integration in spherical coordinates produces

E100,2 = −
9mee

2E2exta40
4~2

D.81 Dirac fine structure Hamiltonian

This note derives the fine structure Hamiltonian of the hydrogen atom. This
Hamiltonian fixes up the main relativistic errors in the classical solution of
chapter 4.3. The derivation is based on the relativistic Dirac equation from
chapter 12.12 and uses nontrivial linear algebra.

According to the Dirac equation, the relativistic Hamiltonian and wave func-
tion take the form

HD = mec
2

(
1 0
0 −1

)
+

3∑

i=1

cp̂i

(
0 σi
σi 0

)
+ V

(
1 0
0 1

)
~ψD =

(
~ψ p

~ψ n

)

whereme is the mass of the electron when at rest, c the speed of light, and the σi
are the 2 × 2 Pauli spin matrices of chapter 12.10. Similarly the ones and zeros
in the shown matrices are 2 × 2 unit and zero matrices. The wave function is a
four-dimensional vector whose components depend on spatial position. It can be
subdivided into the two-dimensional vectors ~ψ p and ~ψ n. The two components of
~ψ p correspond to the spin up and spin down components of the normal classical
electron wave function; as noted in chapter 5.5.1, this can be thought of as a
vector if you want. The two components of the other vector ~ψ n are very small
for the solutions of interest. These components would be dominant for states
that would have negative rest mass. They are associated with the anti-particle
of the electron, the positron.

The Dirac equation is solvable in closed form, but that solution is not some-
thing you want to contemplate if you can avoid it. And there is really no need
for it, since the Dirac equation is not exact anyway. To the accuracy it has, it
can easily be solved using perturbation theory in essentially the same way as in
derivation {D.79}. In this case, the small parameter is 1/c: if the speed of light
is infinite, the nonrelativistic solution is exact. And if you ballpark a typical
velocity for the electron in a hydrogen atom, it is only about one percent or so
of the speed of light.
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So, following derivation {D.79}, take the Hamiltonian apart into successive
powers of 1/c as HD = HD,0 +HD,1 +HD,2 with

HD,0 =

(
mec

2 0
0 −mec

2

)
HD,1 =

3∑

i=1

(
0 cp̂iσi

cp̂iσi 0

)
HD,2 =

(
V 0
0 V

)

and similarly for the wave function vector:

~ψD =

(
~ψ p
0
~ψ n
0

)
+

(
~ψ p
1
~ψ n
1

)
+

(
~ψ p
2
~ψ n
2

)
+

(
~ψ p
3
~ψ n
3

)
+

(
~ψ p
4
~ψ n
4

)
+ . . .

and the energy:

ED = ED,0 + ED,1 + ED,2 + ED,3 + ED,4 + . . .

Substitution into the Hamiltonian eigenvalue problem HD
~ψD = ED ~ψD and then

collecting equal powers of 1/c together produces again a system of successive
equations, just like in derivation {D.79}:

c2 :

[(
mec

2 0
0 −mec

2

)
−
(
ED,0 0
0 ED,0

)](
~ψ p
0
~ψ n
0

)
= 0

c1 :

[(
mec

2 0
0 −mec

2

)
−
(
ED,0 0
0 ED,0

)](
~ψ p
1
~ψ n
1

)
=

−
[

3∑

i=1

(
0 cp̂iσi

cp̂iσi 0

)
−
(
ED,1 0
0 ED,1

)](
~ψ p
0
~ψ n
0

)

c0 :

[(
mec

2 0
0 −mec

2

)
−
(
ED,0 0
0 ED,0

)](
~ψ p
2
~ψ n
2

)
=

−
[

3∑

i=1

(
0 cp̂iσi

cp̂iσi 0

)
−
(
ED,1 0
0 ED,1

)](
~ψ p
1
~ψ n
1

)

−
[(

V 0
0 V

)
−
(
ED,2 0
0 ED,2

)](
~ψ p
0
~ψ n
0

)

c−1 :

[(
mec

2 0
0 −mec

2

)
−
(
ED,0 0
0 ED,0

)](
~ψ p
3
~ψ n
3

)
=
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−
[

3∑

i=1

(
0 cp̂iσi

cp̂iσi 0

)
−
(
ED,1 0
0 ED,1

)](
~ψ p
2
~ψ n
2

)

−
[(

V 0
0 V

)
−
(
ED,2 0
0 ED,2

)](
~ψ p
1
~ψ n
1

)

+

(
ED,3 0
0 ED,3

)(
~ψ p
0
~ψ n
0

)

c−2 :

[(
mec

2 0
0 −mec

2

)
−
(
ED,0 0
0 ED,0

)](
~ψ p
4
~ψ n
4

)
=

−
[

3∑

i=1

(
0 cp̂iσi

cp̂iσi 0

)
−
(
ED,1 0
0 ED,1

)](
~ψ p
3
~ψ n
3

)

−
[(

V 0
0 V

)
−
(
ED,2 0
0 ED,2

)](
~ψ p
2
~ψ n
2

)

+

(
ED,3 0
0 ED,3

)(
~ψ p
1
~ψ n
1

)
+

(
ED,4 0
0 ED,4

)(
~ψ p
0
~ψ n
0

)

c−3 : · · ·

The first, order c2, eigenvalue problem has energy eigenvalues ±mec
2, in

other words, plus or minus the rest mass energy of the electron. The solution
of interest is the physical one with a positive rest mass, so the desired solution
is

ED,0 = mec
2 ~ψ p

0 = still arbitrary ~ψ n
0 = 0

Plug that into the order c1 equation to give, for top and bottom subvectors

0 = ED,1 ~ψ
p
0 − 2mec

2 ~ψ n
1 = −

∑

i

cp̂iσi ~ψ
p
0

It follows from the first of those that the first order energy change must be zero
because ~ψ p

0 cannot be zero; otherwise there would be nothing left. The second
equation gives the leading order values of the secondary components, so in total

ED,1 = 0 ~ψ p
1 = still arbitrary ~ψ n

1 =
∑

j

1

2mec
p̂jσj ~ψ

p
0

where the summation index i was renamed to j to avoid ambiguity later.
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Plug all that in the order c0 equation to give

0 = − 1

2me

∑

i

∑

j

p̂ip̂jσiσj ~ψ
p
0 − V ~ψ p

0 + ED,2 ~ψ
p
0

~ψ n
2 =

∑

j

1

2mec
p̂jσj ~ψ

p
1

The first of these two equations is the nonrelativistic Hamiltonian eigenvalue
problem of chapter 4.3. To see that, note that in the double sum the terms with
j 6= i pairwise cancel since for the Pauli matrices, σiσj + σjσi = 0 when j 6=
i. For the remaining terms in which j = i, the relevant property of the Pauli
matrices is that σiσi is one (or the 2 × 2 unit matrix, really,) giving

1

2me

∑

i

∑

j

p̂ip̂jσiσj + V =
1

2me

∑

i

p̂2i + V ≡ H0

where H0 is the nonrelativistic hydrogen Hamiltonian of chapter 4.3.
So the first part of the order c0 equation takes the form

H0
~ψ p
0 = ED,2 ~ψ

p
0

The energy ED,2 will therefore have to be a Bohr energy level En and each

component of ~ψ p
0 will have to be a nonrelativistic energy eigenfunction with

that energy:

ED,2 = En ~ψ p
0 =

∑

l

∑

m

clm+ψnlm↑+
∑

l

∑

m

clm−ψnlm↓

The sum multiplying ↑ is the first component of vector ~ψ p
0 and the sum multiply-

ing ↓ the second. The nonrelativistic analysis in chapter 4.3 was indeed correct
as long as the speed of light is so large compared to the relevant velocities that
1/c can be ignored.

To find out the error in it, the relativistic expansion must be taken to higher
order. To order c−1, you get for the top vector

0 = −(H0 − En)~ψ p
1 + ED,3 ~ψ

p
0

Now if ~ψ p
1 is written as a sum of the eigenfunctions of H0, including ~ψ p

0 , the

first term will produce zero times ~ψ p
0 since (H0 −En)~ψ p

0 = 0. That means that
ED,3 must be zero. The expansion must be taken one step further to identify
the relativistic energy change. The bottom vector gives

~ψ n
3 =

∑

j

1

2mec
p̂jσj ~ψ

p
2 +

V − En
2mec2

∑

j

1

2mec
p̂jσj ~ψ

p
0

To order c−2, you get for the top vector

0 = −(H0 − En)~ψ p
2 −

∑

i

∑

j

p̂iσi
V − En
4m2

ec
2
p̂jσj ~ψ

p
0 + ED,4 ~ψ

p
0
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and that determines the approximate relativistic energy correction.
Now recall from derivation {D.79} that if you do a nonrelativistic expansion

of an eigenvalue problem (H0 +H1)ψ = Eψ, the equations to solve are (D.55)
and (D.56);

(H0 − E~n,0)ψ~n,0 = 0 (H0 − E~n,0)ψ~n,1 = −(H1 − E~n,1)ψ~n,0

The first equation was satisfied by the solution for ~ψ p
0 obtained above. However,

the second equation presents a problem. Comparison with the final Dirac result
suggests that the fine structure Hamiltonian correction H1 should be identified
as

H1
?
=
∑

i

∑

j

p̂iσi
V − En
4m2

ec
2
p̂jσj

but that is not right, since En is not a physical operator, but an energy eigen-
value for the selected eigenfunction. So mapping the Dirac expansion straight-
forwardly onto a classical one has run into a snag.

It is maybe not that surprising that a two-dimensional wave function can-
not correctly represent a truly four-dimensional one. But clearly, whatever is
selected for the fine structure Hamiltonian H1 must at least get the energy
eigenvalues right. To see how this can be done, the operator obtained from the
Dirac equation will have to be simplified. Now for any given i, the sum over j
includes a term j = i, a term j = ı, where ı is the number following i in the
cyclic sequence . . . 123123 . . ., and it involves a term j = ı where ı precedes i in
the sequence. So the Dirac operator falls apart into three pieces:

H1
?
=
∑

i

p̂iσi
V − En
4m2

ec
2
p̂iσi +

∑

i

p̂iσi
V − En
4m2

ec
2
p̂ıσı +

∑

i

p̂iσi
V − En
4m2

ec
2
p̂ıσı

or using the properties of the Pauli matrices that σiσi = 1, σiσı = iσı, and σiσı
= −iσı for any i,

H1
?
=
∑

i

p̂i
V − En
4m2

ec
2
p̂i + i

∑

i

p̂i
V − En
4m2

ec
2
p̂ıσı − i

∑

i

p̂i
V − En
4m2

ec
2
p̂ıσı (D.59)

The approach will now be to show first that the final two terms are the
spin-orbit interaction in the fine structure Hamiltonian. After that, the much
more tricky first term will be discussed. Renotate the indices in the last two
terms as follows:

H1,spin-orbit = i
∑

i

p̂ı
V − En
4m2

ec
2
p̂ıσi − i

∑

i

p̂ı
V − En
4m2

ec
2
p̂ıσi

Since the relative order of the subscripts in the cycle was maintained in the
renotation, the sums still contain the exact same three terms, just in a different
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order. Take out the common factors;

H1,spin-orbit =
i

4m2
ec

2

∑

i

[p̂ı(V − En)p̂ı − p̂ı(V − En)p̂ı] σi

Now according to the generalized canonical commutator of chapter 4.5.4:

p̂i(V − En) = (V − En)p̂i − i~
∂(V − En)

∂ri

where En is a constant that produces a zero derivative. So p̂ı, respectively p̂ı
can be taken to the other side of V −En as long as the appropriate derivatives
of V are added. If that is done, (V − En)p̂ıp̂ı and −(V − En)p̂ıp̂ı cancel since
linear momentum operators commute. What is left are just the added derivative
terms:

H1,spin-orbit =
~

4m2
ec

2

∑

i

[
∂V

∂rı
p̂ı −

∂V

∂rı
p̂ı

]
σi

Note that the errant eigenvalue En mercifully dropped out. Now the hydrogen
potential V only depends on the distance r from the origin, as 1/r, so

∂V

∂ri
= −V

r2
ri

and plugging that into the operator, you get

H1,spin-orbit = −
~V

4m2
ec

2r2

∑

i

[rıp̂ı − rıp̂ı] σi

The term between the square brackets can be recognized as the ith component
of the angular momentum operator; also the Pauli spin matrix σi is defined as
Ŝi/

1
2
~, so

H1,spin-orbit = −
V

2m2
ec

2r2

∑

i

L̂iŜi

Get rid of c2 using |E1| = 1
2
α2mec

2, of V using V = −2|E1|a0/r, and me using
|E1| = ~

2/2mea
2
0 to get the spin-orbit interaction as claimed in the section on

fine structure.
That leaves the term ∑

i

p̂i
V − En
4m2

ec
2
p̂i

in (D.59). Since V = H0 − p̂2/2me, it can be written as

∑

i

p̂i
H0 − En
4m2

ec
2
p̂i −

(p̂ 2)
2

8m3
ec

2
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The final term is the claimed Einstein correction in the fine structure Hamilto-
nian, using |E1| = 1

2
α2mec

2 to get rid of c2.
The first term,

H1,Darwin
?
=
∑

i

p̂i
H0 − En
4m2

ec
2
p̂i

is the sole remaining problem. It cannot be transformed into a decent physical
operator. The objective is just to get the energy correction right. And to achieve
that requires only that the Hamiltonian perturbation coefficients are evaluated
correctly at the En energy level. Specifically, what is needed is that

H~n~n,1,Darwin ≡ 〈ψ~n,0|H1,Darwinψ~n,0〉 =
1

4m2
ec

2

∑

i

〈ψ~n,0|p̂i(H0 − En)p̂iψ~n,0〉

for any arbitrary pair of unperturbed hydrogen energy eigenfunctions ψ~n,0 and
ψ~n,0 with energy En. To see what that means, the leading Hermitian operator
p̂i can be taken to the other side of the inner product, and in half of that result,
H0 − En will also be taken to the other side:

H~n~n,1,Darwin =
1

8m2
ec

2

∑

i

(〈p̂iψ~n,0|(H0 − En)p̂iψ~n,0〉+ 〈(H0 − En)p̂iψ~n,0|p̂iψ~n,0〉)

Now if you simply swap the order of the factors in (H0−En)p̂i in this expression,
you get zero, because both eigenfunctions have energy En. However, swapping
the order of (H0 −En)p̂i brings in the generalized canonical commutator [V, p̂i]
that equals i~∂V /∂ri. Therefore, writing out the remaining inner product you
get

H~n~n,1,Darwin =
−~2
8m2

ec
2

∑

i

∫

all ~r

∂V

∂ri

∂ψ∗~n,0ψ~n,0

∂ri
d3~r

Now, the potential V becomes infinite at r = 0, and that makes mathematical
manipulation difficult. Therefore, assume for now that the nuclear charge e is
not a point charge, but spread out over a very small region around the origin.
In that case, the inner product can be rewritten as

H~n~n,1,Darwin =
−~2
8m2

ec
2

∑

i

∫

all ~r

[
∂

∂ri

(
∂V

∂ri
ψ∗~n,0ψ~n,0

)
− ∂2V

∂r2i
ψ∗~n,0ψ~n,0

]
d3~r

and the first term integrates away since ψ∗~n,0ψ~n,0 vanishes at infinity. In the
final term, use the fact that the derivatives of the potential energy V give e
times the electric field of the nucleus, and therefore the second order derivatives
give e times the divergence of the electric field. Maxwell’s first equation (13.5)
says that that is e/ǫ0 times the nuclear charge density. Now if the region of
nuclear charge is allowed to contract back to a point, the charge density must
still integrate to the net proton charge e, so the charge density becomes eδ3(~r)
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where δ3(~r) is the three-dimensional delta function. Therefore the Darwin term
produces Hamiltonian perturbation coefficients as if its Hamiltonian is

H1,Darwin =
~
2e2

8m2
ec

2ǫ0
δ3(~r)

Get rid of c2 using |E1| = 1
2
α2mec

2, of e2/ǫ0 using e2/4πǫ0 = 2|E1|a0, and me

using |E1| = ~
2/2mea

2
0 to get the Darwin term as claimed in the section on fine

structure. It will give the right energy correction for the nonrelativistic solution.
But you may rightly wonder what to make of the implied wave function.

D.82 Classical spin-orbit derivation

This note derives the spin-orbit Hamiltonian from a more intuitive, classical
point of view than the Dirac equation mathematics.

Picture the magnetic electron as containing a pair of positive and negative
magnetic monopoles of a large strength qm. The very small distance from neg-
ative to positive pole is denoted by ~d and the product ~µ = qm~d is the magnetic
dipole strength, which is finite.

Next imagine this electron smeared out in some orbit encircling the nucleus
with a speed ~v. The two poles will then be smeared out into two parallel “mag-
netic currents” that are very close together. The two currents have opposite
directions because the velocity ~v of the poles is the same while their charges are
opposite. These magnetic currents will be encircled by electric field lines just
like the electric currents in figure 13.15 were encircled by magnetic field lines.

Now assume that seen from up very close, a segment of these currents will
seem almost straight and two-dimensional, so that two-dimensional analysis can
be used. Take a local coordinate system such that the z-axis is aligned with
the negative magnetic current and in the direction of positive velocity. Rotate
the xy-plane around the z-axis so that the positive current is to the right of the
negative one. The picture is then just like figure 13.15, except that the currents
are magnetic and the field lines electric. In this coordinate system, the vector
from negative to positive pole takes the form ~d = dxı̂+ dzk̂.

The magnetic current strength is defined as q′mv, where q
′
m is the moving

magnetic charge per unit length of the current. So, according to table 13.2
the negative current along the z-axis generates a two-dimensional electric field
whose potential is

ϕ⊖ = − q′mv

2πǫ0c2
θ = − q′mv

2πǫ0c2
arctan

(y
x

)

To get the field of the positive current a distance dx to the right of it, shift x
and change sign:

ϕ⊕ =
q′mv

2πǫ0c2
arctan

(
y

x− dx

)
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If these two potentials are added, the difference between the two arctan functions
can be approximated as −dx times the x derivative of the unshifted arctan. That
can be seen from either recalling the very definition of the partial derivative, or
from expanding the second arctan in a Taylor series in x. The bottom line is
that the monopoles of the moving electron generate a net electric field with a
potential

ϕ =
q′mdxv

2πǫ0c2
y

x2 + y2

Now compare that with the electric field generated by a couple of opposite
electric line charges like in figure 13.12, a negative one along the z-axis and a
positive one above it at a position y = dc. The electric dipole moment per unit
length of such a pair of line charges is by definition ~℘ ′ = q′dc ̂, where q

′ is the
electric charge per unit length. According to table 13.1, a single electric charge
along the z-axis creates an electric field whose potential is

ϕ =
q′

2πǫ0
ln

1

r
= − q′

4πǫ0
ln
(
x2 + y2

)

For an electric dipole consisting of a negative line charge along the z-axis and
a positive one above it at y = dc, the field is then

ϕ = − q′

4πǫ0
ln
(
x2 + (y − d)2

)
+

q′

4πǫ0
ln
(
x2 + y2

)

and the difference between the two logarithms can be approximated as −dc
times the y-derivative of the unshifted one. That gives

ϕ =
q′dc
2πǫ0

y

x2 + y2

Comparing this with the potential of the monopoles, it is seen that the
magnetic currents create an electric dipole in the y-direction whose strength ~℘ ′

is q′mdxv/c
2 ̂. And since in this coordinate system the magnetic dipole moment

is ~µ ′ = q′m(dxı̂+ dzk̂) and the velocity vk̂, it follows that the generated electric
dipole strength is

~℘ ′ = −~µ ′ × ~v/c2

Since both dipole moments are per unit length, the same relation applies be-
tween the actual magnetic dipole strength of the electron and the electric dipole
strength generated by its motion. The primes can be omitted.

Now the energy of the electric dipole is −~℘ · ~E where ~E is the electric field
of the nucleus, e~r/4πǫ0r

3 according to table 13.1. So the energy is:

e

4πǫ0c2
1

r3
~r · (~µ× ~v)
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and the order of the triple product of vectors can be changed and then the
angular momentum can be substituted:

− e

4πǫ0c2
1

r3
~µ · (~r × ~v) = − e

4πǫ0c2me

1

r3
~µ · ~L

To get the correct spin-orbit interaction, the magnetic dipole moment ~µ used
in this expression must be the classical one, −e~S/2me. The additional factor
ge = 2 for the energy of the electron in a magnetic field does not apply here.
There does not seem to be a really good reason to give for that, except for saying
that the same Dirac equation that says that the additional g-factor is there in
the magnetic interaction also says it is not in the spin-orbit interaction. The
expression for the energy becomes

e2

8πǫ0m2
ec

2

1

r3
~S · ~L

Getting rid of c2 using |E1| = 1
2
α2mec

2, of e2/ǫ0 using e2/4πǫ0 = 2|E1|a0, and
of me using |E1| = ~

2/2mea
2
0, the claimed expression for the spin-orbit energy

is found.

D.83 Expectation powers of r for hydrogen

This note derives the expectation values of the powers of r for the hydrogen
energy eigenfunctions ψnlm. The various values to be be derived are:

. . .

〈ψnlm|(a0/r)3ψnlm〉 =
1

l(l + 1
2
)(l + 1)n3

〈ψnlm|(a0/r)2ψnlm〉 =
1

(l + 1
2
)n3

〈ψnlm|(a0/r)ψnlm〉 =
1

n2

〈ψnlm|1ψnlm〉 = 1

〈ψnlm|(r/a0)ψnlm〉 =
3n2 − l(l + 1)

2

〈ψnlm|(r/a0)2ψnlm〉 =
n2(5n2 − 3l(l + 1) + 1)

2

. . .

(D.60)

where a0 is the Bohr radius, about 0.53 Å. Note that you can get the expectation
value of a more general function of r by summing terms, provided that the
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function can be expanded into a Laurent series. Also note that the value of m
does not make a difference: you can combine ψnlm of different m values together
and it does not change the above expectation values. And watch it, when the
power of r becomes too negative, the expectation value will cease to exist. For
example, for l = 0 the expectation values of (a0/r)

3 and higher powers are
infinite.

The trickiest to derive is the expectation value of (a0/r)
2, and that one will

be done first. First recall the hydrogen Hamiltonian from chapter 4.3,

H = − ~
2

2mer2

{
∂

∂r

(
r2
∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

}
− e2

4πǫ0

1

r

Its energy eigenfunctions of given square and z angular momentum and their
energy are

ψnlm = Rnl(r)Y
m
l (θ, φ) En = − ~

2

2n2mea20
a0 =

4πǫ0~
2

mee2

where the Y m
l are called the spherical harmonics.

When this Hamiltonian is applied to an eigenfunction ψnlm, it produces the
exact same result as the following “dirty trick Hamiltonian” in which the angular
derivatives have been replaced by l(l + 1):

HDT = − ~
2

2mer2

{
∂

∂r

(
r2
∂

∂r

)
− l(l + 1)

}
− e2

4πǫ0

1

r

The reason is that the angular derivatives are essentially the square angular
momentum operator of chapter 4.2.3. Now, while in the hydrogen Hamiltonian
the quantum number l has to be an integer because of its origin, in the dirty
trick one l can be allowed to assume any value. That means that you can
differentiate the Hamiltonian and its eigenvalues En with respect to l. And that
allows you to apply the Hellmann-Feynman theorem of section A.38.1:

∂En,DT

∂l
=
〈
ψnlm

∣∣∣∂HDT

∂l
ψnlm

〉

(Yes, the eigenfunctions ψnlm are good, because the purely radialHDT commutes

with both L̂z and L̂
2, which are angular derivatives.) Substituting in the dirty

trick Hamiltonian,

∂En,DT

∂l
=

~
2(2l + 1)

2mea20

〈
ψnlm

∣∣∣
(a0
r

)2
ψnlm

〉

So, if you can figure out how the dirty trick energy changes with l near some
desired integer value l = l0, the desired expectation value of (a0/r)

2 at that
integer value of l follows. Note that the eigenfunctions of HDT can still be taken
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to be of the form Rnl(r)Y
m
l0
(θ, φ), where Y m

l0
can be divided out of the eigenvalue

problem to give HDTRnl = EDTRnl. If you skim back through chapter 4.3 and
its note, you see that that eigenvalue problem was solved in derivation {D.15}.
Now, of course, l is no longer an integer, but if you skim through the note,
it really makes almost no difference. The energy eigenvalues are still En,DT =
−~2/2n2mea

2
0. If you look near the end of the note, you see that the requirement

on n is that n = q+l+1 where q must remain an integer for valid solutions, hence
must stay constant under small changes. So dn/dl = 1, and then according to
the chain rule the derivative of EDT is ~

2/n3mea
2
0. Substitute it in and there

you have that nasty expectation value as given in (D.60).
All other expectation values of (r/a0)

q for integer values of q may be found
from the “Kramers relation,” or “(second) Pasternack relation:”

4(q + 1) 〈q〉 − 4n2(2q + 1)〈q − 1〉+ n2q[(2l + 1)2 − q2]〈q − 2〉 = 0 (D.61)

where 〈q〉 is shorthand for the expectation value 〈ψnlm|(r/a0)qψnlm〉.
Substituting q = 0 into the Kramers-Pasternack relation produces the ex-

pectation value of a0/r as in (D.60). It may be noted that this can instead be
derived from the virial theorem of chapter 7.2, or from the Hellmann-Feynman
theorem by differentiating the hydrogen Hamiltonian with respect to the charge
e. Substituting in q = 1, 2, . . . produces the expectation values for r/a0, (r/a0)

2,
. . . . Substituting in q = −1 and the expectation value for (a0/r)

2 from the
Hellmann-Feynman theorem gives the expectation value for (a0/r)

3. The re-
maining negative integer values q = −2, −3, . . . produce the remaining expec-
tation values for the negative integer powers of r/a0 as the 〈q − 2〉 term in the
equation.

Note that for a sufficiently negative powers of r, the expectation value be-
comes infinite. Specifically, since ψnlm is proportional to rl, {D.15}, it can be
seen that 〈q − 2〉 becomes infinite when q = −2l − 1. When that happens, the
coefficient of the expectation value in the Kramers-Pasternack relation becomes
zero, making it impossible to compute the expectation value. The relationship
can be used until it crashes and then the remaining expectation values are all
infinite.

The remainder of this note derives the Kramers-Pasternack relation. First
note that the expectation values are defined as

〈q〉 ≡ 〈ψnlm|(r/a0)qψnlm〉 =
∫

all ~r

(r/a0)
q|ψnlm|2 d3~r =

∫

all ~r

(r/a0)
q|RnlY

m
l |2 d3~r

When this integral is written in spherical coordinates, the integration of the
square spherical harmonic over the angular coordinates produces one. So, the
expectation value simplifies to

〈q〉 =
∫ ∞

r=0

(r/a0)
qR2

nlr
2 dr
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To simplify the notations, a nondimensional radial coordinate ρ = r/a0 will be
used. Also, a new radial function f ≡

√
a30ρRnl will be defined. In those terms,

the expression above for the expectation value shortens to

〈q〉 =
∫ ∞

0

ρqf 2 dρ

To further shorten the notations, from now on the limits of integration and dρ
will be omitted throughout. In those notations, the expectation value of (r/a0)

q

is

〈q〉 =
∫
ρqf 2

Also note that the integrals are improper. It is to be assumed that the integra-
tions are from a very small value of r to a very large one, and that only at the
end of the derivation, the limit is taken that the integration limits become zero
and infinity.

According to derivation {D.15}, the function Rnl satisfies in terms of ρ the
ordinary differential equation.

−ρ2R′′nl − 2ρR′nl +

[
l(l + 1)− 2ρ+

1

n2
ρ2
]
Rnl = 0

where primes indicate derivatives with respect to ρ. Substituting in Rnl =
f/
√
a30ρ, you get in terms of the new unknown function f that

f ′′ =

[
1

n2
− 2

ρ
+
l(l + 1)

ρ2

]
f (D.62)

Since this makes f ′′ proportional to f , forming the integral
∫
ρqf ′′f produces

a combination of terms of the form
∫
ρpowerf 2, hence of expectation values of

powers of ρ: ∫
ρqf ′′f =

1

n2
〈q〉 − 2〈q − 1〉+ l(l + 1)〈q − 2〉 (D.63)

The idea is now to apply integration by parts on
∫
ρqf ′′f to produce a different

combination of expectation values. The fact that the two combinations must
be equal will then give the Kramers-Pasternack relation.

Before embarking on this, first note that since

∫
ρqff ′ =

∫
ρq
(
1
2
f 2
)′
= ρq 1

2
f 2
∣∣∣−
∫
qρq−1 1

2
f 2,

the latter from integration by parts, it follows that

∫
ρqff ′ =

1

2
ρqf 2

∣∣∣− q

2
〈q − 1〉 (D.64)
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This result will be used routinely in the manipulations below to reduce integrals
of that form.

Now an obvious first integration by parts on
∫
ρqf ′′f produces

∫
ρqf f ′′ = ρqff ′

∣∣∣−
∫

(ρqf)′ f ′ = ρqff ′
∣∣∣−
∫
qρq−1ff ′ −

∫
ρqf ′f ′

The first of the two integrals reduces to an expectation value of ρq−2 using
(D.64). For the final integral, use another integration by parts, but make sure
you do not run around in a circle because if you do you will get a trivial expres-
sion. What works is integrating ρq and differentiating f ′f ′:

∫
ρqff ′′ = ρqff ′

∣∣∣− q

2
ρq−1f 2

∣∣∣+ q(q − 1)

2
〈q − 2〉 − ρq+1

q + 1
f ′

2
∣∣∣+ 2

∫
ρq+1

q + 1
f ′f ′′

(D.65)
In the final integral, according to the differential equation (D.62), the factor f ′′

can be replaced by powers of ρ times f :

2

∫
ρq+1

q + 1
f ′f ′′ = 2

∫
ρq+1

q + 1

[
1

n2
− 2

ρ
+
l(l + 1)

ρ2

]
ff ′

and each of the terms is of the form (D.64), so you get

2

∫
ρq+1

q + 1
f ′f ′′ =

1

(q + 1)n2
ρq+1f 2

∣∣∣− 2

q + 1
ρqf 2

∣∣∣+ l(l + 1)

q + 1
ρq−1f 2

∣∣∣

− 1

n2
〈q〉+ 2q

q + 1
〈q − 1〉 − l(l + 1)(q − 1)

q + 1
〈q − 2〉

Plugging this into (D.65) and then equating that to (D.63) produces the
Kramers-Pasternack relation. It also gives an additional right hand side

ρqff ′
∣∣∣− qρq−1

2
f 2
∣∣∣− ρq+1

q + 1
f ′

2
∣∣∣+ ρq+1

(q + 1)n2
f 2
∣∣∣− 2ρq

q + 1
f 2
∣∣∣+ l(l + 1)ρq−1

q + 1
f 2
∣∣∣

but that term becomes zero when the integration limits take their final values
zero and infinity. In particular, the upper limit values always become zero in
the limit of the upper bound going to infinity; f and its derivative go to zero
exponentially then, beating out any power of ρ. The lower limit values also
become zero in the region of applicability that 〈q − 2〉 exists, because that
requires that ρq−1f 2 is for small ρ proportional to a power of ρ greater than
zero.

The above analysis is not valid when q = −1, since then the final integration
by parts would produce a logarithm, but since the expression is valid for any
other q, not just integer ones you can just take a limit q → −1 to cover that
case.
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D.84 Band gap explanation derivations

To see mathematically how the results of note {N.9} were obtained requires
knowledge of linear algebra. If you are unaware of it, definitely skip the below
derivation.

First define the “growth matrix G that gives the values of ψ, ψ′ at x = dx
given the values at x = 0:

(
ψ(dx)
ψ′(dx)

)
= G

(
ψ(0)
ψ′(0)

)

Simply take the initial conditions to be 1,0 and 0,1 respectively, and find the
solutions at dx to find the two columns of G.

Since the potential is the same in all atomic cell, matrix G describes the
change over any cell, not just the first one. And for a periodic solution for a box
with Nx “atoms,” after Nx applications of G the original values of ψ, ψ′ must be
obtained. According to linear algebra, and assuming that the two eigenvalues
of G are unequal, that means that at least one eigenvalue of G raised to the
power Nx must be 1.

Now matrix G must have unit determinant, because for the two basic solu-
tions with 1,0 and 0,1 initial conditions,

ψ1ψ
′
2 − ψ′1ψ2 = constant = 1

for all x. The quantity in the left hand side is called the Wronskian of the
solutions. To verify that it is indeed constant, take ψ1 times the Hamiltonian
eigenvalue problem for ψ2 minus ψ2 times the one for ψ1 to get

0 = ψ1ψ
′′
2 − ψ2ψ

′′
1 = (ψ1ψ

′
2 − ψ2ψ

′
1)
′

According to linear algebra, if G has unit determinant then the product of
its two eigenvalues is 1. Therefore, if its eigenvalues are unequal and real, their
magnitude is unequal to 1. One will be less than 1 in magnitude and the other
greater than 1. Neither can produce 1 when raised to the power Nx, so there are
no periodic solutions. Energies that produce such matrices G are in the band
gaps.

If the eigenvalues of G are complex conjugates, they must have magnitude
1. In that case, the eigenvalues can always be written in the form

eikxdx and e−ikxdx

for some value of kx. For either eigenvalue raised to the power Nx to produce
1, Nxkxdx must be a whole multiple of 2π. That gives the same wave number
values as for the free-electron gas.

To see when the eigenvalues of G have the right form, consider the sum of
the eigenvalues. This sum is called the trace. If the eigenvalues are real and
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unequal, and their product is 1, then the trace of G must be greater than 2 in
magnitude. (One way of seeing that for positive eigenvalues is to multiply out
the expression (

√
λ1−
√
λ2)

2 > 0. For negative ones, add two minus signs in the
square roots.) Conversely, when the eigenvalues are complex conjugates, their
sum equals 2 cos(kxdx) according to the Euler formula (2.5). That is less than
2 in magnitude. So the condition for valid periodic eigenfunctions becomes

trace(G) = 2 cos(kxdx) kxdx =
nx
Nx

2π

From the fact that periodic solutions with twice the crystal period exist,
(the ones at the band gaps), it is seen that the values of the trace must be such
that the cosine runs through the entire gamut of values. Indeed when the trace
is plotted as a function of the energy, it oscillates in value between minima less
than -2 and maxima greater than 2. Each segment between adjacent minima
and maxima produces one energy band. At the gap energies

vpx =
dEp

x

d~kx
=

1

~

d2 cos(kxdx)

dkx

/
dtrace(G)

dEp
x

= 0

because the cosine is at its ±1 extrema at the gap energies. So the velocity
becomes zero at the ends of the bands.

Identification of the eigenfunctions using the growth matrix G is readily
put on a computer. A canned zero finder can be used to find the energies
corresponding to the allowed values of the trace.





Appendix N

Notes

This appendix collects various notes on the material. This sort of material is
often given in footnotes at the bottom of the text. However, such a footnote
is distracting. You tend to read them even if they are probably not really that
important to you. Also, footnotes have to be concise, or they make a mess of
the main text.

N.1 Why this book?

With the current emphasis on nanotechnology, quantum mechanics is becoming
increasingly essential to engineering students. Yet, the typical quantum mechan-
ics texts for physics students are not written in a style that most engineering
students would likely feel comfortable with. Furthermore, an engineering edu-
cation provides very little real exposure to modern physics, and introductory
quantum mechanics books do little to fill in the gaps. The emphasis tends to
be on the computation of specific examples, rather than on discussion of the
broad picture. Undergraduate physics students may have the luxury of years
of further courses to pick up a wide physics background, engineering graduate
students not really. In addition, the coverage of typical introductory quantum
mechanics books does not emphasize understanding of the larger-scale quantum
system that a density functional computation, say, would be used for.

Hence this book, written by an engineer for engineers. As an engineering
professor with an engineering background, this is the book I wish I would have
had when I started learning real quantum mechanics a few years ago. The
reason I like this book is not because I wrote it; the reason I wrote this book is
because I like it.

This book is not a popular exposition: quantum mechanics can only be de-
scribed properly in the terms of mathematics; suggesting anything else is crazy.
But the assumed background in this book is just basic undergraduate calculus
and physics as taken by all engineering undergraduates. There is no intention to
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teach students proficiency in the clever manipulation of the mathematical ma-
chinery of quantum mechanics. For those engineering graduate students who
may have forgotten some of their undergraduate calculus by now, there are some
quick and dirty reminders in the notations. For those students who may have
forgotten some of the details of their undergraduate physics, frankly, I am not
sure whether it makes much of a difference. The ideas of quantum mechanics
are that different from conventional physics. But the general ideas of classical
physics are assumed to be known. I see no reason why a bright undergraduate
student, having finished calculus and physics, should not be able to understand
this book. A certain maturity might help, though. There are a lot of ideas to
absorb.

My initial goal was to write something that would “read like a mystery
novel.” Something a reader would not be able to put down until she had finished
it. Obviously, this goal was unrealistic. I am far from a professional writer, and
this is quantum mechanics, after all, not a murder mystery. But I have been
told that this book is very well written, so maybe there is something to be said
for aiming high.

To prevent the reader from getting bogged down in mathematical details, I
mostly avoid nontrivial derivations in the text. Instead I have put the outlines
of these derivations in notes at the end of this document: personally, I enjoy
checking the correctness of the mathematical exposition, and I would not want
to rob my students of the opportunity to do so too. In fact, the chosen approach
allows a lot of detailed derivations to be given that are skipped in other texts to
reduce distractions. Some examples are the harmonic oscillator, orbital angular
momentum, and radial hydrogen wave functions, Hund’s first rule, and rotation
of angular momentum. And then there are extensive derivations of material not
even included in other introductory quantum texts.

While typical physics texts jump back and forward from issue to issue, I
thought that would just be distracting for my audience. Instead, I try to fol-
low a consistent approach, with as central theme the method of separation-of-
variables, a method that most mechanical graduate students have seen before
already. It is explained in detail anyway. To cut down on the issues to be men-
tally absorbed at any given time, I purposely avoid bringing up new issues until
I really need them. Such a just-in-time learning approach also immediately an-
swers the question why the new issue is relevant, and how it fits into the grand
scheme of things.

The desire to keep it straightforward is the main reason that topics such as
Clebsch-Gordan coefficients (except for the unavoidable introduction of singlet
and triplet states) and Pauli spin matrices have been shoved out of the way to
a final chapter. My feeling is, if I can give my students a solid understanding
of the basics of quantum mechanics, they should be in a good position to learn
more about individual issues by themselves when they need them. On the other
hand, if they feel completely lost in all the different details, they are not likely
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to learn the basics either.

That does not mean the coverage is incomplete. All topics that are conven-
tionally covered in basic quantum mechanics courses are present in some form.
Some are covered in much greater depth. And there is a lot of material that is not
usually covered. I include significant qualitative discussion of atomic and chem-
ical properties, Pauli repulsion, the properties of solids, Bragg reflection, and
electromagnetism, since many engineers do not have much background on them
and not much time to pick it up. The discussion of thermal physics is much more
elaborate than you will find in other books on quantum mechanics. It includes
all the essentials of a basic course on classical thermodynamics, in addition to
the quantum statistics. I feel one cannot be separated from the other, espe-
cially with respect to the second law. While mechanical engineering students
will surely have had a course in basic thermodynamics before, a refresher cannot
hurt. Unlike other books, this book also contains a chapter on numerical pro-
cedures, currently including detailed discussions of the Born-Oppenheimer ap-
proximation, the variational method, and the Hartree-Fock method. Hopefully,
this chapter will eventually be completed with a section on density-functional
theory. (The Lennard-Jones model is covered earlier in the section on molecular
solids.) The motivation for including numerical methods in a basic exposition
is the feeling that after a century of work, much of what can be done analyti-
cally in quantum mechanics has been done. That the greatest scope for future
advances is in the development of improved numerical methods.

Knowledgeable readers may note that I try to stay clear of abstract mathe-
matics when it is not needed. For example, I try to go slow on the more abstract
vector notation permeating quantum mechanics, usually phrasing such issues in
terms of a specific basis. Abstract notation may seem to be completely general
and beautiful to a mathematician, but I do not think it is going to be intuitive to
a typical engineer. The discussion of systems with multiple particles is centered
around the physical example of the hydrogen molecule, rather than particles in
boxes. The discussion of solids in chapter 10 avoids the highly abstract Dirac
comb (delta functions) mathematical model in favor of a physical discussion of
more realistic one-dimensional crystals. The Lennard-Jones potential is derived
for two atoms instead of harmonic oscillators.

The book tries to be as consistent as possible. Electrons are grey tones at
the initial introduction of particles, and so they stay through the rest of the
book. Nuclei are red dots. Occupied quantum states are red, empty ones grey.
That of course required all figures to be custom made. They are not intended
to be fancy but consistent and clear. I also try to stay consistent in notations
throughout the book, as much as is possible without deviating too much from
established usage.

When I derive the first quantum eigenfunctions, for a pipe and for the har-
monic oscillator, I make sure to emphasize that they are not supposed to look
like anything that we told them before. It is only natural for students to want
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to relate what we told them before about the motion to the completely different
story we are telling them now. So it should be clarified that (1) no, they are
not going crazy, and (2) yes, we will eventually explain how what they learned
before fits into the grand scheme of things.

Another difference of approach in this book is the way it treats classical
physics concepts that the students are likely unaware about, such as canonical
momentum, magnetic dipole moments, Larmor precession, and Maxwell’s equa-
tions. They are largely “derived“ in quantum terms, with no appeal to classical
physics. I see no need to rub in the student’s lack of knowledge of specialized
areas of classical physics if a satisfactory quantum derivation is readily given.

This book is not intended to be an exercise in mathematical skills. Review
questions are targeted towards understanding the ideas, with the mathematics
as simple as possible. I also try to keep the mathematics in successive questions
uniform, to reduce the algebraic effort required. There is an absolute epidemic
out there of quantum texts that claim that “the only way to learn quantum
mechanics is to do the exercises,” and then those exercises turn out to be,
by and large, elaborate exercises in integration and linear algebra that take
excessive time and have nothing to do with quantum mechanics. Or worse,
they are often basic theory. (Lazy authors that claim that basic theory is an
“exercise” avoid having to cover that material themselves and also avoid having
to come up with a real exercise.) Yes, I too did waste a lot of time with these.
And then, when you are done, the answer teaches you nothing because you are
unsure whether there might not be an algebraic error in your endless mass of
algebra, and even if there is no mistake, there is no hint that it means what you
think it means. All that your work has earned you is a 75/25 chance or worse
that you now “know” something that is not true. Not in this book.

Finally, this document faces the very real conceptual problems of quantum
mechanics head-on, including the collapse of the wave function, the indeter-
minacy, the nonlocality, and the symmetrization requirements. The usual ap-
proach, and the way I was taught quantum mechanics, is to shove all these
problems under the table in favor of a good sounding, but upon examination
self-contradictory and superficial story. Such superficiality put me off solidly
when they taught me quantum mechanics, culminating in the unforgettable
moment when the professor told us, seriously, that the wave function had to
be symmetric with respect to exchange of bosons because they are all truly the
same, and then, when I was popping my eyes back in, continued to tell us that
the wave function is not symmetric when fermions are exchanged, which are all
truly the same. I would not do the same to my own students. And I really
do not see this professor as an exception. Other introductions to the ideas of
quantum mechanics that I have seen left me similarly unhappy on this point.
One thing that really bugs me, none had a solid discussion of the many worlds
interpretation. This is obviously not because the results would be incorrect,
(they have not been contradicted for half a century,) but simply because the
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teachers just do not like these results. I do not like the results myself, but basing
teaching on what the teacher would like to be true rather on what the evidence
indicates is true remains absolutely unacceptable in my book.

N.2 History and wish list

• Aug. 26, 2018. Version 5.63 alpha.

The main new thing is a correction in section 6.23 on Semicon-
ductors. In the detailed explanation of how n-type semiconductors
work, I wrote somewhere “conduction band” where I meant “va-
lence band.” This of course does not improve clarity. Even after
fixing, I thought the discussion was still confusing, so I rewrote the
corresponding paragraphs from scratch.

• July 3, 2018. Version 5.62 alpha.

Mainly rewrites of Hartree-Fock derivation {D.54}. If I cannot
follow my own reasoning, it is pretty bad.

• April 27, 2018. Version 5.61 alpha.

Rewrote section 9.1.1 for readability. Also rewrote addendum
{A.7}. Other minor rewrites.

Reposting because an (ununderstood) latex2html bug appeared
out of nothing with the (tricky) way −1 is formatted on the web
pages. This bug is not repeatable and it did not happen for the col-
orized version nor for the remake. I am putting in some precautions
anyway.

• April 20, 2018. Version 5.60 alpha.

Rewrote the introductory Hartree-Fock section 9.3.1 to be more
readable and more independent of earlier chapters. Expanded on
the description of Hartree-Fock correlation energy in 9.3.5.4 and its
note N.18. Incomplete, but I am posting it now because I found and
fixed some ugly errors.

• Mar. 4, 2018. Version 5.59 alpha.

Corrected a typo (j instead of l for orbital angular momentum) at
the start of section 12.8.

In Multiple-Particle Systems:

In the periodic table, added the recently assigned names for ele-
ment numbers 113, 115, 117, 118. Now every element in the table
has a real name.

In Macroscopic systems:

Completely rewrote note N.9 explaining how band gaps arise if you
add a bit of a periodic potential to the free electron gas. Corrected
“the crystal spacing is a half-integer multiple of the [Bragg] wave
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lengths” into “double the atom spacing is a whole multiple of the
wave lengths”. (“half-integer” seems to exclude “whole integer.”)

In Time Evolution:

Cleaned up the links in the pdf to the animations on the web.
Also, weblinks now go to the same server as the pdf is downloaded
from.

Completely rewrote addendum A.17 on the virial theorem, as I
now expect I will need it when I cover density functional theory.

In Classical and Quantum Thermodynamics:

More rewrites in “Specific Heats”.

In Nuclei:

Added the Z vs N form of all Z vs ∆N graphs as external pdf
files.

Showed the nuclear decay processes first in a “Chart of the Nu-
clides” (Z vs N) form.

Explained how the Z vs ∆N form clearly illustrates that nucleons
of the same type like to pair up, while the Z vs N form does not.

In subsection 14.5.1, added a graph showing half-lifes in addition
to the nuclear decay processes.

Changed spin colors to make the individual spins easier to recog-
nize.

Left out the unused colors in the legends for the same reason.

In the spin plots, nuclei whose spin has reservations are now shown
in the expected color instead of yellow, with a light check mark (a
cross if none yet). That increases information content a lot. All
nuclei now get a mark in the spin plots except those with unknown
spin (yellow squares). Added a mark for nuclei in which an imperfect
odd-nucleon model lowers the spin by one unit.

For the parity plots, used light colors instead of yellow crosses to
indicate which parities with reservations are predicted OK or not.
In the odd-even respectively even-odd parity graphs, shell model
parity lines are now only shown at the odd-even, respectively even-
odd locations. Both sets of odd-A parity lines are now shown in the
odd-odd parity graphs.

In the beta decay rate plots, added the stable nuclei to fill in the
holes with known data.

In gamma decay, I converted subsection N.36 into a note. Which it
should always have been, as it is not part of standard theory but an
hypothesis. Also rewrote it quite a bit to improve the presentation.

• Nov 1, 2016. Version 5.57 alpha. Corrected a number of errors and
poor phrasings pointed out by various readers, as in the acknowl-
edgements.
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Corrected “molecular mass” in “The New Variables” into “molar
mass”. Cannot complain about others if I do it myself.
Yes, I need to get back to doing some more serious writing on this

book.
• Feb 4, 2015. Version 5.57 alpha. Corrected some rather horrible
typos pointed out by Rob Vossen.
• Nov 14, 2013. Version 5.56 alpha. The book has been converted to
be processed by l2h instead of LATEX2HTML-FU. Web page hyphen-
ation and bad-math-break prevention are now done by l2h, instead
of inside the latex source. And the Wordperfect and MS Word gram-
mar checkers can now be applied. (In document pieces, to be sure.
Not on all 1,600 pages at once!) Removed “we” from the notations.
More rewriting of {A.9}. Added Flerovium and Livermorium to the
periodic table. Corrected some errors pointed out by kind readers.
• June 15, 2012. Version 5.55 alpha. Added hyperspheres to the
notations. Finished {A.8} and {D.22}. Rewrote {A.9}. These may
need some more editing. The problems of the previous version with
the index have been fixed. Various small problems fixed.
Various corrections of this version were posted the next few days.

They only differ in formatting of the index and notations. Also some
very minor editing, part of which may not have been posted. But
now the formatting problems really seem fixed. I hope.
• June 11, 2012. Version 5.54 alpha. Added the screened Poisson
equation to {D.2}. Rewrote {A.8} on positive unique ground states
and added an explanatory figure. Needs more work. Added an
entry on spherical coordinates to the notations. Cleaned up and ex-
panded {D.14} a bit. Editing of {A.42}. Improved the values of the
physical constants in the notations. Improved alignment of inline
math for Internet Explorer. Took inline equations apart and added
tuned relation symbols. Created a better key image for key points.
Improved appearance of the key point and question lists. Bolded
math labels in the notations and added some space behind the la-
bels. In the web version symbols are no longer on preceding lines.
In the pdf, links are now enclosed by non-offensive thin grey lines.
Urls are now enclosed by non-offensive thin black lines. In html,
very long words, including all 14 characters long or more. will now
hyphenate if needed. That includes one-dimensional, two-dimen-
sional, three-dimensional, four-dimensional, n-dimensional. accom-
plishments, acknowledgments, anticommutators, antisymmetrically,
antisymmetrization, . . . Also in html, stupid line breaks at inline
math images should no longer occur.
Please note that surely ten thousands of small changes have been

made. Some are bound to have introduced a problem, especially
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in formatting. I do think the esthetics of the web pages has been
improved tremendously. Even more so for Internet Explorer, I guess.
(But I use linux.)

Added note: the zipped version of this date has some minor format
corrections, but also an error fix in {D.22} (which still needs more
work.)

Added note: unfortunately, now the index looks like hell.

• May 4, 2012. Version 5.53 alpha. Corrections and extensions to
fundamental forces, section 7.5.2. Editing of {A.42}.
• Apr. 25, 2012. Version 5.52 alpha. Editing of {A.42}. Corrected
figures 3.3 and N.2. Very minor changes the next day.

• Feb. 15, 2012. Version 5.51 alpha. Improved discussion of field op-
erators in {A.15.9}. Added a brief explanation of the Casimir force,
{A.23.4}. Noted that pure particle and pure antiparticle states pre-
serve norm, {D.32} and {A.15.9}. Corrected that time reversal is an-
tiunitary, not unitary, {A.19.2} Greatly expanded the discussion of
the Fourier inversion theorem and Parseval, {A.26}. Added separate
derivation of the Green’s function of the Poisson equation, {D.2}.
Added an example of variational calculus, {A.2}. Added fields to
classical Lagrangian and Hamiltonian analysis, {A.1.5}. Added a
new addendum on forces by particle exchange, {A.22}. While al-
ready big, this one will need to be expanded in a later version.
Added that lone systems have definite spin and parity to chapter
7.3. Added draft explanation of the OPEP to {A.42}.
• Dec. 15, 2011. Version 5.50 alpha. Further rewrites and correction
of a couple of glaring errors in Quantum Field Theory in a Nanoshell
{A.15}. I think this addendum is now much better than it was orig-
inally. Removed interpretation of the photon wave function again.
Rewrites in 8.7

• Dec. 12, 2011. Version 5.49 alpha. Corrected previous history item.
The Dirac γ matrices are now defined, {A.36}. Rest mass is now
just m, not m0. Added note about Majorana neutrinos to {A.44}.
Added reference for gauge symmetries in {A.19.5}. Put in some
disclaimers in {A.42}. Added an interpretation of the photon wave
function. There is now a much needed draft rewrite of Quantum
Field Theory in a Nanoshell {A.15}.
• Nov. 18, 2011. Version 5.48 alpha. Added a complete comparison of
the mixed dipole and quadrupole gamma decays, figure 14.65. Minor
corresponding rewrites. Nowadays NuDat 2 no longer tells you that
you are requesting too much data and simply gives you partial data.
That explained why M1 and E2 transitions stopped so quickly. It
has been corrected. Added a description of neutrinos, {A.44}.
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• Nov. 14, 2011. Version 5.47 alpha. Corrected the definition of “inter-
val” in special relativity to be author-dependent. Due to a program
error, in the comparison of gamma decay with data the program
was actually selecting the nuclei to be as much the same as possible,
instead of as much different as possible. It has been corrected. Not
that it makes much of a visual difference. The text has been rewrit-
ten a bit too. In the “cage of Faraday” proposal, stupid me forgot
about measured electromagnetic moments. That seems to kill off
Meisner pretty well. It has been rewritten.

• Nov. 9, 2011. Version 5.46 alpha. Modified the “cage of Faraday”
proposal a bit.

• Nov. 8, 2011. Version 5.45 alpha. Added the cage-of-Faraday pro-
posal, chapter N.36.

• Nov. 8, 2011. Version 5.44 alpha. Added an example without charge
independence to isospin to clarify the need for it. Corrected a typo
in a formula and minor editing. Added examples to E0 internal
conversion and edited the text a bit in chapter 14.20.6. Added a
comparison of the single-particle theory of gamma decay with ex-
perimental data to chapter 14.20.5.

• Oct. 25, 2011. Version 5.43 alpha. Further editing of isospin. Seems
to be OK for now. Some minor editing of quantum field theory.

• Oct. 17, 2011. Version 5.42 alpha. Rewrote the discussion for
isospin. The original discussion was only defensible for a very crude
model of the deuteron. The current discussion is better but needs
more work.

• Oct. 12, 2011. Version 5.41 alpha. I finally got around to taking
out some very dubious statements on gamma decay in 14.20 that
have been bothering me for years. The relief is tremendous. I even
managed to find a ballpark for the “missing” E0 transition.

• Oct. 03, 2011. Version 5.40 alpha. Some minor corrections and
improvements on emission of radiation.

• Sep. 30, 2011. Version 5.39 alpha. Some minor corrections and
improvements on emission of radiation. Being doing other stuff.

• Sep. 26, 2011. Version 5.38 alpha. Adds a table of hydrogen radial
correction factors. Deals better with the magnetic transitions of
nonrelativistic hydrogen.

• Sep. 16, 2011. Version 5.37 alpha. Minor changes and corrections in
the previous items. Expanded the table with Weisskopf/Moszkowski
correction factors.

• Sep. 12, 2011. Version 5.36 alpha. Minor changes in section 8.4.
Added addendum {A.25} on multipole transitions, with correspond-
ing derivations and notes {D.43}, {N.13}, and {N.14}. Took out
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claim from Wikipedia that the 21 cm line is highly forbidden and
replaced it with low energy.
• Aug. 10, 2011. Version 5.35 alpha. Completed addenda A.23 and
A.24 Added section 8.4.
• Aug. 5, 2011. Version 5.34 alpha. Significant rewrite of section
7.4.3. Doing the electric transitions first really helps getting rid of
all the ifs and buts. Some rewrite of addendum N.10. Improved the
discussion of two-photon zero angular momentum in section 7.4.4.
On second thought, bringing up the alpha particle in N.10 was a
bad idea. The worst part is that the alpha decay has an exponential
dependence on angular momentum due to tunneling. That is less of
an issue in beta decay, but then there is the blasted neutrino. So the
particle is now a spinless nonrelativistic photon. Gee. The Lorentz
gauge is now the Lorenz gauge. The Coulomb gauge is no longer
misrepresented. Rewrote addenda A.23 on second quantization and
A.24 on quantum derivation of spontaneous emission. They are
incomplete; I am posting drafts since I have to go to work anyway.
• July 27, 2011. Version 5.33 alpha. The electric and magnetic fields
are now E and B. Hopefully. Based on [24, p. 240] and a similar
message in a physics news group, took the bold step of defining a
“type 2 wave function” for the photon. Some rewrite of addendum
A.14. Correspondingly added notes A.21 and D.36 on the photon
wave function and its derivation. They are incomplete; I am posting
drafts since I have to go to work anyway.
• July 20, 2011. Version 5.32 alpha. Corrected statement on parity
of the photon. Whatever I learn on the web does not hold up well.
Added addendum A.20 on the spin of vector particles.
• July 18, 2011. Version 5.31 alpha. Rewrote note physics of the
fundamental commutators. Added an addendum with Maxwell’s
wave equations. Added the Klein-Gordon equation. Or at least,
added a separate addendum for it, to eventually replace scattered
discussions of it elsewhere.
• July 12, 2011. Version 5.30 alpha. Normalized appendices to al-
low question lists in them. Moved WKB to an addendum. Minor
rewrites in time evolution. Added missing links to derivations in
relativity.
• July 05, 2011. Version 5.29 alpha. Moved derivations from addenda
to derivations. Added deuteron data from Argonne v18. Slight
rewrites for relativity. Relocated some addenda. Cleaned up adia-
batic theorem addendum and improved derivation. The Heisenberg
formulation has been moved to an addendum. There are now di-
rect links to the animated figures on the web in the pdf. The un-
steady particle in the pipe has been animated. Made J the symbol of
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generic angular momentum, with much effort. In 3D scattering, D
is a private symbol of Griffiths according to his book on elementary
particles, not a standard symbol as I thought. It has been removed.
Rewrote intro to two-state systems. Changed action in relativistic
case to be “stationary,” rather than “least.” Dropped claim ob-
tained from Internet of no population inversion for semiconductor
lasers. Gee. Major rewrite of the first half of time evolution.
• June 2, 2011. Version 5.28 alpha. Draft rewrite of the section on
modeling the deuteron. Draft rewrite of the addendum on nuclear
forces.
• May 30, 2011. Version 5.27 alpha. Inverted history list. Textual
formulae make less use of images. Textual superscripts like pow-
ers and degree signs have been joined to their root with nobr tags.
Made table formatting more consistent. Line length in html (at
recommended browser width) has been reduced a bit. It is still
longer than in the pdf version, but about the same as Lamport’s
LaTeX book. Maximum formulae, table, and figure lengths are now
consistent in html and equal to the recommended browser width.
This required a 3% reduction in displayed formulae size. Table sizes
must be explicitly set due to buggy LATEX2HTML code. Center en-
vironments have been replaced by centering to eliminate redundant
space, usually after the caption. Fixed formatting problems in table
of contents and lists of figures, tables. Pdf links to figures and tables
do now show the actual thing. Advanced angular momentum has
been made a separate chapter. HTML table of contents has been
cleaned up. HTML truncation of the two electron Clebsch Gordon
figure has been fixed. Actually, it has NOT been fixed. :() A new
attempt has been implemented. Expanded the description of funda-
mental forces in the section on particle exchange. Draft rewrite of
the first two sections of nuclei. Made the section on nuclear forces a
more limited addendum. Also eliminated a bad mistake in it.
• Apr. 25, 2011. Version 5.26 alpha. Some further minor rewrites of
the section on index notation. Spell check and minor rewrites of the
relativity chapter in general.
• Apr. 18, 2011. Version 5.25 alpha. Rewrote section on index nota-
tion, added an addendum about it.
• Mar. 14, 2011. Version 5.24 alpha. Bisected addenda on quantum
field theory and perturbation theory. Started just a bit cleaning up
the chapter on nuclei. One tiny step at a time.
• Mar. 14, 2011. Version 5.23 alpha. Brought structure into the 124
notes. Relocated the chapter “Additional Topics” in the addenda
notes. Made relativity a separate Part. Minor rewrites in the intro
to nuclei.
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• Mar. 8, 2011. Version 5.22 alpha. Noted and fixed a blunder on
cosmic redshift. Sometimes I do not seem to think at all. Everyone
else seems to make the same blunder??

• Mar. 7, 2011. Version 5.21 alpha. All remaining low-resolution
bitmap graphics are gone. Spherical Hankel and Bessel functions
have been taken out of the note on 3D scattering and given their
own note. The same for the integral Schrödinger equation. The
remaining note on 3D scattering has been given a much needed clean
up. Some rewrites in the note on symmetries.

• Feb. 7, 2011. Version 5.20 alpha. Some changes in the section and
note on conservation laws and symmetries. A large fraction of the re-
maining low-resolution bitmap graphics has been replaced by higher
quality vector graphics. The note on special relativity has been
turned into a chapter.

• Jan. 16, 2011. Version 5.19 alpha. Very minor changes in the section
on conservation laws and symmetries.

• Jan. 3, 2011. Version 5.18 alpha. Revised section on conservation
laws and symmetries. Slight cosmetic improvements in some figures.

• Nov. 30, 2010. Version 5.17 alpha. Moved hydrogen and helium to
the end of the periodic table; I simply got tired of saying “except
hydrogen” and “except helium.” Rewrote the subsection on ionic
conduction.

• Nov. 16, 2010. Version 5.16 alpha. Second and for now final version
of the subsection on typical metals and insulators.

• Nov. 12, 2010. Version 5.15 alpha. First rewrite of the subsection
on typical metals and insulators.

• Nov. 1, 2010. Version 5.14 alpha. Various minor rewrites in the
chapter on macroscopic systems.

• Oct. 11, 2010. Version 5.13 alpha. Technical modifications to allow
links in the pdf. Many people seem to use the pdf for reading instead
of the web pages.

• Oct. 4, 2010. Version 5.12 alpha. Various minor rewrites, including
for subsection 6.22.5. A number of poor phrasings pointed out by
Ramaswami Sastry Vedam corrected.

• Sep. 13, 2010. Version 5.11 alpha. Main change is the addition
of subsection 6.22.5 giving an introduction to the band theory of
three-dimensional crystals.

• Aug. 30, 2010. Version 5.10 alpha. Added spectra of actual materi-
als to the section on crystal momentum. Fixed an erroneous state-
ment about the presentation of spectra. Fixed an error where spins
were listed, but not included in the transformation in the section on
conservation laws and symmetries.
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• Aug. 23, 2010. Version 5.09 alpha. Rewrites of p-n junction and
transistor.
• Aug. 9, 2010. Version 5.08 alpha. Third law moved to notes. Edits
in the chapter on macroscopic systems. Draft proof of the Onsager
relations added and immediately removed. Gee. It will not be back.
• July 28, 2010. Version 5.07 alpha. Better description of the third
law. Some rewrites and error corrections in thermoelectrics.
• July 23, 2010. Version 5.06 alpha. Some rewrites and error correc-
tions in thermoelectrics.
• July 19, 2010. Version 5.05 alpha. Some error corrections in ther-
moelectrics and a discussion of the Onsager relations added.
• July 16, 2010. Version 5.04 alpha. Some rewrites and error correc-
tions.
• July 13, 2010. Version 5.03 alpha. Various rewrites and error cor-
rections. Also a new periodic table.
• June 6, 2010. Version 5 alpha. Lots of spelling and grammar correc-
tions, minor rewrites, and additions of summaries during teaching
a 3 hour DIS on “quantum literacy.” Added a chapter on nuclei.
Added sections and tables on angular momentum of shells. Alpha
decay has been moved to the new chapter on nuclei. Forbidden
decays are now included. Various program improvements/tuning.
Corrected “effective” mass (for a two-body system) into “reduced.”
Added a chapter on macroscopic systems to Part II. Much of this
chapter has been scavenged from Part III. It is supposed to provide
some more practical knowledge in various areas. It was inspired by
the DIS mentioned above, which showed you cannot do much of Part
III in a single semester. The semiconductor discussion in the chapter
is all new.
• March 22, 2009. Version 4.2 alpha. Spin matrices for systems greater
than spin one half are now discussed. Classical Lagrangian and
Hamiltonian dynamics is now covered in a note. Special relativity
is now covered in a note. There is now a derivation of the hydro-
gen dipole selection rules and more extensive discussion of forbidden
transitions. Angular momentum and parity conservation in transi-
tions are now discussed. The Gamow theory data are now corrected
for nuclear versus atomic mass. There is no perceivable difference,
however. The alignment bars next to the electromagnetic tables in
the web version should have been eliminated.
• Jan. 1, 2009. Version 4.0 alpha reorders the book into two parts to
achieve a much better book structure. The changed thinking justifies
a new version. Parts of the lengthy preface have been moved to the
notes. The background sections have been combined in their own
chapter to reduce distraction in part II. There is now a derivation of
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effective mass in a note. A few more commutators were added to the
reference. There is a note on Fourier transforms and the Parseval
equality. The stupid discussion of group velocity has been replaced
by a better (even more stupid?) one. Two of the gif animations
were erroneous (the nondelta function tunneling and the rapid drop
potential) and have been corrected. High resolution versions of the
animations have been added. Time-dependent perturbation theory
is now concisely covered. WKB theory is now covered. Alpha decay
is now included. The adiabatic theorem is now covered. Three-di-
mensional scattering is now covered, in a note. Fixed a mistyped
shelf number energy in the thermo chapter. The derivations of the
Dirac equation and the gyromagnetic ratio of electron spin have
been moved to the notes. Note D.71 now gives the full derivation of
the expectation Lorentz force. The direction of the magnetic field
in the figure for Maxwell’s fourth law was corrected. A section on
electrostatic solutions has been added. The description on electrons
in magnetic fields now includes the diamagnetic contribution. The
section on Stern-Gerlach was moved to the electromagnetic section
where it belongs. Electron split experiments have been removed
completely. There is now a full coverage of time-independent small
perturbation theory, including the hydrogen fine structure. Natural
frequency is now angular frequency. Gee. The Planck formula is now
the Planck-Einstein relation. The Euler identity is now the appar-
ently more common Euler formula. Black body as noun, blackbody
as compound adjective.

• Jan. 19, 2009. Version 4.1 alpha. There is now a discussion of the
Heisenberg picture. The horribly written, rambling, incoherent, sec-
tion on nearly-free electrons that has been bothering me for years
has been rewritten into two much better sections. There is now a
discussion on the quantization of the electromagnetic field, includ-
ing photon spin and spontaneous emission. The Rayleigh formula
is now derived. The perturbation expansion of eigenfunctions now
refers to Rellich’s book to show that it really works for degenerate
eigenfunctions.

• July 14, 2008. Version 3 beta 4.2 expands the section on unsteady
two-state systems to include a full discussion of “time-dependent
perturbation theory,” read emission and absorption of radiation.
Earlier versions just had a highly condensed version since I greatly
dislike the derivations in typical textbooks that are full of nontrivial
assumptions for which no justification is, or can be, given at all.

• July 2, 2008. Version 3 beta 4.1 adds a new, “advanced,” chapter on
basic and quantum thermodynamics. An advanced section on the
fundamental ideas underlying quantum field theory has also been
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added. The discussion of the lambda transition of helium versus
Bose-Einstein condensation has been rewritten to reflect the consid-
erable uncertainty. Uniqueness has been added to the note on the
hydrogen molecular ion ground state properties. Added a missing
2π in the Rayleigh-Jeans formula.
• April 7, 2008. Version 3 beta 4 adds key points and exercises added
to chapter 4, with the usual rewrites to improve clarity. The Dirich-
let completeness proof of the Fourier modes has been moved from
the solution manual to the notes. The actual expressions for the
hydrogen molecular ion integrals are now given in the note. The
London force derivation has been moved to the notes. The subsec-
tion of ferromagnetism has been rewritten to more clearly reflect the
uncertainty in the field, and a discussion of Hund’s rules added.
• Dec. 20, 2007. Version 3 beta 3.4 cleans up the format of the “notes.”
No more need for loading an interminable web page of 64 notes all at
the same time over your phone line to read 20 words. It also corrects
a few errors, one important one pointed out by Johann Joss. It also
also extends some further griping about correlation energy to all
three web locations. You may surmise from the lack of progress that
I have been installing Linux on my home PC. You are right.
• Sept. 9, 2007. Version 3 beta 3.3 mainly adds sections on solids,
that have been combined with rewritten free and nearly-free elec-
trons sections into a full chapter on solids. The rest of the old
chapter on examples of multiple particle systems has been pushed
back into the basic multiple particle systems chapter. A completely
nonsensical discussion in a paragraph of the free-electron gas sec-
tion was corrected; I cannot believe I have read over that several
times. I probably was reading what I wanted to say instead of what
I said. The alternative name “twilight terms” has been substituted
for “exchange terms.” Many minor changes.
• July 19, 2007. Version 3 beta 3.2 adds a section on Hartree-Fock. It
took forever. My main regret is that most of them who wasted my
time in this major way are probably no longer around to be properly
blasted. Writing a book on quantum mechanics by an engineer for
engineers is a minefield of having to see through countless poor def-
initions and dubious explanations. It takes forever. In view of the
fact that many of those physicist were probably supported by tax
payers much of the time, it should not be such an absolute mess!
There are some additions on Born-Oppenheimer and the varia-

tional formulation that were in the Hartree-Fock section, but that I
took out, since they seemed to be too general to be shoved away in-
side an application. Also rewrote section 5.7 and subsection 5.9.2 to
be consistent, and in particular in order to have a single consistent
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notation. Zero point energy (the vacuum kind) is back. What the
heck.
• May 21, 2007. An updated version 3 beta 3.1 to correct a poorly
written subsection on quantum confinement for the particle in a
pipe. Thanks to Swapnil Jain for pointing out the problem. I do
not want people to get lost so early in the game, so I made it a
priority correction. In general, I do think that the sections added
later to the document are not of the same quality as the original
with regard to writing style. The reason is simple. When I wrote
the original, I was on a sabbatical and had plenty of time to think
and rethink how it would be clearest. The later sections are written
during the few spare hours I can dig up. I write them and put them
in. I would need a year off to do this as it really should be done.
• May 5, 2007. There are now lists of key points and review questions
for chapter 3. That makes it the 3 beta 3 version. Various other fixes,
like spectral line broadening, Helium’s refusal to take on electrons,
and countless other less than ideal phrasings. And full solutions
of the harmonic oscillator, spherical harmonics, and hydrogen wave
function ODEs, Mandelshtam-Tamm energy-time uncertainty, (all
in the notes.) A dice is now a die, though it sounds horrible to me.
Zero point energy went out again as too speculative.
• April 2, 2007. There are now lists of key points and review questions
for chapter 2. That makes it the 3 beta 2 version. So I guess the
final beta version will be 3 beta 6. Various other fixes. I also added,
probably unwisely, a note about zero point energy.
• Mid Feb.,2007. There are now lists of key points and review ques-
tions for chapter 1. Answers are in the new solution manual.
• Mid Jan., 2007. Added sections on confinement and density of
states, a commutator reference, a section on unsteady perturbed
two state systems, and an advanced chapter on angular momentum,
the Dirac equation, the electromagnetic field, and NMR. Fixed a du-
bious phrasing about the Dirac equation and other minor changes.
• Mid April, 2006. Various minor fixes. Also I changed the format
from the “article” to the “book” style.
• Mid Feb., 2006. A new version was posted. Main differences are
correction of a number of errors and improved descriptions of the
free-electron and band spectra. There is also a rewrite of the many
worlds interpretation to be clearer and less preachy.
• May 11 2005. I got cold feet on immediately jumping into separation
of variables, so I added a section on a particle in a pipe.
• May 4, 2005. A revised version was posted. I finally read the paper
by Everett, III on the many worlds interpretation, and realized that
I had to take the crap out of pretty much all my discussions. I also
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rewrote everything to try to make it easier to follow. I added the
motion of wave packets to the discussion and expanded the one on
Newtonian motion.
• Nov 27, 2004. A revised version was posted, fixing a major blunder
related to a nasty problem in using classical spring potentials for
more than a single particle. The fix required extensive changes.
This version also added descriptions of how the wave function of
larger systems is formed.
• Oct 24, 2004. The first version of this manuscript was posted.
Part I is a draft.
Part II is mostly in a fairly good shape. But there are a few recent additions

that probably could do with another look. Of course, fairly good is not the
same as good. Chapter 7 is poor.

In Part III various parts sure could do with a few more rewrites. For example,
the thermodynamics chapter is quite embarrassing. The chapter on nuclei is an
incomplete absolute mess.

The shape of addenda and notes is pretty much like their root chapters.
Somewhat notably missing at this time:
1. Electron split experiments. Do engineers need it?? Some mention is

now in the basic ideas chapter.
2. Quantum electrodynamics. (The full relativistic theory.) Do engi-

neers need it??
3. Density-functional theory.
4. Mössbauer effect.
5. Superfluidity (but there is not really a microscopic theory.)
6. Superconductivity.

N.3 Nature and real eigenvalues

The major difference between real and complex numbers is that real numbers
can be ordered from smaller to larger. So you might speculate that the fact
that the numbers of our world are real may favor a human tendency towards
simplistic rankings where one item is “worse” or “better” than the other. What
if your grade for a quantum mechanics test was 55+90i and someone else had a
70+65i? It would be logical in a world in which the important operators would
not be Hermitian.

N.4 Are Hermitian operators really like that?

A mathematician might choose to phrase the problem of Hermitian operators
having or not having eigenvalues and eigenfunctions in a suitable space of per-
missible functions and then find, with some justification, that some operators
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in quantum mechanics, like the position or momentum operators do not have
any permissible eigenfunctions. Let alone a complete set. The approach of this
text is to simply follow the formalism anyway, and then fix the problems that
arise as they arise.

More generally, what this book tells you about operators is absolutely true
for systems with a finite number of variables, but gets mathematically suspect
for infinite systems. The functional analysis required to do better is well beyond
the scope of this book and the abstract mathematics a typical engineer would
ever want to have a look at.

In any case, when problems are discretized to a finite one for numerical
solution, the problem no longer exists. Or rather, it has been reduced to figuring
out how the numerical solution approaches the exact solution in the limit that
the problem size becomes infinite.

N.5 Why boundary conditions are tricky

You might well ask why you cannot have a wave function that has a change in
wave function value at the ends of the pipe. In particular, you might ask what is
wrong with a wave function that is a nonzero constant inside the pipe and zero
outside it. Since the second derivative of a constant is zero, this (incorrectly)
appears to satisfy the Hamiltonian eigenvalue problem with an energy eigenvalue
equal to zero.

The problem is that this wave function has “jump discontinuities” at the
ends of the pipe where the wave function jumps from the constant value to
zero. (Graphically, the function is “broken” into separate pieces at the ends.)
Suppose you approximate such a wave function with a smooth one whose value
merely drops down steeply rather than jumps down to zero. The steep fall-off
produces a first order derivative that is very large in the fall-off regions, and
a second derivative that is much larger still. Therefore, including the fall-off
regions, the average kinetic energy is not close to zero, as the constant part
alone would suggest, but actually almost infinitely large. And in the limit of a
real jump, such eigenfunctions produce infinite energy, so they are not physically
acceptable.

The bottom line is that jump discontinuities in the wave function are not
acceptable. However, the correct solutions will have jump discontinuities in the
derivative of the wave function, where it jumps from a nonzero value to zero at
the pipe walls. Such discontinuities in the derivative correspond to “kinks” in
the wave function. These kinks are acceptable; they naturally form when the
walls are made more and more impenetrable. Jumps are wrong, but kinks are
fine. (Don’t break the wave function, but crease it all you like.)

For more complicated cases, it may be less trivial to figure out what singu-
larities are acceptable or not. In general, you want to check the “expectation
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value,” as defined later, of the energy of the almost singular case, using integra-
tion by parts to remove difficult-to-estimate higher derivatives, and then check
that this energy remains bounded in the limit to the fully singular case. That
is mathematics far beyond what this book wants to cover, but in general you
want to make singularities as minor as possible.

N.6 Is the variational approximation best?

Clearly, “best” is a subjective term. If you are looking for the wave function
within a definite set that has the most accurate expectation value of energy,
then minimizing the expectation value of energy will do it. This function will
also approximate the true eigenfunction shape the best, in some technical sense
{A.7}. (There are many ways the best approximation of a function can be
defined; you can demand that the maximum error is as small as possible, or
that the average magnitude of the error is as small as possible, or that a root-
mean-square error is, etcetera. In each case, the “best” answer will be different,
though there may not be much of a practical difference.)

But given a set of approximate wave functions like those used in finite ele-
ment methods, it may well be possible to get much better results using additional
mathematical techniques like Richardson extrapolation. In effect you are then
deducing what happens for wave functions that are beyond the approximate
ones you are using.

N.7 Shielding approximation limitations

In the helium atom, if you drop the shielding approximation for the remaining
electron in the ionized state, as common sense would suggest, the ionization
energy would become negative! This illustrates the dangers of mixing models
at random. This problem might also be why the discussion in [25] is based on
the zero shielding approximation, rather than the full shielding approximation
used here.

But zero shielding does make the base energy levels of the critical outer
electrons of heavy atoms very large, proportional to the square of the atomic
number. And that might then suggest the question: if the energy levels explode
like that, why doesn’t the ionization energy or the electronegativity? And it
makes the explanation why helium would not want another electron more dif-
ficult. Full shielding puts you in the obviously more desirable starting position
of the additional electron not being attracted, and the already present electrons
being shielded from the nucleus by the new electron. And how about the size
of the atoms imploding in zero shielding?

Overall, this book prefers the full shielding approach. Zero shielding would
predict the helium ionization energy to be 54.4 eV, which really seems worse
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than 13.6 eV when compared to the exact value of 24.6 eV. On the other hand,
zero shielding does give a fair approximation of the actual total energy of the
atom; 109 eV instead of an exact value of 79. Full shielding produces a poor
value of 27 eV for the total energy; the total energy is proportional to the square
of the effective nucleus strength, so a lack of full shielding will increase the total
energy very strongly. But also importantly, full shielding avoids the reader’s
distraction of having to rescale the wave functions to account for the nonunit
nuclear strength.

If eventually X-ray spectra need to be covered in this book, a description of
“hot” relativistic inner electrons would presumably fix any problem well.

N.8 Why the s states have the least energy

The probability of being found near the nucleus, i.e. the origin, is determined by
the magnitude of the relevant hydrogen wave function |ψnlm|2 near the origin.
Now the power series expansion of ψnlm in terms of the distance r from the origin
starts with power rl, (D.8). For small enough r, a p, (i.e. ψn1m), state involving
a factor r will be much smaller than an s, (ψn0m), state without such a factor.
Similarly a d, (ψn2m), state involving a factor r2 will be much less still than a p
state with just single factor r, etcetera. So states of higher angular momentum
quantum number l stay increasingly strongly out of the immediate vicinity of
the nucleus. This reflects in increased energy since the nuclear attraction is
much greater close the nucleus than elsewhere in the presence of shielding.

N.9 Explanation of the band gaps

Chapter 6.21 showed that the spectra of the electrons of solids have “band gaps;”
energy ranges for which there are no quantum states for the electrons. These
band gaps were qualitatively explained as the remnants of the discrete electron
energy states of the individual atoms. These discrete energy states spread out
when multiple atoms start interacting, but not necessarily enough to completely
remove the gaps.

However, if you start from the free-electron gas point of view, it is much less
clear why and when addition of just a bit of crystal potential would suddenly
pop up band gaps out of nothing. If you are curious, this note is for you.

To understand what is going on, the Kronig & Penney model will be used.
The “crystal” is again taken to be one-dimensional. The potential consists again
of a sequence of straight dips, as was shown in green in 6.22. The dips represent
the attraction of the atoms on the individual atomic electrons. However, to
allow an easier comparison with the free-electron gas solutions, this time the
dips will taken far less deep than before. Think of it as a model for a metal,
where the outer electrons are only very weakly bound to their atomic cores.
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For these shallower “atomic” dips, and for a crystal consisting of very many
“atoms,” the energy levels are as shown to the left in figure N.1. Note that for
the higher energies, this is generally speaking very similar to the energy levels
for the free-electron spectrum shown to the left. That should be expected; why
would the shallow potential energy dips have much of an effect when the kinetic
energy of the electron considered is very large? But even for high energy levels,
there are still occasional thin gaps. At these gaps, the electron velocity plunges
to zero. Why are these gaps there?

vpx vpx

Ep
x Ep

x

weak crystal potential free electrons

Figure N.1: Spectrum for a weak potential.

To qualitatively understand what is going on, from here on it will be as-
sumed that the periodic “crystal” consists of just 12 “atoms,” (rather than,
say, a million). Mathematically, after twelve atoms, the quantum wave function
becomes the same as it was initially and the solution repeats. You may think
of the twelve atoms as physically being arranged in a ring shape.

To make things easier to understand, it is also desirable to switch from the
complex “Bloch wave” wave functions to the equivalent real ones. These real
wave functions may be found as the real and imaginary parts of the Bloch
waves. That is easiest for the free-electron gas, where the Bloch waves are
simply complex exponentials; the Euler identity says

eikxx = cos(kxx) + i sin(kxx)

So for the free-electron gas, the real wave functions are cos(kxx) and sin(kxx),
ignoring an unimportant normalization constant. As before, the wave number
kx is a measure of the “crystal momentum” pcm,x = ~kx, which is turn related
to the electron velocity vpx through the energy.
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z = 0

z = 2

z = 4

z = 6

z = 8

z = 10

z = 12

band gap occurs here

z = 12

z = 14

z = 16

Figure N.2: The 17 real wave functions of lowest energy for a small one-dimen-
sional periodic box with only 12 atomic cells. Black curves show the square
wave function, which gives the relative probability of finding the electron at
that location.
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For the Kronig-Penney model, the real wave functions are more complex
than simple sines and cosines, but can be found the same way.

Note that normally there are two different wave functions for each value of
the wave number kx. The one exception is for the ground state of lowest energy
where kx is zero. In terms of the free electron gas, sin(0x) = 0. Zero is not a
valid wave function. Remember that the square magnitude of a wave function
gives the probability of finding the electron. So if a wave function would be
zero, there would not be any chance of finding the electron anywhere. So there
would be no electron.

For the free-electron gas, that leaves as only ground state wave function
cos(0x) = 1 times some constant. That is just a constant. And since the square
of a constant is still a constant, that means that the probability of finding the
electron is the same everywhere in the period.

For the Kronig-Penney case, the situation is a less simple. Consider first the
ground state, shown in the picture at the bottom of figure N.2. (In figure N.2
the height of a wave function picture illustrates the relative amount of energy
of that wave function. So the ground state picture is at the bottom.) The
square magnitude of the ground state wave function, shown as the black line, is
no longer a constant. It is higher than average at the dips in the potential, at
the “atoms.” It is lower than average in between “atoms.” So the electron is
somewhat more likely to be found near an atom that attracts it than in between
atoms. The electron reduces its potential energy that way. But it cannot
do this without limit; if the electron is only found at the atoms, the reduced
uncertainty in position increases the kinetic energy more than the potential
energy is lowered. The best compromise is given by the black line at the bottom
of figure N.2.

To understand the energy states above the ground state, a key concept of
the general mathematical properties of real one-dimensional wave functions is
needed: The more zero crossings in the wave function, the higher the energy.
Qualitatively, the reason is not that hard to understand. The more zero cross-
ings, the more wildly the wave function swings back and forward between posi-
tive and negative values, raising the kinetic energy. In figure N.2 the number of
zero crossings is listed as z. Note that by squaring the wave functions, the zero
crossings become touching zero, not crossing it.

Note further that only even numbers of zero crossings z appear. A periodic
wave function must return to the same sign at the end of the period as at the
start, and that is only possible if the number of zero crossings is even.

Note next that in almost all cases, there are two different wave functions of
the same energy at a given number of zero crossings. That is because if you
have one wave function at a given z, you can simply shift it over by one atomic
cell, and you have another wave function of the same energy. This second wave
function is almost always a different one. In particular, it can only be the same
wave function if the z zeros are still in the same place. But if you have 12 atomic
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cells and, say, z = 8 zeros, then some of the 12 atomic cells must have zeros
and other ones not. So the shifted wave function cannot possibly have all its
zeros in the same place. So the shifted wave function is a second, different, wave
function of the same energy. So there are two different wave functions with the
same z and energy.

The only way this can possibly fail, and does, is if each atomic cell has the
same number of zeros as its next neighbor. So every atomic cell must have the
same number of zeros in it.

That, then, is why it is possible at all that there is only one wave function
in the ground state. In the ground state there are no zeros, so every atomic
cell has the same number, none. Indeed, looking closer, in the ground state
the wave function is identical in every atomic cell. Mathematically, for kx = 0,
the exponential part of the Bloch wave is just a trivial constant, making the
complete Bloch wave the same for all atomic cells. So shifting the wave function
over one atomic cell gives you back the exact same thing.

The next possibility that the shifted wave function does not give a different
one occurs when every atomic cell has one zero crossing. For a “crystal” of 12
atomic cells, that requires that there are z = 12 zero crossings. This happens
when the wavenumber kx =π/dx where dx is the atomic cell size. Then the
exponential part of the Bloch wave function in any atomic cell is identical to
that in the next atomic cell except for a mere minus sign. So the shifted wave
function is only different by a minus sign. This means it is physically equivalent
to the original one. Not a separate wave function.

But even if shifting the wave function does not give you a second one, still
there must be two different eigenfunctions for each even number of zeros z
greater than zero. In particular, the wave functions in figure N.2 were obtained
in two ways. For the wave functions in the left-hand column, it was assumed
that the derivative of the wave function is zero at the start of the period (like
it is for the cos(kxx) free-electron gas solutions). For the wave functions in the
right-hand column, it was assumed that the wave function itself is zero at the
start of the period (like it is for the sin(kxx) free-electron gas solutions). These
are two different solutions; they cannot be equivalent because the right-hand
wave function has a zero at the start of the period, but the left-hand one does
not.

For one, this explains why for the ground state where z = 0, there is no
right-hand wave function. If you start out with a zero crossing, you must have
at least one of them. It also explains why a wave function in the right column is
not just the wave function in the left column shifted by an atomic cell. The two
wave functions were separately computed. In almost all cases, the right-hand
wave function is then a combination of the shifted and unshifted left-hand wave
functions, the combination that is zero at the start of the period. In about
half the cases, that turns out to be the left wave function shifted by a quarter
period, in the other half of the cases it is just all different. The energy of the
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two solutions is still the same.
But for the special case of z = 12 zeros for the 12 atomic cells, figure N.2

shows that the left and right wave functions are physically fundamentally dif-
ferent. In the left-hand wave function, the electron is most likely to be found
in the region of high potential energy between atoms. All the peaks in wave
function are there. In the right-hand wave function, the electron is most likely
to be found in the region of low potential energy at the atoms. The peaks are
there. That means that the left hand wave function has a lot more potential
energy than the right-hand one. So the two wave functions do not have the
same energy in this case. We have a band gap when the number of zeros is
exactly the same as the number of atoms.

Similarly there will be a band gap at z = 24, where there are two zero
crossings in each atomic cell, etcetera. The band gaps occur at whole multiples
of the number of atomic cells. And there are 12 energy states in each band. For
a physically realistic number of atomic cells, call it a million instead of 12, there
are a million energy states between band gaps, effectively forming a continuum
band between the gaps.

One thing that may still be counter-intuitive is why the right-hand z =
12 wave function has higher, rather than much lower energy than the z = 10
ones. In particular, the peaks in the right-hand wave function at z = 12 are all
perfectly aligned with the atomic locations. That greatly reduces the potential
energy. But in the z = 10 case the peaks are not aligned with the atoms. While
the z = 10 case has some advantage in kinetic energy with less zero crossings,
that advantage is small. That would not be able to explain it if the right-hand
z = 12 would really have a big advantage in potential energy over the z = 10
states.

To see why it is possible, look more closely at the z = 10 case in figure N.2.
It is true that a significant fraction of the peaks in wave function are in between
atoms instead of on top of atoms. However, the physics modulates the height of
the peaks so that the big peaks are the ones on top of the atoms, and the small
peaks the ones in between atoms. That still has the effect that the electron is
most likely found at an atom, still greatly reducing the potential energy. That
eliminates the apparent advantage of the right-hand z = 12 state in potential
energy.

Also note that for z = 10, the number of zeros is still close to the number of
atoms. So the distance between peaks is still almost the same as the distance
between atoms, (especially for a million atoms instead of 12). So if, say, a peak
is pretty much on top of an atom, the neighboring peaks are too. Therefore the
modulation of peak amplitudes can be done in a way that slowly varies along
the length of the crystal. So it does not add a big amount to the kinetic energy.

However, because of the modulation, the z = 10 wave functions do give up
almost all their small kinetic energy advantage compared to the right-hand z =
12 case. That means that the two energies become very close together. Since



1452 APPENDIX N. NOTES

the change in energy is a measure of the electron propagation velocity vpx, that
velocity plunges to zero. Which is exactly what you see in figure N.1.

Similarly for the z = 14 wave functions, the peaks are modulated so that
the electron is most likely to be found in between atoms, just like for the left-
hand z = 12 wave function. So the z = 14 wave functions have about the same
potential energy as the left-hand z = 12 one. And because the z = 12 wave
function is so effective in raising its potential energy, you would expect that
the energy difference with the z = 14 case would be relatively small, producing
small electron velocity. And that is indeed what happens.

So the only finite energy gaps occur when the number of zeros is a whole
multiple of the number of atoms. And the gap is between the two states with
that number of zeros.

And between the states immediately above and below the gaps, the energy
difference is even smaller than elsewhere in the band. That makes the electron
velocity vpx zero at the edges of the bands

Since the wave functions at the edges of the bands have zero propagation
velocity, electrons in these states cannot move through the crystal. Now an
implicit result of the analysis above is that for these states, a whole multiple
of the Bloch wave length must equal double the atomic spacing. The Bloch
exponential can change sign going from one atomic cell to the next, then return
to the original sign at the next cell, but nothing more. If you train a beam
of electrons with a wave length like that onto the crystal, the beam cannot
propagate and will be totally reflected. That is in fact a key result of the Bragg
reflection theory of wave mechanics, (10.16) in chapter 10.7.2. Thus Bragg
theory can provide an intuitive justification for some of the features of the band
structure.

If you want to see mathematically that the propagation velocity is indeed
zero at the band gaps, and you know linear algebra, you can find the derivation
in {D.84}. That also explains how the wave function figures in figure N.2 were
made.

N.10 A less fishy story

This note gives a simple model for the emission of a particle like a photon. It
is assumed that the emitted particle has a typical quantum wave length λ that
is large compared to the typical size R of the atom or nucleus that does the
emitting. The purpose of the model is to show that in that case, the particle
will very likely come out with zero orbital angular momentum but has some
probability of nonzero angular momentum.

First, photon wave functions are messy and not that easy to make sense of,
{A.21.7}. The photon would be much simpler if it did not have spin and was
nonrelativistic. A reasonable wave function for a hypothetical spinless nonrela-
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tivistic photon coming out of the center of the emitter with typical wave length
λ would be

ψ =
1

λ3/2
f

(
r2

λ2

)

where r is the distance from the center. (The various factors λ have been added
to make the function f independent of the photon wave length λ despite the
corresponding spatial scale and the normalization requirement.)

The above wave function has no preferred direction in the emission, making
it spherically symmetric. It depends only on the distance r from the center
of the emitter. That means that the wave function has zero orbital angular
momentum. Recall that zero angular momentum corresponds to the spherical
harmonic Y 0

0 , which is independent of the angular position, chapter 4.2.
There are various reasons to give why you would want the wave function

of a particle coming out of the origin to have zero angular momentum. For
one, since it comes out of a featureless point, there should not be a preferred
direction. Or in terms of classical physics, if it had angular momentum then
it would have to have infinite velocity at the origin. The similar quantum idea
is that the relevant wave functions for a particle moving away from the origin,
the Hankel functions of the first kind, blow up very strongly at the origin if
they have angular momentum, {A.6}. But it is really better to describe the
emitted particle in terms of the Bessel functions of the first kind. These have
zero probability of the particle being at the origin if the angular momentum
is not zero. And a particle should not be created at a point where it has zero
probability of being.

Of course, a spherically symmetric quantum wave function also means that
the particle is moving away from the emitter equally in all directions. Following
the stated ideas of quantum mechanics, this will be true until the position of
the particle is “measured.” Any macroscopic surroundings cannot reasonably
remain uncommitted to exactly where the outgoing particle is for very long.

Now consider the same sort of emission, but from a point in the emitter a
bit away from the center. For simplicity, assume the emission point to be at
Rk̂, where R is the typical size of the emitter and k̂ is the unit vector along the
chosen z-axis. In that case the wave function is

ψ =
1

λ3/2
f

(
(~r −Rk̂)2

λ2

)

Using Taylor series expansion, that becomes

ψ =
1

λ3/2
f

(
r2

λ2

)
− R

λ

1

λ3/2
f ′
(
r2

λ2

)
2
r

λ

z

r
+ . . .

In the second term, z/r is the spherical harmonic Y 0
1 , table 4.3. This term has

angular momentum quantum number l = 1. So there is now uncertainty in mo-
mentum. And following the stated ideas of quantum mechanics, the probability
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for l = 1 is given by the square magnitude of the coefficient of the (normalized)
eigenfunction.

That makes the probability for l = 1 proportional to (R/λ)2. If you car-
ried out the Taylor series to the next order, you would end up with a (z/r)2

term, which, combined with a spherically symmetric contribution, makes up the
spherical harmonic Y 0

2 . It then follows that the probability for l = 2 is of order
(R/λ)4. And so on. Under the assumed condition that the emitter size R is
much less than the quantum wave length λ of the emitted particle, the probabil-
ities for nonzero angular momentum are small and decrease rapidly even further
with increasing l.

N.11 Better description of two-state systems

An approximate definition of the states ψ1 and ψ2 would make the states ψL and
ψH only approximate energy eigenstates. But they can be made exact energy
eigenfunctions by defining (ψ1 + ψ2)/

√
2 and (ψ1 − ψ2)/

√
2 to be the exact

symmetric ground state and the exact antisymmetric state of second lowest
energy. The precise “basic” wave function ψ1 and ψ2 can then be reconstructed
from that.

Note that ψ1 and ψ2 themselves are not energy eigenstates, though they
might be so by approximation. The errors in this approximation, even if small,
will produce the wrong result for the time evolution. (The small differences in
energy drive the nontrivial part of the unsteady evolution.)

N.12 Second quantization in other books

The approach to second quantization followed in this book is quite different
from what you will find in other basic quantum mechanics or advanced physics
books. This book simply sticks to its guns. Right at the beginning, this book
said that observable properties are the eigenvalues of Hermitian operators. And
that these act on particle wave functions. These same rules are then used to
quantize the electromagnetic field.

What other books do is write down various classical wave solutions to Max-
well’s equations. Then these books reach deep inside these messy equations,
cross out certain coefficients, and scribble in new ones. The new ones have
operators in them and undetermined coefficients. The undetermined coefficients
are then determined by examining the energy of the wave and comparing it with
a harmonic oscillator, as analyzed using quantum field theory.

This book, however, greatly dislikes writing down classical solutions. A
general student may not be familiar with these solutions. Or have long forgot-
ten them. And it seems quite doubtful that even physics students are really
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familiar with the messy electric and magnetic multipole fields of classical elec-
tromagnetics. The approach in this book is to skip classical physics and give
a self-contained and reasonable quantum derivation wherever possible. (Which
means almost always.)

This book detests reaching into the middle of equations known to be wrong,
and then crossing out things and writting in new things, all the while waving
your hands a lot. The method of science is to make certain fundamental as-
sumptions and then take them to their logical conclusion, whatever it may be.
Not messing around until you get something that seems the right answer. And
a book on science should showcase the methods of science.

Then there is the problem that the classical waves are inherently time-
dependent. The Schrödinger approach, however, is to put the time dependence
in the wave function. For good reasons. That means that starting from the
classical waves, you have two options, both ugly. You can suddenly switch to
the Heisenberg representation, which is what everybody does. Or you can try
to unextract the time dependence and put it on an explicit wave function.

And things get even uglier because the entire approach depends essentially
on a deep familiarity with a different problem; the quantum-field description of
the harmonic oscillator.

In fact, it may be noted that in early versions, this book did really try to give
an understandable description of second quantization using the usual approach.
The result was an impenetrable mess.

N.13 Combining angular momentum factors

Angular momenta from different sources can be combined using the Clebsch-
Gordan coefficients of chapter 12.7. For example, you can combine orbital and
spin angular momenta of a particle that way, or the angular momenta of different
particles.

But sometimes you need to multiply angular momentum states of the same
source together. For example, you may need to figure out a product of spherical
harmonics, chapter 4.2.3, like

Y m1
l1
Y m2
l2

where the position coordinates refer to the same particle. If you multiply a few
examples from table 4.3 together, you quickly see that the combinations are not
given by the Clebsch-Gordan coefficients of figure 12.6.

One way to understand the angular momentum properties of the above prod-
uct qualitatively is to consider the case that the second spherical harmonic takes
the coordinates of an imagined second particle. Then you can use the normal
procedures to figure out the properties of the two-particle system. And you
can get the corresponding properties of the original one-particle system by re-
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stricting the two-particle wave function coordinates to the subset in which the
particle coordinates are equal.

Note in doing so that angular momentum properties are directly related to
the effect of coordinate system rotations, {A.19}. Coordinate system rotations
maintain equality of particle coordinates; they stay within the subset. But inner
products for the two-particle system will obviously be different from those for
the reduced one-particle system.

And Clebsch-Gordan coefficients are in fact inner products. They are the
inner product between the corresponding horizontal and vertical states in figures
12.5 and 12.6. The correct coefficients for the product above are still related to
the Clebsch-Gordan ones, though you may find them in terms of the equivalent
Wigner “3j” coefficients.

Wigner noticed a number of problems with the Clebsch-Gordan coefficients:
1. Clebsch and Gordan, and not Wigner, get credit for them.
2. They are far too easy to type.
3. They have an intuitive interpretation.

So Wigner changed the sign on one of the variables, took out a common factor,
and reformatted the entire thing as a matrix. In short

(
j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

〈j3−m3||j1m1〉|j2m2〉 (N.1)

Behold, the spanking new “Wigner 3j symbol.” Thus Wigner succeeded by his
hard work in making physics a bit more impenetrable still than before. A big
step for physics, a small step back for mankind.

The most important thing to note about this symbol/coefficient is that it is
zero unless

m1 +m2 +m3 = 0 and |j1 − j2| 6 j3 6 j1 + j2

The right-hand conditions are the so-called triangle inequalities. The ordering
of the j-values does not make a difference in these inequalities. You can swap
the indices 1, 2, and 3 arbitrarily around.

If all three m values are zero, then the symbol is zero if the sum of the j
values is odd. If the sum of the j values is even, the symbol is not zero unless
the triangle inequalities are violated.

If you need an occasional value for such a symbol that you cannot find in
figure 12.5 and 12.6 or more extensive tables elsewhere, there are convenient
calculators on the web, [[16]]. There is also software available to evaluate them.
Note further that {D.65} gives an explicit expression.

In literature, you may also encounter the so-called Wigner “6j” and “9j”
symbols. They are typically written as

{
j1 j2 j3
l1 l2 l3

} 



j11 j12 j13
j21 j22 j23
j31 j32 j33
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They appear in the combination of angular momenta. If you encounter one,
there are again calculators on the web. The most useful thing to remember
about 6j symbols is that they are zero unless each of the four triads j1j2j3,
j1l2l3, l1j2l3, and l1l2j3 satisfies the triangle inequalities.

The 9j symbol changes by at most a sign under swapping of rows, or of
columns, or transposing. It can be expressed in terms of a sum of 6j symbols.
There are also 12j symbols, if you cannot get enough of them.

These symbols are needed to do advanced computations but these are far
outside the scope of this book. And they are very abstract, definitely not
something that the typical engineer would want to get involved in in the first
place. All that can be done here is to mention a few key concepts. These might
be enough keep you reading when you encounter them in literature. Or at least
give a hint where to look for further information if necessary.

The basic idea is that it is often necessary to know how things change under
rotation of the axis system. Many derivations in classical physics are much
simpler if you choose your axes cleverly. However, in quantum mechanics you
face problems such as the fact that angular momentum vectors are not normal
vectors, but are quantized. Then the appropriate way of handling rotations is
through the so-called Wigner-Eckart theorem. The above symbols then pop up
in various places.

For example, they allows you to do such things as figuring out the derivatives
of the harmonic polynomials Yml of table 4.3, and to define the vector spherical

harmonics ~YJlM that generalize the ordinary spherical harmonics to vectors. A
more advanced treatment of vector bosons, {A.20}, or photon wave functions
of definite angular momentum, {A.21.7}, would use these. And so would a
more solid derivation of the Weisskopf and Moszkowski correction factors in
{A.25.8}. You may also encounter symbols such as D(j)

m′m for matrix elements
of finite rotations.

All that will be done here is give the derivatives of the harmonic polynomials
rlY m

l , since that formula is not readily available. Define the following complex
coordinates xµ for µ = −1, 0, 1:

µ = −1: x−1 =
x− iy√

2
µ = 0: x0 = z µ = 1: x1 = −

x+ iy√
2

Then

∂rlY m
l

∂xµ
= (−1)µ+1

√
l(2l + 1)2

(2l − 1)
〈l − 1 m− µ||l m〉|1 −µ〉rl−1Y m−µ

l−1

= Cµlmr
l−1Y m−µ

l−1

where the inner product of kets is a Clebsch-Gordan coefficient and

C−1lm =

√
(2l + 1)(l −m)(l −m− 1)

2(2l − 1)
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C0lm =

√
(2l + 1)2(l +m)(l −m)

2(2l − 1)

C1lm =

√
(2l + 1)(l +m)(l +m− 1)

2(2l − 1)

or zero if the final magnetic quantum number is out of bounds.
If just having a rough idea of what the various symbols are is not enough,

you will have to read up on them in a book like [13]. There are a number of
such books, but this particular book has the redeeming feature that it lists some
practical results in a usable form. Some highlights: general expression for the
Clebsch-Gordan coefficients on p. 45; wrong definition of the 3j coefficient on
p. 46, (one of the rare mistakes; correct is above), symmetry properties of the
3j symbol on p. 47; 3j symbols with all m values zero on p. 50; list of alternate
notations for the Clebsch-Gordan and 3j coefficients on p.52, (yes, of course
it is a long list); integral of the product of three spherical harmonics, like in
the electric multipole matrix element, on p. 63; the correct expression for the
product of two spherical harmonics with the same coordinates, as discussed
above, on p. 63; effect of nuclear orientation on electric quadrupole moment on
p. 78; wrong derivatives of spherical harmonics times radial functions on p. 69,
80, (another 5 rare mistakes in the second part of the expression alone, see
above for the correct expression for the special case of harmonic polynomials);
plane wave in spherical coordinates on p. 81. If you do try to read this book,
note that γ stands for “other quantum numbers,” as well as the Euler angle.
That is used well before it is defined on p. 33. If you are not psychic, it can be
distracting.

N.14 The electric multipole problem

There is a big problem with electric multipole transitions in nuclei. Electric
multipole transitions arise from a matrix element of the form

H21 =
∑

i

〈ψL|~AEℓ∗
i · ~̂pi|ψH〉

Here ψL is the final atomic or nuclear state and ψH the initial one. The sum is
over the atomic or nuclear particles, with i the particle index. Also

~̂pi =
~

i
∇i

~AEℓ
i = ∇i ×~ri ×∇ijℓ(kri)Y

m
ℓ (θi, φi)

where jℓ is a spherical Bessel function and Y m
ℓ a spherical harmonic.

Under the approximation that the atomic or nuclear size is small compared to
the wave length of the emitted or absorbed photon, this may be approximated.
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In that approximation. the single-particle electric matrix element is commonly
described as proportional to

〈ψL|rℓiY m
ℓ,i |ψH〉 Y m

ℓ,i ≡ Y m
ℓ (θi, φi)

where rℓiY
m
ℓ,i is a harmonic polynomial. However, the correct inner product is

〈ψL|rℓiY m
ℓ,i + [V/~ω, rℓiY

m
ℓ.i ]|ψH〉

Here ~ω is the energy of the photon. The additional commutator term is not
mentioned in any other basic textbook on nuclei that this author knows of. A
derivation is in {D.43}.

If the potential depends only on position, the commutator is zero, and there
is no problem. That is a valid approximation for the outer electrons in atoms.
But nuclear potentials include significant momentum terms. These do not com-
mute. One example is the spin-orbit term in the shell model. Now consider the
size of the commutator term above compared to the first term. For a ballpark,
note that it does not make much difference whether the orbital angular momen-
tum in the spin-orbit term acts on the wave function ψH or on the harmonic
polynomial. So the relative size of the commutator term ballparks to the ratio
of the spin-orbit energy to the photon energy. That ratio can be big. For ex-
ample, in the so-called “islands of isomerism” transitions, one state has enough
spin-orbit energy to cross a major shell boundary. But the energy release ~ω
stays within the same shell and could be quite small.

As a check on this ballpark, consider the simplest possible electric multipole
transition:

ψL = RL(ri)Y
0
0,i↑ ψH = RH(ri)Y

ℓ
ℓ,i↑ m = ℓ V = V0−Vsof(ri)

1

~2
~̂Li · ~̂Si

Here the part V0 of the potential V represents terms that only depend on posi-
tion, or do not involve the position coordinates of particle i. This part commutes
with the harmonic polynomial. Also f is a function of radial position of order
1. Then the constant Vso gives the magnitude of the spin orbit energy. In the
above case, only the z components of the angular momentum operators give a
contribution. Then it is easily seen that the commutator term produces a con-
tribution that is larger in magnitude than the other term by a factor of order
Vsoℓ/~ω.

Note also that the effect is especially counter-intuitive for electric dipole
transitions. It would seem logical to think that such transitions could be ap-
proximately described by a straightforward interaction of the particles with the
electric field. However, the commutator need not be zero. So the electric field
could be dwarfed by a larger additional field. That field is then a consequence
of the fact that quantum mechanics uses the vector potential rather than the
classical electric field.
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Which brings up the next problem. The commutator term will not be there
if you use the gauge property of the electromagnetic field to approximate the
leading order electric field through an electrostatic potential. So should the
commutator be there or not to get the best solution? As far as this author can
see, there is no way to tell. And certainly for higher multipole orders you cannot
even ignore the problem by using the electrostatic potential.

(Note that the real problem is the fact that you get different answers depend-
ing on how you select the gauge. If the nuclear Hamiltonian (A.169) respected
the quantum gauge property of {A.19.5}, the commutator would be zero. That
can be seen by substituting in the gauge property: it shows that for any particle
the potential must commute with e−iqiχi/~, and the exponential is a completely
arbitrary function of the particle coordinates. But the fact that the commutator
should be zero does not take away the fact that it is not zero. Presumably, if you
described the nucleus in terms of the individual quarks, you could write down a
potential that respected the gauge property. But using quarks is not an option.
The reality is that you must use protons and neutrons. And in those terms, a
potential that does a decent job of describing the nucleus will simply not respect
the gauge property. Yes, this does suggest that describing gamma decay using
protons and neutrons instead of quarks is an inherently fishy procedure.)

This author knows not a single reference that gives a decent description of
the above issue. Many simply do not mention the problem at all and just omit
the commutator. Some simply state that the potential is assumed to depend on
the particle positions only, like [33]. Surely it ought to be mentioned explicitly
that the leading electric multipole operator as listed may well be no good at all?
If it is listed, people will assume that is is meaningful unless stated otherwise.
As [33] notes, “significant information regarding nuclear wave functions can be
obtained from a comparison of experimental γ-decay transition probabilities
with theoretical values calculated on basis of specific models of the nucleus.” If
one is not aware of the possibility of the additional commutator as a leading
order effect, one might incorrectly conclude that a nuclear wave function is poor
where the real problem is the ignored commutator.

At least [11, p.9-172] and [5] can be read to say that there might be a
nontrivial problem. The original relativistic derivation of Stech, [44], mentions
the issue, but no ballpark is given. (It is however noted that the spin-orbit term
might be significant for magnetic transitions. The purely nonrelativistic analysis
used here does not show such an effect. The present author suspects that the
difference is that the relativistic derivation of Stech inherently assumes that
the gauge property is valid. Surely there must be ways to do the relativistic
analysis such that, in say the electric dipole case, both the results with and
without commutator are reproduced.)

To be sure, the author no longer believes that this is a potential explana-
tion why E1 transitions are so much slower than the Weisskopf estimate. The
deviations in chapter 14.20.5 figures 14.63 and 14.64 seem much too big and
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systematic to be explained by this mechanism. And it does not seem to address
the concerns about mixed transitions that are mentioned there.

N.15 A tenth of a googol in universes

There is an oft-cited story going around that the many worlds interpretation
implies the existence of 1099 worlds, and this number apparently comes from Ev-
erett, III himself. It is often used to argue that the many-worlds interpretation
is just not credible. However, the truth is that the existence of infinitely many
worlds, (or practically speaking infinitely many of them, maybe, if space and
time would turn out to be discrete and finite), is a basic requirement of quantum
mechanics itself, regardless of interpretation. Everett, III cannot be blamed for
that, just for coming up with the ludicrous number of 1099 to describe infinity.

N.16 A single Slater determinant is not exact

The simplest example that illustrates the problem with representing a general
wave function by a single Slater determinant is to try to write a general two-
variable function F (x, y) as a Slater determinant of two functions f1 and f2.
You would write

F (x, y) =
a√
2

(
f1(x)f2(y)− f2(x)f1(y)

)

A general function F (x, y) cannot be written as a combination of the same two
functions f1(x) and f2(x) at every value of y. However well chosen the two
functions are.

In fact, for a general antisymmetric function F , a single Slater determinant
can get F right at only two nontrivial values y = y1 and y = y2. (Nontrivial
here means that functions F (x, y1) and F (x, y2) should not just be multiples of
each other.) Just take f1(x) = F (x, y1) and f2(x) = F (x, y2). You might object
that in general, you have

F (x, y1) = c11f1(x) + c12f2(x) F (x, y2) = c21f1(x) + c22f2(x)

where c11, c12, c21, and c22 are some constants. (They are f1 or f2 values at
y1 or y2, to be precise). But if you plug these two expressions into the Slater
determinant formed with F (x, y1) and F (x, y2) and multiply out, you get the
Slater determinant formed with f1 and f2 within a constant, so it makes no
difference.

If you add a second Slater determinant, you can get F right at two more
y values y3 and y4. Just take the second Slater determinant’s functions to be
f
(2)
1 = ∆F (x, y3) and f

(2)
2 = ∆F (x, y4), where ∆F is the deviation between the



1462 APPENDIX N. NOTES

true function and what the first Slater determinant gives. Keep adding Slater
determinants to get more and more y-values right. Since there are infinitely
many y-values to get right, you will in general need infinitely many determinants.

You might object that maybe the deviation ∆F from the single Slater de-
terminant must be zero for some reason. But you can use the same ideas to
explicitly construct functions F that show that this is untrue. Just select two
arbitrary but different functions f1 and f2 and form a Slater determinant. Now
choose two locations y1 and y2 so that f1(y1), f2(y1) and f1(y2), f2(y2) are not in
the same ratio to each other. Then add additional Slater determinants whose
functions f

(2)
1 , f

(2)
2 , f

(3)
1 , f

(3)
2 , . . . you choose so that they are zero at y1 and y2.

The so constructed function F is different from just the first Slater determinant.
However, if you try to describe this F by a single determinant, then it could
only be the first determinant since that is the only single determinant that gets
y1 and y2 right. So a single determinant cannot get F right.

N.17 Generalized orbitals

This note has a brief look at generalized orbitals of the form

ψp
n(~r) = ψs

n+(~r)↑(Sz) + ψs
n−(~r)↓(Sz).

For such orbitals, the expectation energy can be worked out in exactly the
same way as in {D.52}, except without simplifying the spin terms. The energy
is

〈E〉 =
I∑

n=1

〈
ψp
n

∣∣∣he
∣∣∣ψp

n

〉

+ 1
2

I∑

n=1

I∑

n=1
n 6=n

〈
ψp
nψ

p
n

∣∣∣vee
∣∣∣ψp

nψ
p
n

〉

− 1
2

I∑

n=1

I∑

n=1
n 6=n

〈
ψp
nψ

p
n

∣∣∣vee
∣∣∣ψp

nψ
p
n

〉

To multiply out to the individual spin terms, it is convenient to normalize
the spatial functions, and write

ψp
n = cn+ψ

s
n+,0↑+ cn−ψ

s
n−,0↓,

〈ψs
n+,0|ψs

n+,0〉 = 〈ψs
n−,0|ψs

n−,0〉 = 1, |cn+|2 + |cn−|2 = 1
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In that case, the expectation energy multiplies out to

〈E〉 =
I∑

n=1

〈
ψs
n+,0

∣∣∣he
∣∣∣ψs

n+,0

〉
|cn+|2 +

I∑

n=1

〈
ψs
n−,0

∣∣∣he
∣∣∣ψs

n−,0

〉
|cn−|2

+ 1
2

I∑

n=1

I∑

n=1
n 6=n

(〈
ψs
n+,0ψ

s
n+,0

∣∣∣vee
∣∣∣ψs

n+,0ψ
s
n+,0

〉

−
〈
ψs
n+,0ψ

s
n+,0

∣∣∣vee
∣∣∣ψs

n+,0ψ
s
n+,0

〉)
|cn+|2|cn+|2

+ 1
2

I∑

n=1

I∑

n=1
n 6=n

2
〈
ψs
n+,0ψ

s
n−,0

∣∣∣vee
∣∣∣ψs

n+,0ψ
s
n−,0

〉
|cn+|2|cn−|2

+ 1
2

I∑

n=1

I∑

n=1
n 6=n

(〈
ψs
n−,0ψ

s
n−,0

∣∣∣vee
∣∣∣ψs
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where ℜ stands for the real part of its argument.

Now assume you have a normal unrestricted Hartree-Fock solution, and you
try to lower its ground-state energy by selecting, for example, a spin-up orbital
ψs
m↑ ≡ ψs

m+,0↑ and adding some amount of spin down to it. First note then that
the final sum above is zero, since at least one of cn+, cn−, cn−, and cn+ must
be zero: all states except m are still either spin-up or spin-down, and m cannot
be both n and n 6= n. With the final sum gone, the energy is a linear function
of |cm−|2, with |cm+|2 = 1− |cm−|2. The minimum energy must therefore occur
for either |cm−|2 = 0, the original purely spin up orbital, or for |cm−|2 = 1.
(The latter case means that the unrestricted solution with the opposite spin for
orbital m must have less energy, so that the spin of orbital m was incorrectly
selected.) It follows from this argument that for correctly selected spin states,
the energy cannot be lowered by replacing a single orbital with a generalized
one.

Also note that for small changes, |cm−|2 is quadratically small and can be
ignored. So the variational condition of zero change in energy is satisfied for
all small changes in orbitals, even those that change their spin states. In other
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words, the unrestricted solutions are solutions to the full variational problem
δ〈E〉 = 0 for generalized orbitals as well.

Since these simple arguments do not cover finite changes in the spin state
of more than one orbital, they do not seem to exclude the possibility that there
might be additional solutions in which two or more orbitals are of mixed spin.
But since either way the error in Hartree-Fock would be finite, there may not
be much justification for dealing with the messy problem of generalized orbitals
with dubious hopes of improvement. Procedures already exist that guarantee
improvements on standard Hartree-Fock results.

N.18 “Correlation energy”

The error in Hartree-Fock is due to the single-determinant approximation only.
A term like “Hartree-Fock error“ or “single-determinantal error” is therefore
both precise, and immediately understandable by a general audience.

However, it is called “correlation energy,” and to justify that term, it would
have to be both clearer and equally correct mathematically. It fails both re-
quirements miserably. The term correlation energy is clearly confusing and
distracting for nonspecialist. But in addition, there does not seem to be any
theorem that proves that an independently defined correlation energy is iden-
tical to the Hartree-Fock single determinant error. That would not just make
the term correlation energy disingenuous, it would make it wrong.

Instead of finding a rigorous theorem, you are lucky if standard textbooks,
e.g,. [30, 34, 46] and typical web references, offer a vague qualitative story why
Hartree-Fock underestimates the repulsions if a pair of electrons gets very close.
That is a symptom of the disease of having an incomplete function representa-
tion, it is not the disease itself. Low-parameter function representations have
general difficulty with representing localized effects, whatever their physical
source. If you make up a system where the Coulomb force vanishes both at
short and at long distance, such correlations do not exist, and Hartree-Fock
would still have a finite error.

The kinetic energy is not correct either; what is the correlation in that? Some
sources, like [30] and web sources, seem to suggest that these are “indirect”
results of having the wrong correlation energy, whatever correlation energy may
be. The idea is apparently, if you would have the electron-electron repulsions
exact, you would compute the correct kinetic energy too. That is just like
saying, if you computed the correct kinetic energy term, you would compute
the correct potential too, so let’s rename the Hartree-Fock error “kinetic energy
interaction.”

Even if you computed the potential energy correctly, you would still have
to convert the wave function to single-determinantal form before evaluating
the kinetic energy, otherwise it is not Hartree-Fock, and that would produce
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a finite error. Phrased differently, there is absolutely no way to get a general
wave function correct with a finite number of single-electron functions, whatever
corrections you make to the potential energy.

Szabo and Ostlund [46, p. 51ff,61] state that it is called correlation energy
since “the motion of electrons with opposite spins is not correlated within the
Hartree-Fock approximation.” That is incomprehensible, for one thing since it
seems to suggest that Hartree-Fock is exact for excited states with all electrons
in the same spin state, which would be ludicrous. In addition, the electrons do
not have motion; a stationary wave function is computed, and they do not have
spin; all electrons occupy all the states, spin up and down. It is the orbitals that
have spin, and the spin-up and spin-down orbitals are most definitely correlated.

However, the authors do offer a “clarification;” they take a Slater determi-
nant of two opposite spin orbitals, compute the probability of finding the two
electrons at given positions and find that it is correlated (unless the spatial or-
bitals are equal). They then declare that these correlated positions mean that
the “motion” of the two electrons is uncorrelated.

The unrestricted Hartree-Fock solution of the dissociated hydrogen molecule
is of this type. This solution was discussed in the introductory section 9.3.1.
Since if one electron is around the left proton, the other is around the right one,
and vice versa, normal people would call the positions of the electrons strongly
correlated. And even while “motion” is not defined on quantum scales, to any
engineer it would seem ludicrous to claim that strongly correlated positions
would produce uncorrelated “motion” if “motion” existed.

Koch and Holthausen, [30, pp.22-23], address the same two electron example
as Szabo and Ostlund, but do not have the same problem of finding the electron
probabilities correlated. For example, if the spin-independent probability of
finding the electrons at positions ~r1 and ~r2 in the dissociated hydrogen molecule
is

1
2
|ψl(~r1)|2|ψr(~r2)|2 + 1

2
|ψr(~r1)|2|ψl(~r2)|2

then, Koch and Holthausen explain to us, the second term must be the same
as the first. After all, if the two terms were different, the electrons would
be distinguishable: electron 1 would be the one that selected ψl in the first
term that Koch and Holthausen wrote down in their book. So, the authors
conclude, the second term above is the same as the first, making the probability
of finding the electrons equal to twice the first term, |ψl(~r1)|2|ψrmr(~r2)|2. That
is an uncorrelated product probability.

However, the assumption that electrons are indistinguishable with respect
to mathematical formulae in books is highly controversial. Many respected ref-
erences, and this book too, only see an empirical requirement that the wave
function, not books, is antisymmetric with respect to exchange of any two elec-
trons. And the wave function is antisymmetric even when the two terms above
are not the same.
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Wikipedia, [[21]], Hartree-Fock entry June 2007, lists electron correlation,
(defined here vaguely as “effects” arising from from the mean-field approxima-
tion, i.e. using the same vHF operator for all electrons) as an approximation
made in addition to using a single Slater determinant. Sorry, but Hartree-Fock
gives the best single-determinantal approximation; there is no additional ap-
proximation made. The mean “field” approximation is a consequence of the
single determinant, not an additional approximation. Then this reference pro-
ceeds to declare this correlation energy the most important of the set, in other
words, more important that the single-determinant approximation! And again,
even if the potential energy was computed exactly, instead of using the vHF

operator, and only the kinetic energy was computed using a Slater determinant,
there would still be a finite error. It would therefore appear then that the name
correlation energy is sufficiently impenetrable and poorly defined that even the
experts cannot necessarily figure it out.

Consider for a second the ground state of two electrons around a massive nu-
cleus. Because of the strength of the nucleus, the Coulomb interaction between
the two electrons can to first approximation be ignored. A reader of the various
vague qualitative stories listed above may then be forgiven for assuming that
Hartree-Fock should not have any error. But only the unrestricted Hartree-Fock
solution with those nasty, “uncorrelated” (true in this case), opposite-spin “elec-
trons” (orbitals) is the one that gets the energy right. A unrestricted solution
in terms of those perfect, correlated, aligned-spin “electrons” gets the energy all
wrong, since one orbital will have to be an excited one. In short the “correlation
energy” (error in energy) that, we are told, is due to the “motion” of electrons
of opposite spins not being “correlated” is in this case 100% due to the motion
of aligned-spin orbitals being correlated. Note that both solutions get the spin
wrong, but we are talking about energy.

And what happened to the word “error” in “correlation energy error?” If
you did a finite difference or finite element computation of the ground state,
you would not call the error in energy “truncation energy;” it would be called
“truncation error” or “energy truncation error.” Why does one suspect that the
appropriate and informative word “error” did not sound “hot” enough to the
physicists involved?

Many sources refer to a reference, (Löwdin, P.-E., 1959, Adv. Chem. Phys.,
2, 207) instead of providing a solid justification of this widely-used key term
themselves. If one takes the trouble to look up the reference, does one find a
rigorously defined correlation energy and a proof it is identical in magnitude to
the Hartree-Fock error?

Not exactly. One finds a vague qualitative story about some perceived
“holes” whose mathematically rigorous definition remains restricted to the cen-
ter point of one of them. However, the lack of a defined hole size is not supposed
to deter the reader from agreeing wholeheartedly with all sorts of claims about
the size of their effects. Terms like “main error,”, “small error,” “large correla-
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tion error” (qualified by “certainly”), “vanish or be very small,” (your choice),
are bandied around, even though there is no small parameter that would allow
any rigorous mathematical definition of small or big.

Then the author, who has already noted earlier that the references cannot
agree on what the heck correlation energy is supposed to mean in the first place,
states “In order to get at least a formal definition of the problem, . . . ” and
proceeds to redefine the Hartree-Fock error to be the “correlation energy.” In
other words, since correlation energy at this time seems to be a pseudo-scientific
concept, let’s just cross out the correct name Hartree-Fock error, and write in
“correlation energy!”

To this author’s credit, he does keep the word error in “correlation error in
the wave function” instead of using “correlation wave function.” But somehow,
that particular term does not seem to be cited much in literature.

N.19 Ambiguities in electron affinity

The International Union of Pure and Applied Chemistry (IUPAC) Gold Book
defines electron affinity as “Energy required to detach an electron from the singly
charged negative ion [. . . ] The equivalent more common definition is the energy
released (Einitial − Efinal) when an additional electron is attached to a neutral
atom or molecule.” This is also the definition given by Wikipedia. Chemguide
says “The first electron affinity is the energy released when 1 mole of gaseous
atoms each acquire an electron to form 1 mole of gaseous 1- ions.” HyperPhysics
says “The electron affinity is a measure of the energy change when an electron
is added to a neutral atom to form a negative ion.” Encyclopedia Brittanica
says “in chemistry, the amount of energy liberated when an electron is added
to a neutral atom to form a negatively charged ion.” Chemed.chem.purdue.edu
says “The electron affinity of an element is the energy given off when a neutral
atom in the gas phase gains an extra electron to form a negatively charged ion.”

Another definition that can be found: “Electron affinity is the energy re-
leased when an electron is added to the valence shell of a gas-phase atom.”
Note the additional requirement here that the electron be added to the valence
shell of the atom. It may make a difference.

First note that it is not self-evident that a stable negative ion exists. Atoms,
even inert noble gasses, can be weakly bound together by Van der Waals/London
forces. You might think that similarly, a distant electron could be weakly bound
to an atom or molecule through the dipole strength it induces in the atom or
molecule. The atom’s or molecule’s electron cloud would move a bit away from
the distant electron, allowing the nucleus to exert a larger attractive force on
the distant electron than the repulsive force by the electron cloud. Remember
that according to the variational principle, the energy of the atom or molecule
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does not change due to small changes in wave function, while the dipole strength
does. So the electron would be weakly bound.

It sounds logical, but there is a catch. A theoretical electron at rest at infinity
would have an infinitely large wave function blob. If it moves slightly towards
the attractive side of the dipole, it would become somewhat localized. The
associated kinetic energy that the uncertainty principle requires, while small at
large distances, still dwarfs the attractive force by the induced dipole which is
still smaller at large distances. So the electron would not be bound. Note that if
the atom or molecule itself already has an inherent dipole strength, then if you
ballpark the kinetic energy, you find that for small dipole strength, the kinetic
energy dominates and the electron will not be bound, while for larger dipole
strength, the electron will move in towards the electron cloud with increasing
binding energy, presumably until it hits the electron cloud.

In the case that there is no stable negative ion, the question is, what to make
of the definitions of electron affinity above. If there is a requirement that the
additional electron be placed in the valence shell, there would be energy needed
to do so for an unstable ion. Then the electron affinity would be negative.
If there is however no requirement to place the electron in the valence shell,
you could make the negative value of the electron affinity arbitrarily small by
placing the electron in a sufficiently highly-excited state. Then there would be
no meaningful value of the electron affinity, except maybe zero.

Various reputed sources differ greatly about what to make of the electron
affinities if there is no stable negative ion. The CRC Handbook of Chemistry
and Physics lists noble gasses, metals with filled s shells, and nitrogen all as “not
stable” rather than giving a negative electron affinity for them. That seems to
agree with the IUPAC definition above, which does not require a valence shell
position. However, the Handbook does give a small negative value for ytterbium.
A 2001 professional review paper on electron affinity mentioned that it would
not discuss atoms with negative electron affinities, seemingly implying that they
do exist.

Quite a lot of web sources list specific negative electron affinity values for
atoms and molecules. For example, both Wikipedia and HyperPhysics give
specific negative electron affinity values for benzene. Though one web source
based on Wikipedia (!) claims the opposite.

Also note that references, like Wikipedia and HyperPhysics, differ over how
the sign of electron affinity should be defined, making things even more con-
fusing. Wikipedia however agrees with the IUPAC Gold Book on this point: if
a stable ion exist, there is a positive affinity. Which makes sense; if you want
to specify a negative value for a stable ion, you should not give it the name
“affinity.”

Wikipedia (July 2007) also claims: “All elements have a positive electron
affinity, but older texts mistakenly report that some elements such as inert
gases have negative [electron affinity], meaning they would repel electrons. This



N.20. WHY FLOQUET THEORY SHOULD BE CALLED SO 1469

is not recognized by modern chemists.” However, this statement is very hard to
believe in view of all the authoritative sources, like the CRC Handbook above,
that explicitly claim that various elements do not form stable ions, and often
give explicit negative values for the electron affinity of various elements. If the
2007 Handbook would after all these years still misstate the affinity of many
elements, would not by now a lot of people have demanded their money back? It
may be noted that Wikipedia lists Ytterbium as blank, and the various elements
listed as not stable by the CRC handbook as stars, in other words, Wikipedia
itself does not even list the positive values it claims.

N.20 Why Floquet theory should be called so

At about the same time as Floquet, Hill appears to have formulated similar
ideas. However, he did not publish them, and the credit of publishing a publicly
scrutinizable exposure fairly belongs to Floquet.

Note that there is much more to Floquet theory than what is discussed here.
If you have done a course on differential equations, you can see why, since the
simplest case of periodic coefficients is constant coefficients. Constant coefficient
equations may have exponential solutions that do not have purely imaginary
arguments, and they may include algebraic factors if the set of exponentials is
not complete. The same happens to the variable coefficient case, with additional
periodic factors thrown in. But these additional solutions are not relevant to the
discussed periodic crystals. They can be relevant to describing simple crystal
boundaries, though.

N.21 Superfluidity versus BEC

Many texts and most web sources suggest quite strongly, without explicitly
saying so, that the so-called “lambda” phase transition at 2.17 K from normal
helium I to superfluid helium II indicates Bose-Einstein condensation.

One reason given that is that the temperature at which it occurs is com-
parable in magnitude to the temperature for Bose-Einstein condensation in a
corresponding system of noninteracting particles. However, that argument is
very weak; the similarity in temperatures merely suggests that the main en-
ergy scales involved are the classical energy kBT and the quantum energy scale
formed from ~

2/2m and the number of particles per unit volume. There are
likely to be other processes that scale with those quantities besides macroscopic
amounts of atoms getting dumped into the ground state.

Still, there is not much doubt that the transition is due to the fact that
helium atoms are bosons. The isotope He3 that is missing a neutron in its
nucleus does not show a transition to a superfluid until 2.5 mK. The three
orders of magnitude difference can hardly be due to the minor difference in mass;
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the isotope does condense into a normal liquid at a comparable temperature
as plain helium, 3.2 K versus 4.2 K. Surely, the vast difference in transition
temperature to a superfluid is due to the fact that normal helium atoms are
bosons, while the missing spin 1/2 neutron in He3 atoms makes them fermions.
(The eventual superfluid transition of He3 at 2.5 mK occurs because at extremely
low temperatures very small effects allow the atoms to combine into pairs that
act as bosons with net spin one.)

While the fact that the helium atoms are bosons is apparently essential to
the lambda transition, the conclusion that the transition should therefore be
Bose-Einstein condensation is simply not justified. For example, Feynman [18,
p. 324] shows that the boson character has a dramatic effect on the excited
states. (Distinguishable particles and spinless bosons have the same ground
state; however, Feynman shows that the existence of low energy excited states
that are not phonons is prohibited by the symmetrization requirement.) And
this effect on the excited states is a key part of superfluidity: it requires a finite
amount of energy to excite these states and thus mess up the motion of helium.

Another argument that is usually given is that the specific heat varies with
temperature near the lambda point just like the one for Bose-Einstein conden-
sation in a system of noninteracting bosons. This is certainly a good point if
you pretend not to see the dramatic, glaring, differences. In particular, the
Bose-Einstein specific heat is finite at the Bose-Einstein temperature, while the
one at the lambda point is infinite.. How much more different can you get?
In addition, the specific heat curve of helium below the lambda point has a
logarithmic singularity at the lambda point. The specific heat curve of Bose-
Einstein condensation for a system with a unique ground state stays analytical
until the condensation terminates, since at that point, out of the blue, nature
starts enforcing the requirement that the number of particles in the ground state
cannot be negative, {D.57}.

Tilley and Tilley [47, p. 37] claim that the qualitative correspondence be-
tween the curves for the number of atoms in the ground state in Bose-Einstein
condensation and the fraction of superfluid in a two-fluid description of liquid
helium “are sufficient to suggest that Tλ marks the onset of Bose-Einstein con-
densation in liquid

4
He.” Sure, if you think that a curve reaching a maximum

of one exponentially has a similarity to one that reaches a maximum of one
with infinite curvature. And note that this compares two completely different
quantities. It does not compare curves for particles in the ground state for both
systems. It is quite generally believed that the condensate fraction in liquid
helium, unlike that in true Bose-Einstein condensation, does not reach one at
zero temperature in the first place, but only about 10% or so, [47, pp. 62-66].

Since the specific heat curves are completely different, Occam’s razor would
suggest that helium has some sort of different phase transition at the lambda
point. However, Tilley and Tilley [47, pp. 62-66] present data, their figure
2.17, that suggests that the number of atoms in the ground state does indeed
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increase from zero at the lambda point, if various models are to be believed and
one does not demand great accuracy. So, the best available knowledge seems
to be that Bose-Einstein condensation, whatever that means for liquid helium,
does occur at the lambda point. But the fact that many sources see “evidence”
of condensation where none exists is worrisome: obviously, the desire to believe
despite the evidence is strong and widespread, and might affect the objectivity
of the data.

Snoke & Baym point out (in the introduction to Bose-Einstein Condensa-
tion, Griffin, A., Snoke, D.W., & Stringari, S., Eds, 1995, Cambridge, p. 4),
that the experimental signal of a Bose-Einstein condensate is taken to be a
delta function for the occupation number of the particles [particle state?] with
zero momentum, associated with long-range phase coherence of the wave func-
tion. It is not likely to be unambiguously verified any time soon. The actual
evidence for the occurrence of Bose-Einstein condensation is in the agreement of
theoretical models and experimental data, including also models for the specific
heat anomaly. However, Sokol points out in the same volume, (p. 52): “At
present, however, liquid helium is the only system where the existence of an ex-
perimentally obtainable Bose condensed phase is almost universally accepted”
[emphasis added].

The question whether Bose-Einstein condensation occurs at the lambda
point seems to be academic anyway. The following points can be distilled from
Schmets and Montfrooij [39]:

1. Bose-Einstein condensation is a property of the ground state, while
superfluidity is a property of the excited states.

2. Ideal Bose-Einstein condensates are not superfluid.

3. Below 1 K, essentially 100% of the helium atoms flow without vis-
cosity, even though only about 7% is in the ground state.

4. In fact, there is no reason why a system could not become a super-
fluid even if only a very small fraction of the atoms were to form a
condensate.

The statement that no Bose-Einstein condensation occurs for photons applies
to systems in thermal equilibrium. In fact, Snoke & Baym, as mentioned above,
use lasers as an example of a condensate that is not superfluid.

N.22 The mechanism of ferromagnetism

It should be noted that in solids, not just spatial antisymmetry, but also sym-
metry can give rise to spin alignment. In particular, in many ferrites, there is
an opposite spin coupling between the iron atoms and the oxygen ones. If two
iron atoms are opposite in spin to the same oxygen atom, it implies that they
must have aligned spins even if their electrons do not interact directly.
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It comes as somewhat a surprise to discover that in this time of high-
temperature superconductors, the mechanism of plain old ferromagnetism is
still not understood that well if the magnetic material is a conductor, such as a
piece of iron.

For a conductor, the description of the exclusion effect should really be at
least partly in terms of band theory, rather than electrons localized at atoms.
More specifically, Aharoni [2, p. 48] notes “There is thus no doubt in anybody’s
mind that neither the itinerant electron theory nor the localized electron one
can be considered to be a complete picture of the physical reality, and that they
both should be combined into one theory.”

Sproull notes that in solid iron, most of the 4s electrons move to the 4d
bands. That reduces the magnetization by reducing the number of unpaired
electrons.

While Sproull [42, p. 282] in 1956 describes ferromagnetism as an interac-
tion between electrons localized at neighboring atoms, Feynman [22, p. 37-2] in
1965 notes that calculations using such a model produce the wrong sign for the
interaction. According to Feynman, the interaction is thought to occur with
[4s] conduction band electrons acting as intermediaries. More recently, Aharoni
[2, p. 44] notes: “It used to be stated [. . . ] that nobody has been able to com-
pute a positive exchange integral for Fe, and a negative one for Cu [. . . ]. More
modern computations [. . . ] already have the right sign, but the magnitude of
the computed exchange still differs considerably from the experimental value.
Improving the techniques [. . . ] keeps improving the results, but not sufficiently
yet.”

Batista, Bonča, and Gubernatis note that “After seven decades of intense
effort we still do not know what is the minimal model of itinerant ferromag-
netism and, more importantly, the basic mechanism of ordering.” (Phys Rev
Let 88, 2002, 187203-1) and “Even though the transition metals are the most
well studied itinerant ferromagnets, the ultimate reason for the stabilization of
the FM phase is still unknown.” (Phys Rev B 68, 2003, 214430-11)

N.23 Fundamental assumption of statistics

The assumption that all energy eigenstates with the same energy are equally
likely is simply stated as an axiom in typical books, [4, p. 92], [18, p. 1], [25,
p. 230], [52, p. 177]. Some of these sources quite explicitly suggest that the fact
should be self-evident to the reader.

However, why could not an energy eigenstate, call it A, in which all parti-
cles have about the same energy, have a wildly different probability from some
eigenstate B in which one particle has almost all the energy and the rest has
very little? The two wave functions are wildly different. (Note that if the prob-
abilities are only somewhat different, it would not affect various conclusions
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much because of the vast numerical superiority of the most probable energy
distribution.)

The fact that it does not take any energy to go from one state to the other
[18, p. 1] does not imply that the system must spend equal time in each state,
or that each state must be equally likely. It is not difficult at all to construct
nonlinear systems of evolution equations that conserve energy and in which the
system runs exponentially away towards specific states.

However, the coefficients of the energy eigenfunctions do not satisfy some
arbitrary nonlinear system of evolution equations. They evolve according to
the Schrödinger equation, and the interactions between the energy eigenstates
are determined by a Hamiltonian matrix of coefficients. The Hamiltonian is a
Hermitian matrix; it has to be to conserve energy. That means that the coupling
constant that allows state A to increase or reduce the probability of state B is
just as big as the coupling constant that allows B to increase or reduce the
probability of state A. More specifically, the rate of increase of the probability
of state A due to state B and vice-versa is seen to be

(
d|cA|2
dt

)

duetoB

=
1

~
ℑ (c∗AHABcB)

(
d|cB|2
dt

)

duetoA

= −1

~
ℑ (c∗AHABcB)

where HAB is the perturbation Hamiltonian coefficient between A and B. (In
the absence of perturbations, the energy eigenfunctions do not interact and
HAB = 0.) Assuming that the phase of the Hamiltonian coefficient is random
compared to the phase difference between A and B, the transferred probability
can go at random one way or the other regardless of which one state is initially
more likely. Even if A is currently very improbable, it is just as likely to pick
up probability from B as B is from A. Also note that eigenfunctions of the same
energy are unusually effective in exchanging probability, since their coefficients
evolve approximately in phase.

This note would argue that under such circumstances, it is simply no longer
reasonable to think that the difference in probabilities between eigenstates of
the same energy is enough to make a difference. How could energy eigenstates
that readily and randomly exchange probability, in either direction, end up
in a situation where some eigenstates have absolutely nothing, to incredible
precision?

Feynman [18, p. 8] gives an argument based on time-dependent perturba-
tion theory, chapter 11.10. However, time-dependent perturbations theory relies
heavily on approximation, and worse, the measurement wild card. Until scien-
tists, while maybe not agreeing exactly on what measurement is, start laying
down rigorous, unambiguous, mathematical ground rules on what measurements
can do and cannot do, measurement is like astrology: anything goes.



1474 APPENDIX N. NOTES

N.24 A problem if the energy is given

Examining all shelf number combinations with the given energy and then picking
out the combination that has the most energy eigenfunctions seems straightfor-
ward enough, but it runs into a problem. The problem arises when it is required
that the set of shelf numbers agrees with the given energy to mathematical pre-
cision. To see the problem, recall the simple model system of chapter 11.3 that
had only three energy shelves. Now assume that the energy of the second shelf
is not

√
9 = 3 as assumed there, (still arbitrary units), but slightly less at

√
8.

The difference is small, and all figures of chapter 11.3 are essentially unchanged.
However, if the average energy per particle is still assumed equal to 2.5, so that
the total system energy equals the number of particles I times that amount,
then I2 must be zero: it is impossible to take a nonzero multiple of an irrational
number like

√
8 and end up with a rational number like 2.5I − I1 − 4I3. What

this means graphically is that the oblique energy line in the equivalent of fig-
ure 11.5 does not hit any of the centers of the squares mathematically exactly,
except for the one at I2 = 0. So the conclusion would be that the system must
have zero particles on the middle shelf.

Of course, physically this is absolute nonsense; the energy of a large number
of perturbed particles is not going to be certain to be 2.5 I to mathematical
precision. There will be some uncertainty in energy, and the correct shelf num-
bers are still those of the darkest square, even if its energy is 2.499 9. . . I instead
of 2.5 I exactly. Here typical textbooks will pontificate about the accuracy of
your system-energy measurement device. However, this book shudders to con-
template what happens physically in your glass of ice water if you have three
system-energy measurement devices, but your best one is in the shop, and you
are uncertain whether to believe the unit you got for cheap at Wal-Mart or your
backup unit with the sticking needle.

To avoid these conundrums, in this book it will simply be assumed that the
right combination of shelf occupation numbers is still the one at the maximum
in figure 11.6, i.e. the maximum when the number of energy eigenfunctions is
mathematically interpolated by a continuous function. Sure, that may mean
that the occupation numbers are no longer exact integers. But who is going to
count 1020 particles to check that it is exactly right? (And note that those other
books end up doing the same thing anyway in the end, since the mathematics
of an integer-valued function defined on a strip is so much more impossible than
that of a continuous function defined on a line.)

If fractional particles bothers you, even among 1020 of them, just fix things
after the fact. After finding the fractional shelf numbers that have the biggest
energy, select the whole shelf numbers nearest to it and then change the “given”
energy to be 2.499 999 9. . . or whatever it turns out to be at those whole shelf
numbers. Then you should have perfectly correct shelf numbers with the highest
number of eigenfunctions for the new given energy.
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N.25 The recipe of life

Religious nuts, “creationists,” “intelligent designers,” or whatever they are call-
ing themselves at the time you are reading this, call them CIDOWs for short,
would like to believe that the universe was created literally like it says in the
bible. The bible contains two creation stories, the Genesis story and the Adam
and Eve story, and they conflict. At some time in the past they were put in
together for simplicity, without ironing out their contradictions. CIDOWs feel
that with two conflicting creation stories, surely at least one should be right?
This is the bible, you know?

Now if you want to believe desperately enough, you are willing to accept
anything that seems to reasonably support your point, without looking too hard
at any opposing facts. (Critically examining facts is what a scientist would do,
but you can reasonably pass yourself off as a scientist in the court system and
popular press without worrying about it. You do have to pass yourself off as a
scientist in the United States, since it is unconstitutional to force your religious
beliefs upon the public education system unless you claim they are scientific
instead of religious.) Now CIDOWs had a look at life, and it seemed to be quite
nonmessy to them. So they felt its entropy was obviously low. (Actually, a
human being may be a highly evolved form of life, but being largely water well
above absolute zero temperature, its entropy is not particularly low.) Anyway,
since the earth has been around for quite some time, they reasoned that the
entropy of its surface must have been increasing for a long time, and nonmessy
human beings could not possibly be true. Hence the conventional scientific
explanation of the evolution of life violated the second law and could not be
true. It followed that the universe just had to be created by God. The Christian
God of course, don’t assume now that Allah or Buddha need apply.

Hello CIDOWs! The surface of the earth is hardly an adiabatic system. See
that big fireball in the sky? What do you think all that plant life is doing with
all those green leaves? Baierlein [4, pp. 128-130] works out some of the rough
details. Since the surface of the sun is very hot, the photons of light that reach
us from the sun are high energy ones. Despite the influx of solar energy, the
surface of the earth does not turn into an oven because the earth emits about the
same energy back into space as it receives from the sun. But since the surface
of the earth is not by far as hot as that of the sun, the photons emitted by the
earth are low energy ones. Baierlein estimates that the earth emits about 20
of these low energy photons for every high energy one it receives from the sun.
Each photon carries one unit of entropy on average, (11.59). So the earth loses
20 units of messiness for every one it receives. So, evolution towards less messy
systems is exactly what you would expect for the earth surface, based on the
overall entropy picture. Talk about an argument blowing up in your face!
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N.26 Physics of the fundamental commutators

The fundamental commutation relations look much like a mathematical axiom.
Surely, there should be some other reasons for physicists to believe that they
apply to nature, beyond that they seem to produce the right answers?

Addendum {A.19} explained that the angular momentum operators corre-
spond to small rotations of the axis system through space. So, the commutator
[Ĵx, Ĵy] really corresponds to the difference between a small rotation around the
y-axis followed by a small rotation around the x-axis, versus a small rotation
around the x-axis followed by a small rotation around the y axis. As shown
below, in our normal world this difference is equivalent to the effect of a small
rotation about the z-axis.

So, the fundamental commutator relations do have physical meaning; they
say that this basic relationship between rotations around different axes continues
to apply in the presence of spin.

This idea can be written out more precisely by using the symbols Rx,α, Ry,β,
and Rz,γ for, respectively, a rotation around the x-axis over an angle α, around
the y-axis over an angle β, and the z-axis over an angle γ. Then following
{A.19}, the angular momentum around the z-axis is by definition:

Ĵz ≈
~

i

Rz,γ − I
γ

(To get this true exactly, you have to take the limit γ → 0. But to keep
things more physical, taking the mathematical limit will be delayed to the end.
The above expression can be made arbitrarily accurate by just taking γ small
enough.)

Of course, the x and y components of angular momentum can be written
similarly. So their commutator can be written as:

[Ĵx, Ĵy] ≡ ĴxĴy − ĴyĴx ≈
~
2

i2

(Rx,α − I
α

Ry,β − I
β

− Ry,β − I
β

Rx,α − I
α

)

or multiplying out

[Ĵx, Ĵy] ≈
~
2

i2
Rx,αRy,β −Ry,βRx,α

αβ

The final expression is what was referred to above. Suppose you do a rotation
of your axis system around the y-axis over a small angle β followed by a rotation
around the x-axis around a small angle α. Then you will change the position
coordinates of every point slightly. And so you will if you do the same two
rotations in the opposite order. Now if you look at the difference between these
two results, it is described by the numerator in the final ratio above.

All those small rotations are of course a complicated business. It turns out
that in our normal world you can get the same differences in position in a much
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simpler way: simply rotate the axis system around a small angle γ = −αβ
around the z-axis. The change produced by that is the numerator in the ex-
pression for the angular momentum in the z-direction given above. If the two
numerators are the same for small α and β, then the fundamental commutation
relation follows. At least in our normal world. So if physicists extend the fun-
damental commutation relations to spin, they are merely generalizing a normal
property of rotations.

To show that the two numerators are the indeed the same for small angles
requires a little linear algebra. You may want to take the remainder of this
section for granted if you never had a course in it.

First, in linear algebra, the effects of rotations on position coordinates are
described by matrices. In particular,

Rx,α =




1 0 0
0 cosα sinα
0 − sinα cosα


 Ry,β =




cos β 0 − sin β
0 1 0

sin β 0 cos β




By multiplying out, the commutator is found as

[Ĵx, Ĵy] ≈
~
2

i2αβ




0 − sinα sin β − sin β(1− cosα)
sinα sin β 0 − sinα(1− cos β)

− sin β(1− cosα) − sinα(1− cos β) 0




Similarly, the angular momentum around the z-axis is

Ĵz ≈
~

iγ




cos γ − 1 sin γ 0
− sin γ cos γ − 1 0

0 0 0




If you take the limit that the angles become zero in both expressions, using either
l’Hôpital or Taylor series expansions, you get the fundamental commutation
relationship.

And of course, it does not make a difference which of your three axes you
take to be the z-axis. So you get a total of three of these relationships.

N.27 Magnitude of components of vectors

You might wonder whether the fact that the square components of angular
momentum must be less than total square angular momentum still applies in
the quantum case. After all, those components do not exist at the same time.
But it does not make a difference: just evaluate them using expectation values.
Since states |j m〉 are eigenstates, the expectation value of total square angular
momentum is the actual value, and so is the square angular momentum in the
z-direction. And while the |j m〉 states are not eigenstates of Ĵx and Ĵy, the



1478 APPENDIX N. NOTES

expectation values of square Hermitian operators such as Ĵ2
x and Ĵ2

y is always
positive anyway (as can be seen from writing it out in terms of the eigenstates
of them.)

N.28 Adding angular momentum components

The fact that net angular momentum components can be obtained by summing
the single-particle angular momentum operators is clearly following the Newto-
nian analogy: in classical physics each particle has its own independent angular
momentum, and you just add them up,

See also addendum {A.19}.

N.29 Clebsch-Gordan tables are bidirectional

The fact that you can read the tables either by rows or by columns is due to the
orthonormality of the states involved. In terms of the real vectors of physics,
it is simply an expression of the fact that the component of one unit vector in
the direction of another unit vector is the same as the component of the second
unit vector in the direction of the first.

N.30 Machine language Clebsch-Gordan tables

The usual “machine language” form of the tables leaves out the a, b, and ab
identifiers, the ja = and jb = clarifications from the header, and all square root
signs, the j values of particles a and b from the kets, and all ket terminator bars
and brackets, but combines the two m values with missing j values together in
a frame to resemble an jm ket as well as possible, and then puts it all in a font
that is very easy to read with a magnifying glass or microscope.

N.31 Existence of magnetic monopoles

Actually, various advanced quantum theories really require the existence of mag-
netic monopoles. But having never been observed experimentally with confi-
dence despite the big theoretical motivation for the search, they are clearly not
a significant factor in real life. Classical electromagnetodynamics assumes that
they do not exist at all.
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N.32 More on Maxwell’s third law

Since the voltage is minus the integral of the electric field, it might seem that
there is a plus and minus mixed up in figure 13.5.

But actually, it is a bit more complex. The initial effect of the induced
electric field is to drive the electrons towards the pole marked as negative.
(Recall that the charge of electrons is negative, so the force on the electrons is
in the direction opposite to the electric field.) The accumulation of electrons
at the negative pole sets up a counter-acting electric field that stops further
motion of the electrons. Since the leads to the load will be stranded together
rather than laid out in a circle, they are not affected by the induced electric
field, but only by the counter-acting one. If you want, just forget about voltages
and consider that the induced electric field will force the electrons out of the
negative terminal and through the load.

N.33 Setting the record straight on alignment

Some sources claim the spin is under an angle with the magnetic field; this
is impossible since, as pointed out in chapter 4.2.4, the angular momentum
vector does not exist. However, the angular momentum component along the
magnetic field does have measurable values, and these component values, being
one-dimensional, can only be aligned or anti-aligned with the magnetic field.

To intuitively grab the concept of Larmor precession, it may be useful any-
way to think of the various components of angular momentum as having precise
nonzero values, rather than just being uncertain. But the latter is the truth.

N.34 NuDat 2 data selection

The gamma decay data of figures 14.63 and 14.64 were retrieved from NuDat
2, [[12]], October-November 2011.

In the data selection, transitions were ignored if any ambiguity at all was
indicated for any of the primary data. The primary data were the initial energy
level, the released energy in the transition of interest, the half life, the initial
and final spins and parities, the multipole type and order, the relative intensity
of the gamma transition of interest, (see below for more), the mixing ratio for
transitions of mixed multipole type, the conversion coefficient, (see below for
more), and the decay rate in Weisskopf units. If there was a decay process
other than gamma decay indicated, the gamma decay percentage had to be
given without ambiguity. Indications of ambiguity included parentheses, square
brackets, inequalities, tildes, question marks, multiple values, and more.

Note that the given data uncertainties were ignored. That is a weakness
of the data, but presumably not really important in view of the very large
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deviations from theory. Including uncertainties would make processing much
more complicated.

As an overall check on the data, the computed transition rate was compared
to the one provided in terms of Weisskopf units by NuDat 2 itself. If the
difference was less than 5% and there were no other concerns, as discussed
below, the transition was accepted automatically. Tests were also performed on
whether the initial and final energy levels matched the energy release, and on
spin and parity conservation. These tests were mainly to guard against typos
in the data base and no violations were observed.

If there were any concerns, the data were printed out. A decision was then
made manually on whether to accept the transition as a potential candidate for
plotting. If the computed transition rate was substantially, (more than roughly
15%), above the NuDat 2 value, the transition was rejected out of hand. If the
computed transition rate was below the NuDat 2 one, it was examined whether
the NuDat 2 value was self-evidently missing its correction for other decay types,
for the other gamma intensities, the mixing ratio, or the conversion coefficient.
That was observed in a relatively small number of cases, usually for a missing
conversion coefficient. In all other cases, for a substantial difference in decay
rates, over about 15%, the transition was rejected.

Even if the computed decay rate matched the Weisskopf one, various decays
were manually rejected. In doing so, if the gamma intensity was not given, it was
assumed to be 100% only if there was only one gamma decay out of the energy
level. If there were other gamma decays out of the same energy level, their
intensities were, based on manual examination, allowed to be omitted (assumed
to be zero), specified by an upper limit if small (assumed to be half the upper
limit), or specified as approximate if small. If the conversion coefficient was not
given, it was manually allowed to be zero if the incompressible ballpark value
was below about 10−4. Some initial energy levels with multiple gamma decays
were manually rejected if the transition of interest had very low intensity and
only one or two digits were given. Mixed transitions were manually examined,
but it was not considered cause for rejection as long as a valid mixing ratio was
given. If the multipole level was higher than needed, that was also announced,
but it too was not taken to be a reason for rejection.

No, in the manual selections, the author did not select the worst nuclei to
make physicists look bad.

The plot range from 30 to 3 000 keV (in the plots reduced to 2 500 keV)
energy release was divided into 70 segments for which one symbol to plot each.
Transitions to plot were selected by comparing them to the selected transitions
in the other segments. The selection was designed to achieve a broad coverage of
transitions. For plot segments for which there was only one available transition,
that transition was immediately selected. Then the program iterated over the
segments with more than one potential candidate for plotting. In each segment
the best candidate to plot was selected according to the following criteria:
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1. Candidates that were more distant in terms of Z from the currently
selected candididates in the other segments received priority. Dis-
tance was here defined as the distance from the closest selected nu-
cleus of the other segments. The intention was to cover the entire
range of atomic numbers as well as possible.

2. In case of a tie, nuclei that were different from the most other selected
nuclei in terms of either proton or neutron odd/evenness received
priority. The intention was to include all variations of even/oddness.

3. In case of a tie, nuclei that were stable received priority. That was
in the hopes that data on stable nuclei might be better quality.

4. In case of a tie, nuclei that were more different in A from the already
selected nuclei received priority.

5. In case of a tie, a random choice was made between the nuclei in the
tie.

Because these criteria depend on the selections in the other segments, iteration
was needed. The iterations were terminated if there were no more changes in
the selected candidates.

The data on the selected nuclei, including log files, are available in the web
version of this document1. If you have suggestions on how the data could be
improved, let me know.

N.35 Auger discovery

Meitner submitted the discovery of the Auger process to the Zeitschrift für
Physik, a major journal, on Jan 8 1922 and it appeared in the Nov 1/Dec issue
that year. The process is clearly described. Auger’s first description appeared
in the July 16 1923 Séance of the Comptes Rendus of the Academy of Sciences
in France (in French). There is no record of Meitner having apologized to Auger
for not having waited with publication even though a male physicist was clearly
likely to figure it out sooner or later.

It is generally claimed that Meitner should have shared the Nobel prize with
Hahn for the discovery of nuclear fission. One reason given is that it was Meitner
who found the explanation of what was going on and coined the phrase “fission.”
Meitner also did much of the initial experimental work with Hahn that led to
the discovery. Fortunately, Meitner was Jewish and had to flee Hitler’s Germany
in 1938. That made it much easier for Hahn to shove her out of the way and
receive all the credit, rather than having to share it with some woman.

1http://www.eng.famu.fsu.edu/~dommelen/quansup/nudat2/

http://www.eng.famu.fsu.edu/~dommelen/quansup/nudat2/
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N.36 Draft: Cage-of-Faraday proposal

The gigantic errors in theoretical half-life predictions in section 14.20.5 are dis-
concerting to say the least. They imply that the predicted gamma decay rates,
(essentially the inverse of the half-lifes), are typically either much less than
theory or much larger than theory.

To explain why some of the gamma decay rates, like the E2 and high energy
E3 ones, are so much faster than ballpark is relatively straightforward. Decay
much faster than ballpark is only possible if not just one proton, but a lot of
nucleons participate in the transition. And since the effect is systematic in E2
and high energy E3 transitions, apparently it is normal for a lot of nucleons to
participate in gamma decay. Or at least it is for these types of gamma decay.
And since the theory assumes that only one proton participates, the miserable
predictions of theory can be explained.

A much bigger problem is to explain why other transitions end up so far
below ballpark in a credible way. Consider in particular the E1 transitions in
figures 14.63 and 14.65. How come that they are not just occasionally, but
typically slower than theory by four orders of magnitude?

Basically, you can give two reasonable types of explanation:
1. You can assume that only one proton participates in these transition,

not many as in E2 and E3 transitions. Then you must assume that in
addition there is a systematic very poor overlap between the initial
and final states in the relevant inner product. We do not really
know the initial and final states, so, why not? Problem solved.
Next question?

This is essentially the explanation that basic nuclear textbooks
that the author has seen give. Unfortunately, there are two big
problems with it. First, how come that unlike the E2 and E3 tran-
sitions, suddenly only one proton participates in E1, low energy E3,
M1 and most M2 transitions? If there is a very big systematic effect,
there must be a reason. Worse, figure 14.65 seems to exclude the
possibility of just one proton partipating in at the very least M1
transitions, and surely at least some very slow E1 transitions.
The second problem is to explain why the overlap is systematically

extremely bad in some types of transitions, but apparently excellent
in others. Again, this is a big systematic effect, as the figures show.
So there must be a reason for this too.
Your hands are not enough to wave these problem away. If you

want people to take you seriously, you should have a believable and
comprehensive discussion.

2. Alternatively, you can assume that in the transitions that are much
slower than theory, still many nucleons participate. One immediate
advantage is, of course, that this would explain why the theory per-
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forms miserably bad on these transitions too. And you do not have
to explain why in some transitions only a single proton participates
while in others many nucleons do. In particular, this removes figure
14.65 as an issue. It can also explain why for some very light nuclei,
E1 and M1 transitions are at ballpark or even noticeably faster than
ballpark.
But now of course, you face the apparently daunting problem of

explaining why some types transitions can be so extremely slow,
even now that there are many nucleons participating. In particular,
you need to provide a reasonable explanation why for some types of
transitions, the participation of many nucleons actually slows down
the emission of electromagnetic radiation greatly, rather than in-
crease it greatly. And apparently, this effect requires the presence
of enough nucleons, as very light nuclei do not have the problem.

While standard nuclear textbooks give the first explanation above, the holes
in the argument are worrisome. The magnitude of the effects pointed at by the
textbooks just does not seem big enough to explain the data. And it is hard to
think up reasons why not. There just is a lack of suspension of disbelieve for
an engineer thinking in terms of ballparks.

Therefore, this book wants to argue that more serious consideration should
be given to the second explanation. Its main liability is to explain why some
transitions get slowed down greatly, rather than sped up, if a lot more nucleons
participate.

Since nuclear wave functions are poorly understood, that would be difficult to
explain from a quantum-mechanical viewpoint. So maybe it is again time to do
what has been done before for nuclei; look for macroscopic models. And surely
the macroscopic model that stands out in killing off electromagnetic effects is
the cage of Faraday. (In this case the cage is assumed to shield the outside from
the inside.)

Maybe then the nuclear surface acts as such a cage in some sense. In the
liquid-drop idea, nucleons at the surface are in a state of increased energy. So
it may not be such a crazy idea that nucleons at the surface might behave
differently from nucleons in the interior.

Assume now at first, in this macroscopic model, that the nuclear surface is
spherical and conducting. Then electric charge changes in the interior of the
nucleus would not leak out. That would kill off the capability of transitions to
emit radiation. So the model can provide a macroscopic explanation why some
electromagnetic transitions can be greatly slowed down. Charges can still move
around inside the nucleus, but because the surface nucleons move to compensate,
that does not produce radiation outside it. So participation of many nucleons
does indeed reduce, rather than increase, electromagnetic radiation greatly.

Do note that unlike normal cages of Faraday, a nucleus contains a net positive
charge. And if a macroscopic cage of Faraday contains a net charge, there must
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always ne a nonzero electric field outside. (That is due to Maxwell’s first law.)
But as long as the surface remains spherical and conducting, the outside electric
field will not change if charges inside the surface are moved around. So in that
case, there will be an electric field, but still no electromagnetic radiation radiated
away. And the reason for that is still because many nucleons are involved, rather
than a single proton.

But things change when the nuclear surface changes shape. A conducting
surface makes only the electric field tangential to the surface zero. Therefore
there will be variations in the electric field outside the surface if it changes
shape. So now we have a situation where radiation is in fact being transmitted,
and again with many nucleons involved in doing that.

That opens up the possibility of explaining why some transitions can be
so far from the single proton ballpark. And why it depends on the type of
transition whether the transition turns out to be much slower than ballpark or
much faster than ballpark.

At least for relatively light nuclei, (but still with enough nucleons that the
macroscopic picture makes sense), and small excitations, surface tension would
promote a spherical surface. And “surface roughness” would not necessarily
make much of a difference. That is just like small holes in a macroscopic cage do
not make a difference. The field outside the nucleus is governed by the so-called
Laplace equation. This equation is known to kill off short-scale perturbations
quickly.

On the other hand, changes in a deformed nuclear surface shape would def-
initely produce nontrivial long-range electric field perturbations. Now nuclei
are often modeled as spheroids or ellipsoids. Changes in such a shape would
produce quadrupole and hexadecapole perturbations in the electric field outside
the nuclei. So they would produce E2 radiation, but not E1 radiation. That is
exactly what is needed to make some sense out of the electric transitions.

While macroscopic cages of Faraday do not block static magnetic fields,
they do block changes in magnetic fields. So conceptually the model could also
explain why magnetic transitions of low multipole order are often so slow. Note
that there is no net magnetic “charge” inside the cage. Magnetic monopoles
do not exist. So surface shape would not necessarily affect magnetic transitions
much.

While this model leaves many questions unanswered, at least it suggests a
reasonable way to understand how it is possible at all that the one-proton model
is not just extremely miserable, but systematically miserable in the observed
way. For one, it seems to make figure 14.65 far less unexplainable.
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Below is a list of relevant web pages.

1. chemguide.co.uk2

Jim Clarke’s UK site with lots of solid info.

2. Citizendium3

The Citizen’s Compendium. Had a rather good write up on the
quantization of the electromagnetic field.

3. Elster’s lecture notes4

Professor Elster gives a very helpful historical overview of the me-
son exchange potentials, (fewblect_2.pdf). She also gives the de-
tailed potentials for scalar and vector mesons that the other refer-
ences do not, (fewblect_1.pdf).

4. ENSDF data5

The Nuclear Data Sheets are an authoritative and comprehensive
data source on nuclei. The corresponding
Nuclear Data Sheets policies6

have been used repeatedly in this book to decide what conventions
to take as standard.

5. Richard P. Feynman: Nobel Prize lecture7

Describes the development of Feynman’s path integral approach
to quantum electrodynamics.

6. Hyperphysics8

Gives simple explanations of almost anything in physics. An ex-
tensive source of info on chemical bonds and the periodic table.

7. ICC program9

Program to compute internal conversion coefficients.

2http://www.chemguide.co.uk/
3http://en.citizendium.org/
4http://www.phy.ohiou.edu/~elster/lectures/
5http://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html
6http://www.nndc.bnl.gov/nds/NDSPolicies.pdf
7http://nobelprize.org/nobel_prizes/physics/laureates/1965/
8http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html
9http://ie.lbl.gov/programs/icc/icc.htm
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8. J. Jäckle10

This web site includes a good description of the Peltier and See-
beck effects.

9. R.D. Klauber’s pedagogical quantum field theory11

This web site gives a fully explained description of quantum field
theory.

10. Mayer, M. Goeppert: Nobel Prize lecture12

An excellent introduction to the shell model of nuclear physics
written for a general audience is found in the lecture.

11. NIST data13

Authoritative values of physical constants from NIST.

12. NuDat 2 database14

Extensive information about nuclei provided by the National Nu-
clear Data Center.

13. Purdue chemistry review15

General chemistry help.

14. Quantum Exchange16

Lots of stuff.

15. Rainwater, J.: Nobel Prize lecture17

An introduction to distorted nuclei written for a general audience
is found in the lecture.

16. Anthony Stone’s Wigner coefficient calculators18

The calculator on this site gives exact values for the Wigner 3j, 6j,
and 6j symbols. The 3j symbols are readily converted to Clebsch-
Gordan coefficients, {N.13}.

17. David Tong’s notes on quantum field theory19

Very helpful, especially in conjunction with Peskin & Schroeder,
[35].

18. T. Tritt20

Thermoelectric materials: principles, structure, properties, and
applications. From Encyclopedia of Materials: Science and Tech-
nology. Elsevier 2002.

10http://www.uni-konstanz.de/FuF/Physik/Jaeckle/
11http://www.quantumfieldtheory.info/
12http://nobelprize.org/nobel_prizes/physics/laureates/1963/
13http://www.nist.gov/pml/data/
14http://www.nndc.bnl.gov/nudat2/
15http://chemed.chem.purdue.edu/genchem/
16http://www.compadre.org/quantum/
17http://nobelprize.org/nobel_prizes/physics/laureates/1975/
18http://www-stone.ch.cam.ac.uk/wigner.html
19http://www.damtp.cam.ac.uk/user/tong/qft.html
20http://virtual.clemson.edu/TMRL/Publications/PDFS/teoverview.pdf
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http://www.compadre.org/quantum/
http://nobelprize.org/nobel_prizes/physics/laureates/1975/
http://www-stone.ch.cam.ac.uk/wigner.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://virtual.clemson.edu/TMRL/Publications/PDFS/teoverview.pdf
http://www.uni-konstanz.de/FuF/Physik/Jaeckle/
http://www.quantumfieldtheory.info/
http://nobelprize.org/nobel_prizes/physics/laureates/1963/
http://www.nist.gov/pml/data/
http://www.nndc.bnl.gov/nudat2/
http://chemed.chem.purdue.edu/genchem/
http://www.compadre.org/quantum/
http://nobelprize.org/nobel_prizes/physics/laureates/1975/
http://www-stone.ch.cam.ac.uk/wigner.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://virtual.clemson.edu/TMRL/Publications/PDFS/teoverview.pdf
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19. TUNL Nuclear Data Evaluation Group21

Extensive data on light nuclei from A = 3 to 20.
20. University of Michigan22

Invaluable source on the hydrogen molecule and chemical bonds.
Have a look at the animated periodic table for actual atom energy
levels.

21. Wikipedia23

Probably this book’s primary source of information on about every
loose end, though somewhat uneven. Some great, some confusing,
some overly technical.

21http://www.tunl.duke.edu/nucldata/
22http://www.umich.edu/~chem461/
23http://wikipedia.org

http://www.tunl.duke.edu/nucldata/
http://www.umich.edu/~chem461/
http://wikipedia.org
http://www.tunl.duke.edu/nucldata/
http://www.umich.edu/~chem461/
http://wikipedia.org
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Notations

The below are the simplest possible descriptions of various symbols, just to help
you keep reading if you do not remember/know what they stand for. Don’t cite
them on a math test and then blame this book for your grade.

Watch it. There are so many ad hoc usages of symbols, some will have been
overlooked here. Always use common sense first in guessing what a symbol
means in a given context.

The quoted values of physical constants are usually taken from NIST CO-
DATA in 2012 or later. The final digit of the listed value is normally doubtful.
(It corresponds to the first nonzero digit of the standard deviation). Numbers
ending in triple dots are exact and could be written down to more digits than
listed if needed.

··· A dot might indicate

• A dot product between vectors, if in between them.

• A time derivative of a quantity, if on top of it.

And also many more prosaic things (punctuation signs, decimal points,
. . . ).

××× Multiplication symbol. May indicate:

• An emphatic multiplication.

• Multiplication continued on the next line or from the previous line.

• A vectorial product between vectors. In index notation, the i-th
component of ~v × ~w equals

(~v × ~w)i = vıwı − vıwı

where ı is the index following i in the sequence 123123. . . , and ı the
one preceding it (or second following). Alternatively, evaluate the
determinant

~v × ~w =

∣∣∣∣∣∣

ı̂ ̂ k̂
vx vy vz
wx wy wz

∣∣∣∣∣∣
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!!! Might be used to indicate a factorial. Example: 5! = 1 × 2 × 3 × 4 × 5 =
120.

The function that generalizes n! to noninteger values of n is called the
gamma function; n! = Γ(n + 1). The gamma function generalization is
due to, who else, Euler. (However, the fact that n! = Γ(n+1) instead of n!
= Γ(n) is due to the idiocy of Legendre.) In Legendre-resistant notation,

n! =

∫ ∞

0

tne−t dt

Straightforward integration shows that 0! is 1 as it should, and integration
by parts shows that (n+ 1)! = (n+ 1)n!, which ensures that the integral
also produces the correct value of n! for any higher integer value of n than
0. The integral, however, exists for any real value of n above −1, not
just integers. The values of the integral are always positive, tending to
positive infinity for both n ↓ −1, (because the integral then blows up at
small values of t), and for n ↑ ∞, (because the integral then blows up at
medium-large values of t). In particular, Stirling’s formula says that for
large positive n, n! can be approximated as

n! ∼
√
2πnnne−n [1 + . . .]

where the value indicated by the dots becomes negligibly small for large n.
The function n! can be extended further to any complex value of n, except
the negative integer values of n, where n! is infinite, but is then no longer
positive. Euler’s integral can be done for n = −1

2
by making the change

of variables
√
t = u, producing the integral

∫∞
0

2e−u
2
du, or

∫∞
−∞ e

−u2 du,

which equals
√∫∞

−∞ e
−x2 dx

∫∞
−∞ e

−y2 dy and the integral under the square

root can be done analytically using polar coordinates. The result is that

(−1

2
)! =

∫ ∞

−∞
e−u

2

du =
√
π

To get 1
2
!, multiply by 1

2
, since n! = n(n− 1)!.

A double exclamation mark may mean every second item is skipped, e.g.
5!! = 1 × 3 × 5. In general, (2n + 1)!! = (2n + 1)!/2nn!. Of course, 5!!
should logically mean (5!)!. Logic would indicate that 5 × 3 × 1 should
be indicated by something like 5!’. But what is logic in physics?

||| May indicate:

• The magnitude or absolute value of the number or vector, if enclosed
between a pair of them.

• The determinant of a matrix, if enclosed between a pair of them.
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• The norm of the function, if enclosed between two pairs of them.

• The end of a bra or start of a ket.

• A visual separator in inner products.

| . . .〉| . . .〉| . . .〉 A “ket” is used to indicate some state. For example, |l m〉 indicates an
angular momentum state with azimuthal quantum number l and magnetic
quantum number m. Similarly, |1/2 1/2〉 is the spin-down state of a particle
with spin 1

2
. Other common ones are |x〉 for the position eigenfunction

x, i.e. δ(x − x), |1s〉 for the 1s or ψ100 hydrogen state, |2pz〉 for the 2pz
or ψ210 state, etcetera. In short, whatever can indicate some state can be
pushed into a ket.

〈. . . |〈. . . |〈. . . | A “bra” is like a ket |. . .〉, but appears in the left side of inner products,
instead of the right one.

↑↑↑ Indicates the “spin up” state. Mathematically, equals the function ↑(Sz)
which is by definition equal to 1 at Sz =

1
2
~ and equal to 0 at Sz = −1

2
~.

A spatial wave function multiplied by ↑ is a particle in that spatial state
with its spin up. For multiple particles, the spins are listed with particle
1 first.

↓↓↓ Indicates the “spin down” state. Mathematically, equals the function ↓(Sz)
which is by definition equal to 0 at Sz =

1
2
~ and equal to 1 at Sz = −1

2
~. A

spatial wave function multiplied by ↓ is a particle in that spatial state with
its spin down. For multiple particles, the spins are listed with particle 1
first.

∑∑∑
Summation symbol. Example: if in three dimensional space a vector ~f has
components f1 = 2, f2 = 1, f3 = 4, then

∑
all i fi stands for 2+1+4 = 7.

One important thing to remember: the symbol used for the summation
index does not make a difference:

∑
all j fj is exactly the same as

∑
all i fi.

So freely rename the index, but always make sure that the new name is
not already used for something else in the part that it appears in. If you
use the same name for two different things, it becomes a mess.

Related to that,
∑

all i fi is not something that depends on an index i.
It is just a combined simple number. Like 7 in the example above. It is
commonly said that the summation index “sums away.”

∏∏∏
(Not to be confused with Π further down.) Multiplication symbol. Exam-

ple: if in three dimensional space a vector ~f has components f1 = 2, f2 =
1, f3 = 4, then

∏
all i fi stands for 2× 1× 4 = 6.

One important thing to remember: the symbol used for the multiplications
index does not make a difference:

∏
all j fj is exactly the same as

∏
all i fi.
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So freely rename the index, but always make sure that the new name is
not already used for something else in the part that it appears in. If you
use the same name for two different things, it becomes a mess.

Related to that,
∏

all i fi is not something that depends on an index i.
It is just a combined simple number. Like 6 in the example above. It is
commonly said that the multiplication index “factors away.” (By who?)

∫∫∫
Integration symbol, the continuous version of the summation symbol. For
example, ∫

all x

f(x) dx

is the summation of f(x) dx over all infinitesimally small fragments dx

that make up the entire x-range. For example,
∫ 2

x=0
(2 + x) dx equals 3 ×

2 = 6; the average value of 2 + x between x = 0 and x = 2 is 3, and the
sum of all the infinitesimally small segments dx gives the total length 2 of
the range in x from 0 to 2.

One important thing to remember: the symbol used for the integration
variable does not make a difference:

∫
all y

f(y) dy is exactly the same as∫
all x

f(x) dx. So freely rename the integration variable, but always make
sure that the new name is not already used for something else in the part
it appears in. If you use the same name for two different things, it becomes
a mess.

Related to that
∫
all x

f(x) dx is not something that depends on a variable
x. It is just a combined number. Like 6 in the example above. It is
commonly said that the integration variable “integrates away.”

→→→ May indicate:

• An approaching process. limε→0 indicates for practical purposes the
value of the expression following the lim when ε is extremely small.
Similarly, limr→∞ indicates the value of the following expression when
r is extremely large.

• The fact that the left side leads to, or implies, the right-hand side.

~~~ Vector symbol. An arrow above a letter indicates it is a vector. A vector
is a quantity that requires more than one number to be characterized.
Typical vectors in physics include position ~r, velocity ~v, linear momentum
~p, acceleration ~a, force ~F , angular momentum ~L, etcetera.

̂̂̂ A hat over a letter in this book indicates that it is the operator, turning
functions into other functions.

′′′ May indicate:
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• A derivative of a function. Examples: 1′ = 0, x′ = 1, sin′(x) = cos(x),
cos′(x) = − sin(x), (ex)′ = ex.

• A small or modified quantity.

• A quantity per unit length.

∇∇∇ The spatial differentiation operator nabla. In Cartesian coordinates:

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= ı̂

∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Nabla can be applied to a scalar function f in which case it gives a vector
of partial derivatives called the gradient of the function:

grad f = ∇f = ı̂
∂f

∂x
+ ̂

∂f

∂y
+ k̂

∂f

∂z
.

Nabla can be applied to a vector in a dot product multiplication, in which
case it gives a scalar function called the divergence of the vector:

div~v = ∇ · ~v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

or in index notation

div~v = ∇ · ~v =
3∑

i=1

∂vi
∂xi

Nabla can also be applied to a vector in a vectorial product multiplication,
in which case it gives a vector function called the curl or rot of the vector.
In index notation, the i-th component of this vector is

(curl~v)i = (rot~v)i = (∇× ~v)i =
∂vı
∂xı
− ∂vı
∂xı

where ı is the index following i in the sequence 123123. . . , and ı the one
preceding it (or the second following it).

The operator ∇2 is called the Laplacian. In Cartesian coordinates:

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Sometimes the Laplacian is indicated as ∆. In relativistic index notation
it is equal to ∂i∂

i, with maybe a minus sign depending on who you talk
with.
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In non Cartesian coordinates, don’t guess; look these operators up in a
table book, [41, pp. 124-126]: . For example, in spherical coordinates,

∇ = ı̂r
∂

∂r
+ ı̂θ

1

r

∂

∂θ
+ ı̂φ

1

r sin θ

∂

∂φ
(N.2)

That allows the gradient of a scalar function f , i.e. ∇f , to be found
immediately. But if you apply ∇ on a vector, you have to be very careful
because you also need to differentiate ı̂r, ı̂θ, and ı̂φ. In particular, the
correct divergence of a vector ~v is

∇ · ~v =
1

r2
∂r2vr
∂r

+
1

r sin θ

∂ sinθ vθ
∂θ

+
1

r sin θ

∂vφ
∂φ

(N.3)

The curl ∇ × ~v of the vector is

ı̂r
r sin θ

(
∂ sinθ vφ

∂θ
− ∂vθ
∂φ

)
+
ı̂θ
r

(
1

sin θ

∂vr
∂φ
− ∂r vφ

∂r

)
+
ı̂φ
r

(
∂r vθ
∂r
− ∂vr

∂θ

)

(N.4)
Finally the Laplacian is:

∇2 =
1

r2

{
∂

∂r

(
r2
∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

}
(N.5)

See also “spherical coordinates.”

Cylindrical coordinates are usually indicated as r, θ and z. Here z is the
Cartesian coordinate, while r is the distance from the z-axis and θ the
angle around the z axis. In two dimensions, i.e. without the z terms, they
are usually called polar coordinates. In cylindrical coordinates:

∇ = ı̂r
∂

∂r
+ ı̂θ

1

r

∂

∂θ
+ ı̂z

∂

∂z
(N.6)

∇ · ~v =
1

r

∂rvr
∂r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

(N.7)

∇× ~v = ı̂r

(
1

r

∂vz
∂θ
− ∂vθ

∂z

)
+ ı̂θ

(
∂vr
∂z
− ∂vz

∂r

)
+
ı̂z
r

(
∂rvθ
∂r
− ∂vr

∂θ

)
(N.8)

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
(N.9)

��� The D’Alembertian is defined as

1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

where c is a constant called the wave speed. In relativistic index notation,

� is equal to −∂µ∂µ.
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∗∗∗ A superscript star normally indicates a complex conjugate. In the complex
conjugate of a number, every i is changed into a −i.

< Less than.

6 Less than or equal.

〈. . .〉〈. . .〉〈. . .〉 May indicate:

• An inner product.

• An expectation value.

> Greater than.

> Greater than or equal.

[. . .][. . .][. . .] May indicate:

• A grouping of terms in a formula.

• A commutator. For example, [A,B] = AB −BA.

= Equals sign. The quantity to the left is the same as the one to the right.

≡ Emphatic equals sign. Typically means “by definition equal” or “every-
where equal.”

≈ Indicates approximately equal. Read it as “is approximately equal to.”

∼ Indicates approximately equal. Often used when the approximation applies
only when something is small or large. Read it as “is approximately equal
to” or as “is asymptotically equal to.”

∝∝∝ Proportional to. The two sides are equal except for some unknown constant
factor.

ααα (alpha) May indicate:

• The fine structure constant, e2/4πǫ0~c, equal to 7.297 352 570 10−3,
or about 1/137, in value.

• A Dirac equation matrix.

• A nuclear decay mode in which a helium-4 nucleus is emitted.

• Internal conversion rate as fraction of the gamma decay rate.

• Some constant.

• Some angle.
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• An eigenfunction of a generic operator A.

• A summation index.

• Component index of a vector.

βββ (beta) May indicate:

• A nuclear decay mode in which an electron (β−) or positron (β+) is
emitted. Sometimes β+ is taken to also include electron capture.

• A nuclear vibrational mode that maintains the axial symmetry of the
nucleus.

• Some constant.

• Some angle.

• An eigenfunction of a generic operator B.

• A summation index.

ΓΓΓ (Gamma) May indicate:

• The Gamma function. Look under “!” for details.

• The “width” or uncertainty in energy of an approximate energy eigen-
state.

• Origin in wave number space.

γγγ (gamma) May indicate:

• Gyromagnetic ratio.

• Standard symbol for a photon of electromagnetic radiation.

• A nuclear de-excitation mode in which a photon is emitted.

• A nuclear vibrational mode that messes up the axial symmetry of
the nucleus.

• Summation index.

• Integral in the tunneling WKB approximation.

∆∆∆ (capital delta) May indicate:

• An increment in the quantity following it.

• A delta particle.

• Often used to indicate the Laplacian ∇2.

δδδ (delta) May indicate:
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• With two subscripts, the “Kronecker delta”, which by definition is
equal to one if its two subscripts are equal, and zero in all other cases.

• Without two subscripts, the “Dirac delta function”, which is infinite
when its argument is zero, and zero if it is not. In addition the infinity
is such that the integral of the delta function over its single nonzero
point is unity. The delta function is not a normal function, but a
distribution. It is best to think of it as the approximate function
shown in the right hand side of figure 7.10 for a very, very, small
positive value of ε.

One often important way to create a three-dimensional delta func-
tion in spherical coordinates is to take the Laplacian of the function
−1/4πr. Chapter 13.3 explains why. In two dimensions, take the
Laplacian of ln(r)/2π to get a delta function.

• Often used to indicate a small amount of the following quantity,
or of a small change in the following quantity. There are nuanced
differences in the usage of δ, ∂ and d that are too much to go in here.

• Often used to indicate a second small quantity in addition to ε.

∂∂∂ (partial) Indicates a vanishingly small change or interval of the following
variable. For example, ∂f/∂x is the ratio of a vanishingly small change
in function f divided by the vanishingly small change in variable x that
causes this change in f . Such ratios define derivatives, in this case the
partial derivative of f with respect to x.

Also used in relativistic index notation, chapter 1.2.5.

ǫǫǫ (epsilon) May indicate:

• ǫ0 is the permittivity of space. Equal to 8.854 187 817... 10−12 C2/J
m. The exact value is 1/4πc2 107 C2/J m, because of the exact SI
definitions of ampere and speed of light.

• Scaled energy.

• Orbital energy.

• Lagrangian multiplier.

• A small quantity, if symbol ε is not available.

εεε (variant of epsilon) May indicate:

• A very small quantity.

• The slop in energy conservation during a decay process.

ηηη (eta) May be used to indicate a y-position of a particle.
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ΘΘΘ (capital theta) Used in this book to indicate some function of θ to be
determined.

θθθ (theta) May indicate:

• In spherical coordinates, the angle from the chosen z axis, with apex
at the origin.

• z-position of a particle.

• A generic angle, like the one between the vectors in a cross or dot
product.

• Integral acting as an angle in the classical WKB approximation.

• Integral acting as an angle in the adiabatic approximation.

ϑϑϑ (variant of theta) An alternate symbol for θ.

κκκ (kappa) May indicate:

• A constant that physically corresponds to some wave number.

• A summation index.

• Thermal conductivity.

ΛΛΛ (Lambda) May indicate:

• Lorentz transformation matrix.

λλλ (lambda) May indicate:

• Wave length.

• Decay constant.

• A generic eigenvalue.

• Entry of a Lorentz transformation.

• Scaled square momentum.

• Some multiple of something.

µµµ (mu) May indicate:

• Magnetic dipole moment:
Alpha particle: 0 (spin is zero).
Deuteron: 0.433 073 49 10−26 J/T or 0.857 438 231 µN.
Electron: −9.284 764 3 10−24 J/T or −1.001 159 652 180 8 µB.
Helion: −1.074 617 49 10−26 J/T or −2.127 625 306 µN.
Neutron: −0.966 236 5 10−26 J/T or −1.913 042 7 µN.
Proton: 1.410 606 74 10−26 J/T or 2.792 847 36 µN.
Triton: 1.504 609 45 10−26 J/T or 2.978 962 45 µN.
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• µB = e~/2me = 9.274 009 7 10−24 J/T or 5.788 381 807 10−5 eV/T is
the Bohr magneton.

• µN = e~/2mp = 5.050 783 5 10−27 J/T or 3.152 451 261 10−8 eV/T is
the nuclear magneton.

• A summation index.

• Chemical potential/molar Gibbs free energy.

ννν (nu) May indicate:

• Electron neutrino.

• Scaled energy eigenfunction number in solids.

• A summation index.

• Strength of a delta function potential.

ξξξ (xi) May indicate:

• Scaled argument of the one-dimensional harmonic oscillator eigen-
functions.

• x-position of a particle.

• A summation or integration index.

ΠΠΠ (Oblique Pi) (Not to be confused with
∏

described higher up.) Parity
operator. Replaces ~r by −~r. That is equivalent to a mirroring in a mirror
through the origin, followed by a 180◦ rotation around the axis normal to
the mirror.

πππ (pi) May indicate:

• A constant with value 3.141 592 653 589 793 238 462. . . .
The area of a circle of radius r is πr2 and its perimeter is 2πr.
The volume of a sphere of radius r is 4

3
πr3 and its surface is 4πr2.

A 180◦ angle expressed in radians is π.
Note also that e±iπ = −1 and e±i2π = 1.

• A chemical bond that looks from the side like a p state.

• A particle involved in the forces keeping the nuclei of atoms together
(π-meson or pion for short).

• Parity.

π̃̃π̃π Canonical momentum density.

ρρρ (rho) May indicate:
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• Electric charge per unit volume.

• Scaled radial coordinate.

• Radial coordinate.

• Eigenfunction of a rotation operator R.
• Mass-base density.

• Energy density of electromagnetic radiation.

σσσ (sigma) May indicate:

• A standard deviation of a value.

• A chemical bond that looks like an s state when seen from the side.

• Pauli spin matrix.

• Surface tension.

• Electrical conductivity.

• σB = 5.670 37 W/m2 K4 is the Stefan-Boltzmann

τττ (tau) May indicate:

• A time or time interval.

• Life time or half life.

• Some coefficient.

ΦΦΦ (capital phi) May indicate:

• Some function of φ to be determined.

• The momentum-space wave function.

• Relativistic electromagnetic potential.

φφφ (phi) May indicate:

• In spherical coordinates, the angle around the chosen z axis. Increas-
ing φ by 2π encircles the z-axis exactly once.

• A phase angle.

• Something equivalent to an angle.

• Field operator φ(~r) annihilates a particle at position ~r while φ†(~r)
creates one at that position.

ϕϕϕ (variant of phi) May indicate:
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• A change in angle φ.

• An alternate symbol for φ.

• An electrostatic potential.

• An electrostatic quantum field.

• A hypothetical selectostatic quantum field.

χχχ (chi) May indicate

• Spinor component.

• Gauge function of electromagnetic field.

ΨΨΨ (capital psi) Upper case psi is used for the wave function.

ψψψ (psi) Typically used to indicate an energy eigenfunction. Depending on the
system, indices may be added to distinguish different ones. In some cases
ψ might be used instead of Ψ to indicate a system in an energy eigenstate.
Let me know and I will change it. A system in an energy eigenstate should
be written as Ψ = cψ, not ψ, with c a constant of magnitude 1.

ΩΩΩ (Omega) May indicate:

• Solid angle. See “angle” and “spherical coordinates.”

ωωω (omega) May indicate:

• Angular frequency of the classical harmonic oscillator. Equal to√
c/m where c is the spring constant and m the mass.

• Angular frequency of a system.

• Angular frequency of light waves.

• Perturbation frequency,

• Any quantity having units of frequency, 1/s.

AAA May indicate:

• Repeatedly used to indicate the operator for a generic physical quan-
tity a, with eigenfunctions α.

• Electromagnetic vector potential, or four vector potential.

• Einstein A coefficient.

• Some generic matrix.

• Some constant.
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• Area.

Å Ångstrom. Equal to 10−10 m.

aaa May indicate:

• The value of a generic physical quantity with operator A

• The amplitude of the spin-up state

• The amplitude of the first state in a two-state system.

• Acceleration.

• Start point of an integration interval.

• The first of a pair of particles.

• Some coefficient.

• Some constant.

• Absorptivity of electromagnetic radiation.

• Annihilation operator â or creation operator â†.

• Bohr radius of helium ion.

a0a0a0 May indicate:

• Bohr radius, 4πǫ0~
2/mee

2 or 0.529 177 210 9 Å, with Å= 10−10 m.
Comparable in size to atoms, and a good size to use to simplify
various formulae.

• The initial value of a coefficient a.

absolute May indicate:

• The absolute value of a real number a is indicated by |a|. It equals
a is a is positive or zero and −a if a is negative.

• The absolute value of a complex number a is indicated by |a|. It
equals the length of the number plotted as a vector in the complex
plane. This simplifies to above definition if a is real.

• An absolute temperature is a temperature measured from absolute
zero. At absolute zero all systems are in their ground state. Absolute
zero is −273.15 ◦C in degrees Centrigrade (Celsius). The SI absolute
temperature scale is degrees Kelvin, K. Absolute zero temperature is
0 K, while 0 ◦C is 273.15 K.
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adiabatic An adiabatic process is a process in which there is no heat transfer
with the surroundings. If the process is also reversible, it is called isen-
tropic. Typically, these processes are fairly quick, in order not to give heat
conduction enough time to do its stuff, but not so excessively quick that
they become irreversible.

Adiabatic processes in quantum mechanics are defined quite differently to
keep students on their toes. See chapter 7.1.5. These processes are very
slow, to give the system all possible time to adjust to its surroundings. Of
course, quantum physicist were not aware that the same term had already
been used for a hundred years or so for relatively fast processes. They
assumed they had just invented a great new term!

adjoint The adjoint AH or A† of an operator is the one you get if you take
it to the other side of an inner product. (While keeping the value of
the inner product the same regardless of whatever two vectors or func-
tions may be involved.) Hermitian operators are “self-adjoint;”they do
not change if you take them to the other side of an inner product. “Skew-
Hermitian”operators just change sign. “Unitary operators”change into
their inverse when taken to the other side of an inner product. Unitary
operators generalize rotations of vectors: an inner product of vectors is
the same whether you rotate the first vector one way, or the second vec-
tor the opposite way. Unitary operators preserve inner products (when
applied to both vectors or functions). Fourier transforms are unitary op-
erators on account of the Parseval equality that says that inner products
are preserved.

amplitude Everything in quantum mechanics is an amplitude. However,
most importantly, the “quantum amplitude” gives the coefficient of a state
in a wave function. For example, the usual quantum wave function gives
the quantum amplitude that the particle is at the given position.

angle Consider two semi-infinite lines extending from a common intersection
point. Then the angle between these lines is defined in the following
way: draw a unit circle in the plane of the lines and centered at their
intersection point. The angle is then the length of the circular arc that is
in between the lines. More precisely, this gives the angle in radians, rad.
Sometimes an angle is expressed in degrees, where 2π rad is taken to be
360◦. However, using degrees is usually a very bad idea in science.

In three dimensions, you may be interested in the so-called “solid angle”
Ω inside a conical surface. This angle is defined in the following way: draw
a sphere of unit radius centered at the apex of the conical surface. Then
the solid angle is the area of the spherical surface that is inside the cone.
Solid angles are in steradians. The cone does not need to be a circular
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one, (i.e. have a circular cross section), for this to apply. In fact, the most
common case is the solid angle corresponding to an infinitesimal element
dθ × dφ of spherical coordinate system angles. In that case the surface of
the unit sphere inside the conical surface is is approximately rectangular,
with sides dθ and sin(θ)dφ. That makes the enclosed solid angle equal to
dΩ = sin(θ)dθdφ.

BBB May indicate:

• Repeatedly used to indicate a generic second operator or matrix.

• Einstein B coefficient.

• Some constant.

BBB May indicate:

• Magnetic field strength.

bbb May indicate:

• Repeatedly used to indicate the amplitude of the spin-down state

• Repeatedly used to indicate the amplitude of the second state in a
two-state system.

• End point of an integration interval.

• The second of a pair of particles.

• Some coefficient.

• Some constant.

basis A basis is a minimal set of vectors or functions that you can write all
other vectors or functions in terms of. For example, the unit vectors ı̂,
̂, and k̂ are a basis for normal three-dimensional space. Every three-
dimensional vector can be written as a linear combination of the three.

CCC May indicate:

• A third matrix or operator.

• A variety of different constants.

◦C Degrees Centigrade. A commonly used temperature scale that has the
value −273.15 ◦C instead of zero when systems are in their ground state.
Recommendation: use degrees Kelvin (K) instead. However, differences
in temperature are the same in Centigrade as in Kelvin.

ccc May indicate:
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• The speed of light, 299 792 458 m/s exactly (by definition of the ve-
locity unit).

• Speed of sound.

• Spring constant.

• A variety of different constants.

Cauchy-Schwartz inequality The Cauchy-Schwartz inequality describes a
limitation on the magnitude of inner products. In particular, it says that
for any f and g,

| 〈f |g〉 | ≤
√
〈f |f〉

√
〈g|g〉

In words, the magnitude of an inner product 〈f |g〉 is at most the magni-
tude (i.e. the length or norm) of f times the one of g. For example, if f
and g are real vectors, the inner product is the dot product and you have
f · g = |f ||g| cos θ, where |f | is the length of vector f and |g| the one of
g, and θ is the angle in between the two vectors. Since a cosine is less
than one in magnitude, the Cauchy-Schwartz inequality is therefore true
for vectors.

But it is true even if f and g are functions. To prove it, first recognize
that 〈f |g〉 may in general be a complex number, which according to (2.6)
must take the form eiα| 〈f |g〉 | where α is some real number whose value is
not important, and that 〈g|f〉 is its complex conjugate e−iα| 〈f |g〉 |. Now,
(yes, this is going to be some convoluted reasoning), look at

〈
f + λe−iαg

∣∣f + λe−iαg
〉

where λ is any real number. The above dot product gives the square
magnitude of f + λe−iαg, so it can never be negative. But if you multiply
out, you get

〈f |f〉+ 2| 〈f |g〉 |λ+ 〈g|g〉λ2

and if this quadratic form in λ is never negative, its discriminant must be
less or equal to zero:

| 〈f |g〉 |2 ≤ 〈f |f〉 〈g|g〉
and taking square roots gives the Cauchy-Schwartz inequality.

Classical Can mean any older theory. In this work, most of the time it either
means “nonquantum,” or “nonrelativistic.”

coscoscos The cosine function, a periodic function oscillating between 1 and -1 as
shown in [41, pp. 40-]. See also “sin.”

curl The curl of a vector ~v is defined as curl~v = rot~v = ∇ × ~v.



1510

DDD May indicate:

• Difference in wave number values.

~D~D~D Primitive (translation) vector of a reciprocal lattice.

DDD Density of states.

D Often used to indicate a state with two units of orbital angular momentum.

ddd May indicate:

• The distance between the protons of a hydrogen molecule.

• The distance between the atoms or lattice points in a crystal.

• A constant.

~d~d~d Primitive (translation) vector of a crystal lattice.

ddd Indicates a vanishingly small change or interval of the following variable.
For example, dx can be thought of as a small segment of the x-axis.

In three dimensions, d3~r ≡ dxdydz is an infinitesimal volume element.
The symbol

∫
means that you sum over all such infinitesimal volume

elements.

derivative A derivative of a function is the ratio of a vanishingly small change
in a function divided by the vanishingly small change in the independent
variable that causes the change in the function. The derivative of f(x)
with respect to x is written as df/dx, or also simply as f ′. Note that the
derivative of function f(x) is again a function of x: a ratio f ′ can be found
at every point x. The derivative of a function f(x, y, z) with respect to
x is written as ∂f/∂x to indicate that there are other variables, y and z,
that do not vary.

determinant The determinant of a square matrix A is a single number in-
dicated by |A|. If this number is nonzero, A~v can be any vector ~w for
the right choice of ~v. Conversely, if the determinant is zero, A~v can only
produce a very limited set of vectors, though if it can produce a vector w,
it can do so for multiple vectors ~v.

There is a recursive algorithm that allows you to compute determinants
from increasingly bigger matrices in terms of determinants of smaller ma-
trices. For a 1 × 1 matrix consisting of a single number, the determinant
is simply that number:

|a11| = a11
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(This determinant should not be confused with the absolute value of the
number, which is written the same way. Since you normally do not deal
with 1 × 1 matrices, there is normally no confusion.) For 2 × 2 matrices,
the determinant can be written in terms of 1 × 1 determinants:

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = +a11

∣∣∣∣ a22

∣∣∣∣− a12
∣∣∣∣ a21

∣∣∣∣

so the determinant is a11a22 − a12a21 in short. For 3 × 3 matrices, you
have
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
=

+a11

∣∣∣∣∣∣
a22 a23
a32 a33

∣∣∣∣∣∣
− a12

∣∣∣∣∣∣
a21 a23
a31 a33

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
a21 a22
a31 a32

∣∣∣∣∣∣

and you already know how to work out those 2 × 2 determinants, so you
now know how to do 3 × 3 determinants. Written out fully:

a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
For 4 × 4 determinants,

∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣
=

+a11

∣∣∣∣∣∣∣∣

a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣∣∣
− a12

∣∣∣∣∣∣∣∣

a21 a23 a24
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣∣∣

+a13

∣∣∣∣∣∣∣∣

a21 a22 a24
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣∣∣
− a14

∣∣∣∣∣∣∣∣

a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣∣∣

Etcetera. Note the alternating sign pattern of the terms.

As you might infer from the above, computing a good size determinant
takes a large amount of work. Fortunately, it is possible to simplify the
matrix to put zeros in suitable locations, and that can cut down the work
of finding the determinant greatly. You are allowed to use the following
manipulations without seriously affecting the computed determinant:
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1. You can “transpose”the matrix, i.e. change its columns into its rows.

2. You can create zeros in a row by subtracting a suitable multiple of
another row.

3. You can also swap rows, as long as you remember that each time
that you swap two rows, it will flip over the sign of the computed
determinant.

4. You can also multiply an entire row by a constant, but that will
multiply the computed determinant by the same constant.

Applying these tricks in a systematic way, called “Gaussian elimination”
or “reduction to upper triangular form”, you can eliminate all matrix
coefficients aij for which j is less than i, and that makes evaluating the
determinant pretty much trivial.

div(ergence) The divergence of a vector ~v is defined as div~v = ∇ · ~v.

EEE May indicate:

• The total energy. Possible values are the eigenvalues of the Hamilto-
nian.

• En = E1/n
2 = −mee

4/32π2ǫ20~
2n2 = −~2/2mea

2
0n

2 = 1
2
α2mec

2/n2

may indicate the nonrelativistic (Bohr) energy levels of the hydrogen
atom. The ground state energy E1 equals -13.605 692 5 eV. This does
not include relativistic and proton motion corrections.

• Internal energy of a substance.

EEE May indicate:

• Electric field strength.

eee May indicate:

• The basis for the natural logarithms. Equal to 2.718 281 828 459...
This number produces the “exponential function” ex, or exp(x), or
in words “e to the power x”, whose derivative with respect to x is
again ex. If a is a constant, then the derivative of eax is aeax. Also,
if a is an ordinary real number, then eia is a complex number with
magnitude 1.

• The magnitude of the charge of an electron or proton, equal to
1.602 176 57 10−19 C.

• Emissivity of electromagnetic radiation.

• Often used to indicate a unit vector.



1513

• A superscript e may indicate a single-electron quantity.

• Specific internal energy of a substance.

e May indicate

• Subscript e may indicate an electron.

eiaxeiaxeiax Assuming that a is an ordinary real number, and x a real variable, eiax is
a complex function of magnitude one. The derivative of eiax with respect
to x is iaeiax

eigenvector A concept from linear algebra. A vector ~v is an eigenvector of
a matrix A if ~v is nonzero and A~v = λ~v for some number λ called the
corresponding eigenvalue.

The basic quantum mechanics section of this book avoids linear algebra
completely, and the advanced part almost completely. The few exceptions
are almost all two-dimensional matrix eigenvalue problems. In case you
did not have any linear algebra, here is the solution: the two-dimensional
matrix eigenvalue problem

(
a11 a12
a21 a22

)
~v = λ~v

has eigenvalues that are the two roots of the quadratic equation

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0

The corresponding eigenvectors are

~v1 =

(
a12

λ1 − a11

)
~v2 =

(
λ2 − a22
a21

)

On occasion you may have to swap λ1 and λ2 to use these formulae. If
λ1 and λ2 are equal, there might not be two eigenvectors that are not
multiples of each other; then the matrix is called defective. However,
Hermitian matrices are never defective.

See also “matrix” and “determinant.”

eV The electron volt, a commonly used unit of energy. Its value is equal to
1.602 176 57 10−19 J.

exponential function A function of the form e..., also written as exp(. . .).
See “function” and “e.”

FFF May indicate:
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• The force in Newtonian mechanics. Equal to the negative gradient
of the potential. Quantum mechanics is formulated in terms of po-
tentials, not forces.

• The anti-derivative of some function f .

• Some function.

• Helmholtz free energy.

FFF Fock operator.

fff May indicate:

• A generic function.

• A generic vector.

• A fraction.

• The resonance factor.

• Specific Helmholtz free energy.

• Frequency.

function A mathematical object that associates values with other values. A
function f(x) associates every value of x with a value f . For example, the
function f(x) = x2 associates x = 0 with f = 0, x = 1

2
with f = 1

4
, x = 1

with f = 1, x = 2 with f = 4, x = 3 with f = 9, and more generally, any
arbitrary value of x with the square of that value x2. Similarly, function
f(x) = x3 associates any arbitrary x with its cube x3, f(x) = sin(x)
associates any arbitrary x with the sine of that value, etcetera.

One way of thinking of a function is as a procedure that allows you,
whenever given a number, to compute another number.

A wave function Ψ(x, y, z) associates each spatial position (x, y, z) with
a wave function value. Going beyond mathematics, its square magnitude
associates any spatial position with the relative probability of finding the
particle near there.

functional A functional associates entire functions with single numbers. For
example, the expectation energy is mathematically a functional: it as-
sociates any arbitrary wave function with a number: the value of the
expectation energy if physics is described by that wave function.

GGG May indicate:

• Gibbs free energy.

• Newton’s constant of gravitation, 6.673 8 10−11 m3/kg s2.
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ggg May indicate:

• A second generic function or a second generic vector.

• The strength of gravity, by definition equal to 9.806 65 m/s2 exactly
under standard conditions on the surface of the earth.

• The g-factor, a nondimensional constant that indicates the gyro-
magnetic ratio relative to charge and mass. For the electron ge =
−2.002 319 304 361 5. For the proton gp = 5.585 694 71. For the neu-
tron, based on the mass and charge of the proton, gn = −3.826 085 5.
• Specific Gibbs free energy/chemical potential.

Gauss’ Theorem This theorem, also called divergence theorem or Gauss-
Ostrogradsky theorem, says that for a continuously differentiable vector
~v, ∫

V

∇ · ~v dV =

∫

A

~v · ~n dA

where the first integral is over the volume of an arbitrary region and the
second integral is over all the surface area of that region; ~n is at each point
found as the unit vector that is normal to the surface at that point.

grad(ient) The gradient of a scalar f is defined as grad f = ∇f .

HHH May indicate:

• The Hamiltonian, or total energy, operator. Its eigenvalues are indi-
cated by E.

• Hn stands for the n-th order Hermite polynomial.

• Enthalpy.

hhh May indicate:

• The original Planck constant h = 2π~.

• hn is a one-dimensional harmonic oscillator eigenfunction.

• Single-electron Hamiltonian.

• Specific enthalpy.

~~~ The reduced Planck constant, equal to 1.054 571 73 10−34 J s. A measure of
the uncertainty of nature in quantum mechanics. Multiply by 2π to get
the original Planck constant h. For nuclear physics, a frequently helpful
value is ~c = 197.326 972 MeV fm.
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hypersphere A hypersphere is the generalization of the normal three-dimen-
sional sphere to n-dimensional space. A sphere of radius R in three-di-
mensional space consists of all points satisfying

r21 + r22 + r23 6 R2

where r1, r2, and r3 are Cartesian coordinates with origin at the center of
the sphere. Similarly a hypersphere in n-dimensional space is defined as
all points satisfying

r21 + r22 + . . .+ r2n 6 R2

So a two-dimensional “hypersphere” of radius R is really just a circle of
radius R. A one-dimensional “hypersphere” is really just the line segment
−R 6 x 6 −R.
The “volume” Vn and surface “area” An of an n-dimensional hypersphere
is given by

Vn = CnR
n An = nCnR

n−1

Cn =

{
(2π)n/2/2× 4× 6× . . .× n if n is even
(2π)(n−1)/22/1× 3× 5× . . .× n if n is odd

(This is readily derived recursively. For a sphere of unit radius, note
that the n-dimensional “volume” is an integration of n−1-dimensional
volumes with respect to r1. Then renotate r1 as sinφ and look up the
resulting integral in a table book. The formula for the area follows because
V =

∫
Adr where r is the distance from the origin.) In three dimensions,

C3 = 4π/3 according to the above formula. That makes the three-dimen-
sional “volume” 4πR3/3 equal to the actual volume of the sphere, and the
three-dimensional “area” 4πR2 equal to the actual surface area. On the
other hand in two dimensions, C2 = π. That makes the two-dimensional
“volume” πR2 really the area of the circle. Similarly the two-dimensional
surface “area” 2πR is really the perimeter of the circle. In one dimensions
C1 = 2 and the “volume” 2R is really the length of the interval, and the
“area” 2 is really its number of end points.

Often the infinitesimal n-dimensional “volume” element dn~r is needed.
This is the infinitesimal integration element for integration over all coor-
dinates. It is:

dn~r = dr1dr2 . . . drn = dAndr

Specifically, in two dimensions:

d2~r = dr1dr2 = dxdy = (r dθ)dr = dA2dr

while in three dimensions:

d3~r = dr1dr2dr3 = dxdydz = (r2 sin θ dθdφ)dr = dA3dr
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The expressions in parentheses are dA2 in polar coordinates, respectively
dA3 in spherical coordinates.

III May indicate:

• The number of electrons or particles.

• Electrical current.

• Unit matrix or operator, which does not do anything. See “matrix.”

• IA is Avogadro’s number, 6.022 141 3 1026 particles per kmol. (More
standard symbols are NA or L, but they are incompatible with the
general notations in this book.)

ℑℑℑ The imaginary part of a complex number. If c = cr+ici with cr and ci real
numbers, then ℑ(c) = ci. Note that c− c∗ = 2iℑ(c).

III May indicate:

• I is radiation energy intensity.

• IR is moment of inertia.

iii May indicate:

• The number of a particle.

• A summation index.

• A generic index or counter.

Not to be confused with i.

ı̂̂ı̂ı The unit vector in the x-direction.

iii The standard square root of minus one: i =
√
−1, i2 = −1, 1/i = −i, i∗ =

−i.

index notation A more concise and powerful way of writing vector and ma-
trix components by using a numerical index to indicate the components.
For Cartesian coordinates, you might number the coordinates x as 1, y as
2, and z as 3. In that case, a sum like vx + vy + vz can be more concisely
written as

∑
i vi. And a statement like vx 6= 0, vy 6= 0, vz 6= 0 can be more

compactly written as vi 6= 0. To really see how it simplifies the notations,
have a look at the matrix entry. (And that one shows only 2 by 2 matrices.
Just imagine 100 by 100 matrices.)

iff Emphatic “if.” Should be read as “if and only if.”

integer Integer numbers are the whole numbers: . . . ,−2,−1, 0, 1, 2, 3, 4, . . ..
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inverse (Of matrices or operators.) If an operator A converts a vector or
function f into a vector or function g, then the inverse of the operator
A−1 converts g back into f . For example, the operator 2 converts vectors
or functions into two times themselves, and its inverse operator 1

2
converts

these back into the originals. Some operators do not have inverses. For
example, the operator 0 converts all vectors or functions into zero. But
given zero, there is no way to figure out what function or vector it came
from; the inverse operator does not exist.

irrotational A vector ~v is irrotational if its curl ∇ × ~v is zero.

iso Means “equal” or “constant.”

• Isenthalpic: constant enthalpy.

• Isentropic: constant entropy. This is a process that is both adiabatic
and reversible.

• Isobaric: constant pressure.

• Isochoric: constant (specific) volume.

• Isospin: you don’t want to know.

• Isothermal: constant temperature.

isolated An isolated system is one that does not interact with its surround-
ings in any way. No heat is transfered with the surroundings, no work is
done on or by the surroundings.

JJJ May indicate:

• Total angular momentum.

• Number of nuclei in a quantum computation of electronic structure.

jjj May indicate:

• The azimuthal quantum number of total angular momentum, includ-
ing both orbital and spin contributions.

• ~j is electric current density.

• The number of a nucleus in a quantum computation.

• A summation index.

• A generic index or counter.

̂̂̂ The unit vector in the y-direction.

KKK May indicate:
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• An exchange integral in Hartree-Fock.

• Maximum wave number value.

KKK Thomson (Kelvin) coefficient.

K May indicate:

• The atomic states or orbitals with theoretical Bohr energy E1

• Degrees Kelvin.

kkk May indicate:

• A wave number. A wave number is a measure for how fast a periodic
function oscillates with variations in spatial position. In quantum
mechanics, k is normally defined as

√
2m(E − V )/~. The vector ~k

is not to be confused with the unit vector in the z-direction k̂.

• A generic summation index.

k̂̂k̂k The unit vector in the z-direction.

kBkBkB Boltzmann constant. Equal to 1.380 649 10−23 J/K. Relates absolute tem-
perature to a typical unit of heat motion energy.

kmol A kilo mole refers to 6.022 141 3 1026 atoms or molecules. The weight
of this many particles is about the number of protons and neutrons in the
atom nucleus/molecule nuclei. So a kmol of hydrogen atoms has a mass
of about 1 kg, and a kmol of hydrogen molecules about 2 kg. A kmol of
helium atoms has a mass of about 4 kg, since helium has two protons and
two neutrons in its nucleus. These numbers are not very accurate, not just
because the electron masses are ignored, and the free neutron and proton
masses are somewhat different, but also because of relativity effects that
cause actual nuclear masses to deviate from the sum of the free proton
and neutron masses.

LLL May indicate:

• Angular momentum.

• Orbital angular momentum.

LLL Lagrangian.

L The atomic states or orbitals with theoretical Bohr energy E2

lll May indicate:
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• The azimuthal quantum number of angular momentum.

• The azimuthal quantum number of orbital angular momentum. Here
s is used for spin, and j for combined angular momentum.)

• A generic summation index.

ℓℓℓ May indicate:

• The typical length in the harmonic oscillator problem.

• The dimensions of a solid block (with subscripts).

• A length.

• Multipole level in transitions.

£££ Lagrangian density. This is best understood in the UK.

limlimlim Indicates the final result of an approaching process. limε→0 indicates for
practical purposes the value of the following expression when ε is extremely
small.

linear combination A very generic concept indicating sums of objects times
coefficients. For example, a position vector ~r in basic physics is the linear
combination xı̂+ ŷ+ zk̂ with the objects the unit vectors ı̂, ̂, and k̂ and
the coefficients the position coordinates x, y, and z. A linear combination
of a set of functions f1(x), f2(x), f3(x), . . . , fn(x) would be the function

c1f1(x) + c2f2(x) + c3f3(x) + . . . cnfn(x)

where c1, c2, c3, . . . , cn are constants, i.e. independent of x.

linear dependence A set of vectors or functions is linearly dependent if at
least one of the set can be expressed in terms of the others. Consider the
example of a set of functions f1(x), f2(x), . . . , fn(x). This set is linearly
dependent if

c1f1(x) + c2f2(x) + c3f3(x) + . . . cnfn(x) = 0

where at least one of the constants c1, c2, c2, . . . , cn is nonzero. To see why,
suppose that say c2 is nonzero. Then you can divide by c2 and rearrange
to get

f2(x) = −
c1
c2
f1(x)−

c3
c2
f3(x)− . . .−

cn
c2
fn(x)

That expresses f2(x) in terms of the other functions.
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linear independence A set of vectors or functions is linearly independent
if none of the set can be expressed in terms of the others. Consider the
example of a set of functions f1(x), f2(x), . . . , fn(x). This set is linearly
independent if

c1f1(x) + c2f2(x) + c3f3(x) + . . . cnfn(x) = 0

only if every one of the constants c1, c2, c3, . . . , cn is zero. To see why,
assume that say f2(x) could be expressed in terms of the others,

f2(x) = C1f1(x) + C3f3(x) + . . .+ Cnfn(x)

Then taking c2 = 1, c1 = −C1, c3 = −C3, . . . cn = −Cn, the condition
above would be violated. So f2 cannot be expressed in terms of the others.

MMM May indicate:

• Molecular mass. See “molecular mass.”

• Figure of merit.

MMM Mirror operator.

M The atomic states or orbitals with theoretical Bohr energy E3

mmm May indicate:

• Mass.

– me: electron mass. Equal to 9.109 382 9 10−31 kg. The rest mass
energy is 0.510 998 93 MeV.

– mp: proton mass. Equal to 1.672 621 78 10−27 kg. The rest mass
energy is 938.272 013 MeV.

– mn: neutron mass. Equal to 1.674 927 10−27 kg. The rest mass
energy is 939.565 561 MeV.

– Alpha particle: 6.644 656 8 10−27 kg or 3 727.379 24 MeV.
Deuteron: 3.343 583 5 10−27 kg or 1 875.612 86 MeV.
Helion: 5.006 412 3 10−27 kg or 2 808.391 482 MeV.

– mu = 1.660 538 92 10−27 kg is the atomic mass constant.

– m: generic particle mass.

• The magnetic quantum number of angular momentum. The type odf
angular momentum may be indicated by a subscript l for orbital, s
for spin, or j for net (orbital plus spin).

• Number of a single-electron wave function.

• Number of rows in a matrix.
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• A generic summation index or generic integer.

matrix A table of numbers.

As a simple example, a two-dimensional (or 2× 2) matrix A is a table of
four numbers called a11, a12, a21, and a22:

A =

(
a11 a12
a21 a22

)

unlike a two-dimensional vector ~v, which would consist of only two num-
bers v1 and v2 arranged in a column:

~v =

(
v1
v2

)

(Such a vector can be seen as a “rectangular matrix” of size 2 × 1, but
let’s not get into that.) (Note that in quantum mechanics, if a vector
is written as a column, considered the normal case, it is called a “ket”
vector. If the complex conjugates of its numbers are written as a row, it
is called a “bra” vector.)

In “index notation,” a matrix A is a set of numbers, or “coefficients,”
{aij} indexed by two indices. The first index i is the row number at which
the coefficient {aij} is found in matrix A, and the second index j is the
column number. In index notation, a matrix turns a vector ~v into another
vector ~w = A~v according to the recipe

wi =
∑

all j

aijvj for all i

where vj stands for “the j-th component of vector ~v,” and wi for “the i-th
component of vector ~w.”

As an example, the product of A and ~v above is by definition
(
a11 a12
a21 a22

)(
v1
v2

)
=

(
a11v1 + a12v2
a21v1 + a22v2

)

which is just another two-dimensional ket vector.

Note that in matrix multiplications, like in the example above, in geomet-
ric terms you take dot products between the rows of the first factor and
the columns of the second factor.

To multiply two matrices together, just think of the columns of the second
matrix as separate vectors. For example, to multiply two 2 × 2 matrices
A and B together:

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
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which is another two-dimensional matrix.

(Note that you cannot normally swap the order of matric multiplication.
The matrix BA is different from matrix AB. In the special case that AB
and BA are the same and A and B have complete sets of eigenvectors,
then they have a common complete set of eigenvectors, {D.18}.)
In index notation, if C = AB, then each coefficient cij of matrix C is given
in terms of the coefficients of A and B as

cij =
∑

k

aikbkj

Note that the index k that you sum over is the second of A but the first
of B. In short, you sum over “neighboring indices.” Since you sum over
all k, the result does not depend on k.

The zero matrix, usually called Z, is like the number zero; it does not
change a matrix it is added to. And it turns whatever it is multiplied
with into zero. A zero matrix has every coefficient zero. For example, in
two dimensions:

Z =

(
0 0
0 0

)

A unit, or identity, matrix, usually called I, is the equivalent of the number
one for matrices; it does not change the vector or matrix it is multiplied
with. A unit matrix is one on its “main diagonal” i = j and zero elsewhere.
The 2 by 2 unit matrix is:

I =

(
1 0
0 1

)

More generally the coefficients, {δij}, of a unit matrix are one if i = j and
zero otherwise.

The “transpose” of a matrix A, AT, is what you get if you swap the two
indices. Graphically, it turns its rows into its columns and vice versa. The
“adjoint” or “Hermitian adjoint” matrix A† is what you get if you both
swap the two indices in a matrix A and then take the complex conjugate of
every coefficient. If you want to take a matrix to the other side of an inner
product, you will need to change it to its Hermitian adjoint. “Hermitian
matrices”are equal to their Hermitian adjoint, so this does nothing for
them.

The inverse of a matrix A, A−1 is a matrix so that A−1A equals the identity
matrix I. That is much like the inverse of a simple number times that
number gives one. And, just like the number zero has no inverse, a matrix
with zero determinant has no inverse. Otherwise, you can swap the order;
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AA−1 equals the unit matrix too. (For numbers this is trivial, for matrices
you need to look a bit closer to understand why it is true.)

See also “determinant” and “eigenvector.”

metric prefixes In the metric system, the prefixes Y, Z, E, P, T, G, M,
and k stand for 10i with i = 24, 21, 18, 15, 12, 9, 6, and 3, respectively.
Similarly, d, c, m, µ, n, p, f, a, z, y stand for 10−i with i = 1, 2, 3, 6, 9, 12,
15, 18, 21, and 24 respectively. For example, 1 ns is 10−9 seconds. English
letter u is often used as instead of greek µ. Names corresponding to the
mentioned prefixes Y–k are yotta, zetta, exa, peta, tera, giga, mega, kilo,
and corresponding to d–y are deci, centi, milli, micro, nano, pico, femto,
atto, zepto, and yocto.

molecular mass Typical thermodynamics books for engineers tabulate val-
ues of the “molecular mass,” as a nondimensional number. The bottom
line first: these numbers should have been called the “molar mass” of
the substance, for the naturally occurring isotope ratio on earth. And
they should have been given units of kg/kmol. That is how you use these
numbers in actual computations. So just ignore the fact that what these
books really tabulate is officially called the “relative molecular mass” for
the natural isotope ratio.

Don’t blame these textbooks too much for making a mess of things. Physi-
cists have historically bandied about a zillion different names for what is
essentially a single number. Like “molecular mass,” “relative molecu-
lar mass,” “molecular weight,” “atomic mass,” “relative atomic mass,”
“atomic weight,” “molar mass,” “relative molar mass,” etcetera are basi-
cally all the same thing.

All of these have values that equal the mass of a molecule relative to a
reference value for a single nucleon. So these value are about equal to
the number of nucleons (protons and neutrons) in the nuclei of a single
molecule. (For an isotope ratio, that becomes the average number of nu-
cleons. Do note that nuclei are sufficiently relativistic that a proton or
neutron can be noticeably heavier in one nucleus than another, and that
neutrons are a bit heavier than protons even in isolation.) The official ref-
erence nucleon weight is defined based on the most common carbon isotope
carbon-12. Since carbon-12 has 6 protons plus 6 neutrons, the reference
nucleon weight is taken to be one twelfth of the carbon-12 atomic weight.
That is called the unified atomic mass unit (u) or Dalton (Da). The
atomic mass unit (amu) is an older virtually identical unit, but physicists
and chemists could never quite agree on what its value was. No kidding.

If you want to be politically correct, the deal is as follows. “Molecular
mass” is just what the term says, the mass of a molecule, in mass units.
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(I found zero evidence in either the IUPAC Gold Book or NIST SP811 for
the claim of Wikipedia that it must always be expressed in u.) “Molar
mass” is just what the words says, the mass of a mole. Official SI units are
kg/mol, but you will find it in g/mol, equivalent to kg/kmol. (You cannot
expect enough brains from international committees to realize that if you
define the kg and not the g as unit of mass, then it would be a smart
idea to also define kmol instead of mol as unit of particle count.) Simply
ignore relative atomic and molecular masses, you do not care about them.
(I found zero evidence in either the IUPAC Gold Book or NIST SP811
for the claims of Wikipedia that the molecular mass cannot be an average
over isotopes or that the molar mass must be for a natural isotope ratio.
In fact, NIST uses “molar mass of carbon-12” and specifically includes the
possibility of an average in the relative molecular mass.)

See also the atomic mass constant “mu.”

NNN May indicate:

• Number of states.

• Number of single-particle states.

• Number of neutrons in a nucleus.

N May indicate

• The atomic states or orbitals with theoretical Bohr energy E4.

• Subscript N indicates a nucleus.

nnn May indicate:

• The principal quantum number for hydrogen atom energy eigenfunc-
tions.

• A quantum number for harmonic oscillator energy eigenfunctions.

• Number of a single-electron or single-particle wave function.

• Generic summation index over energy eigenfunctions.

• Generic summation index over other eigenfunctions.

• Integer factor in Fourier wave numbers.

• Probability density.

• Number of columns in a matrix.

• A generic summation index or generic integer.

• A natural number.

• ns is the number of spin states.
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and maybe some other stuff.

n May indicate

• A subscript n may indicate a neutron.

natural Natural numbers are the numbers: 1, 2, 3, 4, . . ..

normal A normal operator or matrix is one that has orthonormal eigenfunc-
tions or eigenvectors. Since eigenvectors are not orthonormal in general, a
normal operator or matrix is abnormal! Another example of a highly con-
fusing term. Such a matrix should have been called orthodiagonalizable
or something of the kind. To be fair, the author is not aware of any physi-
cists being involved in this particular term; it may be the mathematicians
that are to blame here.

For an operator or matrix A to be “normal,” it must commute with its
Hermitian adjoint, [A,A†] = 0. Hermitian matrices are normal since they
are equal to their Hermitian adjoint. Skew-Hermitian matrices are normal
since they are equal to the negative of their Hermitian adjoint. Unitary
matrices are normal because they are the inverse of their Hermitian ad-
joint.

O May indicate the origin of the coordinate system.

opposite The opposite of a number a is −a. In other words, it is the additive
inverse.

PPP May indicate:

• The linear momentum eigenfunction.

• A power series solution.

• Probability.

• Pressure.

• Hermitian part of an annihilation operator.

PPP Particle exchange operator. Exchanges the positions and spins of two iden-
tical particles.

PPP Peltier coefficient.

P Often used to indicate a state with one unit of orbital angular momentum.

ppp May indicate:

• Linear momentum.
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• Linear momentum in the x-direction.

• Integration variable with units of linear momentum.

p May indicate

• An energy state with orbital azimuthal quantum number l = 1.

• A superscript p may indicate a single-particle quantity.

• A subscript p may indicate a periodic function.

• A subscript p may indicate a proton.

perpendicular bisector For two given points P and Q, the perpendicular
bisector consists of all points R that are equally far from P as they are
from Q. In two dimensions, the perpendicular bisector is the line that
passes through the point exactly half way in between P and Q, and that
is orthogonal to the line connecting P and Q. In three dimensions, the
perpendicular bisector is the plane that passes through the point exactly
half way in between P and Q, and that is orthogonal to the line connecting
P and Q. In vector notation, the perpendicular bisector of points P and
Q is all points R whose radius vector ~r satisfies the equation:

(~r −~rP ) · (~rQ −~rP ) = 1
2
(~rQ −~rP ) · (~rQ −~rP )

(Note that the halfway point~r−~rP = 1
2
(~rQ−~rP ) is included in this formula,

as is the half way point plus any vector that is normal to (~rQ −~rP ).)

phase angle Any complex number can be written in “polar form” as c =
|c|eiα where both the magnitude |c| and the phase angle α are real num-
bers. Note that when the phase angle varies from zero to 2π, the complex
number c varies from positive real to positive imaginary to negative real
to negative imaginary and back to positive real. When the complex num-
ber is plotted in the complex plane, the phase angle is the direction of
the number relative to the origin. The phase angle α is often called the
argument, but so is about everything else in mathematics, so that is not
very helpful.

In complex time-dependent waves of the form ei(ωt−φ), and its real equiva-
lent cos(ωt−φ), the phase angle φ gives the angular argument of the wave
at time zero.

photon Unit of electromagnetic radiation (which includes light, x-rays, mi-
crowaves, etcetera). A photon has a energy ~ω, where ω is its angular
frequency, and a wave length 2πc/ω where c is the speed of light.
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potential In order to optimize confusion, pretty much everything in physics
that is scalar is called potential. Potential energy is routinely concisely
referred to as potential. It is the energy that a particle can pick up from a
force field by changing its position. It is in Joule. But an electric potential
is taken to be per unit charge, which gives it units of volts. Then there
are thermodynamic potentials like the chemical potential.

pxpxpx Linear momentum in the x-direction. (In the one-dimensional cases at
the end of the unsteady evolution chapter, the x subscript is omitted.)
Components in the y- and z-directions are py and pz. Classical Newto-
nian physics has px = mu where m is the mass and u the velocity in
the x-direction. In quantum mechanics, the possible values of px are the
eigenvalues of the operator p̂x which equals ~∂/i∂x. (But which becomes
canonical momentum in a magnetic field.)

QQQ May indicate

• Number of energy eigenfunctions of a system of particles.

• Anti-Hermitian part of an annihilation operator divided by i.

• Heat flow or heat.

• Charge.

• Electric quadrupole moment.

• Energy release.

qqq May indicate:

• Charge.

• Heat flux density.

• The number of an energy eigenfunction of a system of particles.

• Generic index.

RRR May indicate:

• Ideal gas constant.

• Transition rate.

• Nuclear radius.

• Reflection coefficient.

• Some radius or typical radius (like in the Yukawa potential).

• Some function of r to be determined.

• Some function of (x, y, z) to be determined.
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• Rnl is a hydrogen radial wave function.

• Ru = 8.314 462 kJ/kmol K is the universal gas constant. It is the
equivalent of Boltzmann’s constant, but for a kmol instead of a single
atom or molecule.

RRR Rotation operator.

ℜℜℜ The real part of a complex number. If c = cr + ici with cr and ci real
numbers, then ℜ(c) = cr. Note that c+ c∗ = 2ℜ(c).

rrr May indicate:

• The radial distance from the chosen origin of the coordinate system.

• ri typically indicates the i-th Cartesian component of the radius vec-
tor ~r.

• Some ratio.

~r~r~r The position vector. In Cartesian coordinates (x, y, z) or xı̂ + ŷ + zk̂. In
spherical coordinates rı̂r. Its three Cartesian components may be indi-
cated by r1, r2, r3 or by x, y, z or by x1, x2, x3.

reciprocal The reciprocal of a number a is 1/a. In other words, it is the
multiplicative inverse.

relativity The special theory of relativity accounts for the experimental ob-
servation that the speed of light c is the same in all local coordinate sys-
tems. It necessarily drops the basic concepts of absolute time and length
that were corner stones in Newtonian physics.

Albert Einstein should be credited with the boldness to squarely face up
to the unavoidable where others wavered. However, he should also be
credited for the boldness of swiping the basic ideas from Lorentz and
Poincaré without giving them proper, or any, credit. The evidence is very
strong he was aware of both works, and his various arguments are almost
carbon copies of those of Poincaré, but in his paper it looks like it all came
from Einstein, with the existence of the earlier works not mentioned. (Note
that the general theory of relativity, which is of no interest to this book, is
almost surely properly credited to Einstein. But he was a lot less hungry
then.)

Relativity implies that a length seen by an observer moving at a speed v is
shorter than the one seen by a stationary observer by a factor

√
1− (v/c)2

assuming the length is in the direction of motion. This is called Lorentz-
Fitzgerald contraction. It makes galactic travel somewhat more conceiv-
able because the size of the galaxy will contract for an astronaut in a
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rocket ship moving close to the speed of light. Relativity also implies that
the time that an event takes seems to be slower by a factor 1/

√
1− (v/c)2

if the event is seen by an observer in motion compared to the location
where the event occurs. That is called time dilation. Some high-energy
particles generated in space move so fast that they reach the surface of
the earth though this takes much more time than the particles would last
at rest in a laboratory. The decay time increases because of the motion
of the particles. (Of course, as far as the particles themselves see it, the
distance to travel is a lot shorter than it seems to be to earth. For them,
it is a matter of length contraction.)

The following formulae give the relativistic mass, momentum, and kinetic
energy of a particle in motion:

m =
m0√

1− (v/c)2
p = mv T = mc2 −m0c

2

where m0 is the rest mass of the particle, i.e. the mass as measured by
an observer to whom the particle seems at rest. The formula for kinetic
energy reflects the fact that even if a particle is at rest, it still has an
amount of “build-in” energy equal to m0c

2 left. The total energy of a
particle in empty space, being kinetic and rest mass energy, is given by

E = mc2 =
√

(m0c2)2 + c2p2

as can be verified by substituting in the expression for the momentum, in
terms of the rest mass, and then taking both terms inside the square root
under a common denominator. For small linear momentum p, this can be
approximated as 1

2
m0v

2.

Relativity seemed quite a dramatic departure of Newtonian physics when
it developed. Then quantum mechanics started to emerge. . .

rot The rot of a vector ~v is defined as curl~v ≡ rot~v ≡ ∇ × ~v.

SSS May indicate:

• Number of states per unit volume.

• Number of states at a given energy level.

• Spin angular momentum (as an alternative to using L or J for generic
angular momentum.)

• Entropy.

• S12 is a factor in the so-called tensor potential of nucleons.

SSS The action integral of Lagrangian mechanics, {A.1}



1531

SSS Seebeck coefficient.

S Often used to indicate a state of zero orbital angular momentum.

sss May indicate:

• Spin value of a particle. Equals 1/2 for electrons, protons, and neu-
trons, is also half an odd natural number for other fermions, and is a
nonnegative integer for bosons. It is the azimuthal quantum number
l due to spin.

• Specific entropy.

• As an index, shelf number.

s May indicate:

• An energy state with orbital azimuthal quantum number l = 0. Such
a state is spherically symmetric.

scalar A quantity that is not a vector, a quantity that is just a single number.

sinsinsin The sine function, a periodic function oscillating between 1 and -1 as
shown in [41, pp. 40-]. Good to remember: cos2 α+ sin2 α = 1 and sin 2α
= 2 sinα cosα and cos 2α = cos2 α− sin2 α.

solenoidal A vector ~v is solenoidal if its divergence ∇ · ~v is zero.

spectrum In this book, a spectrum normally means a plot of energy levels
along the vertical axis. Often, the horizontal coordinate is used to indicate
a second variable, such as the density of states or the particle velocity.

For light (photons), a spectrum can be obtained experimentally by sending
the light through a prism. This separates the colors in the light, and each
color means a particular energy of the photons.

The word spectrum is also often used in a more general mathematical
sense, but not in this book as far as I can remember.

spherical coordinates The spherical coordinates r, θ, and φ of an arbitrary
point P are defined as
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Figure N.3: Spherical coordinates of an arbitrary point P.

In Cartesian coordinates, the unit vectors in the x, y, and z directions are
called ı̂, ̂, and k̂. Similarly, in spherical coordinates, the unit vectors in
the r, θ, and φ directions are called ı̂r, ı̂θ, and ı̂φ. Here, say, the θ direction
is defined as the direction of the change in position if you increase θ by
an infinitesimally small amount while keeping r and ϕ the same. Note
therefore in particular that the direction of ı̂r is the same as that of ~r;
radially outward.

An arbitrary vector ~v can be decomposed in components vr, vθ, and vφ
along these unit vectors. In particular

~v ≡ vr ı̂r + vθ ı̂θ + vφı̂φ

Recall from calculus that in spherical coordinates, a volume integral of an
arbitrary function f takes the form

∫
f d3~r =

∫ ∫ ∫
fr2 sin θ drdθdφ

In other words, the volume element in spherical coordinates is

dV = d3~r = r2 sin θ drdθdφ

Often it is convenient of think of volume integrations as a two-step process:
first perform an integration over the angular coordinates θ and φ. Physi-
cally, that integrates over spherical surfaces. Then perform an integration
over r to integrate all the spherical surfaces together. The combined in-
finitesimal angular integration element

dΩ = sin θdθdφ
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is called the infinitesimal “solid angle” dΩ. In two-dimensional polar co-
ordinates r and θ, the equivalent would be the infinitesimal polar angle
dθ. Recall that dθ, (in proper radians of course), equals the arclength
of an infinitesimal part of the circle of integration divided by the circle
radius. Similarly dΩ is the surface of an infinitesimal part of the sphere
of integration divided by the square sphere radius.

See the “∇” entry for the gradient operator and Laplacian in spherical
coordinates.

Stokes’ Theorem This theorem, first derived by Kelvin and first published
by someone else I cannot recall, says that for any reasonably smoothly
varying vector ~v, ∫

A

(∇× ~v) dA =

∮
~v · d~r

where the first integral is over any smooth surface area A and the second
integral is over the edge of that surface. How did Stokes get his name on
it? He tortured his students with it, that’s how!

One important consequence of the Stokes theorem is for vector fields ~v
that are “irrotational,” i.e. that have ∇ × ~v = 0. Such fields can be
written as

~v = ∇f f(~r) ≡
∫ ~r

~r=~rref

~v(~r) · d~r

Here ~rref is the position of an arbitrarily chosen reference point, usually
the origin. The reason the field ~v can be written this way is the Stokes
theorem. Because of the theorem, it does not make a difference along
which path from ~rref to ~r you integrate. (Any two paths give the same
answer, as long as ~v is irrotational everywhere in between the paths.) So
the definition of f is unambiguous. And you can verify that the partial
derivatives of f give the components of ~v by approaching the final position
~r in the integration from the corresponding direction.

symmetry A symmetry is an operation under which an object does not
change. For example, a human face is almost, but not completely, mirror
symmetric: it looks almost the same in a mirror as when seen directly.
The electrical field of a single point charge is spherically symmetric; it
looks the same from whatever angle you look at it, just like a sphere does.
A simple smooth glass (like a glass of water) is cylindrically symmetric; it
looks the same whatever way you rotate it around its vertical axis.

TTT May indicate:

• Absolute temperature. The absolute temperature in degrees K equals
the temperature in centigrade plus 273.15. When the absolute tem-
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perature is zero, (i.e. at −273.15 ◦C), nature is in the state of lowest
possible energy.

• Kinetic energy. A hat indicates the associated operator. The opera-
tor is given by the Laplacian times −~2/2m.

• Isospin. A hat indicates the associated operator. A vector symbol or
subscript distinguishes it from kinetic energy.

• Tesla. The unit of magnetic field strength, kg/C-s.

TTT Translation operator that translates a wave function through space. The
amount of translation is usually indicated by a subscript.

ttt May indicate:

• Time.

• tt is the quantum number of square isospin.

temperature A measure of the heat motion of the particles making up
macroscopic objects. At absolute zero temperature, the particles are in
the “ground state” of lowest possible energy.

triple product A product of three vectors. There are two different versions:

• The scalar triple product ~a · (~b× ~c). In index notation,

~a · (~b× ~c) =
∑

i

ai(bıcı − bıcı)

where ı is the index following i in the sequence 123123. . . , and ı the
one preceding it. This triple product equals the determinant |~a~b~c|
formed with the three vectors. Geometrically, it is plus or minus the
volume of the parallelepiped that has vectors ~a, ~b, and ~c as edges.
Either way, as long as the vectors are normal vectors and not opera-
tors,

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b)
and you can change the two sides of the dot product without changing
the triple product, and/or you can change the sides in the vectorial
product with a change of sign. If any of the vectors is an operator,
use the index notation expression to work it out.

• The vectorial triple product ~a× (~b×~c). In index notation, component
number i of this triple product is

aı(bicı − bıci)− aı(bıci − bicı)
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which may be rewritten as

aibici + aıbicı + aıbicı − aibici − aıbıci − aıbıci

In particular, as long as the vectors are normal ones,

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

UUU May indicate:

• A unitary operator, in other words one that does not change the
magnitude of the wave function.

• Often used for energy, though not in this book.

UUU The time shift operator: U(τ, t) changes the wave function Ψ(. . . ; t) into
Ψ(. . . ; t+ τ). If the Hamiltonian is independent of time

U(τ, t) = Uτ = e−iHτ/~

uuu May indicate:

• The first velocity component in a Cartesian coordinate system.

• A complex coordinate in the derivation of spherical harmonics.

• An integration variable.

u May indicate the atomic mass constant, equivalent to 1.660 538 92 10−27 kg
or 931.494 06 MeV/c2.

VVV May indicate:

• The potential energy. V is used interchangeably for the numerical
values of the potential energy and for the operator that corresponds
to multiplying by V . In other words, V̂ is simply written as V .

VVV Volume.

vvv May indicate:

• The second velocity component in a Cartesian coordinate system.

• Magnitude of a velocity (speed).

• v is specific volume.

• A complex coordinate in the derivation of spherical harmonics.

• As vee, a single electron pair potential.
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~v~v~v May indicate:

• Velocity vector.

• Generic vector.

• Summation index of a lattice potential.

vector Simply put, a list of numbers. A vector ~v in index notation is a
set of numbers {vi} indexed by an index i. In normal three-dimensional
Cartesian space, i takes the values 1, 2, and 3, making the vector a list
of three numbers, v1, v2, and v3. These numbers are called the three
components of ~v. The list of numbers can be visualized as a column, and
is then called a ket vector, or as a row, in which case it is called a bra
vector. This convention indicates how multiplication should be conducted
with them. A bra times a ket produces a single number, the dot product
or inner product of the vectors:

(1, 3, 5)




7
11
13


 = 1 7 + 3 11 + 5 13 = 105

To turn a ket into a bra for purposes of taking inner products, write the
complex conjugates of its components as a row.

Formal definitions of vectors vary, but real mathematicians will tell you
that vectors are objects that can be manipulated in certain ways (addition
and multiplication by a scalar). Some physicists define vectors as objects
that transform in a certain way under coordinate transformation (one-di-
mensional tensors); that is not the same thing.

vectorial product An vectorial product, or cross product is a product of
vectors that produces another vector. If

~c = ~a×~b,

it means in index notation that the i-th component of vector ~c is

ci = aıbı − aıbı

where ı is the index following i in the sequence 123123. . . , and ı the one
preceding it. For example, c1 will equal a2b3 − a3b2.

W May indicate:

• Watt, the SI unit of power.

• The W± are the charged carriers of the weak force. See also “Z0.”
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• W.u. stands for Weisskopf unit, a simple decay ballpark for gamma
decay.

www May indicate:

• The third velocity component in a Cartesian coordinate system.

• Weight factor.

~w~w~w Generic vector.

XXX Used in this book to indicate a function of x to be determined.

xxx May indicate:

• First coordinate in a Cartesian coordinate system.

• A generic argument of a function.

• An unknown value.

YYY Used in this book to indicate a function of y to be determined.

Y m
lY
m
lY
m
l Spherical harmonic. Eigenfunction of both angular momentum in the

z-direction and of total square angular momentum.

yyy May indicate:

• Second coordinate in a Cartesian coordinate system.

• A second generic argument of a function.

• A second unknown value.

ZZZ May indicate:

• Atomic number (number of protons in the nucleus).

• Number of particles.

• Partition function.

• The Z0 is the uncharged carrier of the weak force. See also “W±.”

• Used in this book to indicate a function of z to be determined.

zzz May indicate:

• Third coordinate in a Cartesian coordinate system.

• A third generic argument of a function.

• A third unknown value.
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Φ, 1504
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χ, 1505
Ψ, 1505
ψ, 1505
Ω, 1505
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21 cm line
derivation, 1148
intro, 1140

A, 1505
Å, 1506
a, 1506
a0, 1506
absolute temperature, 212, 1506
absolute value, 32, 1506
absolute zero

nonzero energy, 84
requires ground state, 520

absorbed dose, 671
absorption and emission

incoherent radiation, 379
absorptivity, 227
acceleration

in quantum mechanics, 326
acceptors

semiconductors, 285
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actinides, 191
actinoids, 191
action, 860

relativistic, 27
activation energy

nuclear fission, 751
radicals, 150

active view, 948
activity, 671

specific, see decay rate
adiabatic

disambiguation, 1506
quantum mechanics, 322
thermodynamics, 551

adiabatic surfaces, 445
adiabatic theorem

derivation, 1283
derivation and implications, 941
intro, 323

adjoint, 1507
matrices, 1523

Aharonov-Bohm effect, 607
Airy functions

application, 1085
connection formulae, 1097
graphs, 1096
software, 1091

alkali metals, 188
alkaline metals, 188
allowed transition

intro, 340
allowed transitions

beta decay, 817
alpha, see α
alpha decay, 663

data, 690
definition, 663
Gamow/Gurney and Condon theory, 691
overview of data, 656
Q-value, 813
quantum mechanical tunneling, 688

alpha particle, 688
ammonia molecule, 151
amplitude, 1507

quantum, 52
angle, 1507
angular frequency, 392
angular momentum, 92

addition, 590
Clebsch-Gordan coefficients, 590

advanced treatment, 579

combination
intro, 336

component, 93
eigenfunctions, 94
eigenvalues, 95

conservation in decays, 336
definition, 93
fundamental commutation relations
as an axiom, 580
intro, 127

ladder operators, 581
ladders, 583
normalization factors, 586
nuclei
data, 755

operator
Cartesian, 93

possible values, 584
spin, 155
square angular momentum, 96

eigenfunctions, 96
eigenvalues, 98

symmetry and conservation, 327
uncertainty, 99

anions, 265
anomalous magnetic moment, 634

nucleons
pion explanation, 682

anti-bonding, 493
antibonding state

intro, 154
anticommutator, 919
antilinear operator, 951
antiparticles

move backward in time, 908
antisymmetrization requirement, 166

graphical depiction, 525
indistinguishable particles, 525
number of terms, 173
using groupings, 169
using occupation numbers, 913
using Slater determinants, 170

antiunitary operator, 951
astronomy

spectral analysis, 299
asymptotic freedom

quarks, 359
atomic mass

conversion to nuclear mass, 673
versus nuclear mass, 814

atomic mass unit, 673
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atomic matrix element, 376
atomic number, 178, 656
atoms

eigenfunctions, 178
eigenvalues, 178
ground state, 181
Hamiltonian, 178

Auger effect
Meisner, 1481

Auger electrons, 853
Avalanche diode, 296
average

versus expectation value, 115
Avogadro’s number, 1517
axial vector, 969
azimuthal quantum number, 98

B, 1508
B, 1508
b, 1508
Balmer transitions, 107
band gap

and Bragg reflection, 1452
intro, 258

band structure
crossing bands, 492
detailed germanium structure, 277
nearly-free electrons, 501
widely spaced atoms, 478

band theory
electrons per primitive cell, 261
intro, 256

barn, 774
baryon, 156
baryons, 356
basis, 1508

crystal
intro, 279

diamond, 494
lithium (BCC), 477
NaCl (FCC), 474
spin states, 164
vectors or functions, 44
zinc blende (ZnS), 279

battery, 247
BCC

lithium, 477
becquerel, 671
Bell’s theorem, 411

cheat, 415
benzene molecular ring, 150
Berry’s phase, 942

beryllium-11
nuclear spin, 730

Bessel functions
spherical, 879

beta, see β
beta decay, 801

beta-plus decay
definition, 663

double
explanation, 812

electron capture, 662
electron emission, 662
energetics
data, 803

energy release data, 803
Fermi theory, 1191
forbidden decays, 816
intro, 662
inverse beta decay, 662
K or L capture, 662
lone neutron, 651
momentum conservation, 1208
nuclei that do, 662
overview of data, 656
positron emission, 662
Q-value, 813
superallowed decays, 825
von Weizsaecker predictions, 810

beta vibration
nuclei, 745

Bethe-von Weizsäcker formula, 687
Big Bang, 963
binding energy

definition, 136
hydrogen molecular ion, 136
hydrogen molecule, 149
lithium hydride, 153

Biot-Savart law, 629
derivation, 1397

blackbody radiation, 569
intro, 225

blackbody spectrum, 226
extended derivation, 569

Bloch function
nearly-free electrons, 501
one-dimensional lattice, 483
three-dimensional lattice, 491

Bloch wave
explanation, 396
intro, 268

Bloch’s theorem, 483
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body-centered cubic, see BCC
Bohm

EPR experiment, 411
Bohr energies, 106

relativistic corrections, 1138
Bohr magneton, 633
Bohr radius, 110
Boltzmann constant, 1519
Boltzmann factor, 533
bond

covalent, 193
hydrogen, 194
ionic, 199
pi, 194
polar, 194
sigma, 193
Van der Waals, 469

bond length
definition, 135
hydrogen molecular ion, 137
hydrogen molecule, 149

Born
approximation, 1107

Born series, 1108
Born statistical interpretation, 51
Born-Oppenheimer approximation

and adiabatic theorem, 323
basic idea, 441
derivation, 439
diagonal correction, 1342
hydrogen molecular ion, 129
hydrogen molecule, 142
include nuclear motion, 443
spin degeneracy, 1337
vibronic coupling terms, 1340

Borromean nucleus, 730
Bose-Einstein condensation

derivation, 565
intro, 214
rough explanation, 218
superfluidity, 1469

Bose-Einstein distribution
blackbody radiation, 569
intro, 225

canonical probability, 532
for given energy, 531
identify chemical potential, 562
intro, 223

bosons, 156
ground state, 211
symmetrization requirement, 166

bound states
hydrogen
energies, 106

boundary conditions
acceptable singularity, 1444
hydrogen atom, 1246

across delta function potential, 1089
at infinity
harmonic oscillator, 1236
hydrogen atom, 1245

impenetrable wall, 62
radiation, 1084
accelerating potential, 1085
three-dimensional, 1100

unbounded potential, 1087
Bq, 671
bra, 38, 1495, 1522
Bragg diffraction

electrons, 518
Bragg planes

Brillouin fragment boundaries, 492
energy singularities, 507
one-dimensional (Bragg points), 485
X-ray diffraction, 518

Bragg reflection
and band gaps, 1452

Bragg’s law, 512
Breit-Wigner distribution, 371
Brillouin zone

first
FCC crystal, 277

intro, 273
one-dimensional, 484
three-dimensional, 491

broadband radiation
intro, 299

built-in potential, 290

C, 1508
◦C, 1508
c, 1508
canonical commutation relation, 125
canonical Hartree-Fock equations, 458
canonical momentum

canonical quantization, 926
intro, 904
special relativity, 27
with a magnetic field, 606

canonical probability distribution, 532
canonical quantization, 926

canonical momentum, 926
carbon nanotubes
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electrical properties
intro, 264

intro, 197
Carnot cycle, 543
Cartesian tensors, 874
Casimir force, 1041
cat, Schrödinger’s, 410
cations, 265
Cauchy-Schwartz inequality, 1509
causality

relativity, 15
special relativity, 16

causality problem, 931
centrifugal stretching, 742
chain reaction, 751
charge

electrostatics, 616
charge annihilation operator, 793
charge conjugation

intro, 331
Wu experiment, 828

charge creation operator, 792
charge independence

nuclear force, 646
charge states, 790
charge symmetry

example, 714
nuclear force, 647

charge transfer insulators, 262
chemical bonds, 193

covalent pi bonds, 194
covalent sigma bonds, 193
hybridization, 196
ionic bonds, 199
polar covalent bonds, 194
promotion, 196
spn hybridization, 196

chemical equilibrium
constant pressure, 561
constant volume, 561

chemical potential, 559
and diffusion, 246
intro, 243

and distributions, 562
line up
Peltier cooler, 306

microscopic, 562
chi, see χ
Ci, 671
circular polarization

from second quantization, 1042

intro, 344
photon wave function, 977

classical, 1509
Clausius-Clapeyron equation, 560
Clebsch-Gordan coefficients, 590

and Wigner 3j symbols, 1456
computing using recursion, 1378
explicit expression, 1378

coefficient of performance, 545
coefficients of eigenfunctions

evaluating, 91
give probabilities, 59
time variation, 318

collapse of the wave function, 57
collision-dominated regime, 362
collisionless regime, 362
collisions

dual nature, 364
color force, 647

intro, 356
commutation relation

canonical, 125
commutator, 122

definition, 124
commutator eigenvalue problems, 582
commuting operators, 122

common eigenfunctions, 122
comparative half-life, 821
complete set, 43
completeness relation, 47
complex conjugate, 32
complex numbers, 31
component waves, 389
components of a vector, 34
conduction band

intro, 258
conductivity

effect of light, 301
electrical, 255
ionic, 265

configuration mixing, 722
confinement, 234

quarks, 358
single particle, 74

conjugate momentum, see canonical momen-
tum

conjugate nuclei, 793
connection formulae, 1096, 1097
conservation laws

and symmetries, 327
conserved vector current hypothesis, 1202
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contact potential, 247
continuity equation

incompressible flow, 1178
contravariant, 20
conventional cell, 489
conversion electron, 850
Copenhagen Interpretation, 57
correlation energy, 465
cos, 1509
Coulomb barrier, 692
Coulomb condition

unconventional derivation, 1027
Coulomb gage

instead of Lorenz gage, 1026
Coulomb gauge, 973

classical electromagnetics, 1125
Coulomb integrals, 456
Coulomb potential, 100

Fermi derivation, 1024
Koulomb potential
field theory derivation, 981

Coulomb potential energy
derivation, 1299

coupling constant, 1195
covalent bond

hydrogen molecular ion, 129
covalent solids, 492
covariant, 21
creationists, 1475
cross product, 1536
crystal

basis
diamond, 494
NaCl (FCC), 474

ionic conductivity, 265
lattice, see lattice
lithium (BCC), 477
one-dimensional
primitive translation vector, 483

transparency, 300
typical semiconductors, 277

crystal momentum, 269, 272
conservation, 273
definition, 396
light-emitting diodes, 303

crystals
translation operator, 396

curie, 671
curl, 1497, 1509
cylindrical coordinates, 1498

D, 1509

~D, 1510
D, 1510
D, 1510
d, 1510
~d, 1510
d, 1510
D’Alembertian, 907, 1498
Dalton, 673
Darwin term, 1142
d block

periodic table, 191
de Broglie relation, 249

derivation, 906
Debye model, 571
Debye temperature, 572, 573
decay constant, see decay rate, 671
decay rate, 671

not a probability, 361
physical mechanism, 362
specific, 360

deformed nuclei, 738
degeneracy, 88
degeneracy pressure, 232
degenerate semiconductor, 287
delayed neutrons, 752
Delta, see ∆
delta function, 383

three-dimensional, 383
Delta particles

intro, 1175
delta, see δ
density

mass, 537
molar, 538
particle, 537

density of modes, 210
density of states, 208

confined, 234
periodic box, 251

depletion layer, 291
derivative, 1510
determinant, 1510
deuterium, 652
deuteron

intro, 652
OPEP potential, 1167

diamagnetic contribution, 635
diamond

band gap, 492
crystal structure, 277
intro, 197
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differential cross-section, 1102
dimensional analysis, 891
dineutron

isospin, 789
not bound, 653
OPEP potential, 1167

diode
semiconductor, 290

diode laser, 303
dipole

classical electromagnetics, 621
dipole moment

electric
nuclei, 771

magnetic
classical, 633
nuclei, 771

dipole strength
molecules, 471

dipole transition, 833
electric
intro, 340

magnetic
intro, 341

dipole transitions
magnetic
Hamiltonian, 1304

diproton
isospin, 789
not bound, 653
OPEP potential, 1167

Dirac delta function, 383
three-dimensional, 986

Dirac equation, 602
as a system, 1186
conserves parity, 1188
hydrogen atom
low speed approximation, 1410

nonrelativistic limit
no linear algebra, 1186

ultrarelativistic, 1187
Dirac gamma matrices, 1122
Dirac notation, 46
direct gap semiconductor, 275
discrete spectrum

versus broadband
intro, 299

disintegration constant, see decay rate, 671
disintegration rate, 671
dispersion relation, 392
distinguishable particles

intro, 216, 222
div, 1497
div(ergence), 1512
divergence, 1497
divergence theorem, 1515
donors

semiconductors, 285
doping

semiconductors, 282
Doppler shift

of light in vacuum, 10
dose equivalent, 672
dot product, 36
double layer of charges

contact surfaces, 246
doublet states, 165
dpm, 671
Dulong and Petit law, 573
dynamic phase, 942

E, 1512
E , 1512
e, 1512
e, 1513
effective dose, 672
effective mass

from equation of motion, 398
one-dimensional example, 271

Ehrenfest theorem, 326
eiax, 1513
eigenfunction, 41
eigenfunctions

angular momentum component, 94
atoms, 178
harmonic oscillator, 85
hydrogen atom, 109
impenetrable spherical shell, 1402
linear momentum, 385
position, 382
square angular momentum, 96

eigenvalue, 41
eigenvalue problems

commutator type, 582
ladder operators, 582

eigenvalues
angular momentum component, 95
atoms, 178
harmonic oscillator, 83
hydrogen atom, 106
impenetrable spherical shell, 1402
linear momentum, 385
position, 382



1546 INDEX

square angular momentum, 98
eigenvector, 41, 1513
Einstein

dice, 59
summation convention, 19
swiped special relativity, 3

Einstein A and B coefficients, 380
Einstein’s derivation, 1314

Einstein A coefficients
quantum derivation, 1044

Einstein B coefficients
quantum derivation, 1310

Einstein Podolski Rosen, 412
Einstein summation convention

moral justification, 1010
electric charge

electron and proton, 101
electric dipole approximation

origin of the name, 377
electric dipole operator

intro, 377
electric dipole transition

intro, 340
selection rules, 347
relativistic, 348

electric moment
nuclei, 771

electric multipole
photon states, 980

electric potential
classical derivation, 608, 1389
quantum derivation, 605
relativistic derivation, 27

electrical conduction
intro, 252

electrochemical potential
definition, 240

electromagnetic field
Hamiltonian, 605
Maxwell’s equations, 607
quantization, 1032

electromagnetic potentials
gauge transformation, 28

electromagnetics
“derivation” from scratch, 981

electron
in magnetic field, 632

electron affinity, 472
Hartree-Fock, 462

electron capture
definition, 662

electron emission, 662
electron split experiment, 52
electronegativity, 186, 472
electrons

lack of intelligence, 233, 296
emission rate

spontaneous, see decay rate
emissivity, 227
energy conservation, 319
energy spectrum

harmonic oscillator, 83
hydrogen atom, 106

energy-time uncertainty equality
derivation, 327
vindicated, 371

energy-time uncertainty relation, 326
decay of a state, 366
Mandelshtam-Tamm version, 946

enthalpy, 539
enthalpy of vaporization, 561
entropy, 548

descriptive, 541
EPR, 412
epsilon, see ǫ,ε
equipartition theorem, 573
equivalent dose, 672
eta, see η
Euler formula, 33
eV, 1513
even-even nuclei

enhanced stability, 661
Everett, III, 422
every possible combination, 140, 157
exchange force mechanism

and two-state systems, 355
nuclear forces, 1162

exchange integrals, 456
exchange operator, 149
exchange terms

twilight terms, 153
exchanged

Las Vegas interpretation, 205
excited determinants, 467
exciton

intro, 300
exclusion principle, 172
exclusion-principle repulsion, 192
expectation value, 114

definition, 117
simplified expression, 118
versus average, 115
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experimental evidence, 1200
exponential function, 1513
exponential of an operator, 901
exposure, 671
extended zone scheme, 498

intro, 273
extensive variable, 537
extreme independent particle model, 719
extreme single-particle model, 719

F , 1513
F , 1514
f , 1514
face centered cubic, see FCC
factorial, 1494
Faraday cage

proposal for nuclei, 1482
fast ion conductors, 266
f block

periodic table, 191
F-center

intro, 301
fermi, 686
Fermi brim

definition, 240
Fermi decay, 817
Fermi energy

definition, 240
electrons in a box, 230

Fermi factor, 241
definition, 241

Fermi function
intro, 1197
value, 1210

Fermi integral
intro, 821
value, 1211

Fermi level
definition, 240
line up
Peltier cooler, 306

Fermi surface
electrons in a box, 230
periodic boundary conditions, 249
periodic zone scheme, 501
reduced zone scheme, 500

Fermi temperature, 567
Fermi theory

comparison with data, 821
Fermi theory of beta decay, 1191
Fermi’s golden rule, 369, 1203
Fermi-Dirac distribution

canonical probability, 532
for given energy, 531
identify chemical potential, 562
intro, 237

Fermi-Kurie plot, 827
fermions, 156

antisymmetrization requirement, 166
ground state, 228
intrinsic parity, 1188

Feynman diagrams, 1110
Feynman slash notation, 1122
field emission, 245
field operators, 931
field strength tensor, 1021
filled shells, 598
filtering property, 383
Fine structure, 1139
fine structure

hydrogen atom, 1138
fine structure constant, 1138

in decay rates, 1065
first Brillouin zone

intro, 273
first law of thermodynamics, 521, 540
first-forbidden decays

beta decay, 819
fission

energetics, 674
spontaneous
definition, 663
overview of data, 656

flopping frequency, 642
Floquet theory, 483
fluorine-19

nuclear spin, 729
flux, 894
Fock operator, 459
Fock space kets

beta decay, 1193
Fock state, 914
forbidden decays

beta decay, 816
forbidden transition

intro, 340
forbidden transitions

alpha decay, 697
force

in quantum mechanics, 326
four-vectors, 17
Fourier analysis, 484
Fourier coefficients, 1228
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Fourier integral, 1229
Fourier series, 1228

one-dimensional, 1079
three-dimensional, 1082

Fourier transform, 393, 1229
one-dimensional, 1081
three-dimensional, 1083

Fourier’s law
heat conduction, 895

Fraunhofer lines, 299
free path, 254
free-electron gas

intro, 228
model for crystal structure, 495
periodic box
intro, 248

specific heat, 1377
Frenkel defect, 265
ft-value, 821
function, 34, 35, 1514
functional, 865, 1514
fundamental commutation relations

as an axiom, 580
orbital angular momentum, 127
spin
introduction, 160

fundamental solution
Poisson equation, 989

fusion
energetics, 674

G, 1514
g, 1515
gage property, 1014
Galilean transformation, 12
gallium arsenide

crystal structure, 277
Galvani potential, 246
Gamma, see Γ
gamma decay

definition, 663
gamma function, 1494
gamma matrices

Dirac equation, 1122
gamma rays

intro, 829
gamma vibration

nuclei, 745
gamma, see γ
Gamow theory, 691
Gamow-Teller decay, 817
gauge theories

basic ideas, 960
gauge transformation

electromagnetic potentials, 28
Gauss’ theorem, 1515
generalized coordinates, 858

intro, 903
generalized momentum, see canonical
generator of rotations, 949
geometric phase, 942
germanium

crystal structure, 277
detailed band structure, 277

g-factor, 634
Gibbs free energy, 556

microscopic, 562
glueballs, 359
gluons, 358
grad, 1497
grad(ient), 1515
gradient, 1497
grain, 478
grain boundaries, 478
graphene

electrical properties
intro, 264

graphite
electrical properties
intro, 264

intro, 197
gravitons, 359
gray, 671
Green’s function

Laplacian, 627
Poisson equation, 989

ground state
absolute zero temperature, 212
atoms, 181
bosons, 211
fermions, 228
harmonic oscillator, 85
hydrogen atom, 107, 109
hydrogen molecular ion, 136
hydrogen molecule, 149, 164, 167
nonzero energy, 84

group
intro, 22

group property
coordinate system rotations, 1384
Lorentz transformation, 22

group theory, 333
group velocity, 392
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intro, 391
Gupta-Bleuler condition, 1020
gyromagnetic ratio, 633

H, 1515
h, 1515
~, 1515
half-life, 361
halo nucleus, 730
halogens, 188
Hamiltonian, 56

atoms, 178
classical, 861
electromagnetic field, 605
gives time variation, 317
harmonic oscillator, 79
partial, 81

hydrogen atom, 100
hydrogen molecular ion, 129
hydrogen molecule, 142
in matrix form, 176
numbering of eigenfunctions, 56
one-dimensional free space, 387
relativistic, nonquantum, 28

Hamiltonian dynamics
relation to Heisenberg picture, 903

Hamiltonian perturbation coefficients, 1126
Hankel functions

spherical, 880
harmonic functions, 1243
harmonic oscillator, 78

classical frequency, 79
eigenfunctions, 85
eigenvalues, 83
energy spectrum, 83
ground state, 85
Hamiltonian, 79
partial Hamiltonian, 81
particle motion, 401

harmonic polynomials, 98
Hartree product, 169, 447

intro, 205
Hartree-Fock, 445

Coulomb integrals, 456
exchange integrals, 456
restricted
closed shell, 450
open shell, 451

spin-adapted configuration, 453
unrestricted, 450

Hartree-Fock equations
general, 1351

heat, 213, 540
heat capacity

valence electrons, 240
heat conduction

electrons, 265
heat flux density

including Peltier effect, 895
omit density, 895

heavy water, 657
Heisenberg

uncertainty principle, 53
uncertainty relationship, 125

helicity
definition, 1191
photon, 977

helion, 658
helium

Bose-Einstein condensation, 216
helium ionization energy, 1128
Hellmann-Feynman theorem, 1128
Helmholtz decomposition, 1026
Helmholtz equation, 1275

Green’s function solution, 1276
Helmholtz free energy, 556

microscopic, 562
Hermitian conjugate, 46
Hermitian conjugates

creation and annihilation operators, 918
Hermitian matrices, 1523
Hermitian operators, 43
hexacontatetrapole transition, 833
hexadecapole transition, 833
hidden variables, 59, 412
hidden versus nonexisting, 100
hieroglyph, 511, 1147
hole

nuclear shell model, 715
holes

in shells, 598
light, heavy, split-off, 399
semiconductors
holes per state, 284
holes per unit volume, 284
intro, 263

Hund’s rules, 511
hybridization, 196
hydrogen

metallic, 261
nonmetal, 260

hydrogen atom, 100
eigenfunctions, 109
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eigenvalues, 106
energy spectrum, 106
ground state, 107, 109
Hamiltonian, 100
relativistic corrections, 1138

hydrogen bonds, 194, 471
hydrogen molecular ion, 129

bond length, 137
experimental binding energy, 137
ground state, 136
Hamiltonian, 129
shared states, 132

hydrogen molecule, 142
binding energy, 149
bond length, 149
ground state, 149, 164, 167
Hamiltonian, 142

hyperfine splitting, 1138
hypersphere, 1515

I, 1517
ℑ, 1517
I, 1517
i, 35, 1517
ı̂, 1517
i, 31, 1517

reciprocal, 32
ideal gas

quantum derivation, 568
thermodynamic properties, 558

ideal gas law, 568
ideal magnetic dipole, 623
ideality factor, 294
identical particles, 166
identity matrix, 1352
identity operator, 47
iff, 38, 1517
imaginary part, 32
impact parameter, 1103
impurities

ionic conductivity, 265
optical effects, 301

incoherent radiation
absorption and emission, 379

incompressibility
intro, 233

independent particle model, 719
index notation, 1517, 1522

intro, 18
indirect gap semiconductor, 275
indistinguishable

definition, 912

indistinguishable particles, 525
(anti) symmetrization requirement, 525
intro, 216, 222

inner product
multiple variables, 47

inner product of functions, 38
inner product of vectors, 37
insulated system, 551
insulators

examples, 259
integer, 1517
integral Schrödinger equation, 904
intelligent designers, 1475
intensive variable, 537
intermediate vector bosons, 356
internal conversion, 850

definition, 664
intro, 830

internal conversion coefficient, 852
internal energy, 538
internal pair production

intro, 830
internal transition

definition, 664
interpretation

interpretations, 58
many worlds, 422
orthodox, 57
relative state, 422
statistical, 57

interstitials
ionic conductivity, 265

interval
special relativity, see space-time interval

intrinsic semiconductor, 282
intrinsic state

nuclei, 739
inverse, 1517
inverse beta decay

definition, 662
inversion

parity operator, 330
ionic bonds, 199
ionic conductivity, 265
ionic molecules, 472
ionic solids, 472
ionization, 107
ionization energy, 472

Hartree-Fock, 461
helium, 1128
hydrogen atom, 107
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irrotational, 1518
gradient of a scalar, 1533
vector potential, 1025

irrotational flow, 1179
islands of isomerism, 836
iso, 1518
isobar

nuclei, 658
isobaric analog states, 790
isobaric multiplets, 790
isobaric spin, 787
isolated, 1518
isolated system, 551
isomer, 835
isomeric transition

definition, 664
isospin, 787

beta decay, 1194
isothermal atmosphere, 242
isotones, 657
isotope, 657
isotopic spin, 787
i-spin, 787

J , 1518
j, 1518
̂, 1518

K, 1518
K, 1519
K, 1519
k, 1519
k̂, 1519
kB, 1519
kappa, see κ
K-capture

definition, 662
Kelvin coefficient, 314
Kelvin heat, 313
Kelvin relationships

thermoelectrics, 897
intro, 313

ket, 38, 1495, 1522
ket notation

spherical harmonics, 97
spin states, 156

kinetic energy
nuclear decay, 813
operator, 55

kinetic energy operator
in spherical coordinates, 101

Klein-Gordon equation, 603, 906

kmol, 1519
Koopman’s theorem, 461
Kramers relation, 1421
Kronecker delta, 1352

L, 1519
L, 1519
L, 1519
l, 1519
ℓ, 1520
£, 1520
ladder operators

angular momentum, 581
Lagrangian

for classical fields, 991
relativistic, 27
simplest case, 857

Lagrangian density, 862
example, 995

Lagrangian dynamics
for classical fields, 991

Lagrangian mechanics, 857
Lagrangian multipliers

derivations, 1334
for variational statements, 437

Lamb shift, 1138, 1147
Lambda, see Λ
lambda, see λ
Landé g-factor, 1147
lanthanides, 191
lanthanoids, 191
Laplace equation, 1390

solution in spherical coordinates, 1179
solutions in spherical coordinates, 1243

Laplacian, 1497
Larmor frequency

definition, 639
Larmor precession, 641
laser

operating principle, 373
laser diode, 303
latent heat of vaporization, 561
lattice

diamond, 493
FCC, 475
primitive vectors, 278

intro, 475
lithium (BCC), 477
NaCl, 475
one-dimensional, 478
primitive translation vector, 483

primitive translation vectors
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diamond, 494
reciprocal, see reciprocal lattice
translation operator, 396
unit cell, 475
zinc blende (FCC), 278

law of mass action
semiconductors, 288

L-capture
definition, 662

Lebesgue integration, 1083
LED, 303
length of a vector, 37
Lennard-Jones potential, 469

Casimir-Polder, 470
lepton number

conservation, 331, 801
lifetime, 361, 667
light wave

plane
terminology, 374

light waves
classical, 614

light-cone
special relativity, 16

light-emitting diode, 303
light-emitting diodes

crystal momentum, 303
lim, 1520
linear combination, 1520
linear dependence, 1520
linear independence, 1520
linear momentum

classical, 53
eigenfunctions, 385
eigenvalues, 385
operator, 55
symmetry and conservation, 327

linear polarization
from Maxwell’s equations, 614
from second quantization, 1041
intro, 344
photon wave function, 977

liquid drop model
nuclear binding energy, 687
nuclear radius, 686
nuclei
intro, 686

locality
quantum field theories, 1003

localization
absence of, 389

London forces, 469
Casimir-Polder, 470

Lorentz factor, 10
Lorentz force

derivation, 1227
special relativity, 27

Lorentz invariant
field theories, 1008

Lorentz transform
improper, 871
nonorthochronous, 872

Lorentz transformation, 11
derivation, 1224
group property, 22
group property derivation, 1225
index notation, 18
parity transformation, 871
time-reversal, 872

Lorentz-Fitzgerald contraction, 9
Lorentz[ian] profile, 371
Lorenz condition, 972

classical electromagnetics, 1125
not Lorentz, 1017
unconventional derivation, 1017

Lorenz gauge, 972
classical electromagnetics, 1125

lowering indices, 873
luminosity

particle beam, 1102
Lyman transitions, 107

M , 1521
M, 1521
M, 1521
m, 1521
me, 1521
mn, 1521
mp, 1521
Madelung constant, 474
magic numbers

40?, 711
and beta decay, 809
intro, 666
shell model, 701

magnetic dipole
idealized, 623

magnetic dipole moment
classical, 633

magnetic dipole transition
intro, 341
selection rules, 349
relativistic, 349
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magnetic dipole transitions
Hamiltonian, 1304

magnetic moment
nuclei, 771

magnetic multipole
photon states, 980

magnetic quantum number, 94
magnetic spin anomaly, 634
magnetic vector potential

classical derivation, 1395
in the Dirac equation, 1399
quantum derivation, 605
relativistic derivation, 27

magnitude, 32
main group

periodic table, 188
majority carriers, 287
maser

ammonia, 154
operating principle, 373

mass number, 657
mass-energy relation

derivation, 24
Dirac equation, 603
fine-structure, 1140
for nuclei, 672
Lagrangian derivation, 28
need for quantum field theory, 908

matching regions, 1097
mathematicians, 20, 1353
matrix, 40, 1522
matrix element, 363
maximum principle

Laplace equation, 1390
Maxwell relations, 557
Maxwell’s equations, 607

“derivation” from scratch, 981
Maxwell-Boltzmann distribution

canonical probability, 532
for given energy, 531
intro, 241

mean lifetime, 667
mean value property

Laplace equation, 1390
measurable values, 57
measurement, 58
Meisner

credit, 1481
mesic charge, 1170
meson, 156
mesons, 356

metalloids, 188
compared to semimetals, 264

metals, 476
examples, 259

method of stationary phase, 1326
metric prefixes, 1524
Minkowski metric, 871
minority carriers, 287
mirror nuclei, 686, 793

beta decay, 1202
mass difference data, 809

mirror operator, 886
molar mass, 538

versus molecular mass etc., 1524
mole, 538
molecular mass, 538

versus molar mass etc., 1524
molecular solids, 469
molecules

ionic, 472
moment

electromagnetic
nuclei, 771

momentum conservation
beta decay, 1208

momentum space wave function, 385
integral transform
one-dimensional, 1081
three-dimensional, 1083

Moszkowski estimate, 1068
Moszkowski unit, 1068

derivation, 1077
Mott insulators, 262
moving mass, 4

derivation, 23
Lagrangian derivation, 26

mu, see µ
multipole expansion, 626
multipole transition

intro, 340

N , 1525
N, 1525
n, 1525
n, 1526
nabla, 1497
nanoionics, 266
natural, 1526
natural width, 335
nearly-free electron model, 502
negaton, 663
negatron, 663
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neon-19
nuclear spin, 729

Neumann functions
spherical, 879

neutrino
needed in beta decay, 814

neutrinos
do not conserve parity, 1188
helicity, 1191
no intrinsic parity, 1188
relativistic theory, 1186
states like screws, 1190

neutron
intro, 651
mixed beta decay, 817

neutron emission
definition, 663

neutron excess, 659
neutron stars, 233, 663
Newton’s second law

in quantum mechanics, 326
Newtonian analogy, 55
Newtonian mechanics, 50

in quantum mechanics, 324
nitrogen-11

nuclear spin, 730
NMR

spin one-half, 777
noble gas, 182
noble gases, 188
non canonical Hartree-Fock equations, 1351
nonequilibrium thermodynamics, 893
nonexisting versus hidden, 100
nonholonomic, 942
Nordheim rules, 760
norm of a function, 38
normal operators

are abnormal, 1526
normalized, 38
normalized wave functions, 52
n-p-n transistor, 295
n-type semiconductor, 285
nu, see ν
nuclear decay

overview of data, 656
nuclear force, 646
nuclear forces

pion exchange mechanism, 1162
nuclear magnetic resonance, 637
nuclear magneton, 635, 775
nuclear parity

intro, 649
nuclear radius, 686
nuclear reactions

antiparticles, 801, 803
nuclear spin

intro, 648
nuclei

beta vibration, 745
do not contain electrons, 1192
gamma vibration, 745
internal conversion, 850
intro, 656
liquid drop model
intro, 686

pairing energy
evidence, 676

parity
data, 764
intro, 707

perturbed shell model, 717
rotational bands, 738
spin one-half, 743
spin zero, 745

shell model, 701
nonspherical nuclei, 742
Rainwater-type justification, 706

shells
evidence, 676

spin
Nordheim rules, 760

stable odd-odd ones, 810
unperturbed shell model, 717
vibrating drop model
derivations, 1177
stability, 732

vibrational states, 734
nucleon number, 657
nucleons, 646

O, 1526
OBEP, 1176
oblate spheroid, 774
observable values, 57
occupation numbers

beta decay, 1193
intro, 211
single-state, 913

octupole transition, 833
octupole vibration

nuclei, 737
odd-odd nuclei

reduced stability, 661
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odd-particle shell model, 718
Omega, see Ω
omega, see ω
one-boson exchange potential, 1176
one-dimensional free space

Hamiltonian, 387
one-particle shell model, 719
one-pion exchange potential, 1166
Onsager reciprocal relations, 897
OPEP, 1166

intro, 684
OPEP potential

introduction, 1166
loose derivation, 1167

operator
exponential of an operator, 901

operators, 40
angular momentum component, 93
Hamiltonian, 56
kinetic energy, 55
in spherical coordinates, 101

linear momentum, 55
position, 55
positive (semi)definite, 1282
potential energy, 56
quantum mechanics, 54
square angular momentum, 96
total energy, 56

opposite, 1526
orbital, 446
orbital angular momentum

relativistic coupling with spin, 1189
orthodox interpretation, 57
orthogonal, 38
orthonormal, 38
orthonormal matrix

in coordinate rotations, 870

P , 1526
P, 1526
P, 1526
P, 1526
p, 1526
p, 1527
parity

alpha decay, 697
combination
intro, 338

conservation in decays, 336
intro, 328
nuclei
data, 764

intro, 707
orbital
derivation, 1401

spherical harmonics
derivation, 1242

symmetry and conservation, 327
violation of conservation, 330

parity operator
spatial inversion, 330

parity transformation, 330
as a Lorentz transformation, 871

parity violation
Wu experiment, 827

Parseval identity
Fourier series
one-dimensional, 1080
three-dimensional, 1083

Fourier transform
one-dimensional, 1082
three-dimensional, 1083

partial wave amplitude, 1106
partial wave analysis, 1103

phase shifts, 1106
particle

tensor, 1200
particle exchange

symmetry, 888
partition function, 533
Paschen transitions, 107
passive view, 948
Pasternack relation, 1421
Pauli exclusion principle, 172, 447

atoms, 183
common phrasing, 184

Pauli repulsion, 192
Pauli spin matrices, 598

generalized, 601
p block

periodic table, 190
Peltier coefficient, 306
Peltier effect, 304
periodic box, 248

a tricky version, 1029
beta decay, 1196

periodic table, 183
full, 188

periodic zone scheme, 501
intro, 276

permanents, 171
permittivity of space, 101
perpendicular bisector, 1527
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perturbation theory
helium ionization energy, 1128
second order, 1127
time dependent, 366
time-independent, 1126
weak lattice potential, 503

perturbed shell model, 715
phase angle, 1527
phase equilibrium, 560
phase shift

partial waves, 1106
phase speed, 389
phenomenological nuclear potentials, 685
Phi, see Φ
phi, see φ,ϕ
phonons, 573

nuclei, 734
photoconductivity

intro, 301
photon, 107, 1527

energy, 108
spin value, 156
wave function, 971

photons
density of modes, 210

photovoltaic cell, 302
physicists, 15, 17–19, 58, 59, 94, 98, 110, 190,

191, 229, 232, 240, 247, 268, 276,
280, 287, 310, 322, 327, 330, 331,
338, 340, 342, 347, 356, 357, 360,
371, 377, 380, 444, 465, 468, 483,
492, 511, 615, 616, 633, 634, 648,
649, 656–658, 662–664, 667, 671,
673, 691, 692, 704, 719, 774, 797,
828, 830, 835, 847, 852, 853, 874,
875, 896, 951, 960, 1009, 1010, 1014,
1020, 1033, 1077, 1078, 1102, 1103,
1106, 1160, 1194, 1200, 1202, 1456,
1460, 1464, 1466, 1481, 1524, 1527

hypothetical shortcomings, 16, 982
more or less redeemed, 359, 363, 667, 830,

1242, 1248
more or less trusted, 1167
redeemed, 258, 275, 1139, 1206
unverified shortcomings, 1107

pi, see π
pi bonds, 194
pion exchange

multiple, 1175
pions

intro, 681

Plancherel theorem, 1082
Planck’s blackbody spectrum, 226
Planck’s constant, 55
Planck-Einstein relation, 108

derivation, 906
p-n junction, 289
p-n-p transistor, 295
point charge

static, 616
pointer states, 112
Poisson bracket, 903
Poisson equation, 627

fundamental solution, 989
Green’s function solution
derivation, 1214

screened
Green’s function solution, 1217

variational derivation, 988
polar bonds, 194
polar coordinates, 1498
polar vector, 969
polariton

Bose-Einstein condensation, 217
polarization, see linear polarization, circular

polarization
poly-crystalline, 478
population inversion, 373
position

eigenfunctions, 382
eigenvalues, 382
operator, 55

positive (semi)definite operators, 1282
positon, 663
positron emission, 662
possible values, 57
potassium-40

decay modes, 810
potential, 1527

existence, 1389
potential energy

operator, 56
potential energy surfaces, 445
Poynting vector, 615
prefixes

YZEPTGMkmunpfazy, 1524
pressure, 539
primitive cell, 489

in band theory, 261
versus unit cell, 279

primitive translation vector
one-dimensional, 483
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primitive translation vectors
FCC
intro, 278

lithium (BCC), 488
reciprocal lattice, 491

primitive vectors, see above
principal quantum number, 104
principle of relativity, 6
probabilities

evaluating, 91
from coefficients, 59

probability current, 1111
probability density, 144
probability to find the particle, 51
projection operator, 47
prolate spheroid, 774
promotion, 196

nuclei, 730
prompt neutrons, 751
proper distance, 14

as dot product, 17
proper time, 14

causality, 16
proton

intro, 650
proton emission

definition, 663
pseudoscalar particle, 1176
pseudovector, 969
pseudovector particle, 1176
Psi, see Ψ
psi, see ψ
p-type semiconductor, 285
pure substance, 519
px, 1528
Pythagorean theorem, 14

Q, 1528
q, 1528
quadrupole moment

electric
intro, 653
nuclei, 771

intrinsic
nuclei, 780

spin one-half, 777
quadrupole transition, 833

intro, 340
quadrupole transitions

electric
Hamiltonian, 1305
selection rules, 349

quadrupole vibration
nuclei, 737

quality factor, 672
quantum chromodynamics, 647

intro, 356
quantum confinement, 234

single particle, 74
quantum dot, 76

density of states, 236
quantum electrodynamics

electron g factor, 634
Feynman’s book, 910
intro, 355

quantum field
definition, 936

quantum field theory, 908
Coulomb potential derivation, 1024
Koulomb potential derivation, 981

quantum interference, 52
quantum mechanics

acceleration, 326
force, 326
Newton’s second law, 326
Newtonian mechanics, 324
velocity, 325

quantum well, 76
density of states, 235

quantum wire, 76
density of states, 236

quark
spin, 156

quarks, 356, 647
Dirac equation, 603
proton and neutron, 634

Q-value
alpha and beta decay, 813
nuclei, 692

R, 1528
R, 1529
ℜ, 1529
r, 1529
~r, 1529
Rabi flopping frequency, 642
rad, 671
radiation

emission and absorption, 372
quantization, 1032

radiation probability, see decay rate
radiation weighting factor, 672
radioactivity

intro, 656
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radium emanation, 664
radium X, 664
raising indices, 873
Ramsauer effect, 329
random number generator, 58
rare earths, 191
RaX, 664
Rayleigh formula

partial waves, 881
spherical Bessel functions, 879

RE, 664
real part, 32
reciprocal, 1529
reciprocal lattice

lithium, 491
NaCl, 491
one-dimensional, 484
primitive vectors, 491
three-dimensional, 491

recombination
semiconductors, 288

recombination centers, 291
reduced mass

hydrogen atom electron, 101
reduced zone scheme, 498

intro, 273
reflection coefficient, 405, 406, 1113
relative state formulation, 425
relative state interpretation, 422
relativistic corrections

hydrogen atom, 1138
Relativistic effects

Dirac equation, 602
relativistic mass, see moving mass
relativistic quantum mechanics

beta decay, 1193
relativity, see special relativity, 1529
rem, 672
residual strong force, 647
resistivity

electrical, 254, 255
resonance factor, 642
rest mass, 4
rest mass energy, 5

derivation, 24
restricted Hartree-Fock, 450
reversibility, 543
RHF, 450
rho, see ρ
roentgen, 671
röntgen, 671

rot, 1497, 1530
rotational band

nuclei, 741
rotational bands

seenuclei, 738

S, 1530
S, 1530
S, 1530
S, 1531
s, 1531
s, 1531
saturated, 560
s block

periodic table, 190
scalar, 1531
scalar particle, 1176
scattering, 402

one-dimensional coefficients, 405
three-dimensional, 1100

scattering amplitude, 1101
Schmidt lines, 778
Schottky defect, 266
Schottky effect, 245
Schrödinger equation, 317

failure?, 420
integral version, 904

Schrödinger’s cat, 410
second law of thermodynamics, 541
second quantization, 926, 1033
Seebeck coefficient, 310
Seebeck effect, 309
seething cauldron, 1041
selection rules

derivation, 1302
electric dipole transitions, 347

relativistic, 348
electric quadrupole transitions, 349
intro, 345
magnetic dipole transitions, 349

relativistic, 349
self-adjoint, 1507
self-conjugate nuclei, 793
self-consistent field method, 460
semi-conductors

band gap, 492
semi-empirical mass formula, 687
semiconductor

degenerate, 287
direct gap, 275
intrinsic, 282
intro, 264
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n and p-type, 285
semiconductor laser, 303
semiconductors

compensation, 288
conduction electrons per state, 282
conduction electrons per volume, 284
crystal structure, 277
doping, 282
holes
intro, 263

holes per state, 284
holes per unit volume, 284

semimetal
intro, 264

separation of variables, 80
for atoms, 178
linear momentum, 385
position, 382

shell model
with pairing, 715
with perturbations, 715

shell model of nuclei, 701
shielding approximation, 179
Shockley diode equation, 294
SI prefixes, 1524
sievert, 672
sigma, see σ
sigma bonds, 193
silicon

crystal structure, 277
simple cubic lattice, 497
sin, 1531
singlet color state, 358
singlet state, 164

derivation, 587
skew-Hermitian, 1507
Slater determinants, 170
small perturbation theory, 503
solar cell, 302
solar spectrum, 299
solenoidal, 1531

vector potential, 1026
solid angle, 1101, 1507

infinitesimal
spherical coordinates, 1533

solid electrolytes, 266
solids, 469

covalent, 492
ionic, 472
molecular, 469
spectra

intro, 299
spn hybridization, 196
space charge region, 291
space-like

special relativity, 15
space-time

special relativity, 17
space-time interval

ambiguous definition, 15
causality, 16

spatial inversion
parity operator, 330

special relativity, 3
canonical momentum, 27
causality, 16
four-vectors, 17
dot product, 17

in terms of momentum, 5
index notation, 18
light-cone, 16
Lorentz force, 27
Lorentz transformation, 11
Lorentz-Fitzgerald contraction, 9
mass-energy relation, 4
mechanics
intro, 22
Lagrangian, 25

momentum four-vector, 23
proper distance, 14
as dot product, 17

proper time, 14
rest mass energy, 5
space-like, 15
space-time, 17
space-time interval, 15
superluminal interaction, 15
time-dilation, 9
time-like, 15
velocity transformation, 13

specific activity, 671
specific decay rate, 670
specific heat

constant pressure, 540
constant volume, 540
values, 573

specific volume, 537
molar, 538

spectral analysis
intro, 298

spectral line broadening, 335
spectrum, 1531
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spherical Bessel functions, 879
spherical coordinates, 93, 1531

unit vectors, 1532
volume integral, 1532

spherical Hankel functions, 880
spherical harmonics

derivation, 1377
derivation from the ODE, 1240
derivation using ladders, 1377
generic expression, 1242
intro, 96
Laplace equation derivation, 1244
parity, 1242

spherical Neumann functions, 879
spheroid, 774
spin, 155

fundamental commutation relations
introduction, 160

nuclei
data, 755

value, 156
x- and y-eigenstates, 601

spin down, 156
spin orbital, 446
spin states

ambiguity in sign, 1384
axis rotation, 1383

spin up, 156
spin-adapted configuration, 453
spin-orbit interaction

nucleons, 707
spinor, 158
spontaneous emission

multiple initial or final states, 370
quantum derivation, 1044

spontaneous fission, 751
s state, 110, 111
standard deviation, 114

definition, 116
simplified expression, 118

standard model, 332
Stark effect, 1134
stationary states, 321
statistical interpretation, 57
Stefan-Boltzmann formula, 570
Stefan-Boltzmann law, 227
steradians, 1102
Stern-Gerlach apparatus, 636
stoichiometric coefficient, 561
Stokes’ theorem, 1533

string theory, 936
strong force, 647

intro, 356
superallowed beta decays, 1202
superallowed decay

beta decay, 825
superconductivity, 256

Cooper pairs, 217
superfluidity

Feynman argument, 222
superionic conductors, 266
superluminal interaction

Bell’s theorem, 411
hidden variables, 412
many worlds interpretation, 425
quantum, 52
do not allow communication, 414
produce paradoxes, 414

relativistic paradoxes, 15
surface tension, 732
symmetrization requirement

fermions, see antisymmetrization
graphical depiction, 524
identical bosons, 166
indistinguishable particles, 525
using groupings, 171
using occupation numbers, 913
using permanents, 171

symmetry, 1533

T , 1533
T , 1534
t, 1534
tantalum-180m, 832
tau, see τ
temperature, 520, 1534

definition, 532
Carnot, 548

definition using entropy, 558
intro, 212

tensor particle, 1200
tensor potential

deuteron, 1160
tensors

compared to linear algebra, 870
intro, 18

thermal de Broglie wavelength, 564
thermal efficiency, 546
thermal equilibrium, 520
thermionic emission, 244
thermocouple, 309
thermodynamics
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first law, 540
second law, 541
third law, 553

thermoelectric generator, 310
thermoelectrics

figure of merit, 891
macroscopic equations, 893

thermogenerator, 310
Theta, see Θ
theta, see θ,ϑ
third law of thermodynamics, 553
Thomson coefficient, 314
Thomson effect, 313
Thomson relationships

thermoelectrics, 897
intro, 313

throw the dice, 59
TID, 671
time

directionality, 428
time symmetry

reservations, 963
time variation

Hamiltonian, 317
time-dependent perturbation theory, 366
time-dilation, 9
time-like

special relativity, 15
time-reversal

as a Lorentz transformation, 872
tin

white and grey, 262
tissue weighting factor, 672
T -multiplets, 790
total cross-section, 1103
total energy

operator, 56
total ionizing dose, 671
transistor, 295
transition

multipole
selection rules, 833

multipole names, 833
quadrupole, see quadrupole transition

transition elements, 191
transition metals, 191
transition probability, see decay rate
transition rate

spontaneous, see decay rate
transitions

hydrogen atom, 107

translation operator
crystals, 396

transmission coefficient, 405, 406, 1114
transparent crystals, 300
transpose

matrices, 1523
transpose of a matrix, 1512
transverse gauge

classical electromagnetics, 1125
traveling waves, see linear polarization
triakontadipole transition, 833
triangle inequality, 337
triple alpha process, 674
triple product, 1534
triplet states, 164

derivation, 587
tritium, 658
triton, 658
tunneling, 403

field emission, 245
Stark effect, 1137
WKB approximation, 405
Zener diodes, 297

turning point, 401
turning points

WKB approximation, 1094
twilight terms, 152

exchange terms, 153
Lennard-Jones/London force, 1117
lithium hydride, 153
spontaneous emission, 1049

two state systems
ground state energy, 150
time variation, 354

two-state systems
atom-photon model, 1044

U , 1535
U , 1535
u, 1535
u, 1535
UHF, 450
uncertainty principle

angular momentum, 99
energy, 87, 321
Heisenberg, 53
position and linear momentum, 53

uncertainty relationship
generalized, 124
Heisenberg, 125

unified atomic mass unit, 673
unit cell
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FCC, 475
intro, 475
lithium (BCC), 477
versus primitive cell, 279
zinc blende, 278

unit matrix, 1352, 1523
unit vectors

in spherical coordinates, 1532
unitary

Fourier series, 1080
matrix, 1353
time advance operator, 902

unitary matrix
in coordinate rotations, 870

unitary operator, 951
unitary operators, 1507
universal gas constant, 558, 573
universal mass unit, 673
unperturbed shell model, 715
unrestricted Hartree-Fock, 450

V , 1535
V, 1535
v, 1535
~v, 1536
vacancies

ionic conductivity, 265
optical effects, 301

vacuum energy, 429, 915, 1040
seething cauldron, 1041

vacuum state, 916
valence band

intro, 258
values

observable, 57
Van der Waals forces, 469

Casimir-Polder, 470
variational calculus

worked out example, 864
variational method, 135

helium ionization energy, 1130
hydrogen molecular ion, 135
hydrogen molecule, 148

variational principle, 433
basic statement, 433
differential form, 435
Lagrangian multipliers, 436

vector, 34, 1536
vector bosons, 964
vector particle, 1176
vectorial product, 1536
velocity

in quantum mechanics, 325
vibrational states

seenuclei, 734
vibronic coupling terms, 1340
virial theorem, 324
virtual work, 860
viscosity, 544
Volta potential, 247
volume integral

in spherical coordinates, 1532
von Weizsäcker formula, 687

W, 1536
w, 1537
~w, 1537
warp factor, 15
wave function, 50

multiple particles, 140
multiple particles with spin, 161
with spin, 157

wave number, 42, 65, 392
Floquet, 484
Fourier versus Floquet, 484
one-dimensional Fourier series, 1079
one-dimensional Fourier transform, 1081

wave number vector
and linear momentum, 249
Bloch function, 491
Fourier series, 1082
Fourier transform, 1083

wave numbers, 206
wave packet

accelerated motion, 400
definition, 390
free space, 387, 399
harmonic oscillator, 401
partial reflection, 403
physical interpretation, 390
reflection, 401

wave vector
conservation, 276

weak force
intro, 356

Weisskopf estimates, 1068
comparison with data, 844
figures, 836

Weisskopf unit
derivation, 1077

Weisskopf units, 1068
well

deuteron, 1154
Weyl neutrinos, 1186
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width
particle decay, 647

width of a state, 335
Wigner 3j,6j and 9j coefficients, 1456
Wigner-Eckart theorem, 1457
Wigner-Seitz cell, 489
WKB approximation

connection formulae, 1096
WKB connection formulae, 1097
WKB theory, 1092
Woods-Saxon potential, 707
work function, 245
Wronskian, 1112
W.u., 1077

X, 1537
x, 1537
xi, see ξ
X-ray diffraction, 512

Y , 1537
Y m
l , 1537
y, 1537
yrast line, 748
YSZ, 266
yttria-stabilized zirconia, 266
Yukawa potential, 1165

loose derivation, 1162

Z, 1537
z, 1537
Zeeman effect, 1133

intermediate, 1146
weak, 1146

Zener diode, 296
zero matrix, 1523
zero point energy, 443
zeroth law of thermodynamics, 520
zinc blende

crystal structure, 277
ZnS, see zinc blende
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